DS-Agent: A Cognitively-Inspired Multi-Agent Framework for
Context-Aware Data Science Automation

Anonymous EMNLP submission

Abstract

LLM-based agent systems have achieved re-
markable progress in automatically solving nat-
ural language processing tasks, yet they are
typically constrained to simpler sequence-to-
sequence generation scenarios. Real-world
task environments, however, often involve
multi-document workspaces requiring agents
to explore and achieve specific goals through
context-aware information processing. To en-
hance LLMs’ effectiveness in handling end-to-
end complex data science tasks, we propose
DS-Agent — a novel LLM-based agent frame-
work inspired by human problem-solving cog-
nition. Our architecture enables workspace
exploration through external tools while gen-
erating code/SQL to fulfill task objectives.
Equipped with customized information re-
trieval tools, the DS-Agent effectively ac-
quires and filters multi-source information from
workspaces, significantly improving the qual-
ity of contextual information. Furthermore,
its multi-agent architecture implements con-
text partitioning and isolation mechanisms that
support dynamic pruning during task planning,
preventing individual agents from entering in-
effective recursive iterations. We showcase the
effectiveness of DS-Agent in agent-based data
science tasks, where it achieves state-of-the-
art accuracy across multiple models. The DS-
Agent powered by GPT-40 reaches an accuracy
of 42. 26%, representing a 10. 01% improve-
ment over the baseline methods.

1 Introduction

Remarkable progress has been observed in recent
Large Language Models (LLMs) for various nat-
ural language processing tasks, while LLM-based
agent systems further extend these capabilities.
However, compared to simply transforming in-
structions into executable code (Yu et al., 2018;
Lin et al., 2018; Chen et al., 2021; Huang et al.,
2024a; Lu et al., 2022), research on leveraging

LLMs to address complex end-to-end data sci-
ence tasks in real-world scenarios remains insuf-
ficient. In this work, we investigate open-ended
automated data science pipelines aiming to democ-
ratize data science and improve end-to-end effi-
ciency. Specifically, automated data science re-
quires agents to: (1) accurately comprehend task re-
quirements, (2) generate domain-specific strategies
across all pipeline stages, and (3) automate work-
flow orchestration including preprocessing, anal-
ysis, visualization, and execution. As illustrated
in Figure 1, the agent must proactively explore
multi-source workspace files (databases, datasets,
configuration files), autonomously plan solutions,
generate code/SQL through natural language inter-
actions, and ultimately deliver required outputs.
Current state-of-the-art LL.Ms still struggle to
achieve high accuracy in end-to-end data science
scenarios, primarily due to limitations in exploring
local multi-source information and workflow plan-
ning. Complex data science tasks often require it-
erative debugging rather than single-step code gen-
eration, while necessitating careful management of
intermediate artifacts. While fine-tuning could en-
hance LLM capabilities in this domain, it demands
substantial computational resources and labeled
data - constraints that only apply to open-source
models. Recent studies have explored methods uti-
lizing LLMs for interactive environment planning
and action. In these approaches, environmental out-
comes are fed back to the LLMs in text form, en-
abling LLMs to generate domain-specific actions or
plans, which are then executed by a controller (Liu
et al., 2024b; Ahn et al., 2022; Nakano et al., 2021;
Yao et al., 2020; Huang et al., 2022). Alternative
approaches treat code generation as the primary in-
teraction mechanism between agents and environ-
ments (Qiao et al., 2023; Wang et al., 2024b), avoid-
ing domain-specific action design while enhancing
problem-solving versatility. However, conventional
ReAct-based agents suffer from context bloat and

Identify the baseball players who excel in each
metric (e.g., Games Played, Runs, Hits, Home
Runs). Save the top performer for each metric in

Step1. Overview of Task-Related Document
Content Exploration.

"result.csv" according to the provided format.

Step2. Identify the top-performing player based
on the 'Games Played' metric and save them to
the temp1.csv file.

iWorkspacei

Step3. Identify the top-performing player based
on the 'Runs' metric and save them to the
temp2.csv file.

