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Figure 1: Image and point-cloud instance segmentation with Slot-TTA. Slot-TTA parse completely novel
scenes into familiar entities via slow inference, i.e., gradient descent on the reconstruction error of the scene
example under consideration. Left: Slot-TTA outperform Mask2Former (Cheng et al., 2021), a SOTA 2D image
segmentor, on segmenting novel images by gradient descent on image synthesis of neighboring image views.
Right: Slot-TTA outperform a state-of-the-art 3D-DETR detector by 30% in instance segmentation accuracy in
out-of-distribution 3D point clouds, when trained on the same training data.

ABSTRACT

We consider the problem of segmenting scenes into constituent objects and their
parts. Current supervised visual detectors, though impressive within their training
distribution, often fail to segment out-of-distribution scenes into their constituent
entities. Recent test-time adaptation methods use auxiliary self-supervised losses to
adapt the network parameters to each test example independently and have shown
promising results towards generalization outside the training distribution for the
task of image classification. In our work, we find evidence that these losses can be
insufficient for instance segmentation tasks, without also considering architectural
inductive biases. For image segmentation, recent slot-centric generative models
break such dependence on supervision by attempting to segment scenes into entities
in a self-supervised manner by reconstructing pixels. Drawing upon these two lines
of work, we propose Slot-TTA, a semi-supervised instance segmentation model
equipped with a slot-centric image or point-cloud rendering component, that is
adapted per scene at test time through gradient descent on reconstruction or novel
view synthesis objectives. We show that test-time adaptation greatly improves
instance segmentation in out-of-distribution scenes. We evaluate Slot-TTA in
several 3D and 2D scene instance segmentation benchmarks and show substantial
out-of-distribution performance improvements against state-of-the-art supervised
feed-forward detectors and self-supervised domain adaptation models.
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1 INTRODUCTION

While significant progress has been made in machine scene perception and segmentation within the
last decade, object (and part) detectors continue to generalize poorly outside their training distribution
(Geirhos et al., 2020; Hendrycks et al., 2021). Consider the unfamiliar entity shown in Figure 1 (last
row on the right). We can intuitively reason about meaningful parts that this shape could be broken
into. Yet, a state-of-the-art 3D detection transformer (Misra et al., 2021) trained to segment chairs
in a supervised manner struggles with this decomposition, even though the entitiy contains familiar
(chair) parts. This lack of generalization requires us to build systems that can robustly adapt to such
changes in distribution.

Test-time adaptation (TTA) (Ghifary et al., 2016; Sun et al., 2020; Wang et al., 2020) describes
a setting where a model adapts to changes in distribution at test-time, at the cost of additional
computation. In recent years, a variety of methods based on TTA have been proposed, focusing on
few-shot adaptation (Ren et al., 2018) where the network is given access to a few labelled examples,
or unsupervised domain adaptation (UDA) (Zhang, 2021) where the network is given access to many
unlabelled examples from the new distribution. Of particular relevance is a specific UDA setting
where model parameters are adapted independently to each unlabelled example in the test-set. This
setting has been previously referred to as single-example UDA, and here we also refer to it as slow
inference since it is similar to a human taking more time to parse a difficult example. Existing
approaches for this setting typically devise a self-supervised loss that aligns well with the task
of image classification and then optimize this loss during test-time adaptation (Sun et al., 2020;
Gandelsman et al., 2022; Bartler et al., 2022; Grill et al., 2020). However, despite their success for
image classification, these approaches do not provide adequate support for other scene understanding
tasks, and in particular scene segmentation, as we showcase in Section 4.1.

One potentially important aspect to supporting TTA for other scene understanding tasks is the
inductive bias of the underlying architecture. In the context of instance segmentation, there has been
a lot of recent development in building models that segment scenes into entities in an unsupervised
way by optimizing a reconstruction objective (Eslami et al., 2016; Greff et al., 2016; Van Steenkiste
et al., 2018; Goyal et al., 2021; Du et al., 2020; Locatello et al., 2020; Zoran et al., 2021). These
methods differ in details but share the notion of incorporating a fixed set of entities, also known
as slots or object files. Each slot extracts information about a single entity during encoding, and is
“synthesized” back to the input domain during decoding. Their ability to distinguish visual objects at a
representation level makes them a particularly promising candidate for TTA for instance segmentation
tasks.

In light of the above, we propose Test-time adaptation with slot-centric models (Slot-TTA), a semi-
supervised slot-centric approach that combines Slot Attention (Locatello et al., 2020) (in the 2D image
or point clouds setting) or Object Scene Representation Transformer (Sajjadi et al., 2022a) (in multi-
view image setting) with a supervised segmentation loss to enable it to leverage instance-level image
or point cloud annotations. Slot-TTA is trained jointly to synthesize and segment scenes. At test
time, the model adapts without supervision to a single test sample by optimizing the self-supervised
objective alone. Different from fully-unsupervised object-centric generative models, Slot-TTA uses
annotations at training time to help it develop the notion of what an object is, which lets it scale to
more complex visual settings. Different from existing TTA methods, Slot-TTA uses a slot-centric
architecture and self-supervised synthesis loss that better aligns with the task of instance segmentation.
Different from state-of-the-art detectors, Slot-TTA is equipped with reconstruction feedback that
allows it to adapt at test time without supervision, i.e. without using additional annotated data. Indeed,
we show that test-time adaptation via image or point cloud synthesis in Slot-TTA enables successfully
parsing completely unfamiliar scenes composed of familiar entities (Figure 3).

We test Slot-TTA’s instance segmentation ability on the following datasets: PartNet (Mo et al., 2019),
MultiShapeNet-Hard (Sajjadi et al., 2022b) Multi-Shape and Plating. We evaluate Slot-TTA’s ability
to parse out-of-distribution scenes and compare it against state-of-the-art entity-centric generative
models (Locatello et al., 2020; Sajjadi et al., 2022a), program synthesis models (Tian et al., 2019), 3D
unsupervised part discovery models (Wu et al., 2020) and supervised visual detectors (Cheng et al.,
2021; Misra et al., 2021) trained with labeled data to segment objects. We show improvements over
all baselines in Slot-TTA ability to segment novel scenes. Additionally, we ablate different design
choices of Slot-TTA. We will make our code and datasets publicly available to the community.
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2 RELATED WORK

Entity-centric generative models for scene decomposition Entity-centric (or object-centric)
models use architectural inductive biases to represent perceptual inputs, such as an observation of
a visual scene, in terms of separate object variables, often referred to as slots or object files (Greff
et al., 2020; Sabour et al., 2017; Kosiorek et al., 2018; Engelcke et al., 2019; Goyal et al., 2020; Ke
et al., 2021; Burgess et al., 2019; Greff et al., 2019; Zablotskaia et al., 2020; Rahaman et al., 2020).
Prominent examples of such models include MONet (Burgess et al., 2019), GENESIS (Engelcke
et al., 2019), IODINE (Greff et al., 2019), and Slot Attention (SA) (Locatello et al., 2020), which are
trained in a fully-unsupervised setting via a simple auto-encoding objective. Object representations
and scene decomposition emerge via the inductive bias of the model architecture (and in some cases,
additional regularizers). However, without any form of supervision, scene decompositions can be
ambiguous, which is particularly challenging for complex real-world scenes or in the presence of
complicated textures. In Slot-TTA, we aid the competition mechanism in SA to address this issue
by jointly training with a supervised segmentation loss. OSRT (Sajjadi et al., 2022a) is a cross-view
geometry-free encoder-decoder method, that segments an image into objects through reconstructing
novel viewpoints. OSRT combines SA with SRT (Sajjadi et al., 2022b), a view synthesis model that
uses transformer encoder and decoders to fuse information across views, as well as the camera pose,
without any explicit 3D information. Our multi-view RGB Slot-TTA builds upon their architecture.

