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ABSTRACT

Event prediction is one of the core challenges in artificial intelligence. Current
Large Language Model (LLM) prediction methods face two key issues: 1. Lack of
causal quantification: while LLMs can identify key event factors and their causal
relationships from text, they struggle to quantify factor states, weights, and inter-
actions, limiting predictions to qualitative judgments; 2. Probabilistic consistency
failure: LLM-generated “probabilities” are results of language pattern matching
rather than statistical reasoning, often violating probability axioms, being sensi-
tive to input, and lacking mathematical reliability. To address these bottlenecks,
we propose the Probabilistic-Aware Causal Reasoning Engine (PACRE), lever-
aging “cognitive division of labor”: LLMs extract causal knowledge from text
and build structured representations, while probabilistic programming languages
(PPLs) conduct rigorous Bayesian inference. PACRE uses hierarchical Bayesian
fusion to address observational uncertainty and Bayesian model averaging (BMA)
to mitigate LLM spurious causal hallucinations. Experiments on multiple datasets
show that PACRE achieves statistically significant improvements over existing
LLM-based methods in predictive accuracy, uncertainty quantification, and inter-
pretability. Specifically, its complete posterior distributions and confidence inter-
vals effectively address the unreliability of LLM-generated probabilities, deliver-
ing transparent, auditable support for decision-making.

1 INTRODUCTION

Event prediction is a core Al challenge with applications in financial forecastingLi et al.| (2024)
and policy impact assessmentRotaru et al.| (2022)). Traditional approaches fall into two categories:
statistical methodsBox & Jenkins|(1976); Ansari et al.|(2024) requiring sufficient historical data but
failing in data-scarce settingsShmueli| (2010), and neural architectures that perform well but lack
interpretability and uncertainty quantificationBera & Bhanjal (2025)); Ribeiro et al.|(2016); Kendall
& Gal|(2017).

We often face weakly supervised, event-driven prediction where supervision signals are textual.
While unstructured documents like news reports provide event context and causal cues, we lack
structured historical data and explicit expert labelsJin et al| (2021). This occurs in emerging mar-
ket analysis, sudden event assessment, and policy forecasting. Statistical methods fail due to data
scarcity; expert judgments suffer from bias and scaling issuesRotaru et al.| (2022); [Shmueli| (2010);
Jin et al.[(2021)); [Nafar et al.| (2024).

Large Language Models (LLMs) offer a solution. With semantic understanding, LLMs convert
unstructured text into structured event evidence—a paradigm where textual evidence complements
historical dataZhang et al.| (2024b); Jin et al.[(2021)). However, direct LLM predictionHalaw1 et al.
(2024); Guan et al.| (2024); Schoenegger & Park| (2023)); Tao et al.| (2025)); Hsieh et al.| (2024) faces
fundamental challenges:

Core Challenge: Language Generation vs. Probabilistic Reasoning Mismatch

LLMs optimize token-level probabilities for text generation, while event prediction requires real-
world causal probabilities. This mismatch creates two issues:
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Figure 1: PACRE framework overview. LLMs extract key factors and causal graphs from text, which
are processed by PPL modules for Bayesian inference.
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1. Probabilistic inconsistency: LLM probabilities” match language patterns rather than statistical
reasoningMirzadeh et al.| (2025). These pseudo-probabilities violate probability axiomsNafar et al.
(2024), are input-sensitive, and lack consistency.

2. Missing causal quantification: LLMs identify factors and relations but cannot quantify states,
effect sizes, and interactions, yielding qualitative predictionsMal (2025); \Creswell et al.|(2022); Ning
et al.| (2025)).

QOur Solution: Cognitive Division of Labor

Rather than fixing LLM limitations, we accept noisy outputs and mitigate their impact via proba-
bilistic frameworks. We reposition LLMs as semantic sensors extracting causal knowledge from
text, while Probabilistic Programming Languages (PPLs) serve as rigorous inference engines per-
forming Bayesian reasoning.

Our Probabilistic-Aware Causal Reasoning Engine (PACRE) targets scenarios with “relevant
news, incomplete data, no expert labels” through cognitive division of labor:

* LLMs as semantic extractors: Identify factors, mine causal relations, construct candidate
DAGs, and quantify variable states with confidence scores.

* PPLs as inference engines: Consume LLM knowledge and perform Bayesian infer-
enceCarpenter et al.|(2017); [Patil et al.| (2010); Bingham et al.|(2019)).

Technical Innovation: Hierarchical Bayesian Framework
PACRE introduces three innovations:

1. Multi-observation consistency: Multiple LLM evaluations with statistical averaging reduce
errors and strengthen likelihood.

2. Hierarchical observation model: Treats LLM outputs as noisy observations, separating cogni-
tive bias from expression noise.

3. Bayesian Model Averaging (BMA): Weights multiple candidate DAGs to mitigate erroneous
structures.

This approach decomposes complex tasks into sub-tasks (factor identification, relation mining,
quantification) while preserving global consistency.

Value Proposition

PACRE produces mathematically coherent posteriors and reliable uncertainty quantification despite
noisy inputs. It outputs traceable reasoning maps” supporting sensitivity analysis and manual cor-
rection. The output is complete posterior distributions with confidence intervals, providing trans-
parency and reliability for high-stakes decisions.

1.1 CONTRIBUTIONS

We make three primary contributions:
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System framework: We introduce PACRE, the first pipeline converting news text into event evi-
dence with rigorous probabilistic inference. It establishes text-evidence-driven probabilistic reason-
ing for scenarios where traditional methods fail due to data scarcity.

Theory and methods: We propose a hierarchical observation model separating cognitive bias from
expression noise and apply BMA to weight multiple candidate DAGs, mitigating structural halluci-
nations. This provides theoretical foundations for news-driven probabilistic reasoning.