=

result.csv

result.csv. README.md

Final Submission

— — » 18 tables

database.sqlite

Stepn. Merge the temporary CSV files
‘temp1.csv', 'temp2', ... into a single 'result.csv'
file with the format.

Task Input

Resolution Process

Figure 1: An example of a data wrangling task in data science tasks.

hallucination issues when processing multi-turn di-
alogue histories, leading to ineffective recursive
planning.

When tackling complex real-world data anal-
ysis tasks, humans actively utilize existing tools
(e.g., Notepad, Excel) to interact with their envi-
ronment (external world). Through this interaction,
they acquire task-relevant information into work-
ing memory (Baddeley, 1992) for cognitive reason-
ing (Alderson-Day and Fernyhough, 2015). The
brain filters task-related information, designs task
plans based on these filtered data, focuses atten-
tion on specific implementations, and self-regulates
(Zavershneva and van der Veer, 2018; Luria, 1965;
Dick and Overton, 2009) through environmental
feedback. We propose DS-Agent - a novel LLM-
based agent framework with external tool support
for complex data science tasks: (1) Through in-
tegrated tool planning and ReAct strategies, DS-
Agent proactively retrieves and filters essential
workspace content via information retrieval tools,
constructing clean reasoning contexts while elim-
inating irrelevant information from lengthy docu-
ments. (2) Our multi-agent architecture extends
ReAct with dynamic pruning mechanisms that au-
tomatically discard ineffective planning paths af-
ter consecutive failures, enabling context-aware
error recovery instead of linear recursion. Notably,
DS-Agent operates without model training or fine-
tuning, relying solely on automated execution with
human intervention limited to initial task specifica-
tion.

We demonstrate DS-Agent’s effectiveness on
DA-Code (Huang et al., 2024b), a real-world end-
to-end dataset containing 100 complex data science
tasks requiring advanced coding skills and diverse
dataset interactions. Compared to the baseline DA-

Agent (Huang et al., 2024b), DS-Agent achieves su-
perior performance across multiple LLMs and task
difficulty levels. The GPT-40-powered DS-Agent
reaches an accuracy of 42.26%, outperforming DA-
Agent by 10.01%. The results demonstrate that
DS-Agent fully unleashes the potential of LLMs in
solving complex data analysis tasks.

2 Method

To enable large language models (LLMs) to handle
complex data science tasks in end-to-end scenar-
ios, we propose DS-Agent, a novel LLM-based
agent framework that leverages the tool invoca-
tion capabilities of LLMs to decompose intricate
problems into multiple traditional sequence-to-
sequence style generation tasks.

2.1 Agent Workflow

There are two common strategies for agent tool
invocation. One planning strategy is a variant of
Chain-of-Thought (Wei et al., 2022) called tool
planning, which leverages LLLMs’ planning capa-
bilities to formulate plans before task execution.
This approach constructs a natural language plan-
ner based on LLMs that infers a tool chain-of-
thought using tool set descriptions (Lu et al., 2023).
The executable tool chain can complete simple one-
shot tasks. The second strategy is ReAct (Yao et al.,
2023), which prompts LLMs to interactively gener-
ate reasoning traces and task-related actions. Based
on these actions, ReAct selects appropriate exter-
nal tools through input provision and continuously
adjusts plans according to tool outputs. While suit-
able for complex tasks requiring dynamic adjust-
ments, this method is vulnerable to performance
degradation from dynamically generated action tra-
jectories.

B

task instruction workspace|

task environment

o —————

ReadTable

ReadText

< R

_t??l_El_a_l‘l_lllg___h Retrieval tool
\\
retrieved | |
context ,'

/ ReadTable

update workspace N e,

init context

A4

Step 2: Dynamic Planning

GenerateSQL

Decompress

update action trajectories

Action

Full toolset

Step 3: Implementation of tasks

Figure 2: The Operational Workflow of DS-Agent.