Test-time adaptation In test-time adaptation, model parameters are updated at test-time to better
generalize to the distribution shift. In recent years, there has been significant development in this
direction. Methods such as pseudo labelling and entropy minimization (Shin et al., 2022; Wang et al.,
2020; Bateson et al., 2022) have demonstrated that supervising the model using its own confident
predictions could help improve its accuracy. Adaptive BatchNorm methods (Khurana et al., 2021;
Chang et al., 2019) have shown that updating the BatchNorm parameters using the new examples
can help adaptation. Despite these successes, these methods by definition are data inefficient as they
require confident predictions or a batch of examples to adapt. Self-supervised learning (SSL) (Sun
et al., 2020; Bartler et al., 2022; Gandelsman et al., 2022) based methods on the other hand, have
empirically shown to be data efficient. During training, they jointly train using the task and SSL loss,
and during test-time, they train only using the SSL loss. All of the methods in the SSL setting thus
far focus on the task of classification and mainly differ in terms of the SSL loss used. For example
TTT (Sun et al., 2020) uses rotation angle prediction as their SSL loss, MT3 (Bartler et al., 2022) uses
a BYOL (Grill et al., 2020) loss and TTT-MAE (Gandelsman et al., 2022) uses Masked autoencoding
loss (Pathak et al., 2016). In our work, we show that these losses do not generalize to segmentation,
and how we might need specific architectural biases to close the gap.

We describe additional related work on Unsupervised 3D Part Discovery and Shape program
synthesis in supplementary Section 10
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Figure 2: Model architecture for multi-view images. Given multi-view RGB images as input. Slot-TTA (here
using OSRT (Sajjadi et al., 2022a) as a backbone) maps them to a set of token features, which are then mapped
to a set of slot vectors. Conditioned on the camera-viewpoint Slot-TTA then decodes each slot into its respective
segmentation mask and RGB image. It then uses weighted averaging to render the RGB image for the whole
scene as seen from the camera viewpoint. On the training dataset, we jointly optimize using reconstruction and
segmentation loss. On the test set, we optimize only using the reconstruction loss. We use a similar training
pipeline for other input modalities.
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The goal of Slot-TTA is to segment out-of-distribution scenes into objects and parts annotated in the
training set. We consider three different settings: (i) segmenting 2D multi-view RGB images, (ii) 2D
single-view RGB images, and (iii) segmenting 3D point clouds. In each setting, the model encodes
the scene as a set of slot vectors (capturing information about individual objects), and decodes them
back to either 3D point clouds or (novel-view) RGB images (depending on the setting). To compute
slots, Slot-TTA uses Slot Attention (SA) (Locatello et al., 2020), where visual features are softly
partitioned across slots through iterative attention. In the following, we first give a brief overview of
SA in Section 3.1, followed by a detailed description of Slot-TTA in Section 3.2.

3.1 BACKGROUND

Current state-of-the-art detectors and segmentors instantiate slots (i.e. the query vectors) from 2D
visual feature maps or 3D point feature clouds (Carion et al., 2020; Misra et al., 2021). Most works
use iterative cross-attention (features to slots) and self-attention (slot-to-slots) operations (Carion
et al., 2020) to map a set of N input feature vectors to a set of K slot vectors. Attention-based
competition amongst slots and iterative routing popularized in Goyal et al. (2021); Locatello et al.
(2020) encourages a single location in the input to be assigned to a unique slot vector.

Given a visual scene encoded as a set of feature vectors M ∈ RN×C and K randomly initialized slots
sampled from a multivariate Gaussian distribution with a diagonal covariance S ∼ N (µ,Diag(σ2)) ∈
RK×D, where µ, σ ∈ RC are learnable parameters of the Gaussian, Slot Attention (Locatello et al.,
2020) computes an attention map a between the feature map M and the slots S:

a = Softmax(k(M) · q(S)T , axis=“slots”) ∈ RN×K . (1)

k, q, and v are learnable linear transformations that map inputs and slots to a common dimension
D. The softmax normalization over slots ensures competition amongst them to attend to a specific
feature vector in M. Updates to the slots are computed based on the input features they attend to:

updates = aT v(M) ∈ RK×C ,where ai,k =
ai,k∑N−1

i=0 ai,k
(2)

which are then fed into a GRU (Cho et al., 2014): S = GRU(state = S, input = updates). We
iterate 3 times over equations 1 and 2. For detailed description, please refer to Locatello et al. (2020).

3.2 TEST-TIME ADAPTATION WITH SLOT-CENTRIC MODELS (SLOT-TTA)

We first describe the encoders and decoders that form the foundation of Slot-TTA for each modality.
Further we detail how we train Slot-TTA and perform test time adaptation through slow inference.

3.2.1 ENCODING AND DECODING BACKBONES

Posed multi-view 2D RGB images As shown in Figure 2, Slot-TTA builds upon the architecture of
OSRT (Sajjadi et al., 2022a), which is an object-centric, geometry-free novel view synthesis method.
Given a set of multi-view RGB images as input, a CNN encodes each input image Ii into a feature
grid, which is then flattened into a set of tokens with camera pose and ray direction information
added in each of the tokens, similar to SRT (Sajjadi et al., 2022b). These are then encoded into a set
of latent features using a transformer (Vaswani et al., 2017) Enc with multiple self-attention blocks
z = Enc(CNN(Ii)). The latent features z are then mapped into a set of slots S using Slot Attention
(Section 3.1). For decoding, we adopt the spatial broadcast decoder (Watters et al., 2019) formulation,
where a render MLP takes as input the slot vector Sk and the pixel location p parameterized by the
camera position and the ray direction pointing to the pixel to be decoded. It outputs an RGB color
ck and an unnormalized alpha score ak for each pixel location ck, ak = Dec(p, Sk). The ak’s are
normalized using a Softmax and used as weights to aggregate the predicted RGB values ck for each
slot. A camera viewpoint conditioned decoder allows us to render novel viewpoints, for which we
show novel view rendering results in our supplementary video. We ablate other decoder choices, such
as the Slot Mixer decoder (Sajjadi et al., 2022a) in supplementary Section 9.1.

Single-view 2D RGB images For this setting, Slot-TTA uses a ResNet-18 (He et al., 2016) to
encode the input RGB image into a feature grid. We then add positional vectors to the feature grid
and map to a set of slot vectors using Slot Attention. Similar to the multi-view setting, each slot
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vector is decoded to the RGB image and an alpha mask using an MLP renderer. We parameterize
pixel location p as (x, y) points on the grid instead of camera position as the above setting.

