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Abstract

Medical texts are notoriously challenging to001
read. Properly measuring their readability is002
the first step towards making them more ac-003
cessible. Here, we present the first system-004
atic study on fine-grained readability measure-005
ments in the medical domain, at both sentence-006
level and span-level. We first introduce a new007
dataset MEDREADME, which consists of man-008
ually annotated readability ratings and fine-009
grained complex span annotation for 4,520010
sentences, featuring two novel “Google-Easy”011
and “Google-Hard” categories. It supports our012
quantitative analysis, which covers 650 linguis-013
tic features and additional complex span fea-014
tures, to answer “why medical sentences are so015
hard.” Enabled by our high-quality annotation,016
we benchmark several state-of-the-art sentence-017
level readability metrics, including unsuper-018
vised, supervised, and prompting-based meth-019
ods using recently developed large language020
models (LLMs). Informed by our fine-grained021
complex span annotation, we find that adding022
a single feature, capturing the number of jar-023
gon spans, into existing readability formulas024
can significantly improve their correlation with025
human judgments, and also make them more026
stable. We will publicly release data and code.027

1 Introduction028

If you can’t measure it, you can’t improve029

it.030
– Peter Drucker031

Timely disseminating reliable medical knowledge032

to those in need is crucial for public health manage-033

ment (August et al., 2023). Trustworthy platforms034

like Merck Manuals and medical Wikipedia contain035

extensive information, and research papers intro-036

duce the latest findings, including emerging medi-037

cal conditions and treatments (Joseph et al., 2023).038

However, comprehending these resources can be a039

challenging task due to their technical nature and040

the extensive use of specialized terminology (Zeng041
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Figure 1: An illustration of our dataset, with sentence
readability ratings and fine-grained complex span an-
notation on 4,520 sentences, including “Google-Hard”
and “Google-Easy”, abbreviations, and general complex
terms, etc. We also analyze how medical jargon are be-
ing handled during simplification. e.g., a Google-Hard
“oro-antral communication” is copied and elaborated.
Some jargon are ignored for clarity.

et al., 2005). As the first step to making them more 042

accessible, properly measuring the readability of 043

medical texts is crucial (Rooney et al., 2021; Echuri 044

et al., 2022). However, a high-quality dataset for 045

reliably evaluating and improving sentence read- 046

ability metrics in the medical domain is lacking. 047

In this work, we present a systematic study for 048

medical sentence readability, including (1) a manu- 049

ally annotated readability dataset (§2), (2) a data- 050

driven study to answer “why medical sentences are 051

so hard”, covering 650 linguistic features and ad- 052

ditional medical jargon features (§3), (3) a compre- 053

hensive benchmark of state-of-the-art readability 054

metrics (§4.1), (4) a simple yet effective method 055
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Figure 2: The distribution of average sentence readability (boxplot on the left y-axis) and the average number of
jargon spans per category (stacked barplot on the right y-axis) in each sentence across both “complex” and “simplied”
versions for 15 commonly used text simplification resources. Sentences with higher readability scores require a
higher level of education to comprehend. The readability of sentences in different resources varies significantly.

to improve them (§4.2), and (5) a trained model to056

extract fine-grained complex spans in practice (§5).057

As demonstrated in Figure 1, we first construct058

MEDREADME, consisting of 4,520 sentences with059

sentence-level readability ratings and fine-grained060

complex span annotation (§2). It covers 15 re-061

sources that have been widely used in medical text062

simplification research. The readability ratings are063

annotated using a rank-and-rate interface (Maddela064

et al., 2023) based on the CEFR scale (Arase et al.,065

2022), which is shown to be more reliable than066

other methods (Naous et al., 2023). We also ask067

annotators to highlight any span that they find hard068

to understand, and categorize the reason using a069

7-class taxonomy that we developed. Considering070

that “the majority of people seek health information071

online began at a search engine”,1 we introduce072

two “Google-Easy” and “Google-Hard” categories073

to reflect whether a jargon is understandable after a074

quick Google search, providing a fresh perspective075

beyond binary or 5-point Likert scales.076

Our dataset addresses three limitations in prior077

work: (1) Previous research on sentence readabil-078

ity use document-level ratings as approximation,079

which is shown to be inaccurate (Arase et al., 2022;080

Cripwell et al., 2023). (2) Existing work with081

sentence-level ratings mainly covers data from gen-082

eral domains, such as Wikipedia (De Clercq and083

Hoste, 2016), news (Štajner et al., 2017; Brunato084

et al., 2018), and textbooks for ESL learners (Arase085

et al., 2022), which are very different from special-086

ized fields, such as medicine (Choi and Pak, 2007).087

1https://tinyurl.com/seek-health-info-online

(3) Prior work separates the research on sentence 088

readability and complex jargon terms, hence miss- 089

ing the possible correlations between them (Kwon 090

et al., 2022; Naous et al., 2023). 091

Our analysis reveals that compared to various 092

linguistic features, complex spans, especially medi- 093

cal jargon from certain domains, more significantly 094

elevate the difficulty of sentences (§3.1). We also 095

scrutinize the quality of 15 widely used medical 096

simplification resources (§3.2), and find that there 097

are non-negligible variances in readability among 098

them, as demonstrated by Figure 2. 099

In the evaluation of sentence readability metrics, 100

we find that unsupervised methods based on lexi- 101

cal features perform poorly in the medical domain. 102

Prompting large language models such as GPT4 103

(Achiam et al., 2023) with 5-shot achieves strong 104

performance, yet outperformed by fine-tuned mod- 105

els in a much smaller size. Inspired by our analysis, 106

we add a single feature that captures the “number 107

of jargon” in a sentence into existing readability 108

formulas, and find it can significantly improve their 109

performance and also make them more stable. 110

2 Constructing MEDREADME Corpus 111

This section presents the detailed procedure for 112

constructing the Medical Readability Measurement 113

(MEDREADME) corpus, which consists of 4,520 114

sentences in 180 complex-simple article pairs ran- 115

domly sampled from 15 data sources (§2.1). 116

Target Audience. According to the US Census 117

Bureau,2 more than 90% of U.S. adults complete 118

2https://nces.ed.gov/programs/digest/d21/
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Category Definition Example Tok. Len. %

Medical Jargon 2.2±1.5 68.6%

Google-Easy
Medical terms that can be easily understood
after a quick search.

Schistosoma mansoni is a parasitic infection
common in the tropics and sub-tropics.

2.0±1.2 56.9%

Google-Hard
Medical terms that require extensive research
before a layperson can possibly understand them.

. . . retains limited DNA-processing activity,
albeit via a distributive binding mechanism.

3.2±2.5 7.5%

Name Entity
Brand or organization name, excluding general
medical terms such as drugs and equipments.

While vaccination with BioNTech and Moderna
mostly causes only mild and typical . . .

2.7±2.2 4.1%

General Complex Terms that are outside the vocabulary of 10-12th
graders and not specific to the medical domain.

Treatments used to ameliorate symptoms and
reduce morbidity include opiates, sedatives . . .

1.9±1.2 10.2%

Multi-sense Spans that have different meanings in the
medical context compared to their general use.

. . . in structural and/or functional aspects of the
interaction with the insect vector.

1.0±0.1 0.5%

Abbreviation 1.1±0.4 20.8%

Medical Domain
Abbreviations that have a specific meaning in
the medical domain.

. . . 4,433 were alive and not withdrawn at an
LTFU participating center.