Empirical validation: We construct cross-domain datasets and demonstrate PACRE’s improve-
ments over direct LLM prediction, converting unstructured text to posteriors with confidence inter-
vals. PACRE supports sensitivity analysis and provides transparency for high-stakes decisions.

2 RELATED WORK

Research on event prediction spans three interrelated dimensions: the application and limitations of
LLMs in prediction, advances in probabilistic reasoning frameworks, and progress in causal struc-
ture learning. Their intersection grounds our work and reveals fundamental challenges in existing
methods.

2.1 LLM-BASED EVENT PREDICTION

Schoenegger et al/Schoenegger & Park] (2023)) systematically evaluated LLM prediction in real-
world tournaments and found accuracy below expectations. Halawi et al\Halawi et al.| (2024) devel-
oped a retrieval-augmented system achieving near-expert performance on standard platforms. [Hsieh
et al.| (2024) introduced a hierarchical ReAct agent framework, enhancing LLM reasoning via tool
use. OpenEPGuan et al.| (2024) contributed an open-ended event prediction dataset with cluster-
ing to handle inter-event dependencies. [Tao et al.| (2025) further proposed a forecasting benchmark
based on causal intervention likelihood, offering a new lens for evaluating causal reasoning. Other
studies enhance LLM prediction through human-AlI collaborationLippert et al.| (2024), DPO fine-
tuningTurtel et al.[(2025), and multi-step log-probability estimationSoru & Marshall| (2025)).

2.2 PROBABILISTIC REASONING FRAMEWORKS: FROM CLASSICAL BAYESIAN TO
NEURO-SYMBOLIC FUSION

Witty et al.Witty et al.| (2019) pioneered representing causal models as probabilistic programs to
unify structure learning and parameter estimation, but relied on hand-crafted static priors, a bot-
tleneck for open-domain event prediction requiring rapid modeling from real-time unstructured in-
formation. |Wong et al.| (2023) proposed “language-driven probabilistic thought,” translating nat-
ural language into probabilistic programs to build world models, inspiring our work though fo-
cused on cognitive modeling rather than practical forecasting. In practice, modern PPLs such as
StanCarpenter et al.[(2017), PyMCPatil et al.|(2010), and PyroBingham et al.|(2019) underpin com-
plex Bayesian modeling. [Huang| (2025a) focused on automatic model structure generation and pro-
posed LLM-driven automated Bayesian inference, demonstrating translation from natural language
descriptions to Bayesian models. Uncertainty quantification has also been deeply studied: |Vashurin
et al.[(2025) quantified LLM uncertainty via Minimum Bayes Risk; Tonolini et al.{(2024) proposed
Bayesian prompt ensembles to improve reliability; [Huang| (2025b)) extracted and aggregated LLM
prior knowledge to better initialize Bayesian models.

2.3 CAUSAL STRUCTURE LEARNING

Classical causal graph discovery relies on statistical tests and constraints (e.g., PCSpirtes et al.
(2000), FCISpirtes et al.| (2013)), facing computational and statistical-power challenges in high
dimensions. Recent work integrates textual information into causal discovery, highlighting LLM
potential. Zhang et al.’s LACRZhang et al.| (2024b) used retrieval-augmented generation, combin-
ing literature knowledge and observed data to improve reliability. Abdulaal et al.’s Causal Model-
ing Agents (CMA)Abdulaal et al.| (2024) integrated LLM metadata reasoning with deep structured
causal models to fuse data- and knowledge-driven approaches. From application angles,|Zhan et al.
(2024) demonstrated event prediction using known causal graphs via distance-sensitive graph lin-
earization, while |Bynum & Cho, (2024) showed LLMs can generate high-quality synthetic data
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for predefined causal structures, enabling evaluation and validation. However, challenges remain.
Zhang et al|(2024a) proposed an interactive framework requiring users to actively query missing
variables and manual validation of generated graphs before prediction. Wu et al.| (2025) questioned
LLM reliability in causal discovery and suggested restricting LLMs to non-decisional support.

3 METHOD

This section presents PACRE’s mathematical foundations. Traditional LLM prediction methods
cause mathematical invalidity and unreliability. PACRE uses “cognitive division of labor”—LLMs
as semantic sensors extracting causal knowledge from text, while PPLs serve as rigorous inference
engines executing Bayesian inference. The framework has two components: (1) modeling LLMs
as semantic sensors producing noisy observations; (2) implementing Bayesian inference and model
averaging via PPLs. Figure[I|shows the PACRE framework.

Theoretical Foundation: PACRE integrates behavioral decision theory and causal inference. For
factor decomposition, inspired by prospect theory Kahneman & Tversky|(2013)), we distinguish pro-
moting and inhibiting factors to align with human risk perception. Attribution theory Weiner|(1985)
provides cognitive foundations for factor classification. For causal modeling, PACRE adopts Pearl’s
framework |Pearl| (2014), using DAGs to represent causal directionality and SEMs to quantify ef-
fect strength Kline| (2023)). Path coefficients represent causal direction and magnitude. This enables
intervention and counterfactual reasoning Pearl (2019), supporting complex event prediction.

3.1 PROBLEM FORMULATION AND NOTATION

Consider a binary prediction target Y € {0,1}, where Y = 1 indicates event occurrence. De-
fine candidate variable index set V = {1,2,...,J}, corresponding to latent state vector & =
(X1, Xo,...,Xs)", where X ; € Rrepresents the true but unobservable continuous state of variable
j. The LLM performs N; independent evaluations for each variable j € V, generating observation
sequence O; = {(s,., Cj7i)}£\;jl, where s; ; € R is a quantitative score and ¢; ; € [0, 1] is the LLM’s
confidence. Let B = (Bo,B1,---,87)" be the GLM coefficient vector, G be the causal structure
(DAG), and complete observational data be D = {O; }JJZI. We use structured prompts to guide
LLM factor extraction (details in Appendix [B.I)), with redundant variables identified through se-
mantic similarity (cosine similarity ; 0.8), ensuring variable relevance while filtering overly abstract
factors.