3D point clouds To adapt to 3D point clouds, Slot-TTA uses a 3D point transformer (Zhao et al.,
2021) which maps the 3D input points to a set of M feature vectors of C dimensions each. We set M
to 128 and C to 64 in our experiments. Point feature vectors are mapped to slots with Slot Attention.
Slot-TTA decodes 3D point clouds from each slot using implicit functions (Mescheder et al., 2019).
Specifically, each decoder takes in as input the slot vector Sk and an (X,Y, Z) location and returns the
corresponding occupancy score ok,x,y,z = Dec(Sk, (x, y, z)) , where Dec is a multi-block ResNet
MLP similar to that of Lal et al. (2021). We then max-pool over the slot dimension k to get an
occupancy value ox,y,z for each 3D point in the scene.

3.2.2 TRAINING AND TEST-TIME ADAPTATION

Slot-TTA assumes entity-level supervision in the form of segmentation masks, and can also exploit
unlabelled data via a reconstruction loss objective.

Training for joint segmentation and reconstruction We train all the parameters of our model to
jointly optimize image / point cloud reconstruction or novel view image synthesis objectives and the
task segmentation objective over all the n examples in the training set, where x represents the input
scene and y the segmentation labels:

min
θ

1

n

n∑
i=1

λslseg(xi, yi; θ) + λrlrecon(xi; θ) (3)

In the case of RGB images, for reconstruction, we minimize the mean squared error between the
predicted and ground truth RGB images. For segmentation, we supervise the alpha masks ai of
each slot as provided by the decoders. We use Hungarian matching (Kuhn, 1955) (combinatorial
optimization algorithm that solves assignment problems) to associate the ground truth masks with the
predicted masks, and upon association we apply a categorical cross-entropy loss lseg . In the case of
3D point clouds we supervise the predicted occupancy probability ok. We use a binary cross-entropy
loss for lrecon. For lseg we use Hungarian matching with a categorical cross-entropy loss similar to
other modalities. We weight the segmentation and reconstruction loss by λs and λr.

Input  & Target Slow Inference

Figure 3: Slow Inference (TTA) in
Slot-TTA: 3D segmentation improves over
gradient steps despite only optimizing for 3D
reconstruction.

Test-time adaptation In this work, we refer to a sin-
gle forward pass through our trained model without any
test-time adaptation as fast inference (same as regular in-
ference). We call the process of test-time adapting the
model on each example independently slow inference, us-
ing only the reconstruction objective of Eq. 3. We use this
terminology to emphasize that the only difference between
both settings is the added computation time which results
in an effective speed difference between the two inference
schemes. We adapt only the encoder parameters θenc in
our model, which we found to improve results compared
to adapting the entire model as shown in our supplemen-
tary Section 9.1. We train for 150 steps per example using
the Adam optimizer (Kingma & Ba, 2014) and a learning
rate of 1e-4.

4 EXPERIMENTS

We test Slot-TTA capability for segmenting posed multi-view RGB images, single-view RGB images
and 3D point clouds. Our experiments aim to answer the following questions: (i) How does Slot-TTA
compare against state-of-the-art 2D and 3D segmentation models (Luo et al., 2020; Yu et al., 2021;
Cheng et al., 2021)? (ii) How does slow inference through reconstruction feedback affect segmentation
accuracy in Slot-TTA and its variants? (iii) How much does supervision during training contribute to
segmentation performance?
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Evaluation metric In addition to the loss, we use Adjusted Random Index (ARI) as our evaluation
metric for segmentation accuracy (Rand, 1971). ARI calculates the similarity between two-point
clusters while being invariant to the ordering of the cluster centers. For this, we use the publicly
available implementation of Kabra et al. (2019).

4.1 SEGMENTING RGB IMAGES IN MULTI-VIEW SCENES

Dataset We evaluate Slot-TTA on the MultiShapeNet (MSN) dataset from SRT (Sajjadi et al.,
2022b). The dataset is constructed by rendering 51K ShapeNet objects using Kubric (Greff et al.,
2022) against 382 photo-realistic HDR backgrounds so that there is no overlap of objects between the
train and test sets. In addition to having different object instances in training and test sets, we further
re-generate data in the MSN dataset so that train and tests sets differ in the number of objects present:
scenes with 5-7 object instances are in the training set and scenes with 16-30 objects are in the test
set. Each instance is sampled from a random pose. This lets us measure how well our model and the
baselines perform under this distribution shift. Please refer to supplementary Section 7 for further
dataset details and visualization of samples from the train-test split. Additionally in Table 6, we test
our model on a different distribution shift, where instead of increasing the number of instances in the
test-set we introduce new object categories from Google Scanned objects dataset Downs et al. (2022).
Thus showing Slot-TTA improves performance across different distribution shifts.

Method in-dist (5-7 instances) out-of-dist (16-30 instances)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

Slot-TTA-w/o supervision 0.32 0.30 0.33 0.29

Mask2Former 0.93 N/A 0.74 N/A
Mask2Former+BYOL 0.93 0.95 0.75 0.74
Mask2Former+Recon 0.93 0.92 0.74 0.67

Slot-TTA (Ours) 0.92 0.95 0.70 0.83

Table 1: Instance Segmentation accuracy (higher is better) in the multi-view RGB setup for in-distribution test
set of 5-7 object instances and out-of-distribution 16-30 object instances.

Baselines We compare to three baselines: (i) Mask2Former (Cheng et al., 2021), a state-of-the-art
2D image segmentor which adapts detection transformers (Carion et al., 2020) to image segmentation
by using multiscale segmentation decoders with masked attention. (ii) Mask2Former+BYOL which
combines the segmentation model of (Cheng et al., 2021) with test time adaptation using BYOL self-
supervised loss of Bartler et al. (2022). (iii) Mask2Former+Recon which combines the segmentation
model of Cheng et al. (2021) with rendering submodules and image reconstruction loss for test-time
adaptation.

Ground truth target RGB

Before adaptation After adaptation

Reconstruction Loss Segmentation Accuracy

Figure 4: Test-time adaptation via slow inference in Slot-TTA for multi-view scenes. In the right top we
visualize the RGB loss (blue curve) and the segmentation ARI accuracy (red curve). As can be seen, during slow
inference the segmentation accuracy improves as reconstruction loss reduces.

6



Under review as a conference paper at ICLR 2023

Results We show quantitative segmentation results of our model and baselines on target camera
viewpoints in Table 1 and qualitative TTA results in Figure 4. In Slot-TTA-w/o supervision, instead of
training jointly for reconstruction and segmentation, we train using only cross-view image synthesis,
similar to OSRT (Sajjadi et al., 2022a).

It can be observed that: (i) Slot-TTA-Slow outperforms the feedforward Mask2Former-Fast, especially
for out-of-distribution scenes; (ii) adding self-supervised losses of SOTA image classification methods
(Bartler et al., 2022) to Mask2Former (eg. Mask2Former+BYOL) does not suffice to adapt them
effectively at test time and (iii) Slot-TTA without supervision, which is identical to OSRT is not
competitive with supervised models for object segmentation.1

For additional qualitative comparisons between fast and slow inference in the multi-view setting,
please refer to Figure 11 in Supplementary. For extensive ablations of Slot-TTA please refer to Table
5 in Supplementary. For novel-view renderings please refer to our supplementary video.