1.1±0.4 16.6%

General Domain Abbreviations that belong to the general domain. . . . as low risk of bias (95% CI 0.37 to 1.53). 1.0±0.2 4.2%

Table 1: A taxonomy (I) of complex spans in medical domain. In each example, the complex spans are marked with
a red background. The “medical jargon” and "abbreviation" rows are based on the aggregation of sub-categories.

high school. To ensure our study reflects the back-119

ground of a broader audience, our study mainly tar-120

gets people who have completed high school or are121

entering college, and our our dataset is annotated122

by college students without medical backgrounds.123

2.1 Data Collection and Preprocessing124

The 15 resources that we considered include the125

abstract sections and plain language summaries126

from scientific papers, such as National Institute for127

Health and Care Research (NIHR) and “the highest128

standard in evidence-based healthcare” Cochrane129

Review,3 for which we use the aligned article pairs130

from prior studies (Devaraj et al., 2021a; Goldsack131

et al., 2022; Guo et al., 2022). We also include seg-132

ment and paragraph pairs for the parallel versions133

of medical references from trusted online platforms,134

such as Merck Manuals4 and Medical Wikipedia.135

A detailed introduction of each resource and details136

about pre-processing is provided in Appendix C.137

2.2 Sentence-level Readability Annotation138

To collect ground-truth judgements, we hire three139

in-house undergrads with rich experience to an-140

notate the readability ratings for 4,520 sentences.141

Our annotating setup utilizes the “rank-and-rate”142

interface (Naous et al., 2023) and the CEFR scale143

(Arase et al., 2022), with several improvements.144

CEFR Scale. Following prior work (Arase et al.,145

2022), we use the Common European Framework146

of Reference for Languages (CEFR), which is the147

most widely used international criteria to define148

3https://www.cochranelibrary.com/
4https://www.merckmanuals.com/

learners’ language proficiency. CEFR assesses lan- 149

guage skills by a 6-level scale with a detailed guide- 150

line,5 from beginners (A1) to advanced mastery 151

(C2), which are denoted as level 1 (easiest) to level 152

6 (hardest) in our interface. As medical texts are 153

naturally on the harder side, we introduce the use 154

of “+” and “-” signs to differentiate the nuance in 155

readability, e.g., “3+” and “3-”, in addition to each 156

integer level. They are treated as 3.3 and 2.7 when 157

converting to the numeric scores. 158

Rank-and-Rate Framework. Six sentences are 159

shown on each page, and annotators are instructed 160

to rank them from most to least readable first, and 161

then rate each sentence using the 6-point CEFR 162

standard. The interface is shown in Appendix J. 163

Compared to rating each sentence individually, this 164

method enables annotators to compare and contrast 165

sentences within each batch, leading to higher an- 166

notator agreement (Maddela et al., 2023) and more 167

engaging user experience (Naous et al., 2023). 168

Quality Control. For each new sentence from 169

the MEDREADME corpus, we sample another sen- 170

tence with comparable length from README++ 171

dataset (Naous et al., 2023) as a “control sentence”. 172

Therefore, each page consists of three new sen- 173

tences and three control ones whose ratings are 174

known. Annotators are asked to spend at least three 175

minutes on every page, and their performance is 176

monitored using the control sentences. The 1,924 177

sentences in the dev and test sets are double anno- 178

tated, and the scores are merged by average. The 179

inter-annotator agreement is 0.742 measured by 180

5https://tinyurl.com/CEFR-Standard/
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Figure 3: Left: Readability of sentences with differ-
ent lengths. Compared to the CEFR-SP dataset (Arase
et al., 2022), our corpus contains much longer sentences.
Right: Readability of sentences with different numbers
of jargon. The circle’s radius reflects the number of over-
lapping points at each coordinate. We slightly shifted
the points horizontally (±0.1) to improve clarity.

Krippendorff’s alpha (Krippendorff, 2011). On the181

control sentences, our annotation achieves a Pear-182

son correlation of 0.771 with the original ratings183

from README++, demonstrating our quality.184

2.3 Fine-trained Complex Span Annotation185

We propose a new taxonomy to comprehensively186

capture the categories of complex spans that ap-187

peared in the medical texts, as shown in Table 1.188

“Google-Hard” Jargon. In pilot study, we find189

that some medical terms, such as “Tiotropium bro-190

mide” (a drug) and “Plasmodium” (an insect), can191

be grasped after a quick Google search, although192

they are outside the vocabulary of many people.193

Some other phrases, such as “anti-tumour necro-194

sis factor failure” and “processive nucleases”, will195

require extensive research before a layperson can196

possibly (or still not) understand them, even though197

some of them contain short or common words. This198

motivates us to propose a unique category “Google-199

Hard” medical jargon, which is separate from jar-200

gon that are “Google-Easy” or “Name-Entity”.201

Annotation Agreement. After receiving a two-202

hour training session, two undergraduate annota-203

tors independently annotate each of the 4,520 sen-204

tences using a web-based annotation tool, BRAT205

(Stenetorp et al., 2012). An adjudicator then further206

inspects the annotation and discusses any signifi-207

cant disagreements. The inter-annotator agreement208

is 0.631 before adjudication, measured by token-209

level Cohen’s Kappa (Cohen, 1960). The annota-210

tion interface is provided in Appendix K.211

3 Key Findings212

Enabled by our MEDREADME corpus, we first ana-213

lyze the sentence readability in the medical domain214

Feature Corr.

Number of unique sophisticated lexical words†. 0.645
Corrected type-token-ratio (CTTR) 0.627
Number of syllables. 0.589
Max age-of-acquisition (AoA) of words (2012). 0.576
Average number of characters per token 0.524
Number of words. 0.532
Average number of characters per token. 0.524
Corrected noun variation. 0.513
The maximum dependency tree depth. 0.437
Cumulative Zipf score for all words (2012). 0.425

Table 2: Top representative linguistic features and their
Pearson correlation with readability. †“Sophisticated”
is defined based on an external database; lexical words
include nouns, non-auxiliary verbs, adjectives, and cer-
tain adverbs. More implementation details and more
features are provided in the Appendix B.

(§3.1 and §3.2), and then look into medical jargon 215

of different complexity (§3.3 and §3.4). 216

3.1 Why Medical Sentences are Hard? 217

The readability of a sentence can be impacted by a 218

mixture of factors, including sentence length, gram- 219

matical complexity, word choice, etc. We extract 220

650 linguistic features from each sentence and mea- 221

sure their correlation with ground-truth readability. 222

15 additional features are designed to quantify the 223

influence of complex spans. Based on our qualita- 224

tive analysis, we found that complex spans, such as 225

medical jargon, have a more significant impact on 226

sentence readability compared to linguistic aspects. 227

Impact of linguistic features. For each sentence, 228

650 linguistic features are extracted, including 229

syntax and semantics features, quantitative and 230

corpus linguistics features, in addition to psycho- 231

linguistic features (Vajjala and Meurers, 2016), 232

such as the age of acquisition (AoA) released by 233

Kuperman et al. (2012), and concreteness, mean- 234

ingfulness, and imageability extracted from the 235

MRC psycholinguistic database (Wilson, 1988). 236

The features are extracted using a combination of 237

toolkits, each of which covers a different subset 238

of features, including LFTK (Lee and Lee, 2023), 239

LingFeat, Profiling–UD (Brunato et al., 2020b), 240

Lexical Complexity Analyzer (Lu, 2012), and 241

L2 Syntactic Complexity Analyzer (Lu, 2010). 242

We select 10 top representative features and present 243

them in Table 3, and a more completed top 50 244

influential features are provided in Appendix B. 245

We found that resource-based methods, such as 246

the count of “sophisticated words” and Zipf score, 247

defined using external databases, are very useful. 248

Length-related features are also informative. 249
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Type #Spans #Tokens %Tokens

Medical Jargon 0.644 0.591 0.445
Abbreviation 0.259 0.254 0.134
General Complex 0.112 0.09 0.001
Multi-sense 0.058 0.059 0.035

All Categories 0.656 0.617 0.584

Table 3: The impact of 15 features related to complex
spans, measured by the Pearson correlation with ground-
truth sentence readability on the MEDREADME dataset.

Impact of Specialized Terminology. Based on250

our pilot study and feedback from annotators, we251

find that the specialized terminology, while allow-252

ing for precise and concise communication among253

experts, significantly affects the difficulty level of254

texts in specialized domains, such as medicine.255

Failing to understand jargon prevents readers from256

getting specific details and even hinders them from257

parsing the overall structure of a sentence. Based258

on our span-level annotation, we explicitly look259

into each type of fine-grained complex spans and260

measure their effects on the readability. Specifi-261

cally, for each category, we design three features262

and compute their correlation with the sentence-263

level readability ratings, and also consider the col-264

lective impact for all jargon types. As shown in265

Table 3, we find that medical jargon significantly266

affects readability, and abbreviations follow in in-267

fluence. The general complex terms and medical268

entities exhibit less effect. The right part of Figure269

3 presents the correlation between readability and270

the number of jargon spans,6 and the correlation271

with sentence length is plotted in left side of Fig. 3272

3.2 Readability Significantly Varies Across273

Existing Medical Simplification Corpora274

In Figure 2, we plot the distribution of sentence275

readability and numbers of jargon in each category276

for 15 text simplification resources. Within each277

source, the simplified texts are rated as easier to278

understand than their complex counterparts, though279

the extent varies. However, when compared across280

venues, some simplified texts are more challenging281

to read than the complex texts from other sources,282

suggesting that not all plain texts are “equally” sim-283

plified. In addition, some resources, such as “PLOS284

pathogens”, are especially challenging for layper-285

sons without domain-specific knowledge to under-286

stand. The current research practice treats medical287

text simplification as an umbrella term, often con-288

catenating all available corpora into a giant train-289

ing set. However, we argue for a more cautious290

6The readability ratings are capped at 6.