3.2 HIERARCHICAL OBSERVATION MODEL: HANDLING LLM OUTPUT UNCERTAINTY

To handle cognitive bias and expressive randomness in LLM outputs, we construct a hierarchical
observation model. For each variable j € V, we define the LLM’s cognitive representation By ;
of the true state X, following a normal distribution with mean X; and variance o, ;. The LLM’s

i-th observation output s; ; follows a normal distribution with mean By, ; and variance o2, it

Bllm,j NN(XﬁUl?ias,j)’ (D

2 .
Sj7i NN(Bllm>ja0-noise,j7i)7 1= 1,27...,Nj. (2)
This hierarchical decomposition separates LLM output errors into cognitive bias |[Echterhoft et al.
(2024) and expressive noise Yang et al| (2025), modeled separately in posterior inference. The
normal distribution choice is based on the central limit theorem. Compared to single-layer models,
the hierarchical structure better quantifies uncertainty and estimates variance parameters through

empirical Bayesian methods (details in Appendix [A.T).

3.3 CONFIDENCE CALIBRATION: CONVERTING SUBJECTIVE CONFIDENCE TO
OBSERVATION VARIANCE

The confidence c; ; € [0, 1] reported by the LLM is its subjective judgment of score reliability, but
this judgment is often inconsistent with actual observation quality. We map confidence to obser-
vation variance through a monotonically decreasing function. The PACRE framework integrates a
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dynamic calibration strategy based on observation consistency (details in Appendix [A.3):

2 - Voase
noise,j,i cal\q ’
e+ (%)

where a > 0, Viae > 0, € > 0, with defaults o = 1.0, Vigee = 1.0, € = 0.05. This mapping
has three properties: (1) Monotonicity—higher confidence leads to smaller variance; (2) Bounded-
ness—prevents numerical instability; (3) Adjustability—a controls nonlinearity. The design con-
verts subjective confidence into mathematically operable noise parameters, assigning greater weight
to high-confidence observations (details in Appendix [A.2.T).

ag

3)

3.4 CAUSAL STRUCTURE AND BAYESIAN MODEL AVERAGING

The LLM generates K candidate DAGs forming structure space G € {Gi1,Ga,...,Gk} (typically
K = 5 — 10). Generated DAGs are validated for acyclicity through topological sorting. We imple-
ment a cycle repair mechanism detecting strongly connected components and removing minimum-
weight edges (details in Appendix [C.1). We adopt uniform priors p(Gy) = 1/K, but combine
domain scoring and complexity penalties for weight optimization (details in Appendix [C.2). Let
01 = {{wjm}, {6;}, {08us, it {o7}} be the parameter vector for structure Gy, containing structural

coefficients w,,, regression coefficients 3 = (8o, 51,...,0 7) T, cognitive bias variances Uﬁias) >
and structural noise variances ajz-. The marginal likelihood is:

WD 161) = [ 5D |61.Gop(6r | Gu)dey. @
The structure posterior probability is:

p(D | Gi)p(Gr)

D) = .
PGP = K D | Gopan

(&)

The BMA prediction formula is:

K
p(Y =1|D)=> p(Y =1|D,Gk)p(Gk | D), (©)
k=1

where p(Y = 1 | D, Gi) is the posterior predictive probability. BMA models structural uncertainty,
avoiding single-structure risk concentration and diluting biases from erroneous edges. Marginal
likelihood uses bridge sampling for unbiasedness, and DAG generation uses temperature adjustment
for diversity (details in Appendices[A.3]and [D.3).

3.5 STRUCTURAL EQUATIONS AND OUTPUT LAYER

Given DAG G, and parameter vector 8y, the Structural Equation Model (SEM) is:
Xj:fj(Pa(Xj),ej), j:1,2,...,J, (7)

Y:g(X17X27"'aXJa€Y)7 (8)
where Pa(Xj) is the parent set of X; in Gy, ¢; ~ N(0,07) are noise terms, f; are structural
functions, and g is the output function. PACRE uses linear structural equations with GLM logit
link:

Xj = Z Wim X + €5, €5~ ./\/(O,o’?), &)
mePa(X;)
J
77250+25ij7 (10)
j=1
(Y =1|=a,8) = sigmoid(n) = ! (11)
p - ) - g 77 - 1+€_n'

This design provides: (1) interpretable coefficients; (2) PPL compatibility; (3) nonlinear extensi-
bility. We implement dynamic scaling to avoid sigmoid saturation (details in Appendix [C.3). The
output layer adapts to different variable types (details in Appendix |D.2).
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3.6 PRIOR DESIGN: WEAK INFORMATION AND ROBUSTNESS

PACRE uses weakly informative priors balancing regularization and data dominance: normal pri-
ors for regression and structural coefficients, half-Cauchy priors for variance parameters. This pro-
vides moderate regularization with good numerical properties and interpretability (details in Ap-

pendix [D.TJ.

3.7 INFERENCE AND POSTERIOR PREDICTION

For each Gy, posterior inference is performed in PPL to obtain sample approximations of
p(0,x | D,Gi) (where 0 aggregates all parameters and hyperparameters). We preferentially use
HMC/NUTS to obtain high-quality samples and uncertainty estimates, with variational inference
(SVI/ADF) as an approximate acceleration scheme for large-scale/real-time scenarios. The poste-
rior prediction formula is:

p(Y =1|D,G) = // sigmoid(By + B1.,x) p(6,z | D,Gy) dx do, (12)

Finally, the overall prediction p(Y = 1 | D) and its credible intervals are obtained through BMA
(specific inference parameter configurations are detailed in Appendix [DJ.