4.2 SEGMENTING SINGLE-VIEW RGB IMAGES

As a proof of concept, in this section, we test our model and the baseline Mask2Former in segmenting
single RGB images comprised of multiple samples from five shapes of distinct colors, organized in
heavily occluded configurations, a dataset we create and we call Multi-Shape. Our training set consists
of images with 3-5 object instances, while the test set consists of images with 10-16 object instances.
For this setting, we report the ARI scores for the foreground objects only, since in this dataset the
background occupies a large image area and a method that assigns most pixels to background already
achieves a very high ARI. We find the performance accuracy ordering of the methods to be the same.

As can be seen in Table 2, before TTA Mask2former and Mask2former+Recon outperform our
method. After TTA, our method significantly outperforms the baselines.

Method in-dist (3-5 instances) out-of-dist(10-16 instances)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

Mask2Former 0.96 N/A 0.44 N/A
Mask2Former+Recon 0.95 0.94 0.43 0.47

Slot-TTA (Ours) 0.96 0.95 0.39 0.69

Table 2: Foreground instance segmentation accuracy (higher is better) for single-view RGB images. In-
distribution images have 3-5 objects and out-of-distribution images have 10-16 objects.

Please refer to Section 9.2 for qualitative results in our Multi-Shape dataset, where we showcase
some success and failure cases in Slot-TTA with slow inference.

Additionally we test Slot-TTA on a real-world salad plating dataset which we collected and will pub-
licly release. As can be viewed at [https://sites.google.com/corp/view/slottta], our model effectively
segments the scene into objects and amodally reconstructs each one, despite heavy occlusions.

4.3 SEGMENTING 3D POINT CLOUDS

We test Slot-TTA in segmenting 3D object point clouds into parts, for within distribution and out-of-
distribution object categories.

We consider two segmentation supervision setups: (i) Supervision from a dataset of generic 3D part
primitives. (ii) Supervision from labelled 3D object point-clouds of a related object category.

4.3.1 SUPERVISION FROM A DATASET OF GENERIC 3D PART PRIMITIVES

Dataset We use the part primitive dataset introduced by Shape2Prog (Tian et al., 2019) (akin to
generalized cylinders of Marr (1982)), which consists of differently sized cubes, cuboids, and discs.
Thus, our supervised training set consists of scenes that contain a single primitive part, resized and

1Although OSRT performs poorly in the ARI metric, it achieves substantially better results in terms of
foreground-ARI (yet still not competitive). This is because it is unable to segment out the background.
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translated in different 3D locations of a blank 3D canvas, while the test set consists of unseen chairs
and tables from ShapeNet, each composed of 6 to 16 parts. Our goal is to quantify to what extent our
model can compose generic parts into shape compositions via slow inference, as we motivated in
Figure 1. We assume access to unlabelled 3D chair point clouds during joint training.

Baselines We compare our model against the following baselines: (i) PQ-Nets of Wu et al. (2020)
assume access to a set of primitive 3D parts for pre-training. Specifically they first learn a primitive
part decoder, then they learn a sequential encoder that encodes the 3D point cloud into a 1D latent
vector and sequentially decodes parts using the pretrained part decoder. We use the publicly available
code to train the model. (ii) Shape2Prog of Tian et al. (2019) is a shape program synthesis method
that is trained supervised to predict shape programs from object 3D point clouds. The program
represents the part category, location, and the symmetry relations among the parts (if any).

We further evaluate Slot-TTA w/o supervision, an ablative version of our model that is trained without
any supervised pre-training on the generic part dataset, but is only trained using a reconstruction
objective for autoencoding the Chair dataset. This version of our model coincides with the previous
work of Slot Attention of Locatello et al. (2020) but instead implemented for 3D.

Method in-dist (Chairs) out-of-dist (Tables)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

Shape2Prog (Tian et al., 2019) 0.28 0.53 0.23 0.40
PQ-Nets (Wu et al., 2020) 0.20 0.31 0.17 0.21

Slot-TTA w/o supervision 0.41 0.35 0.47 0.38

Slot-TTA (Ours) 0.57 0.62 0.60 0.69

Table 3: Instance Segmentation accuracy (higher is better) in the test set of Chair category (in-distribution)
and Table category (out-of-distribution) when trained using the supervision of generic primitives.

Results We show quantitative results of our model and the baselines in Table 3. It can be observed
that: (i) Slot-TTA significantly outperform PQ-Nets (Wu et al., 2020), which maps the input object
3D pointcloud into a 1D latent vector, suggesting that segregation into slot like entities using attention
as in Slot-TTA is beneficial; (ii) Slot-TTA-Fast outperforms Slot-TTA w/o supervision-Fast by a
large margin, indicating that the additional supervised data is beneficial and correctly integrated; and
(iii) slow inference through reconstruction feedback helps in the presence of supervision and hurts
in the absence of it. Such trade-off between reconstruction and segmentation in generative models
for scene decomposition has previously been pointed out in Engelcke et al. (2020), which is also
supported by our findings.

In supplementary, please, refer to Section 9.3.1for further ablations and qualitative comparison against
baselines. Refer to the supplementary video for the intermediate visualizations of slow inference.
Finally please refer to Figure 7.3.1 for visualization of the primitive dataset.

4.3.2 SUPERVISION FROM A RELATED OBJECT CATEGORY

Dataset In this setup, we test our model and baselines in segmenting the test objects of the
Chair and Table categories in the PartNet benchmark (Mo et al., 2019), with access to ground-truth
pointcloud segmentation of the Chair category in PartNet. We train Slot-TTA in a semi-supervised
way combining a reconstruction loss and a supervised segmentation loss as described in Section 3.2.2.

Baselines We compare our model against the following baselines: (i) Learning2Group of (Luo
et al., 2020) progressively groups points into segments by learning pairwise grouping decisions
parameterized by features of the two point clusters. We used the publicly available code and trained
the model in the training set of the Chair category. (ii) 3D-DETR a variant of state-of-the-art 3D
object detection model of Misra et al. (2021) for 3D point-cloud instance segmentation. Please refer
to supplementary Section 8.4 for a detailed descriptions on all the baselines.

We consider the following ablative versions of Slot-TTA: (i) Slot-TTA w/o supervision is trained
without the supervised part segmentation loss; and (ii) Slot-TTA w/o SlotAttention, which does not
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Method in-dist (Chair) out-dist (Table)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

3D-DETR (Misra et al., 2021) 0.67 N/A 0.41 N/A
Learning2Group (Luo et al., 2020) 0.62 N/A 0.46 N/A

Slot-TTA w/o supervision 0.40 0.44 0.31 0.48
Slot-TTA w/o SlotAttention 0.58 0.55 0.31 0.44

Slot-TTA (Ours) 0.64 0.66 0.49 0.61

Table 4: Instance Segmentation accuracy (higher is better) in the test set of Chair category (in-distribution)
and Table category (out-of-distribution) when trained using the supervision of Chair category.

use Slot Attention for mapping point features to slots. Instead it maps 3D point features to slots
via iterative layers of cross (query to point) and self (query-to-query) attention layers on learnable
query vectors similar to 3D-DETR and DETR (Carion et al., 2020). Please note that slots and queries
represent the same thing, but we use the terminology of DETR (Carion et al., 2020) in this case.