Figure 4: Breakdown of Google-Easy and Google-Hard
jargon into different medical domains based on our man-
ual analysis of 400 randomly sampled jargon.

approach. For some resources, the “simplified” ver- 291

sion remains quite complex, and the topics may not 292

be directly relevant to laypersons. Therefore, the 293

decision to include a corpus or not should be made 294

after considering the intended audiences’ desired 295

simplification level and the application domain. 296

3.3 What Makes a Jargon Easy (or Hard)? 297

Based on the feedback from annotators, we iden- 298

tify two major factors that influence the perceived 299

difficulty of medical jargon, as listed below: 300

Inherent Complexity of Jargon. To analyze the 301

perceived difficulty of medical jargon from differ- 302

ent domains, we randomly sample 200 medical 303

jargon from each of Google-Easy and -Hard cate- 304

gories and manually categorize them. The results 305

are presented in Figure 4. Google-Easy terms are 306

more diversified across different categories, while 307

Google-Hard terms mainly fall under Genetics / 308

Cellular Biology and Biology / Molecular Pro- 309

cesses. This suggests that jargon associated with 310

genetics or molecular procedures tends to be more 311

challenging to read, possibly due to the specialized 312

knowledge required to interpret them. 313

Variance in the Explanation. We found that the 314

accessibility of medical jargon is significantly im- 315

proved when search engines offer explanations or 316

visual aids in their results. Search engines may 317

provide the explanation of a medical term in two 318

places: (1) the feature snippets in the answer box; 319
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Sources Length FKGL
(Kincaid et al.)

ARI
(Smith and Senter)

SMOG
(Mc Laughlin)

RSRS
(Martinc et al.)

FKGL-Jar
(Ours)

ARI-Jar
(Ours)

SMOG-Jar
(Ours)

RSRS-Jar
(Ours)

Cochrane 0.628 0.743 0.689 0.749 0.826 0.717 0.719 0.726 0.721
PNAS 0.554 0.480 0.441 0.615 0.594 0.660 0.650 0.685 0.657
NIHR Series 0.529 0.482 0.455 0.661 0.659 0.577 0.583 0.632 0.616
eLife 0.505 0.196 0.244 0.371 0.467 0.644 0.638 0.690 0.733
PLOS Series 0.436 0.414 0.413 0.446 0.613 0.716 0.717 0.704 0.707
Wiki 0.352 0.400 0.368 0.471 0.670 0.677 0.681 0.785 0.703
MSD 0.259 0.618 0.576 0.604 0.694 0.836 0.835 0.805 0.859

Mean ± Std 0.466 ± 0.127 0.476 ± 0.173 0.455 ± 0.143 0.56 ± 0.134 0.646 ± 0.109 0.690 ± 0.080 0.689 ± 0.080 0.718 ± 0.060 0.714 ± 0.076

Table 4: Pearson correlation between human ground-truth readability and each unsupervised readability metric.
NIHR and PLOS are aggregations of 5 sources for each. All correlations are statistically significant. “-Jar” denotes
adding a “number-of-jargon” feature into existing readability formula (more details in §4.2). The proposed method
significantly improves the correlation over existing metrics, as demonstrated by the average correlation.

Operation Google-Easy Google-Hard

Knowledge Panel

Covered 45.6% 10.3%
Explained by Figure 13.6% 4.6%

Feature Snippets

Covered 55.3% 21.2%
Highlighted Text 52.4% 18.5%
Explained by Figure 22.8% 3.6%

Table 5: The percentage of explanatory content provided
by Google. An annotated screenshot of the webpage is
provided in Figure 6 in Appendix I to visually demon-
strates “Knowledge Panel” and “Feature Snippets”,

and (2) the knowledge panel, which is powered by320

a knowledge graph. An annotated screenshot of the321

search results is provided in Figure 6 in Appendix322

I to demonstrate each element visually. By parsing323

the Google search results for 2,731 unique Google-324

Easy and 504 Google-Hard medical jargon from325

our corpus, we quantified the existence of these326

explanations in Table 5. The Google-Easy jargon is327

more frequently accompanied by explanatory con-328

tent compared to the Google-Hard category. The329

use of visual aids also follows a similar pattern;330

Google-Easy terms are much more likely to be ex-331

plained by figures compared to Google-Hard ones.332

3.4 How Professional Editors Simplify the333

Medical Jargon?334

To study how jargon are handled during the man-335

ual simplification process, we randomly sample336

200 jargon and manually analyze the operation ap-337

plied to them. The results are presented in Table338

6. We find that the majority part of jargon in both339

categories got deleted. Compared to Google-Easy,340

“Google-Hard” jargon got copied less, and are being341

rephrased and explained more often. This findings342

indicate that trained editors adopt different strate-343

gies to handle jargon in different complexity.344

Operation Google-Easy Google-Hard

Kept 22% 13% (↓ 9%)
Deleted 56% 52% (↓ 4%)
Rephrased 3% 10% (↑ 7%)
Kept + Explained 8% 8% (−)
Del.+ Explained 11% 17% (↑ 6%)

Table 6: The distribution of operations to 200 medical
jargon (100 in each type), based on our manual analysis.

4 Medical Readability Prediction 345

Here, we present a comprehensive evaluation of 346

several state-of-the-art readability metrics in the 347

medical domain (§4.1), and design a simple yet 348

effective method to further improve them (§4.2). 349

4.1 Evaluating Existing Readability Metrics 350

Enabled by our annotated corpus, we first evaluate 351

commonly used sentence readability metrics. 352

Unsupervised Metrics. The Pearson correlations 353

between ground-truth readability and each unsuper- 354

vised metric are presented in the left half of Table 355

4, and their detailed formulations are provided in 356

Appendix A. We also add sentence length as a base- 357

line. We find that they generally do not perform 358

very well. The language model-based RSRS score 359

significantly outperforms the traditional feature- 360

based metrics, among which SMOG performs best. 361

Supervised and Prompt-based Methods. The 362

results are presented in Table 7. For supervised 363

methods, we fine-tune language models on our 364

dataset and existing corpora (Naous et al., 2023; 365

Arase et al., 2022; Brunato et al., 2018) to pre- 366

dict the sentence readability. We also evaluate the 367

performance of in-context learning by prompting 368

large language models such as GPT4 and Llama 2 369

(Touvron et al., 2023) using 5-shot. The prompts 370

are constructed following (Naous et al., 2023). 371

More details and the full template can be found 372
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Sources 5-shots Trained on Each Corpus The Trained + an Jargon Term

GPT4
(Achiam et al.)

Llama 2-7b
(Touvron et al.)

ReadMe++
(Naous et al.)

CEFR-SP
(Arase et al.)

CompDS
(Brunato et al.)

MEDREADME
(Ours)

ReadMe++Jar
(Ours)

CEFR-SPJar
(Ours)

CompDSJar
(Ours)

MEDREADMEJar
(Ours)

Cochrane 0.908 0.549 0.858 0.899 0.870 0.947 0.842 0.850 0.785 0.882
PNAS 0.780 0.574 0.852 0.820 0.791 0.874 0.780 0.824 0.744 0.873
NIHR Series 0.713 0.580 0.824 0.753 0.706 0.885 0.697 0.687 0.634 0.700
eLife 0.538 0.127 0.594 0.715 0.608 0.712 0.812 0.802 0.777 0.861
PLOS Series 0.672 0.309 0.680 0.691 0.635 0.702 0.787 0.843 0.744 0.850
Wiki 0.670 0.429 0.824 0.709 0.607 0.843 0.712 0.619 0.673 0.709
MSD 0.766 0.328 0.784 0.778 0.757 0.867 0.918 0.880 0.863 0.937

Mean ± Std 0.721 ± 0.115 0.414 ± 0.17 0.774 ± 0.1 0.766 ± 0.073 0.711 ± 0.101 0.833 ± 0.092 0.793 ± 0.076 0.786 ± 0.096 0.746 ± 0.075 0.830 ± 0.090

Table 7: Pearson correlation between human ground-truth readability and each prompting and supervised readabil-
ity metric. All numbers are averaged over five runs, and all correlations are statistically significant. denotes
RoBERTa-large models. “-Jar” means adding a “jargon” term (more details in §4.2). Prompt-based methods are
competitive, while still outperformed by fine-tuned models in much smaller sizes.