K-value Selection Strategy in Bayesian Model Averaging: The selection of candidate DAG num-
ber K requires balancing prediction performance with computational efficiency. During experi-
ments, prediction accuracy shows an initial increase followed by stabilization trend as K increases.
We recommend K=7-9 as the candidate DAG number range for practical applications. This selection
strategy ensures prediction performance while effectively controlling computational complexity.

3.8 UNCERTAINTY DECOMPOSITION AND AGGREGATION

Total uncertainty is decomposed into the composition of parameter posterior uncertainty, latent
variable (evidence state) uncertainty, and structural uncertainty. According to the law of total
variance, the total variance can be decomposed as:

Var[Y | D] = Eg[Var[Y | 8,¢,D]] + Varg[E[Y | 6,3, D] (13)

Parameter uncertainty Structural uncertainty

where the parameter uncertainty term Eg[Var[Y | 6,G, D]] reflects the uncertainty in parameter
estimation given the structure, and the structural uncertainty term Varg[E[Y | 6,G,D]] reflects
the variance of prediction differences between different causal structures. Structural uncertainty
is computed through weighted averaging of all candidate DAG prediction variances (with weights
being structural posterior probabilities p(Gx | D)). This decomposition provides transparency for
identifying major risk factors (detailed derivation is provided in Appendix [A.4).

We implement the PACRE model based on PyMC [Patil et al.| (2010). The complete execution
workflow (algorithmic framework) of the PACRE framework is detailed in Appendix

4 EXPERIMENTS

4.1 DATASETS AND MODELS

We evaluate PACRE on two datasets: (1) EventPred, a cross-domain corpus following Halawi et
al/Halawi et al.[(2024)), with 300 questions from Polymarket and Metaculus (Oct 2024-Aug 2025);
we use LLMs to generate queries and retrieve 30+ news articles via Google News API, forming
“news-outcome” pairs; (2) PROPHET, Tao et al.’sTao et al.|(2025) benchmark for causal interven-
tion and reasoning assessment.

For fair evaluation, we align model knowledge cutoffs with dataset ranges: EventPred uses newer
LLMs (Claude-3.5-Sonnet, GPT-40, Gemini-2.5-Pro, Qwen2.5-32B, Qwen2.5-7B) with cutoffs be-
fore resolution dates; PROPHET uses earlier models (GPT-4, GPT-3.5-Turbo, Doubao-pro-4k, GPT-
40-mini, Llama-2-7B) to avoid data leakage.

The datasets cover multiple domains (politics, economics, society, technology) with inherent cross-
domain characteristics, eliminating need for additional generalization experiments.
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Table 1: Main Performance Comparison Results

Dataset Model Method Accuracy(%) AUC Brier Score ECE
Direct LLM Prediction 63.2 0.689 0.221 0.087

Claude-3.5-Sonnet  CoT Prediction 65.8 0.712 0.208 0.074

PACRE 68.1 0.735 0.216 0.051

Direct LLM Prediction 62.7 0.685 0.223 0.089

GPT-40 CoT Prediction 64.9 0.708 0.218 0.076

PACRE 67.4 0.728 0.196 0.053

E Direct LLM Prediction 61.3 0.678 0.220 0.092
g DeepSeek-R1 CoT Prediction 62.8 0.718 0.222 0.050
A PACRE 65.9 0.695 0.214 0.058
Direct LLM Prediction 59.8 0.665 0.229 0.098

Qwen2.5-32B CoT Prediction 64.3 0.681 0.225 0.085

PACRE 62.5 0.704 0.217 0.062

Direct LLM Prediction 57.8 0.651 0.233 0.095

Qwen2.5-7B CoT Prediction 57.2 0.648 0.235 0.106

PACRE 60.1 0.674 0.227 0.078

Direct LLM Prediction 58.9 0.701 0.231 0.101

GPT-4 CoT Prediction 60.7 0.678 0.227 0.087

PACRE 63.5 0.669 0.219 0.065

Direct LLM Prediction 56.8 0.642 0.232 0.109

GPT-3.5-Turbo CoT Prediction 58.1 0.658 0.236 0.097

PACRE 57.9 0.655 0.243 0.095

E Direct LLM Prediction 57.6 0.651 0.235 0.108
% Doubao-pro-4k CoT Prediction 59.1 0.667 0.231 0.094
% PACRE 62.2 0.690 0.223 0.072
Direct LLM Prediction 56.2 0.635 0.239 0.116

GPT-40-mini CoT Prediction 55.1 0.631 0.241 0.119

PACRE 55.8 0.642 0.237 0.098

Direct LLM Prediction 54.8 0.628 0.267 0.125

Llama-2-7B CoT Prediction 53.9 0.624 0.245 0.121

PACRE 52.1 0.601 0.240 0.127

4.2 EVALUATION METRICS

We report four metrics: Accuracy (Accuracy, AUC) for correctness; Calibration (ECE, Brier score)
for probability reliability; Uncertainty (credible interval coverage and width) for uncertainty qual-

1ty.
4.3 MAIN PERFORMANCE COMPARISON

To validate PACRE’s advantages over baselines in accuracy and calibration, we compare three meth-
ods: Baseline Methods:

* Direct LLM Prediction: Standard prompts for event probability prediction

* CoT Prediction: Chain-of-Thought prompts for step-by-step reasoning

* PACRE: Complete Probability-Aware Causal Reasoning Engine

On EventPred and PROPHET datasets, we conduct multiple trials with five runs per method for fair
comparison.
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PACRE achieves superior performance on most metrics, with improved calibration over baselines.
Table [1| shows PACRE achieves improvements across multiple models, validating broad applica-
bility. Some cases show inferior performance to baselines, which is expected given the inherent
stochasticity and complexity of event prediction tasks where multiple confounding factors can in-
fluence outcomes unpredictably. CoT sometimes underperforms direct prediction, reflecting task
complexity.