3D-DETR [5] Learning2Group [45] OursInput Cupboard Lamp Display Laptop

Figure 5: Out-of-distribution 3D segmentation re-
sults for Slot-TTA and baselines. Left: 3D segmentation
results on out-of-distribution shapes for Slot-TTA and
baselines. Right: 3D segmentation results for out-of-
distribution categories of PartNet for Slot-TTA trained
semi-supervised only on the Chair category.

Results We report the fast and slow inference
results for all ablative versions of our model.
Our baselines in this case, 3D-DETR and Learn-
ing2Group (Luo et al., 2020) are feedforward in
nature, they are not equipped with decoders, and
thus cannot be evaluated with slow inference.
We show quantitative results in Table 4 and qual-
itative results in Figure 5. Slot-TTA significantly
outperform the baselines, and Slot-TTA-Slow
results in a significant boost in performance
(∼ 30%) over the feedforward inference in our
model, Slot-TTA-Fast.

We draw the following conclusions from Table
4: (i) Generic primitives generalize a lot better than category-specific supervision. Slot-TTA in Table
3 (that uses the generic parts dataset) outperforms Slot-TTA in Table 4 (that use the category-specific
supervision) in OOD generalization on the Table category. (ii) Competition amongst slots helps.
Slot-TTA outperforms Slot-TTA w/o SlotAttention, thus showing competition amongst slot vectors
during encoding helps generalization. (iii) Slow inference through reconstruction feedback helps
OOD generalization of Slot-TTA. Our baselines 3D-DETR and Learning2Group (Luo et al., 2020)
are feed-forward in nature, they lack any form of reconstruction feedback, and thus cannot adapt
as our model through such feedback. In our supplementary Section 9.3.2 we extend Table 4 to all
remaining 14 ShapeNet categories as the test categories. Further in Table 8 in supplementary we
report results on bounding box detection instead of instance segmentation, and showcase a similar
improvement in performance. Thus showcasing our method generalizes beyond segmentation tasks.

5 CONCLUSION

We presented Slot-TTA, a novel semi-supervised instance segmentation model equipped with a
slot-centric image or point-cloud rendering component. Slot-TTA is capable of test-time adaptation
on a single unlabeled example (i.e. slow inference) through gradient descent on reconstruction
or novel view synthesis objectives. We have shown how slow inference for Slot-TTA greatly
improves segmentation in out-of-distribution scenes, and compares favorably to other (unsupervised)
segmentation approaches, including other forms of test time adaptation.

There exist several promising directions for improving Slot-TTA, which reflect its current limitations.
Currently, Slot-TTA does not model pairwise interactions between slots, while such cross-talk could
be beneficial for adaptation. Further, while a scene decomposition into entities and parts is inherently
hierarchical, such structure is currently not reflected in Slot-TTA as the backbones it considers capture
a flat, non-hierarchical, list of entities.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we will make our code and datasets publicly available
to the community. Additionally, in our supplementary section, we try our best to mention all the
information that could aid reproducibility. Specifically, in Section 7 we mention all the dataset
preparation details. In Section 8 we in-depth specify the implementation details of our method and
the baselines, including the hyperparameter values and computational details.
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APPENDIX

The structure of this appendix is as follows: In Section 7 we cover the details on the datasets. In
Section 8 we specify further implementation details. In Section 9 we provide additional qualitative
and quantitative results for the experiments in Section 4 of our main paper.

Along with this we also provide a video file in the supplementary zip, which visualizes the intermediate
reconstruction and parsing results of Slot-TTA during the slow inference stage and we also visualize
our multi-view rendering results.

7 DATASETS

7.1 MULTI-VIEW RGB

Training Set Test Set

Test SetTraining Set

Figure 6: We visualize samples from the train-test split used by us in experiment Section 4.1. Different rows
correspond to different scenes and different columns correspond to different viewpoints.

We use the MultiShapeNet-Hard dataset of Scene Representation Transformer, a complex photo-
realistic dataset for Novel View Synthesis (Sajjadi et al., 2022b). Our train split consists of 5-7
ShapeNet objects placed at random locations and orientations in the scene. The backgrounds are
sampled from 382 realistic HDR environment maps. Our test set consists of 16-30 objects placed at
novel arrangements. We sample objects from a pool of 51K ShapeNet objects across all categories,
we divide the pool into train and test such that the test set consists of objects not seen during training.
The train split has 200K scenes, and the test set consists of 4000 scenes, each with 10 views. We had
to regenerate the dataset for this specific train-test split.

7.2 SINGLE-VIEW RGB

Training Set Test Set

Test SetTraining Set

Figure 7: We visualize the samples of our MultiShape dataset.

Multi-Shape is a dataset built by us for proof-of-concept. It consists of 5 shapes of distinct colors
uniformly placed at a random location in a 2D canvas. Our training set consist of 3-5 object instances,
while the test set consists of a highly occluded setting with 10-16 object instances.

7.3 POINT CLOUD

For all the tasks, we subsample the input point clouds to a standard size of 2048 points.

7.3.1 GENERIC PRIMITIVE PART DATASET.

We use the primitive dataset of Tian et al. (2019) as supervision in Experiment Section 4.3.1. The
dataset consists of 200K primitive instances sampled from the primitive templates that are visualized
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Category-specific primitives

Figure 8: We visualize all the generic primitive templates of Tian et al. (2019), as you can see, they mainly
consist of Cubes, Cuboids, and Discs.

Figure 9: We visualize the Synthetic whole shape dataset of Tian et al. (2019). Shape2Prog supervises their
model using the annotations from this dataset.

in Figure 8. Examples are sampled from the templates by changing their sizes and placing them
uniformly in random locations, similar to Tian et al. (2019).

7.3.2 SYNTHETIC WHOLE SHAPE DATASET.

This dataset was generated by Shape2Prog (Tian et al., 2019). The segmentation labels from this
dataset are used by them as a supervision signal for later generalizing to PartNet shapes. The
dataset consists of about 120K synthetically generated Chairs and Tables, we visualize some of these
synthetically generated tables and chairs in Figure 9. Note that neither Slot-TTA nor the baselines
have access to this dataset.

16



Under review as a conference paper at ICLR 2023

7.3.3 PARTNET DATASET.

We use the official level-3 train-test split of PartNet (Mo et al., 2019). We use the train split of Chair
category as our training set, we consider test split of Table category in PartNet our test categories. We
use this as the train-test split in Experiment Section 4.3.2. We set the value of number of slots K as
16 for this dataset.