0.2 0.3 0.4 0.5 0.6 0.7

FK

FK-Jar

SMOG

SMOG-Jar

RSRS

RSRS-Jar

Sentences with Length 0-15

0.2 0.3 0.4 0.5 0.6

Sentences with Length 15-30

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Sentences with Length 30-45

0.2 0.0 0.2 0.4 0.6

Sentences with Length 45+

Figure 5: The 95% confidence intervals for Kendall Tau-like correlation (τall) between ground-truth readability
annotation and predicted outputs from each automatic metric for sentences with different lengths, calculated by
bootstrapping (Deutsch et al., 2021). In addition to a higher correlation with human judgments, incorporating jargon
(“-Jar”) makes each metric more stable, as shown by the smaller intervals.

in Appendix H. We find that prompt-based meth-373

ods achieve competitive results, e.g., GPT4 out-374

performs the strongest unsupervised metric RSRS,375

although they still fall behind supervised ones.376

4.2 Improve Existing Metrics by “-Jar”377

To incorporate the consideration of jargon into ex-378

isting metrics, we tune a weight α for the feature379

“number-of-jargon” for each metric, and add it to380

the current formula, as shown below:381

FKGL-Jar = FKGL + α× #Jargon382

Here, “FKGL-Jar” denotes adding jargon into383

the FKGL score, similarly for other metrics with a384

suffix “-Jar”. The weight α for each metric is tuned385

by grid search on the devset using gold annotation.386

As RSRS scores are smaller than 1, we scale them387

by timing 100 before doing parameter search. The388

right part in Table 4 and 7 reports the performance389

of each unsupervised and supervised method on the390

testset, after adding our proposed term. To simulate391

the real-word scenario, we use jargon predicted by392

our best performing complex span identification393

model (more details in §5), instead of the ground-394

truth annotation. The optimal weights we tuned for395

“FKGL-Jar”, “ARI-Jar”, “SMOG-Jar”, and “RSRS-396

Jar” are 4.85, 6.43, 1.1, and 0.45, respectively. We397

find that introducing a single term significantly im-398

proves the correlation with human judgments.399

Length Control Experiment. To analyze the im- 400

pact on sentences of different lengths, in Figure 401

5, we present the 95% confidence intervals for the 402

Kendall Tau-like correlation (τall) (Noether, 1981) 403

between the ground-truth readability and predic- 404

tions from each metric (Maddela et al., 2023). We 405

find the proposed term is helpful for sentences at 406

all lengths and is more significant for feature-based 407

methods, such as SMOG. In addition, the incorpo- 408

ration of jargon makes the metrics more stable, as 409

demonstrated by the narrower interval. 410

5 Fine-grained Complex Span 411

Identification 412

Based on our analysis in §4.2, identifying complex 413

spans in a sentence can help the judgment of its 414

readability. It can also improve the performance of 415

downstream text simplification system (Shardlow, 416

2014). We formulate this task as a NER-style se- 417

quential labeling problem (Gooding and Kochmar, 418

2019), and utilize our annotated dataset to train and 419

evaluate several models. We also study the perfor- 420

mance of transfer learning by training models us- 421

ing existing datasets (Yimam et al., 2017; Paetzold 422

and Specia, 2016) which are from general domains. 423

The detailed setup is introduced in Appendix F. 424

The results, shown in Table 14, demonstrate the 425

necessity for our medical-specific corpus. 426
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Models
Token-Level Entity-Level

Binary 3-Cls. 7-Cate. Binary 3-Cls. 7-Cate.

Large-size Models

BERT (2019) 86.1 80.9 67.9 78.5 74.1 43.9
RoBERTa (2019) 86.8 82.3 68.6 80.2 75.9 67.9
BioBERT (2020) 85.3 80.7 67.0 78.4 72.6 64.9
PubMedBERT (2021) 85.7 82.3 68.3 79.0 75.2 66.5

Base-size Models

BERT (2019) 85.4 80.4 66.3 77.0 72.5 63.3
RoBERTa (2019) 86.2 81.7 68.0 79.7 75.2 66.6
BioBERT (2020) 84.2 79.6 66.4 77.1 72.8 64.1
PubMedBERT (2021) 85.2 81.2 67.7 78.5 74.8 66.3

Table 8: Micro F1 of different systems for complex
span identification on the MEDREADME testset. The
best and second best scores within each model size are
highlighted. Models are trained with fine-grained labels
in seven categories and evaluated at different granularity.

Data and Models. The 4,520 sentences in our427

corpus is split into 2,587/784/1,140 for train, dev,428

and test sets. We mainly consider BERT/RoBERTa-429

based standard tagging models, initialized with dif-430

ferent pre-trained embeddings. The implementa-431

tion details are provided in Appendix D.432

Evaluation Metrics. Our system will mainly be433

utilized to aid the judgment of sentence-level read-434

ability, where we found the numbers of jargon and435

jargon tokens are most helpful (§3.1). Serving436

this purpose, the following two metrics are mainly437

considered: (1) entity-level partial match, indicat-438

ing the number of jargon, where the type of the439

predicted entity matches the gold entity and the440

predicted boundary overlaps with the gold one441

(Tabassum et al., 2020);7 (2) token-level match,442

measuring the number of jargon tokens. For each443

metric, we conduct evaluations at three levels of444

granularity: (1) fine-grained level with seven cate-445

gories, (2) associated higher-level classes (medical446

/ general+multisense / abbreviation), and (3) binary447

judgements between jargon or not-jargon.448

Results. The evaluation results are presented in449

Table 8. All results are averaged over 5 runs with450

different random seeds. The fine-tuned RoBERTa-451

large model (Liu et al., 2019) achieves 86.8 and452

80.2 F1 for binary tasks at token- and entity-levels.453

Using predictions from this model, we significantly454

improve existing metrics’ correlation with human455

judgment (§4.2). We find the domain-specific mod-456

7We use the evaluation script released by the author
at https://github.com/jeniyat/WNUT_2020_NER/tree/
master/code/eval. We also report the exact match perfor-
mance at entity-level in the Appendix F.

els at base size, such as PubMedBERT (Tinn et al., 457

2021), also achieve competitive performance. How- 458

ever, correctly picking up the difference between 459

seven types of complex spans remains challenging. 460

6 Related Work 461

Readability Measurement in Medical Domain. 462

Unsupervised metrics, such as FKGL (Kincaid 463

et al., 1975), ARI (Smith and Senter, 1967), 464

SMOG (Mc Laughlin, 1969), and Coleman-Liau 465

index (Coleman and Liau, 1975) have been widely 466

adopted in existing research on the medical read- 467

ability analysis, as they do not require training data 468

(Fu et al., 2016; Chhabra et al., 2018; Xu et al., 469

2019; Devaraj et al., 2021a; Kruse et al., 2021; 470

Guo et al., 2022; Kaya and Görmez, 2022; Hartnett 471

et al., 2023, inter alia). However, their reliabil- 472

ity has been questioned (Wilson, 2009; Jindal and 473

MacDermid, 2017; Devaraj et al., 2021b), as they 474

mainly rely on the combination of shallow lexical 475

features. RSRS score (Martinc et al., 2021) utilizes 476

the log probability of words from a pre-trained lan- 477

guage model such as BERT (Devlin et al., 2019), 478

and supervised metrics fine-tune a model on the 479

annotated corpora (Arase et al., 2022; Naous et al., 480

2023), whereas their performance is unclear for the 481

medical field. Enabled by our high-quality dataset, 482

we benchmark existing state-of-the-art metrics in 483

the medical domain (§4.1), and also further im- 484

prove their performance and stability (§4.2). 485

Complex Span Identification in Medical Do- 486

main. There are two prior studies covering med- 487

ical data. CompLex 2.0 (Shardlow et al., 2020) 488

consists of complex spans rated on a 5-point Likert 489

scale. However, it only covers spans with one or 490

two tokens. MedJEx corpus (Kwon et al., 2022) 491

consists of binary jargon annotation for sentences 492

from the medical notes, whereas the dataset is li- 493

censed. Other work mainly focuses on general 494

domains, such as news and Wikipedia, and other 495

specialized domains, e.g., computer science. Due 496

to space limits, we list them in Appendix E. Our 497

data is based on open-access medical resources and 498

contains both readability ratings and complex span 499

annotation in a finer-grained 7-class (§2). 500

7 Conclusion 501

In this work, we present the first systematic study 502

for sentence readability in medical domain, featur- 503

ing a new annotated dataset and a data-driven study 504

to answer “why medical sentences are so hard.”. 505
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Limitations506