4.4 ABLATION STUDY

To validate each PACRE component’s contribution, we systematically remove individual compo-
nents and analyze their impact. Removing multi-observation averaging (-MultiObs) leads to in-
creased variance and reduced robustness in factor state estimation. Eliminating Bayesian Model
Averaging (-MultiDAG) results in structural overfitting and reduced generalization capability. Us-
ing fixed confidence scores (-ConfCal) causes suboptimal observation weighting and degraded cal-
ibration performance. Direct use of LLM outputs without bias separation (-HierModel) increases
noise propagation and uncertainty underestimation. Point estimation only (-FullBayes) eliminates
uncertainty quantification and reduces prediction reliability. Full PACRE achieves best performance
across metrics, confirming each component’s necessity. Figure [3|shows EventPred results.

4.5 UNCERTAINTY QUANTIFICATION

To validate PACRE’s advantages in uncertainty quantification, we compare baseline methods using
temperature=0.8 for 20 predictions with frequency-based uncertainty against PACRE’s Bayesian
posterior distributions. We evaluate four metrics: consistency, calibration (ECE), confidence relia-
bility, and uncertainty coverage. Figure ] shows PACRE achieves highest scores (0.66-0.72) across
four dimensions, outperforming CoT (0.55-0.61) and direct prediction (0.46-0.52). PACRE shows
best calibration (ECE=0.058), indicating superior uncertainty quantification.

4.6 INTERPRETABILITY

To validate interpretability, we conduct causal graph visualization, sensitivity analysis, and response
curve analysis. We generate causal graphs for representative cases, perform factor sensitivity testing
on 10 factors across 5 levels, and create dynamic response curves for 6 top factors with strength
ranging from 0.1-3.0x. Causal graph visualization supports domain-consistent reasoning, and we
report detailed sensitivity and response analyses below. Figure2]shows the causal structure, Figure 3]
displays factor sensitivity, and Figure[6|reveals nonlinear response characteristics.

4.6.1 CAUSAL GRAPH VISUALIZATION ANALYSIS

Figure[2]shows PACRE’s causal graph visualization, displaying factor relationships in network form.
Results demonstrate domain-consistent causal structures, providing transparent model explanations.

4.6.2 FACTOR INTENSITY SENSITIVITY ANALYSIS

Figure [5| shows factor intensity heatmap results. Testing 10 key factors at 5 intensity levels reveals
PACRE accurately identifies important factors with good noise robustness.

4.6.3 KEY FACTOR DYNAMIC RESPONSE ANALYSIS

Figure [6] shows key factor response curves from continuous intensity tests on 6 important factors,
revealing nonlinear influence characteristics and demonstrating PACRE’s ability to capture complex
real-world dynamics.

4.7 ROBUSTNESS ANALYSIS

To test stability under varying data and noise conditions, we vary input articles from 10 to 50 and
inject noise with strength ranging from 0 to 0.5. Figure[/| shows the advantages of PACRE emerge
with sufficient data (30 articles) and remain stable under noise, favoring large-scale scenarios.



Under review as a conference paper at ICLR 2026

N
German
Opposition
>

Figure 2: Visualization of the PACRE causal graph. Nodes represent event-influencing factors:
node size is determined by centrality (intuitively reflecting factor importance), green nodes denote
event-promoting factors, and red nodes denote event-inhibiting factors. Directed edges indicate
inter-factor causal relationships: edge thickness corresponds to causal strength (i.e., weight value),
and edge color shade reflects confidence in the causal relationship. All factors collectively target the
graph’s blue node—the final prediction target (whether the event occurs). This figure clearly illus-
trates the complex causal network among factors in event prediction, effectively validating PACRE’s
transparency advantage in causal reasoning

Results from five experiments show PACRE improves over baselines across accuracy, calibration,
uncertainty, interpretability, and robustness, providing an effective solution for LLM event predic-
tion.

5 CONCLUSION

To address two critical bottlenecks in LLM-based event prediction—lack of causal quantifica-
tion(inability to quantify factor states and effect sizes) and probabilistic inconsistency(pseudo-
probabilities violating statistical axioms)—this paper proposes the Probabilistic-Aware Causal Rea-
soning Engine (PACRE), grounded in the ’cognitive division of labor” paradigm.

PACRE repositions LLMs as semantic sensors to extract key factors, causal DAGs, and confidence-
scored states from unstructured text, while leveraging Probabilistic Programming Languages (PPLs)
for rigorous Bayesian inference. Its core innovations include a hierarchical observation model (sep-
arating LLLM cognitive bias from expressive noise), Bayesian Model Averaging (mitigating spurious
causal structures), and dynamic confidence calibration (converting subjective LLM confidence to
reliable noise parameters).