8 IMPLEMENTATION DETAILS

8.1 POSED MULTI-VIEW 2D RGB IMAGES

Training details and computational complexity. We use a batch size of 256 in this setting. We set
our learning rate as 10−4. We use an Adam optimizer with β1 = 0.9, β2 = 0.999. For training, our
model takes about 4 days to converge using 64 TPUv2 chips. Our slow inference for each example
takes about 10 seconds on a single TPUv2 chip. Similarly, a forward pass through our model takes
about 0.1 seconds. During training, instead of decoding all the pixels, we decode only a sample of
them. Specifically, we randomly pick 1024 pixel locations for each example in the batch during each
iteration of training. During test-time adaptation, instead of uniformly sampling pixel locations, we
use an error-weighted sampling strategy which we describe below.

Inputs. During training and test-time adaptation, our model takes in as input multi-view RGB
images along with their ground-truth egomotion. For each scene, we randomly select 5 input and
target views, and make sure there is no overlap between the two sets, as a result rendering novel
viewpoints each time. Note that although we stick to 5 viewpoints, Slot-TTA can take a variable
number of viewpoints as input. We use a resolution of 128x128 for our input and target images.

Encoder. Here we follow the original implementation of OSRT (Sajjadi et al., 2022b). The model
encodes each input image Ii, its camera extrinsic and intrinsics into a set representation via a shared
CNN and transformer backbone. Specifically, the CNN outputs a feature grid for each image
conditioned on the camera extrinsic and intrinsics, which are then flattened into a set of flat patch
embeddings. The patch embeddings are then processed by a transformer that outputs a set of latent
embeddings. The latent embeddings have a dimensionality of 1535. The CNN consists of 3 blocks of
convolutions, with a ReLU activation after each convolution. The transformer contains 5 blocks of
Multi-Head Self-attention.

Slot Attention. The latent embeddings from the encoder are then mapped to a Slot Attention
module. We use the original implementation by Locatello et al. (2020), however instead of initializing
the slots from a multi-variate gaussian we have them as learnable embedding vectors. We keep our
slot vectors dimensionality as 1536. We set the number of slots as 32 in this setting.

Decoder. We use the broadcast decoder of Sajjadi et al. (2022a) for decoding the slots to their
RGB image conditioned on the target viewpoints. Our slot decoder consists of a 4-layer MLP with a
hidden dimensionality of 1536 and ReLU activation. Our target viewpoints are parameterized using
6D light-field parametrization of camera position and normalized ray direction.

Error-conditioned pixel sampling To accelerate test-time adaptation, we sparsely sample a subset
of pixels from the target images, where we prioritize the pixels with a high reconstruction error. To
this end, we calculate the reconstruction error over all pixels and apply a Softmax with a temperature
τ = 0.01 along the pixel dimension.

8.2 SINGLE-VIEW 2D RGB IMAGES

Training details and computational complexity. We use a batch size of 16 in this setting. We set
our learning rate as 10−4. We use an Adam optimizer with β1 = 0.9, β2 = 0.999. For training, our
model takes about 12 hours to converge using V100 GPU. Our slow inference for each example takes
about 6 seconds on the same GPU. Similarly, a forward pass through our model takes about 0.06
seconds. We decode the whole image instead of sampling a subset of pixels like in the above section.
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Inputs. We use a single 2D RGB image of resolution 128 x 128 as our input. We normalize our
input in the range of -0.5 to 0.5 before passing it through our encoder.

Encoder. We use ResNet-18 (He et al., 2016) as our encoder backbone, which takes as input the
RGB image and outputs a feature grid. We add positional vectors to the feature grid, which are grid
locations normalized in the range of -1.0 to -0.1.

Slot Attention. We use the exact implementation of Locatello et al. (2020). In this setting, we set
the number of slots as 16 as that’s the maximum number of objects in Multi-Shape dataset.

Decoder. We use a 4-layer MLP decoder, that takes in as input a slot vector and a 2D location and
outputs it’s corresponding RGB value and alpha score.

8.3 3D POINT CLOUDS

Training details and computational complexity. We use a batch size of 8 for point cloud input.
We set our learning rate as 40−4. We use the Adam optimizer with β1 = 0.9, β2 = 0.999. Our model
takes 24 hours (approximately 200k iterations) to converge. Our slow inference per example takes
about 1 min (500 iterations). A forward pass through the proposed model takes about 0.15 secs. We
use a single V100 GPU for training and inference.

Inputs. We subsample the input point clouds to a standard size of 2048 points.

Encoder. We adopt the point transformer (Zhao et al., 2021) architecture as our encoder. Point
transformer encoder is essentially layers of self attention blocks. Specifically a self attention block
includes sampling of query points and updating them using their N most neighbouring points as
key/value vectors. In the architecture we specifically apply 5 layers of self attention which look as
follows: 2048-16-64, 2048-16-64, 512-16-64, 512-16-64, 128-16-64, 128-16-64. We use the notation
of S-N -C, where S is the number of subsampled query points from the point cloud, N is the number
of neighbouring points and C is the feature dimension. We thus get an output feature map of size
128× 64.

Decoder. We obtain point occupancies by querying the slot feature vector slotk at discrete locations
(x, y, z) specifically ox,y,z = Dec(slotk, (x, y, z)). The architecture of Dec is similar to that of Lal
et al. (2021). Given slotk, which is one of the slot feature vector. We encode the coordinate (x, y, z)
into a 64-D feature vector using a linear layer. We denote this vector as z. The inputs slotk and z are
then processed as follows:

outk = RBi(RBi−1(· · ·RB1(z + FC1(slotk)) · · · ) + FCi−1(slotk)) + FCi(slotk)). (4)

We set i = 3. FCi is a linear layer that outputs a 64 dimensional vector. RNi is a 2 layer ResNet
MLP block (He et al., 2016). The architecture of ResNet block is: ReLU, 64-64, ReLU, 64-64. Here,
i− o represents a linear layer, where i and o are the input and output dimension. Finally outk is then
passed through a ReLU activation function followed by a linear layer to generate a single value for
occupancy.

8.4 BASELINES

Mask2former (Cheng et al., 2021) Mask2former is a recent state-of-the-art 2D RGB segmentation
network, that scales transformer-based 2D-DETR (Carion et al., 2020) for the task of segmentation.
They improve 2D-DETR’s transformer decoder by adding masked and multi-scale attention, which
helps them achieve SOTA results on panoptic, instance and semantic segmentation on the COCO
dataset. We use their publicly available code to train on MultiShapeNet dataset. We use a batch size
of 256 and train their network on 8 V100s GPUS for 4 days until convergence. We set the number of
slots in their network as 32, similar to our model.

3D-DETR. 3D-DETR is a version of 3DETR (Misra et al., 2021)(a 3D state-of-the-art object
detection method) scaled to the task of instance segmentation, we build this architecture on top of the
idea of 2D-DETR (Carion et al., 2020).
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Figure 10: Given point clouds as input the encoder backbone featurizes the points into N feature vectors, we
then do iterative self and cross attention using K learnable query heads, similar to Carion et al. (2020). We then
compute attention of the updated queries wrt to the encoded feature vectors. We then concatenate these attentions
along the batch dimension and pass them through a FPN-style transformer that increases their resolution and
outputs each query mask logits. We then do hungarian matching and binary cross entropy loss

The base encoder is a 5 layer architecture of 1024-16-64, 1024-16-64, 1024-16-64, 1024-16-64,
512-16-64, following the notation of S,N ,C where S is the number of sampled query points, N is
the number of selected neighbouring points and C is the feature dimension. We have 16 learnable
queries with six encoder-decoder layers of transformer attention, each layer consists of 8 heads. We
then compute multi-head cross-attention between each query vector and the encoded 3d points. This
gives us a map of size M × 512× 16, where M is the number of heads in the multi-head attention.