Due to the reality that major scientific medical507

discoveries are mainly reported in English, our508

study primarily focuses on English-language medi-509

cal texts. Future research could extend to medical510

resources in other languages. In addition, the read-511

ability ratings of a sentence can be impacted by a512

mixture of factors, including sentence length, gram-513

matical complexity, word difficulty, annotator’s ed-514

ucational background, the design and quality of515

annotation guidelines, as well as the target audi-516

ence. We choose to use the CEFR standards, which517

is “the most widely used international standard” to518

access learners’ language proficiency (Arase et al.,519

2022). It has detailed guidelines in 34 languages89520

and have been used in many prior research (Boyd521

et al., 2014; Rysová et al., 2016; François et al.,522

2016; Xia et al., 2016; Tack et al., 2017; Wilkens523

et al., 2018; Arase et al., 2022; Naous et al., 2023,524

inter alia).525

Ethics Statement526

During the data collection process, we hired under-527

grad students from the U.S. as in-house annotators.528

All annotators are compensated at $18 per hour529

based on school standards, well above the mini-530

mum wage.531
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A Formulas of Readability Metrics957

In this section, we list the formulas for four unsu-958

pervised readability metrics.959

FKGL. The Flesch-Kincaid Grade Level formula960

is a well-known readability test designed to indicate961

how difficult a text in English is to understand. It962

is calculated using the formula:963

FKGL = 0.39

(
total words

total sentences

)
+ 11.8

(
total syllables

total words

)
− 15.59

964

ARI. The Automated Readability Index (ARI)965

is another widely used readability metric that esti-966

mates the understandability of English text. It is967

formulated based on characters rather than sylla-968

bles. The ARI formula is given by:969

ARI = 4.71

(
total characters

total words

)
+ 0.5

(
total words

total sentences

)
− 21.43

970

SMOG. The SMOG (Simple Measure of Gob-971

bledygook) Index is a readability formula that mea-972

sures the years of education needed to understand973

a piece of writing. SMOG is particularly useful974

for higher-level texts. The formula is as follows,975

where the polysyllables are calculated by counting976

the number of words in a text that have three or977

more syllables:978

P = number of polysyllables

S = number of sentences

SMOG = 1.0430

√
P × 30

S
+ 3.1291

979

RSRS. The RSRS (Ranked Sentence Readability
Score) leverages log probabilities from a neural
language model and the sentence length feature.
It’s calculated through a weighted sum of individ-
ual word losses. Each word’s Negative Log Loss
(WNLL) is sorted in ascending order and weighted
by its rank. The formula assigns higher weights
to the out-of-vocabulary (OOV) words, by setting
α = 2 for all OOV words and 1 for others. The
formula for RSRS is:

RSRS =

∑S
i=1[

√
i]α ·WNLL(i)

S

And WNLL can be calculated by:

WNLL = −(yt log yp + (1− yt) log(1− yp))

Here, yp is the predicted distribution from the 980

language model, and yt is the empirical distribution, 981

where 1 for words that appear in the text, and 0 for 982

all others. 983

B More Results on the Influence of Each 984

Linguistic Feature 985

In this section, we provide more results on the in- 986

fluence of linguistic features, including syntax and 987

semantics features, quantitative and corpus linguis- 988

tics features, in addition to psycho-linguistic fea- 989

tures (Vajjala and Meurers, 2016), such as the age 990

of acquisition (AoA) released by Kuperman et al. 991

(2012), and concreteness, meaningfulness, and im- 992

ageability extracted from the MRC psycholinguis- 993

tic database (Wilson, 1988). 994

The features are extracted using a combina- 995

tion of toolkits, each of which covers a differ- 996

ent subset of features, including 220 features 997

from the LFTK package (Lee and Lee, 2023), 255 998

from the LingFeat (Lee et al., 2021), 61 from 999

Text Characterization Toolkit (TCT) (Simig 1000

et al., 2022), 119 from Profiling–UD (Brunato 1001

et al., 2020b), 33 from the Lexical Complexity 1002

Analyzer (LCA) (Lu, 2012) and 23 from the L2 1003

Syntactic Complexity Analyzer (L2SCA) (Lu, 1004

2010). The top 50 most influential features are pre- 1005

sented in Table B after skipping the duplicated and 1006

nearly equivalent ones, e.g., the typo-token-ratio 1007

and root-type-token-ratio. 1008

For each of the listed features, we look into the 1009

implementation details from the original toolkit 1010

and explain them in the "Implementation Details" 1011

column. To facilitate reproducibility, we also in- 1012

clude the exact feature name used in the original 1013

code in the "Original Feature Name" column. 1014
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Package Original Feature Name Pearson
Correlation Implementation Details in the Original Toolkit

LCA (2012) len(slextypes.keys()) 0.6452 Number of unique sophisticated lexical words. “Sophisti-
cated” is defined as the top 2000 most frequent lemmatized
tokens in ANC corpus.a Lexical words include nouns, non-
auxiliary verbs, adjectives, and certain adverbs that provide
substantive content in the text.

LCA (2012) len(swordtypes.keys()) 0.6408 Number of unique sophisticated words. “Sophisticated” is
defined as the top 2000 most frequent lemmatized tokens
in ANC corpus.

LFTK (2023) corr_ttr 0.6271 Corrected type-token-ratio (CTTR), which is calculated as
(number-of-unique-tokens/

√
2× number-of-all-tokens),

based on the lemmatized tokens.
LFTK (2023) corr_ttr_no_lem 0.6158 Corrected type-token-ratio (CTTR), which is calculated as

(number-of-unique-tokens/
√
2× number-of-all-tokens),

based on the tokens without lemmatization.
LCA (2012) slextokens 0.6120 Number of all sophisticated lexical words. “Sophisticated”

is defined as the top 2000 most frequent lemmatized tokens
in ANC corpus. Lexical words include nouns, non-auxiliary
verbs, adjectives, and certain adverbs that provide substan-
tive content in the text.

LCA (2012) swordtokens 0.6083 Number of all sophisticated words. “Sophisticated” is
defined as the top 2000 most frequent lemmatized tokens
in ANC corpus.

LCA (2012) ndwz 0.6037 Number of different words in the first Z words. Z is com-
puted as the 20th percentile of word counts from a dataset,
resulting in a value of 16 in our case.

LCA (2012) ndwesz 0.6024 Number of different words in expected random sequences
of Z words over ten trials. Z is computed as the 20th
percentile of word counts from a dataset, resulting in a
value of 16 in our case.

LingFeat (2021) WRich20_S 0.6006 Semantic richness of a text, which is calculated by sum-
ming up the probabilities of 200 Wikipedia-extracted top-
ics, each multiplied by its rank, indicating the text’s variety
and depth of topics. The 200 topics were extracted from
the Wikipedia corpus using the Latent Dirichlet Allocation
(LDA) method.

LCA (2012) len(lextypes.keys()) 0.5996 Number of unique lexical words. Lexical words include
nouns, non-auxiliary verbs, adjectives, and certain adverbs
that provide substantive content in the text.

LCA (2012) ndwerz 0.5961 Number of different words expected in random Z words
over ten trials. Z is computed as the 20th percentile of
word counts from a dataset, resulting in a value of 16 in
our case.

LFTK (2023) t_syll 0.5888 Number of syllables.
LFTK (2023) t_char 0.5806 Number of characters.
TCT (2022) WORD_PROPERTY_AOA_MAX 0.5758 Max age-of-acquisition (AoA) of words. The AoA of each

word is defined by Kuperman et al. (2012).
LCA (2012) lextokens 0.5750 Number of lexical words. Lexical words include nouns,

non-auxiliary verbs, adjectives, and certain adverbs that
provide substantive content in the text.

Table 9: Top 50 most influential linguistic features on readability assessment.

ahttps://anc.org/

1015

15

https://anc.org/


Package Original Feature Name Pearson
Correlation Implementation Details in the Original Toolkit

LFTK (2023) t_uword 0.5744 Number of unique words.
LingFeat (2021) WTopc20_S 0.5686 The count of distinct topics, out of 200 extracted from

Wikipedia, that are significantly represented in a text, show-
ing the breadth of topics it covers.

LFTK (2023) t_syll2 0.5607 Number of words that have more than two syllables.
LingFeat (2021) BClar20_S 0.5598 Semantic Clarity measured by averaging the differences

between the primary topic’s probability and that of each
subsequent topic, reflecting how prominently a text focuses
on its main topic, based on 200 topics extracted from the
WeeBit Corpus.