As shown in Figure 2, our DS-Agent workflow
integrates advantages from both strategies by com-
bining tool planning and ReAct approaches, lever-
aging their complementary strengths:

Step 1: Global Information Retrieval. Plan-
ning phases (Step 2) often suffer from missing crit-
ical workspace files, leading to hallucinatory code
generation. Since global file identification and re-
trieval constitute a simple one-shot task, we employ
tool planning prior to Step 2 to reduce downstream
hallucination. DS-Agent’s tool planning generates
retrieval chains that fetch task-relevant files from
workspaces, forming initial reasoning contexts that
persist as input components for subsequent LLM
inferences.

Step 2: Dynamic Planning. Complex task exe-
cution requires real-time environmental awareness
and dynamic adaptation, making ReAct more suit-
able. The planning module (implemented as a ded-
icated agent) employs ReAct-inspired reasoning: it
predicts subsequent actions by analyzing historical
trajectories and task objectives, iteratively selecting
tools from the toolset to decompose complex tasks
into correct tool sequences for execution.

Step 3: Implementation of subtasks. We de-

sign specialized toolsets to implement subtasks gen-
erated by the planning module. Tool outputs con-
tinuously update action trajectories, maintaining
up-to-date system states for subsequent reasoning
cycles.

2.2 Designed Tools

2.2.1 Rule-based Tools

Rule-based tools are implemented through Python
functions that execute specific operations and re-
turn deterministic results when invoked.

* ReadTable(file_path): This tool retrieves
structural metadata (e.g., column names, data
types) and a data preview from structured data
files specified by file_path. Unlike existing
tools utilized by the agent for reading tabu-
lar files, our implementation deliberately ex-
cludes raw table rows from the agent’s context,
thereby mitigating the impact of irrelevant text
on agent performance. For details, refer to the
Appendix A.

* Decompress(file_path): This tool automati-
cally decompresses files using format-specific
decompression methods based on file exten-
sions.

task_goal

Right SQL:

Right SQL:
SQL Output: .. (file name)

SQL Output: .. (text)

Figure 3: The Operational Workflow of the GenerateCode action (left) and the GenerateSQL action (right).

¢ Answer(output): This tool submits final task
results, which may include filenames, text out-
puts, or failure.

2.2.2 Agent-based Tools

Agent-based tools facilitate multi-agent collabora-
tion through tool invocation, where invoked agents
process requests and return results to the planning
agent. This architecture decouples agent contexts,
significantly reducing individual context length bur-
dens and enhancing system scalability. Key bene-
fits include: (1) Context distribution across agents
improves overall performance and task accuracy.
(2) Customizable workflows for specialized agent
optimization. (3) Hot-swappable agent modules
through standardized tool interfaces.

¢ ReadText(file_path, task_goal): Invokes a
text-reading agent that extracts task-relevant
content from the specified file. The agent
loads the file’s content as context but filters ir-
relevant portions using task-specific prompts,
minimizing noise.

¢ GenerateCode(task_goal): Invokes an Code
agent to generate code through LLMs and ex-
ecutes it within a Docker sandbox to accom-
plish specified parameterized goal. In Figure 3
(left), when code execution errors occur, this
agent loads only the previous code snippet
and its corresponding error into context for it-
erative debugging -— each inference focuses
on resolving one error. The action then asks
LLMs to debug and regenerate the code, focus-
ing each reasoning cycle on resolving a single
error. Upon exceeding a predefined debug
threshold, the agent returns guidance prompt-
ing the planner to re-plan the task. This pre-
vents deadlock scenarios where overly com-

plex tasks cause LLMs to fail in root-cause
analysis.

* GenerateSQL(file_path, task_goal): In-
vokes an SQL agent that: (1) fetches all ta-
ble names from the target database, (2) re-
trieves schema details relevant to the task, and
(3) generates/executes SQL queries (Figure 3,
right). Its workflow mirrors the fault-tolerant
design of the code-generation agent.