Each attention map is individually upsampled through a PointTransformer decoder of the architecture
512-16-64, 1024-16-64, 1024-16-64, which gives us the final instance segmentation mask per query,
similar to DETR (Carion et al., 2020). We then use Hungarian matching to match the predicted masks
against the ground truth masks and then apply binary cross entropy loss for each match. We aggregate
the losses from each query and backpropagate. Figure 10 visualizes the architecture of 3D-DETR.
Note that we do not follow the 2 stage training of Carion et al. (2020), rather we train their model
end-to-end for instance segmentation, similar to our model. We have found this trick to save compute
and still not harm the end results.

Learning2Group. (Luo et al., 2020) Learning2Group progressively groups points into segments
by learning pairwise grouping decisions parameterized by features of the point clusters to be grouped.
Given the intermediate grouping decisions are not supervised, and the non-differentiability of their
grouping functions they use reinforcement learning gradients for training using supervision from the
final segmentation. We use their open-sourced architecture and code for comparision with our mode.
We train their model using our datasets from scratch.

Shape2Prog (Tian et al., 2019) Shape2Prog is a shape program synthesis method that is trained
supervised to predict shape programs from object 3D point clouds. Shape2Prog introduced two
synthetically generated datasets that helped the model parse 3D pointclouds from ShapeNet Chang
et al. (2015) into shape programs without any supervision: i) Generic primitive set (Figure 8) we
discussed earlier in which they use to pre-train their part decoders, and ii) Synthetic whole shape
dataset of chairs and tables (Figure 9) generated programmatically alongside its respective ground-
truth programs. Their model requires supervised pre-training on the dataset of synthetic whole
shapes paired with programs. We therefore use their publicly available model weights trained on
synthetic whole shapes to further train on PartNet Chairs. Note that no other baseline nor Slot-TTA
assumes access to the synthetic whole shape dataset. We use their open-sourced architecture, code
and pretrained checkpoints for comparision with our model. We change the value of number of
blocks similar to the number of slots in our model for each dataset.
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PQ-Nets. (Wu et al., 2020) PQ-Nets is a sequential encoder-decoder architecture, that takes 3D
point cloud as input and sequentially encodes it into multiple 1D latents which are then decoded to
part point clouds. It achieves this decomposition by pre-training their decoder to predict part point
clouds. We use their open-sourced architecture and code for comparision with our model. We train
their model using our datasets from scratch. We change the value of number of slots in their model
based on the maximum number of parts in the dataset.

9 ADDITIONAL EXPERIMENTS

9.1 SEGMENTING RGB IMAGES IN MULTI-VIEW SCENES

Method in-dist (5-7 instances) out-of-dist (16-30 instances)
before TTA after TTA before TTA after TTA

Slot-TTA-SlotMixer_Decoder 0.94 0.89 0.65 0.72
Slot-TTA-SRT_Decoder 0.92 0.88 0.60 0.63

Slot-TTA-tta_All_param N/A 0.92 N/A 0.82
Slot-TTA-tta_Norm_param N/A 0.94 N/A 0.79
Slot-TTA-tta_Slot_param N/A 0.94 N/A 0.76

Slot-TTA w/o Weighted_Sample N/A 0.93 N/A 0.81

Slot-TTA (Ours) 0.92 0.95 0.70 0.83

Table 5: ARI Segmentation accuracy (higher is better) in the in-distribution test set of 5-7 object instances
and out-of-distribution 16-30 object instances.

Method in-dist (ShapeNet categories) out-of-dist (GSO categories)
before TTA after TTA before TTA after TTA

Mask2Former 0.93 N/A 0.93 N/A
Mask2Former+BYOL 0.93 0.95 0.92 0.93
Mask2Former+Recon 0.93 0.92 0.92 0.91

Slot-TTA (Ours) 0.92 0.95 0.92 0.95

Table 6: ARI Segmentation accuracy (higher is better) in the in-distribution test set of ShapeNet object
categoriesChang et al. (2015) and out-of-distribution test set of GSO object categories Downs et al. (2022).

In Table 6, we tested our model on a different distribution shift. In the test set instead of increasing
the number of instances in the scene in Table 1, we introduced instances from new object categories.
Specifically the MSN Sajjadi et al. (2022b) train-set consists of ShapeNet object categoriesChang
et al. (2015) (Tables, Chairs etc), whereas the new test-set consists of Google Scanned Object Downs
et al. (2022) (GSO) categories (Shoes, Stuffed toys etc). We find that our model gets a score of 0.92
before TTA and 0.95 after TTA, whereas mask2former and its TTA counterparts get a score of 0.93,
clearly demonstrating the benefit of slot-centric test-time adaptation over a state-of-the-art baseline.

We conduct various ablations of Slot-TTA in Table 1. In Figure 11, we show additional qualitative
results comparing Slot-TTA-Fast and Slot-TTA-Slow.

(i) We ablate different decoder choices in the topmost section where instead of using the broadcast
decoder we use the Scene representation transformer (SRT) decoder (Sajjadi et al., 2022b) which we
refer to as Slot-TTA-SRT_Decoder or the SlotMixer decoder (Sajjadi et al., 2022a), referred to as
Slot-TTA-SlotMixer_Decoder.

(ii) We ablate what parameters to adapt at test time. As it’s unclear since TENT (Wang et al.,
2020) optimizes BatchNorm or LayerNorm parameters, but TTT (Sun et al., 2020) optimizes the
shared parameters between the SSL and the task-specific branch, which in our case will be all
the parameters in the network. In Table 5, Slot-TTA-tta_All_param is when we adapt all the
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network parameters, Slot-TTA-tta_Norm_param adapts only the Layer or BatchNorm parameters
and Slot-TTA-tta_Slot_param adapts only the learnable slot embeddings. We find that optimizing
only the encoder parameters works the best for our setting.

(iii) Further, we ablate error-conditioned pixel sampling where Slot-TTA w/o Weighted_Sample
refers to our model that uses uniform sampling instead of the error weighted sampling.
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Before Adaptation After Adaptation Loss & Accuracy

Figure 11: On the left, we visualize Slot-TTA-Fast. In the middle, we visualize Slot-TTA-Slow. In the first row
we visualize the ground truth target RGB views. In the second and third row we visualize Slot-TTA predicted
target RGB views and their segmentation masks. On the right-most column we visualize the RGB loss and
segmentation accuracy when doing slow inference. Same setting as Section 4.1
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9.2 SEGMENTING SINGLE-VIEW RGB IMAGES

In Figure 12 we qualitatively compare Slot-TTA-Slow with Slot-TTA-Fast. We show that slow
inference can help discover objects missed by Slot-TTA. We also show some failure cases where
slow inference could override the object-centric bottleneck to achieve higher reconstruction accuracy.