LingFeat (2021) to_AAKuW_C 0.5379 Total age-of-acquisition (AoA) of words. The AoA of each
word is defined by Kuperman et al. (2012).

TCT (2022) DESWC 0.5323 Number of words.
LingFeat (2021) BClar15_S 0.5294 Semantic Clarity measured by averaging the differences

between the primary topic’s probability and that of each
subsequent topic, reflecting how prominently a text focuses
on its main topic, based on 150 topics extracted from the
WeeBit Corpus.

LingFeat (2021) at_Chara_C 0.5237 Average number of characters per token.
LFTK (2023) corr_noun_var 0.5127 Corrected noun variation, which is computed as

(number-of-unique-nouns/
√
2× number-of-all-nouns)

LingFeat (2021) as_AAKuW_C 0.5069 Average age-of-acquisition (AoA) of words. The AoA of
each word is defined by Kuperman et al. (2012).

LFTK (2023) t_bry 0.5046 Total age-of-acquisition (AoA) of words. The AoA of each
word is defined by Brysbaert and Biemiller (2017).

LFTK (2023) t_syll3 0.5044 Number of words that have more than three syllables.
LingFeat (2021) WTopc15_S 0.4956 The count of distinct topics, out of 150 extracted from

Wikipedia, that are significantly represented in a text, show-
ing the breadth of topics it covers.

LFTK (2023) corr_adj_var 0.4764 Corrected adjective variation, which is computed as
(number-of-unique-adjectives/

√
2× number-of-all-adjectives)

LFTK (2023) n_unoun 0.4694 Number of unique nouns.
LingFeat (2021) at_Sylla_C 0.4691 Average number of syllables per token.
LFTK (2023) a_bry_ps 0.4586 Average age-of-acquisition (AoA) of words. The AoA of

each word is defined by Brysbaert and Biemiller (2017).
LFTK (2023) n_noun 0.4581 Number of nouns.
LingFeat (2021) to_FuncW_C 0.4515 Number of function words, excluding words with POS tags

of ’NOUN’, ’VERB’, ’NUM’, ’ADJ’, or ’ADV’.
LFTK (2023) n_adj 0.4497 Number of adjectives.
LFTK (2023) n_uadj 0.4483 Number of unique adjectives.
Profiling–UD (2020a) avg_max_depth 0.4371 The maximum tree depths extracted from a sentence, which

is calculated as the longest path (in terms of occurring
dependency links) from the root of the dependency tree to
some leaf.

LingFeat (2021) WNois20_S 0.4362 Semantic noise, which quantifies the dispersion of a text’s
topics, reflecting how spread out its content is across differ-
ent subjects. It is calculated by analyzing the text’s topic
probabilities on 200 topics extracted from through Latent
Dirichlet Allocation (LDA).

LCA (2012) ls1 0.4255 Lexical Sophistication-I, calculated as the ratio of sophisti-
cated lexical tokens to the total number of lexical tokens.

Table 10: Top 50 most influential linguistic features on readability assessment (continue).
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Package Original Feature Name Pearson
Correlation Implementation Details in the Original Toolkit

LFTK (2023) t_subtlex_us_zipf 0.4253 Cumulative Zipf score for all words, based on frequency
data from the SUBTLEX-US corpus (Brysbaert et al.,
2012). Zipf scores are a measure of word frequency, with
higher scores indicating more common words.

LingFeat (2021) WTopc10_S 0.4242 The count of distinct topics, out of 100 extracted from
Wikipedia, that are significantly represented in a text, show-
ing the breadth of topics it covers.

Profiling–UD (2020a) avg_links_len 0.4167 Average number of words occurring linearly between each
syntactic head and its dependent (excluding punctuation
dependencies).

LFTK (2023) n_adp 0.4144 Number of adpositions.
LingFeat (2021) SquaAjV_S 0.4088 Squared Adjective Variation-1, which is calculated as the

((number-of-unique-adjectives)2/number-of-total-adjectives).
LFTK (2023) n_upunct 0.4053 Number of unique punctuations.
LFTK (2023) corr_adp_var 0.4031 Corrected adposition variation, which is computed as

(number-of-unique-adpositions/
√
2× number-of-all-adpositions)

LFTK (2023) n_uadp 0.4022 Number of unique adpositions.
LFTK (2023) corr_propn_var 0.3895 Corrected proper noun variation, which is computed as

(number-of-unique-proper-nouns/
√
2× number-of-all-proper-nouns)

LingFeat (2021) WClar20_S 0.3879 Semantic Clarity measured by averaging the differences
between the primary topic’s probability and that of each
subsequent topic, reflecting how prominently a text fo-
cuses on its main topic, based on 200 topics extracted from
Wikipedia Corpus.

LingFeat (2021) SquaNoV_S 0.3864 Squared Noun Variation-1, which is calculated as the
((number-of-unique-nouns)2/number-of-total-nouns).

Table 11: Top 50 most influential linguistic features on readability assessment (continue).
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C Introduction of Medical Text1018

Simplification Resources1019

Our dataset is constructed on top of open-accessed1020

resources. Each of the resources is detailed below.1021

Table 12 presents the basic statistics of 180 sampled1022

article (segment) pairs.1023

Biomedical Journals. The latest advancements1024

in the medical field are documented in the research1025

papers. To improve accessibility, the authors or do-1026

main experts sometimes write a summary in lay lan-1027

guage, providing a valuable resource for studying1028

medical text simplification. We include five sub-1029

journals from NIHR, five sub-journals from PLOS,1030

and the Proceedings of the National Academy of1031

Sciences (PNAS) compiled by (Guo et al., 2022).1032

In addition, we also include the eLife corpus com-1033

piled by (Goldsack et al., 2022), which consists of1034

the paper abstracts and summaries in life sciences1035

written by expert editors.1036

Cochrane Reviews. As “the highest standard in1037

evidence-based healthcare”, Cochrane Review101038

provides systematic reviews for the effectiveness1039

of interventions and the quality of diagnostic tests1040

in healthcare and health policy areas, by identify-1041

ing, appraising, and synthesizing all the empirical1042

evidence that meets pre-specified eligibility criteria.1043

We use the parallel corpus compiled by (Devaraj1044

et al., 2021a).1045

Medical Wikipedia. As their original and simpli-1046

fied versions are created independently in a collab-1047

oration process, the two versions are on the same1048

topic but may not be entirely aligned (Xu et al.,1049

2015). We apply the state-of-the-art methods (Jiang1050

et al., 2020) to extract aligned paragraph pairs from1051

Wikipedia, of which we improve the quality and1052

quantity over existing work (Pattisapu et al., 2020).1053

Specifically, we first collect 60,838 medical terms1054

using Wikidata’s SPARQL service11 by querying1055

unique terms that have 30 specific properties, in-1056

cluding UMLS code, medical encyclopedia, and1057

the ontologies for disease, symptoms, examination,1058

drug, and therapy. Then, we extract corresponding1059

articles for each term from Wikipedia and simple1060

Wikipedia dumps,12 based on title matching using1061

WikiExtractor library,13 resulting in 2,823 aligned1062

article pairs after filtering the empty pages. Finally,1063

10https://www.cochranelibrary.com/
11https://query.wikidata.org/
12The March 22, 2023 version.
13https://attardi.github.io/wikiextractor/

Source of the Publication Avg. #Sent. Avg. Sent. Len.
Comp./Simp. Comp./Simp.