Experiments on cross-domain datasets (EventPred, PROPHET) demonstrate that PACRE outper-
forms baseline methods (direct LLM prediction, CoT reasoning) in predictive accuracy, probability
calibration (lower ECE/Brier Score), and uncertainty quantification. Notably, PACRE outputs com-
plete posterior distributions with credible intervals, providing transparent, auditable reasoning sup-
port for high-stakes decision-making scenarios where data scarcity or unstructured text dominates.
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A.1 PARAMETER ESTIMATION STRATEGY

The PACRE framework employs a hierarchical Bayesian approach for parameter estimation. For a
given causal graph G and observed data X, the posterior distribution of parameters 6 is:

p(X1|0,G)p(0|G)
p(X|G)

p(6|1X,G) = (14)

where p(X |0, G) is the likelihood function, p(@|G) is the prior distribution, and p(X|G) is the
marginal likelihood.
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For model identifiability, we adopt the following constraints and estimation rules: cognitive
bias variance oy, ; uses empirical Bayes estimation, computed as 67, ; = max(0, Var[s; ] —
E[o2 1), where Var[s;.] is the sample variance of multiple observations for variable j; identifi-

noise, j,-

ability constraints require o, ; > Tmin = 0.01 and 0. i > €min = 0.001 to avoid numerical
instability from variances approaching zero; when observation count IN; < 3, we use informative
prior o'gias’ j~ InvGamma(2, 1) to provide constraints. While heavy-tailed distributions (such as
Student-t) could mitigate outlier effects, the hierarchical Gaussian structure offers superior advan-

tages in parameter interpretability and inference stability, making it the default choice.

A.2 CONFIDENCE CALIBRATION FUNCTION DESIGN AND VALIDATION

The confidence calibration function maps LLM output confidence to observation variance:

Vi

2 base

c°(c) = —— 15

()= === 15)
where ¢ € (0, 1) is the confidence score, Vi, is the base variance, « is the scaling parameter, and
€ > 0 prevents numerical instability.

A.2.1 FUNCTION DESIGN PRINCIPLES

The power-law structure o2 oc (¢+c®) ! originates from information theory: according to Shannon
entropy theory, confidence c is negatively correlated with information entropy H, while observation
variance (uncertainty) is positively correlated with entropy; compared to linear mapping (02 =
a — be) or logarithmic mapping (02 = exp(—/c)), the power-law form with regularization term
€ better captures the characteristic of “rapid variance decrease in high-confidence regions, gradual
variance in low-confidence regions” while ensuring numerical stability.

Calibration quality validation employs three types of metrics: Expected Calibration Error (ECE)

is computed as ECE = Z%Zl @MCC(BWL) — conf(B;,)|, where B,, represents confidence in-
tervals, acc(B,,) is the prediction accuracy within the interval, and conf(B,,) is the average con-
fidence within the interval; reliability diagrams provide intuitive assessment by plotting prediction
confidence against actual accuracy, where ideally points should align with the diagonal; Brier score
decomposition as BS = Reliability — Resolution + Uncertainty evaluates calibration, discrimination,

and inherent uncertainty respectively.

A.3 MARGINAL LIKELIHOOD COMPUTATION METHOD

For model comparison and Bayesian model averaging, we compute the marginal likelihood:

p(X|G) = / (X0, G)p(6]G)d6 (16)

We employ bridge sampling to estimate marginal likelihood p(D | Gi), with core advantages in-
cluding asymptotic unbiasedness (avoiding systematic bias affecting model comparison), numerical
stability (operating on logarithmic scale to avoid numerical underflow in low marginal likelihood
scenarios), and efficiency (faster convergence than thermodynamic integration or nested sampling
for moderate-dimensional (J < 20) problems).

Bridge sampling implementation steps: sample M samples {950), e 0&&?} from prior distribution

p(0 | Gi), sample N samples {051), cee 05\})} from posterior distribution p(@ | D, G), construct
bridge function g(@) and estimate marginal likelihood through iterative optimization, with formula

; M p(DI6{” ,Gi)g(6{") N g(6") . o
PP | Gr) = 4 ity % # et q(Tg”)’ where ¢(8) is the proposal distribution.
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A.4 STRUCTURAL EQUATION EXTENSIONS AND UNCERTAINTY DECOMPOSITION
DERIVATION

The structural equation model extends to incorporate uncertainty:

Y = f(X,0) +e (17)

where € represents both aleatoric and epistemic uncertainty.

Based on the target variable type, the output layer can flexibly adjust probability distributions, with
specific forms as:

Bernoulli(logit ' (g(X))) binary classification
Y|X1,...,X; ~ S N(g(X),0%) continuous regression (18)
Poisson(exp(g(X))) count data

where g(X) can be extended to nonlinear forms, including linear functions (suitable for additive
effect assumptions), kernel functions (suitable for nonlinear interactions between variables), and
neural networks (suitable for complex pattern fitting).

The decomposition of total uncertainty is based on the expansion of the law of total probability:

VarlY | D] = E[Y? | D] - (E[Y | D))* (19)
= Bg[E[Y? | 6. D] - (E[E[Y | . D]))? (20)
— Eg[VarlY' | G, D]] + Varg[EY | G, D] e

Further decomposing Var[Y" | G, D] into the composition of parameter uncertainty and latent vari-
able uncertainty:

Var[Y | G, D] = Eg[Var[Y | 0,G, D]] + Varg[E[Y | 8,G, D] (22)
=Eg[E,[Var]Y | 0,x,G, D]]| + Varg[EL[E[Y | 0,x,G, D]]] (23)

where Var[Y | 6,x,G, D] represents the model’s inherent noise (such as Bernoulli variance in
logistic regression).