Input RGB Before adaptation After adaptation

Successes - ARI increases by 20-30%

Failures - ARI reduces by 10%

Figure 12: Success and Failure cases of slow-inference on Multi-Shape dataset. Same setting as Section 4.2

9.3 SEGMENTING 3D POINT CLOUDS

9.3.1 SUPERVISION FROM A DATASET OF GENERIC 3D PART PRIMITIVES

In this Section we show additional qualitative and quantitative results for Section 4.3.1. Neither
Slot-TTA nor the baselines have access to ground-truth 3D segmentations during training of Chair or
Table category; as a result, they may output 3D parts of coarser or finer resolution. PartNet contains
three different levels of ground-truth segmentation labels with progressively finer segmentation
granularity. In Table 7, we further extend Table 3 to include different levels in Chair and Table
category. Here (X/Y/Z) refers to (level 1/level 2/level 3) scores respectively. We pick the best
performing level in fast inference and specifically report it’s slow inference results. We further
qualitatively compare our model against Shape2Prog (best performing baseline) in Figure 13

Method in-dist (Chairs) out-of-dist (Tables)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

Shape2Prog Tian et al. (2019) 0.28/0.21/0.26 0.53 0.21/0.23/0.23 0.40
PQ-Nets Wu et al. (2020) 0.20/0.18/0.16 0.31 0.17/0.14/0.16 0.21

Slot-TTA 0.51/0.48/0.57 0.62 0.51/0.55/0.60 0.69

Table 7: ARI Segmentation accuracy (higher is better) in the test set of Chair (in-distribution) and Table
category of PartNet(out-of-distribution). Slot-TTA significantly outperform all of the baselines.
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Input Shape2Prog 
(Supervised)

GFS-Nets-Fast GFS-Nets-Slow

Figure 13: Additional segmentation results on out-of-distribution categories when supervised from generic
primitives. Same setting as Section 4.3.1
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9.3.2 SUPERVISION FROM A RELATED OBJECT CATEGORY

In this section we further qualitatively and quantitatively compare our model against baselines on the
task of instance segmentation. We follow the same experimental setup of Section 4.3.2, where we
use Chair category segmentation supervision and test for cross-category generalization. We test the
segmentation accuracy of the models on other categories of PartNet in Table 9. Note that a few of
these categories don’t share any common parts with the Chair category that’s why the absolute
scores of Slot-TTA and all other baselines are very low on these categories. We find this specific
metric to be not well-defined, as generalizing from Chairs to Shoes or Vase, might not make sense,
but to a furniture category like a Table or Bed does. Inspite of this overall, we find the mean score of
Slot-TTA to outperform all other baselines.

Further in Table 8, we tested our model on an object detection task, where we predict the bounding
box for each instance. We find that our model gets a similar performance improvement as our instance
segmentation task after test-time adaptation. Specifically the box mIoU improves from 0.51 to 0.63
after TTA, whereas our 3D-DETR baseline gets a score of 0.53. Thus showcasing that our method
generalizes beyond the task of instance segmentation.

Method in-dist (Chair) out-dist (Table)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

3D-DETR (Misra et al., 2021) 0.68 N/A 0.53 N/A

Slot-TTA 0.62 0.65 0.51 0.63

Table 8: Object detection box mIoU accuracy (higher is better) in the test set of Chair category (in-distribution)
and Table category (out-of-distribution) when trained using the supervision of Chair category.

Method Display Bottle Clock Dishwasher Door Earphone Faucet
3D-DETR 0.21 0.25 0.12 0.08 0.19 0.21 0.28
Learning2Group 0.30 0.19 0.18 0.10 0.17 0.25 0.28
Slot-TTA-Fast 0.16 0.26 0.04 0.04 0.09 0.18 0.25
Slot-TTA-Slow 0.53 0.45 0.05 0.06 0.12 0.32 0.37
Method Knife Lamp Microwave Refrigerator TrashCan Vase Bed
3D-DETR 0.23 0.21 0.01 0.17 0.17 0.14 0.26
Learning2Group 0.28 0.17 0.14 0.1 0.15 0.25 0.32
Slot-TTA-Fast 0.24 0.10 0.01 0.04 0.11 0.10 0.28
Slot-TTA-Slow 0.38 0.24 0.01 0.10 0.30 0.15 0.41
Method Mean
3D-DETR 0.20
Learning2Group 0.22
Slot-TTA-Fast 0.15
Slot-TTA-Slow 0.27

Table 9: ARI Segmentation scores (higher is better) on the test set of the other level-3 categories(out-of-
distribution) of PartNet. All the models are trained using the training set of the Chair category in PartNet.

25



Under review as a conference paper at ICLR 2023

Instance Segmentation

3D-DETR GFS-Nets-Slow 3D-DETR GFS-Nets-Slow

Figure 14: Additional segmentation results in out-of-distribution categories when supervised from a related
object category. Same setting as Section 4.3.2

10 ADDITIONAL RELATED WORK

Shape program synthesis and analysis-by-synthesis Slot-TTA is also related to works in analysis-
by-synthesis Kulkarni et al. (2015), program synthesis for shape prediction Tian et al. (2019); Ellis
et al. (2020); Li et al. (2020), as well as earlier works on Computer Vision, such as Marr’s 3D
sketch Marr (1982) which involves representing a scene in terms of generalized cylinders and their
syntactic relations to each other. In place of data-driven Markov Chain Monte Carlo search of
analysis-by-synthesis methods that require good initialization, our slow inference searches in the
space of primitives by gradient descent. In contrast to program synthesis methods, it does not require
a predefined domain-specific language (DSL) or program annotations for visual structures Li et al.
(2020), rather, it discovers compositions over primitives via its slow inference.

Unsupervised 3D Part Discovery There are numerous methods that attempt the decomposition of
complex 3D shapes into primitive parts without primitive supervisionKato & Harada (2019); Genova
et al. (2019); Paschalidou et al. (2020); Gao et al. (2019); Deprelle et al. (2019); Tulsiani et al. (2017);
Deng et al. (2020); Chen et al. (2019). Traditional primitives include cuboids Tulsiani et al. (2017);
Niu et al. (2018), superquadrics Paschalidou et al. (2019; 2020), and convexes Deng et al. (2020);
Chen et al. (2020). Genova et al. (2020) proposes a 3D representation that decomposes space into
a structured set of implicit functions Genova et al. (2019). Neural Parts Paschalidou et al. (2021)
represents arbitrarily complex genus-zero shapes and thus yields comparatively expressive parts.
However the resulting parts of these methodsGenova et al. (2020); Paschalidou et al. (2021) are
still not semantically meaningful and the decomposition is highly dependent on the number of parts
initialized. The work of Yao et al. (2021) does 3D part reconstruction directly from a 2D image
input without access to any ground-truth 3D shapes for training. However, both Yao et al. (2021)
and Paschalidou et al. (2021) take as input the number of parts, and different decompositions are
predicted with varying part numbers. There is no clear way to select the right number of parts. In our
case, parts can be quite complex: pairs of parallel surfaces, quadruplets of legs, as we use implicit
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functions to represent them. Moreover Slot-TTA’s dynamic attention-based routing allows it to infer
different number of parts for each input scene.
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