Public Library of Science (PLOS)

Biology 8.3 / 8.2 28.2 / 26.8
Genetics 10.2 / 6.2 28.9 / 30.3
Pathogens 8.9 / 7.2 30.7 / 29.5
Computational Biology 9.1 / 7.2 29.3 / 27.4
Neglected Tropical Diseases 10.2 / 8.0 29.3 / 26.4

National Institute for Health and Care Research (NIHR)

Public Health Research 23.4 / 14.3 26.2 / 20.5
Health Technology Assessment 25.1 / 12.9 27.3 / 25.7
Efficacy and Mechanism Evaluation 22.6 / 14.9 28.2 / 21.4
Programme Grants for Applied Research 27.6 / 14.2 27.6 / 22.6
Health Services and Delivery Research 23.2 / 14.1 27.9 / 23.2

Medical Wikipedia 5.4 / 5.8 23.3 / 19.4
Merck Manuals (medical references) 5.0 / 5.6 23.8 / 16.3
eLife (biomedicine and life sciences) 6.5 / 15.6 27.0 / 26.3
Cochrane Database of Systematic Reviews 25.4 / 16.1 27.3 / 22.2
Proc. of National Academy of Sciences 9.1 / 5.5 27.2 / 24.1

Table 12: Average # of sentences and their length for
180 sampled parallel articles (segments) from 15 re-
sources.

we use the state-of-the-art neural CRF sentence 1064

alignment model (Jiang et al., 2020) with 89.4 F1 1065

on Wikipedia to perform paragraph and sentence 1066

alignment for each complex-simple article pair. 1067

Merck Manuals. We use the segment pairs from 1068

prior work (Cao et al., 2020), which are manually 1069

aligned by medical experts. 1070

D Implementation Details for Complex 1071

Span Identification Models 1072

We use the Huggingface14 implementations of the 1073

BERT and RoBERTa models. We tune the learning 1074

rate in {1e-6, 2e-6, 5e-6, 1e-5, 2e-5} based on F1 1075

on the devset, and find 2e-6 works best for our best 1076

performing RoBERTa-large model. All models are 1077

trained within 1.5 hours on one NVIDIA A40 GPU. 1078

E More Related work on Complex Span 1079

Identification in Medical Domain 1080

Other work mainly focuses on the general domains 1081

such as news and Wikipedia, including CW cor- 1082

pus in SemEval 2016 shared task (Shardlow, 2013; 1083

Paetzold and Specia, 2016) and CWIG3G2 corpus 1084

in SemEval 2018 (Yimam et al., 2017, 2018). In 1085

addition, Guo et al. (2023) collects a jargon dataset 1086

from computer science research papers, Lucy et al. 1087

(2023) studies the social implications of jargon us- 1088

age, and August et al. (2022); Huang et al. (2022) 1089

focus on the explanation of jargon. 1090

14https://github.com/huggingface/transformers
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F More Results for Complex Span1091

Identification1092

Table 13 presents the results of the exact match1093

at entity level for the complex span identification1094

task on the MEDREADME testset. As medical1095

jargon and complex spans have diverse formats in1096

the medical articles, it is challenging for the models1097

to predict the exact matched entities.1098

Models Binary 3-Class 7-Category

Large-size Models

BERT (2019) 72.0 68.2 48.5
RoBERTa (2019) 74.9 71.2 64.1
BioBERT (2020) 72.4 67.6 60.5
PubMedBERT (2021) 73.4 69.9 62.2

Base-size Models

BERT (2019) 70.7 67.0 59.3
RoBERTa (2019) 73.5 70.0 62.4
BioBERT (2020) 70.5 67.1 59.8
PubMedBERT (2021) 72.2 69.0 61.2

Table 13: Micro F1 of exact match at entity-level for
complex span identification task on the MEDREADME
testset. The best and second best scores within each
model size are highlighted. Models are trained with
fine-grained labels in seven categories and evaluated at
different granularity.

Transfer Learning. We use two existing datasets1099

(Paetzold and Specia, 2016; Yimam et al., 2017) to1100

train RoBERTa-large (Liu et al., 2019) models, and1101

evaluated them on the testset of our MEDREADME.1102

Table 14 presents the performance for binary com-1103

plex span identification task, as existing corpora1104

consist of binary labels, and SemEval2016 (Paet-1105

zold and Specia, 2016) only has complex word1106

annotation. We find that both models trained using1107

general domain data do not perform well in the1108

medical field. This results demonstrate the neces-1109

sity for our medical-focus dataset.1110

Training Corpus Domain # Sent. Token Entity

SemEval2016 (2016) Wikipedia 200 38.6 29.0
CWIG3G2 (2017) News, Wiki 1,988 46.4 28.7

MEDREADME (Ours) Medical Articles 4,520 86.8 80.2

Table 14: F1 on the testset of MEDREADME for mod-
els trained on different datasets. “Entity” and “Token”
denote binary entity- and token-level performance. “#
Sent” is unique number of sentences in training set.

G More Results on Medical Readability 1111

Prediction 1112

We conducted an additional experiment to study 1113

how different complex span identification models 1114

used in Section 5 affect the performance of medical 1115

readability prediction. We find that using predic- 1116

tions from different complex span prediction mod- 1117

els leads to similar improvements in readability 1118

prediction, with a ± 0.015 difference in average 1119

Pearson correlation across different resources. 1120
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H Prompts for Sentence Readability1121

Rate the following sentence on its readability level. The readability is defined as the cognitive load
required to understand the meaning of the sentence. Rate the readability on a scale from very easy to very
hard. Base your scores on the CEFR scale for L2 learners. You should use the following key:
1 = Can understand very short, simple texts a single phrase at a time, picking up familiar names, words
and basic phrases and rereading as required.
2 = Can understand short, simple texts on familiar matters of a concrete type
3 = Can read straightforward factual texts on subjects related to his/her field and interest with a satisfactory
level of comprehension.
4 = Can read with a large degree of independence, adapting style and speed of reading to different texts
and purpose
5 = Can understand in detail lengthy, complex texts, whether or not they relate to his/her own area of
speciality, provided he/she can reread difficult sections.
6 = Can understand and interpret critically virtually all forms of the written language including abstract,
structurally complex, or highly colloquial literary and non-literary writings.
EXAMPLES:
Sentence: “[EXAMPLE 1]”
Given the above key, the readability of the sentence is (scale=1-6): [RATING 1]

Sentence: “[EXAMPLE 2]”
Given the above key, the readability of the sentence is (scale=1-6): [RATING 2]

Sentence: “[EXAMPLE 3]”
Given the above key, the readability of the sentence is (scale=1-6): [RATING 3]

Sentence: “[EXAMPLE 4]”
Given the above key, the readability of the sentence is (scale=1-6): [RATING 4]

Sentence: “[EXAMPLE 5]”
Given the above key, the readability of the sentence is (scale=1-6): [RATING 5]

Sentence: “[TARGET SENTENCE]”
Given the above key, the readability of the sentence is (scale=1-6): [RATING]

Table 15: Following (Naous et al., 2023) in prompt construction, we utilize the same description of the six CEFR
levels that were provided to human annotators, along with five examples and their ratings, randomly sampled from
the dev set. Then, the model is instructed to evaluate the readability of a given sentence. The full template is
presented above.
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I Annotated Screenshot of Search Engine Results 1123

Knowledge Panel

Answer Box

Featured Snippets

Highlighted Text

Figure 6: An annotated screenshot of search results from Google. Search engines may provide the explanation of a
medical term in two places: (1) the feature snippets in the answer box and (2) the knowledge panel on the right-hand
side, which is powered by a knowledge graph.
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J Annotation Interface for Sentence Readability1125

Rank and Rate Sentences on Readability Signed in as 

Sign out

Batch ID: 981

Jean Valjean remained silent, motionless, with his back towards the door, seated on the chair from which he had not stirred, and holding his breath in
the dark.

+ Context

These bead-like structures are called nucleosomes, and interactions between histones in different nucleosomes can link one nucleosome to another,
to package the DNA into a very condensed form.

+ Context

In a sketch or outline drawing, lines drawn often follow the contour of the subject, creating depth by looking like shadows cast from a light in the
artist's position.

+ Context

The long-term functional outcomes of early administration of RDI of amino acids and the use of SMOFlipid, including neurodevelopment, body
composition and metabolic health, should be evaluated.

+ Context

All these initiatives take hold as they do, from lead pipes being removed from schools and homes, to new factories being built in communities with a
resurgence of American manufacturing.

+ Context

The illumination of the subject is also a key element in creating an artistic piece, and the interplay of light and shadow is a valuable method in the
artist's toolbox.

Score Description and Examples

1 Can understand very short, simple texts a single phrase at a time, picking up familiar names, words and basic phrases and rereading as required.
Example: For breakfast, I had a pancake and drank a glass of milk.
Example: Well, I'm going to pick up Luz from school.

2 Can understand short, simple texts containing the highest frequency vocabulary, including a proportion of shared international vocabulary items.
Can understand short, simple texts on familiar matters of a concrete type which consist of high frequency everyday or job-related language.
Example: A man is reading the paper as he talks with someone on the phone.
Example: The majority of car trips in the world today are less than five miles.

3 Can read straightforward factual texts on subjects related to his/her field and interest with a satisfactory level of comprehension.
Example: Every attempt should be made to keep all teammates as closely matched as possible, especially in the sports where strength, speed and
size are factors.

4 Can read with a large degree of independence, adapting style and speed of reading to different texts and purposes, and using appropriate
reference sources selectively. Has a broad active reading vocabulary, but may experience some difficulty with low-frequency idioms.
Example: Long-term autoimmunity and variants' interactions are huge questions too.
Example: Our aim is to investigate how predictive processing can aid learning of more effective control policies.