This decomposition allows us to identify three distinct sources of uncertainty:

* Parameter Posterior Uncertainty: Varg[E[Y | 0, G, D]| - uncertainty arising from finite
data leading to imperfect parameter estimation

* Latent Variable (Evidence State) Uncertainty: Eg[E,[Var[Y | 0, x, G, D]]] - uncertainty
from unobserved latent variables and measurement noise

¢ Structural Uncertainty: Varg[E[Y | G, D]| - uncertainty about the true causal structure

A.5 DyNAMIC CONFIDENCE CALIBRATION BASED ON OBSERVATION CONSISTENCY

We introduce a consistency-based dynamic calibration strategy using PACRE’s multi-observation
mechanism. First, compute a consistency index for variable j as

Var[s;1,...,5;n,]
E[Var based on ¢; ;]

consistency, =1 —

(24)

where the expected variance is derived from the base mapping and averaged. Then, adjust confidence

via
cg»"j‘?bmmd = ¢j,i ¥ (0.5 4 0.5 x consistency ). (25)

This lowers confidence when observations are inconsistent.
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B TECHNICAL IMPLEMENTATION AND ALGORITHMIC DETAILS

B.1 LLM INTERACTION AND PROMPT DESIGN

We use two tasks: key factor extraction and causal graph generation. The factor-extraction
prompt requests factors with name, quantitative score (0—10), and confidence (0-1), focusing on ac-
tionable, measurable items and avoiding subjective speculation. The causal-graph prompt produces
directed edges (cause — effect), ensures acyclicity, focuses on direct relations, and avoids redundant
variables. LLM temperature is 0.1 and top-p is 0.9 for stability; for long texts, we truncate the first
300 words; per prediction, we process up to 30 articles; no RAG is used.

B.2 COMPUTE AND ENGINEERING

For scenarios with large variable count J or candidate DAG count K, we adopt the following opti-
mization strategies: parallel MCMC inference assigns each DAG structure to independent processes
for sampling, utilizing GPU acceleration through CUDA for matrix operation acceleration in gra-
dient computations during variational inference; structural pruning pre-filters low-quality candidate
DAGs based on rough marginal likelihood estimates (retaining the top K high-evidence structures);
in experiments, we generally choose LLM-generated variable counts not exceeding 15 and DAG
counts not exceeding 10.

‘We monitor MCMC convergence via R < 1.01and Negr > 400 and limit tree depth to 10 for NUTS.
VI uses Adam with learning rate 0.01, max iterations 10,000, and ELBO tolerance 106,

C IMPLEMENTATION EXTENSIONS AND OPTIMIZATION STRATEGIES

C.1 CIRCULAR DEPENDENCY REPAIR MECHANISM

When LLMs generate DAGs containing cycles, we implement the _fix_circular_dependencies
method for automatic repair. This method uses NetworkX to detect strongly connected compo-
nents to identify circular structures, then removes the edge with the smallest weight in the cycle
(based on causal strength scores provided by the LLM). If repair fails, cyclic nodes are treated as
independent nodes to ensure the final DAG’s validity.

C.2 BMA WEIGHT OPTIMIZATION STRATEGY

Beyond standard BMA weights based on marginal likelihood, we introduce two additional eval-
uation dimensions. Domain reasonableness scoring amplifies differences in LLM reasonable-
ness_score for DAGs through exponential function: exp(3.0 x normalized score). Complex-
ity penalty based on Occam’s razor principle penalizes DAGs with many edges: exp(—0.3 X
complexity /max complexity). The final weight is the product of reasonableness score and com-
plexity penalty, avoiding over-emphasis on complex but weakly data-supported DAGs.

C.3 SIGMOID DYNAMIC SCALING MECHANISM

To avoid saturation issues of the sigmoid function at extreme values, we implement a dynamic
scaling mechanism. The scaling factor is dynamically adjusted based on factor count and signal
strength: scaling_factor = base_scaling x signal_scaling, constrained within [1.5, 4.0] range through
np.clip. Signal strength adaptation is based on the mean absolute value of factor scores, ensuring

sigmoid inputs remain in the sensitive range (x ~ =£1 to +3), allowing probability distributions to
retain reasonable uncertainty.

D INFERENCE AND MODEL CONFIGURATION

D.1 PRIOR SETTINGS

All priors are weakly informative: These choices balance weak informativeness and stability, avoid-
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Table 2: Prior distributions.

Parameter Distribution Setting Role

Regression f; Normal N(0,1.0) Effect strength on YV’

Structural w i, Normal N(0,0.5) Causal effect strength

Bias var o, ; Half-Cauchy HalfCauchy(0,1.0) LLM cognitive uncertainty

Exogenous var 07 Half-Cauchy ~ HalfCauchy(0,0.5) SEM noise

Base var Viase Half-Normal HalfNormal(0,1.0) Confidence-variance mapping baseline

ing overly strong priors or efficiency degradation. The advantages of weakly informative priors in-
clude: avoiding prior dominance over data (ensuring data-driven inference) while preventing overly
dispersed posterior distributions (improving inference stability). These are not mandatory distri-
butions but optimal choices based on weak informativeness principles, parameter properties, and
inference stability. Specifically, regression and structural coefficients use normal distributions due
to their symmetric, unbiased characteristics that accommodate effect strengths without prior prefer-
ence, with variance settings (1.0 and 0.5) tuned via validation sets to avoid overly strong constraints
or subjective bias; cognitive bias variance and exogenous noise variance use half-Cauchy distribu-
tions, which accommodate the non-negative nature of variance parameters while their heavy-tail
properties can accommodate extreme cases of LLM output uncertainty without overly penalizing
outliers; base variance Vp,e uses half-normal distribution because its light-tail characteristics sta-
bilize the confidence-variance mapping range while maintaining weak informativeness without in-
terfering with data-driven relationships. Alternative distributions like uniform or half-t distributions
could lead to overly strong prior constraints or degraded inference efficiency, making the current
choices more suitable for the PACRE framework’s needs.

D.2 POSTERIOR INFERENCE CONFIGURATION

HMC/NUTS serves as the default inference scheme with parameter configuration: warmup steps
set to 1000 to adapt to the posterior distribution’s geometric structure, sampling steps set to 2000 to
ensure sufficient effective samples, 4 parallel chains for computing Gelman-Rubin statistics (R) to
verify inter-chain consistency, target acceptance rate set to 0.8 to balance sampling efficiency and
sample quality, maximum tree depth limited to 10 to avoid excessive exploration leading to compu-
tational overhead, convergence criteria of R < 1.01 and effective sample size Neg > 400 to ensure
sampling results converge and samples are representative. Variational inference serves as an accel-
eration scheme with parameter configuration: learning rate set to 0.01 using Adam optimizer, max-
imum iterations of 10,000 steps, convergence tolerance of 106 (determined by monitoring relative
changes in the variational lower bound (ELBO)), mean-field variational family chosen to balance
computational efficiency and approximation accuracy, gradient estimation using reparameterization
tricks to reduce variance.