5 Can understand in detail lengthy, complex texts, whether or not they relate to his/her own area of speciality, provided he/she can reread difficult
sections.
Example: A being who could have hovered over Paris that night with the wing of the bat or the owl would have had beneath his eyes a gloomy
spectacles.
Example: There is the Titanism of the Celt, his passionate, turbulent, indomitable reaction against the despotism of fact; and of whom does it
remind us so much as of Byron?

6 Can understand a wide range of long and complex texts, appreciating subtle distinctions of style and implicit as well as explicit meaning. Can
understand and interpret critically virtually all forms of the written language including abstract, structurally complex, or highly colloquial literary and
non-literary writings.
Example: Therefore, he had a repeat colonoscopy on 11-06 which showed expected mucosal signs of moderate ulcerative colitis, no polyps, w/ 8
mm ulcer at junction of distal descending colon and sigmoid colon.

Submit and Continue
Important Notes

1. Please rank all sentences from easy to hard first, then rate.
2. Please judge by readability, not just the length. You can Google the meaning of some words or

phrases.
3. When making judgments, please make sure you fully understand the meaning of each sentence.
4. In addition to whole number ratings from 1 to 6, feel free to use the suffixes '+' or '–' for more

nuanced ratings, such as 3+ or 3-.

Score Description and Examples

1 Can understand very short, simple texts a single phrase at a time, picking up familiar names, words and basic phrases and
rereading as required.
For breakfast, I had a pancake and drank a glass of milk.
Well, I'm going to pick up Luz from school.

2 Can understand short, simple texts containing the highest frequency vocabulary, including a proportion of shared
international vocabulary items. Can understand short, simple texts on familiar matters of a concrete type which consist of
high frequency everyday or job-related language.
A man is reading the paper as he talks with someone on the phone.
The majority of car trips in the world today are less than five miles.

3 Can read straightforward factual texts on subjects related to his/her field and interest with a satisfactory level of
comprehension.
Every attempt should be made to keep all teammates as closely matched as possible, especially in the sports where
strength, speed and size are factors.

4 Can read with a large degree of independence, adapting style and speed of reading to different texts and purposes, and
using appropriate reference sources selectively. Has a broad active reading vocabulary, but may experience some difficulty
with low-frequency idioms.
Long-term autoimmunity and variants' interactions are huge questions too.
Our aim is to investigate how predictive processing can aid learning of more effective control policies.

5 Can understand in detail lengthy, complex texts, whether or not they relate to his/her own area of speciality, provided he/she
can reread difficult sections.
A being who could have hovered over Paris that night with the wing of the bat or the owl would have had beneath his eyes a
gloomy spectacles.
There is the Titanism of the Celt, his passionate, turbulent, indomitable reaction against the despotism of fact; and of whom
does it remind us so much as of Byron?

6 Can understand a wide range of long and complex texts, appreciating subtle distinctions of style and implicit as well as
explicit meaning. Can understand and interpret critically virtually all forms of the written language including abstract,
structurally complex, or highly colloquial literary and non-literary writings.
Therefore, he had a repeat colonoscopy on 11-06 which showed expected mucosal signs of moderate ulcerative colitis, no
polyps, w/ 8 mm ulcer at junction of distal descending colon and sigmoid colon.

I have read and understood the notes.

Continue

Figure 7: Instructions for annotating the sentence readability.
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Rank and Rate Sentences on Readability Signed in as 

Sign out

Batch ID: 

3 Jean Valjean remained silent, motionless, with his back towards the door, seated on the chair from which he had not stirred, and holding his breath in
the dark.

+ Context

These bead-like structures are called nucleosomes, and interactions between histones in different nucleosomes can link one nucleosome to another,
to package the DNA into a very condensed form.

+ Context

In a sketch or outline drawing, lines drawn often follow the contour of the subject, creating depth by looking like shadows cast from a light in the
artist's position.

+ Context

The long-term functional outcomes of early administration of RDI of amino acids and the use of SMOFlipid, including neurodevelopment, body
composition and metabolic health, should be evaluated.

+ Context

All these initiatives take hold as they do, from lead pipes being removed from schools and homes, to new factories being built in communities with a
resurgence of American manufacturing.

+ Context

The illumination of the subject is also a key element in creating an artistic piece, and the interplay of light and shadow is a valuable method in the
artist's toolbox.

Score Description and Examples

1 Can understand very short, simple texts a single phrase at a time, picking up familiar names, words and basic phrases and rereading as required.
Example: For breakfast, I had a pancake and drank a glass of milk.
Example: Well, I'm going to pick up Luz from school.

2 Can understand short, simple texts containing the highest frequency vocabulary, including a proportion of shared international vocabulary items.
Can understand short, simple texts on familiar matters of a concrete type which consist of high frequency everyday or job-related language.
Example: A man is reading the paper as he talks with someone on the phone.
Example: The majority of car trips in the world today are less than five miles.

3 Can read straightforward factual texts on subjects related to his/her field and interest with a satisfactory level of comprehension.
Example: Every attempt should be made to keep all teammates as closely matched as possible, especially in the sports where strength, speed and
size are factors.

4 Can read with a large degree of independence, adapting style and speed of reading to different texts and purposes, and using appropriate
reference sources selectively. Has a broad active reading vocabulary, but may experience some difficulty with low-frequency idioms.
Example: Long-term autoimmunity and variants' interactions are huge questions too.
Example: Our aim is to investigate how predictive processing can aid learning of more effective control policies.

5 Can understand in detail lengthy, complex texts, whether or not they relate to his/her own area of speciality, provided he/she can reread difficult
sections.
Example: A being who could have hovered over Paris that night with the wing of the bat or the owl would have had beneath his eyes a gloomy
spectacles.
Example: There is the Titanism of the Celt, his passionate, turbulent, indomitable reaction against the despotism of fact; and of whom does it
remind us so much as of Byron?

6 Can understand a wide range of long and complex texts, appreciating subtle distinctions of style and implicit as well as explicit meaning. Can
understand and interpret critically virtually all forms of the written language including abstract, structurally complex, or highly colloquial literary and
non-literary writings.
Example: Therefore, he had a repeat colonoscopy on 11-06 which showed expected mucosal signs of moderate ulcerative colitis, no polyps, w/ 8
mm ulcer at junction of distal descending colon and sigmoid colon.

Submit and Continue

3

3-

3+

Figure 8: The interface for annotating sentence readability. Annotators can click the “+ Context” button to see the
surrounding sentences.
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K Annotation Interface for Complex Span Identification1128

plos_computational_biology

Predicting Peptide Structures in Native Proteins from Physical Simulations of Fragments
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000281

It has long been proposed that much of the information encoding how a protein folds is contained locally in the peptide chain .
Here we present a large - scale simulation study designed to examine the extent to which conformations of peptide fragments in water predict 
native conformations in proteins .
We perform replica exchange molecular dynamics ( REMD ) simulations of 872 8 - mer , 12 - mer , and 16 - mer peptide fragments from 13 
proteins using the AMBER 96 force field and the OBC implicit solvent model .
To analyze the simulations , we compute various contact - based metrics , such as contact probability , and then apply Bayesian classifier 
methods to infer which metastable contacts are likely to be native vs. non-native .
We find that a simple measure , the observed contact probability , is largely more predictive of a peptide 's native structure in the protein than 
combinations of metrics or multi-body components .
Our best classification model is a logistic regression model that can achieve up to 63 % correct classifications for 8 - mers , 71 % for 12 - mers 
, and 76 % for 16 - mers .
We validate these results on fragments of a protein outside our training set .
We conclude that local structure provides information to solve some but not all of the conformational search problem .
These results help improve our understanding of folding mechanisms , and have implications for improving physics - based conformational 
sampling and structure prediction using all - atom molecular simulations .

Proteins must fold to unique native structures in order to perform their functions .
To do this , proteins must solve a complicated conformational search problem , the details of which remain difficult to study experimentally .
Predicting folding pathways and the mechanisms by which proteins fold is thus central to understanding how proteins work .
One longstanding question is the extent to which proteins solve the search problem locally , by folding into sub-structures that are dictated 
primarily by local sequence .
Here , we address this question by conducting a large - scale molecular dynamics simulation study of protein fragments in water .
The simulation data was then used to optimize a statistical model that predicted native and non-native contacts .
The performance of the resulting model suggests that local structuring provides some but not all of the information to solve the folding problem 
, and that molecular dynamics simulation of fragments can be useful for protein structure prediction and design .
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Figure 9: The annotation interface for complex span identification.
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