D.3 DAG GENERATION STRATEGY

DAG generation parameter settings must balance structural diversity and reasonableness: temper-
ature parameter set to 0.7, where higher temperature increases diversity of generated structures,
avoiding local optima; nucleus sampling threshold set to 0.9-0.95 to control generation text rea-
sonableness while preserving diversity; oversampling coefficient set to 2-3, first generating 2K to
3K candidate structures, then retaining K structures through deduplication; acyclicity verification
uses Kahn’s topological sorting algorithm to filter invalid DAGs with circular structures. To further
ensure representativeness of candidate DAGs, multi-dimensional strategies control structural diver-
sity: using multiple random seeds, adopting different random seeds each time DAGs are generated
to avoid repetition; implementing structural deduplication based on Jaccard similarity of edge sets,
removing redundant DAGs with excessive similarity.

D.4 PACRE ALGORITHM COMPLETE WORKFLOW

The complete PACRE execution workflow consists of four phases:
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Algorithm 1 PACRE: Probabilistic-Aware Causal Reasoning Engine

25:

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:
38:
39:

A A i S

Forecasting problem ¢, news article set .A, observation counts /N;, candidate graph count
K Prediction probability p(Y = 1 | D) and uncertainty decomposition

Phase 0: Variable Screening and Preprocessing
{variable; }7_, « LLM(q, A) > Extract variables
{variable; }'j]:1 < SemanticDedup({variable; }3-]/:1) > Deduplication
{variable; }/_, < FilterAbstract({variable;}7_,) > Filter abstract
Phase 1: Semantic Sensor Observation and Confidence Calibration
for j =1toJ do
fori =1to N; do
(8j,i,¢5,4) < LLM(q, A, variable;, prompt_variant,) > Get score
end for v
consistency; < 1 — M > Consistency
fori=1to N; do
sy «— ¢ 5 % (0.5 + 0.5 x consistency ;) > Calibrate
Ooise.jvi H(c‘]/‘?% > Variance
end for
: end for
: Phase 2: Causal Structure Generation

: {G1,...,Gk} < LLM({variable; }/_,, K) > Generate DAGs
: {G1,...,GK'} « TopologicalFilter({G1,...,Gk }) > Filter cycles

. Phase 3: Bayesian Inference and Model Averaging
:fork=1to K' do

Construct hierarchical observation model:  Bym; ~ N(Xj, 02, i) Sji ™~
2
N(Bllm,j7 Jnoise,j,i)
Construct structural equations: X; = Zmepagk ) Wi Xm + €

Construct output layer: p(Y =1 | x, 3) = sigmoid(5p + ijl B;X;)

p(0,z | D,Gy) < MCMC/VI(Gy, {s,,:}, priors) > Inference
if R > 1.01 then
Increase sampling steps and re-run MCMC > Check convergence
end if
p(Y =1|D,Gy) + [sigmoid(By + B/.,z)p(6,x | D,Gi.)dxdd
p(D | Gr) < MarginalLikelihood(Gy,) > Evidence
end for
Phase 4: Model Averaging and Uncertainty Aggregation
p(Gk | D) x p(D | gk/) -p(Gr) > Posterior
p(Y =1|D) « S, p(Y = 1| D.Gi) - p(Gx | D) > BMA

Compute uncertainty decomposition: parametric, latent variable, and structural uncertainties
return p(Y = 1 | D), confidence intervals, uncertainty decomposition
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Figure 5: Factor intensity level sensitivity heatmap. X-axis represents factor intensity levels, from
Very Low to Very High across 5 levels; Y-axis represents 10 key causal factors; color depth indicates
the impact of each factor at corresponding intensity levels on event occurrence probability, with
deep red indicating strong positive impact, deep blue indicating strong negative impact, and light
colors indicating smaller impact. Numerical annotations in the figure provide precise sensitivity
quantification results, validating PACRE’s accuracy in factor importance identification.
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Figure 6: Key factor dynamic response curves. X-axis represents factor intensity multiplier, ranging
from 0.1 to 3.0 times baseline intensity; Y-axis represents predicted probability impact value, with
positive values indicating promotion of event occurrence and negative values indicating inhibition
of event occurrence. The 6 different colored curves in the figure represent response patterns of 6
key factors, shaded areas represent 95% confidence intervals, reflecting prediction uncertainty. The
upper left corner shows baseline probability values, and the lower left corner provides key statistical
information. This figure validates PACRE’s capability in dynamic factor analysis and uncertainty
quantification.
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(a) Sensitivity to News Count (b) Robustness under Noise
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Figure 7: Robustness analysis results comparing the proposed PACRE method with the baseline
Direct Prediction approach.(a) Sensitivity to news article count: The x-axis represents the number
of news articles (ranging from 10 to 50), and the y-axis denotes prediction accuracy (measured by
F1 score). The shaded areas surrounding the PACRE curve indicate 95% confidence intervals, illus-
trating the stability of predictions as data volume varies.(b) Robustness under noise environments:
The x-axis indicates noise intensity levels (from Clear to Severe Noise), while the y-axis shows pre-
diction accuracy.This figure demonstrates that PACRE achieves higher and more stable performance

across diverse data scales (panel a) and noise conditions (panel b), validating its robustness advan-
tages over direct LLM-based prediction.
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