3 Experiments

3.1 Experimental Setting

Benchmark. DA-Code is a code generation bench-
mark specifically designed for evaluating LL.M-
based agents in data science tasks. Distinct from
conventional code generation benchmarks, this
benchmark is designed to enable agents to ex-
plore data and leverage programming capabilities
to solve challenging objectives, rather than sim-
ply translating explicit natural language instruc-
tions into code. Unlike existing benchmarks like
DS-1000 (Lai et al., 2023) and HumanEval (Chen
et al., 2021), which primarily focus on directly
converting natural language instructions into exe-
cutable code, DA-Code establishes a more realis-
tic scenario that simulates real-world data science
tasks under given requirements and workspace con-
straints. DA-Code tasks not only feature inherently
complex solutions but also incorporate diverse data
sources (databases, spreadsheets, documents, code-
bases, etc.) containing multifaceted information
and data from authentic programming scenarios.
Moreover, these information sources may be satu-
rated with noise and extraneous information. We
constructed a subset DA-Code-100 containing 100
randomly sampled tasks for evaluation, with diffi-
culty levels distributed as 23 easy, 60 medium, and
17 challenging tasks.

Model | Method | Easy | Medium | Hard | Total
| Avg@3 Max@3 | Avg@3 Max@3 | Avg@3 Max@3 | Avg@3 Max@3
Qwen2.5.72p | DA-Agent | 4077 4462 | 2294 3570 | 1212 2169 | 2521 3537
= DS-Agent | 49.11 5548 | 2509 33.66 | 1513 2584 | 2892 3735
DecoSeek.v3 | DA-Agent | 4450 5027 | 2562 2912 | 1487 1860 | 2813 3221
P DS-Agent | 47.38 57.66 | 29.05 3950 | 18.98 2269 | 3155 40.82
GPT-do DA-Agent | 38.66 49.67 | 21.81 29.19 | 1331 1948 | 2424 3225
DS-Agent | 4503 5425 | 2795 4280 | 1831 2415 | 3024 4226

Table 1: Performance comparison between DS-Agent and baselines on selected LLMs. Avg@3 denotes the agent’s
mean accuracy rate across three testing trials. Max @3 reflects the peak accuracy rate observed during these trials.

machine learning competition

machine learning competition

data

machine learning competition

data manipulation

machine l¢arning machine l¢arning

datg insight

>,

data wraRrgling data wraRrgling

V/

data visualization

statistical analysis

statistical analysis

—— DS-Agent(gpt-40)
DA-Agent(gpt-40)

manipulation

data viSualization

—— DS-Agent(DeepSeek-V3)
DA-Agent(DeepSeek-V3)

datamanipulation

machine I¢arning

N

datg insight datg insight

data wraRgling

data viSualization

statistical analysis

—— DS-Agent(Qwen2.5-72B)
DA-Agent(Qwen2.5-72B)

Figure 4: Performance Comparison of DS-Agent and DA-Agent Across Task Categories.

Baselines. To address the challenges posed by
the DA-Code benchmark where no existing agent
framework has demonstrated sufficient capability,
the authors of DA-Code developed DA-Agent, an
LLM-based agent framework specialized for com-
plex data analysis through dynamic environment
interactions. DA-Agent demonstrates superior per-
formance compared to prevailing agent frameworks
including OpenHands (Wang et al., 2024c), Auto-
Gen (Wu et al., 2024), and X-Agent (Team, 2023)
in comprehensive evaluations.

Models. We employed two state-of-the-art
open-source models, Qwen2.5-72B-Instruct (Yang
et al., 2024) and DeepSeek-V3-2024-12-26 (Liu
et al., 2024a), as open-source representatives, along
with the closed-source model GPT-40-2024-08-
06 (Achiam et al., 2023) as base testing models.

Evaluation Metrics. We evaluate LLM-based
agents from diverse foundational models on the
DA-Code-100 benchmark through three testing
rounds. For each task, we compute both the av-
erage score and the best score across these three
rounds. Finally, we derive the final Avg@3 and
Max @3 metrics by averaging the mean scores and
best scores across all 100 tasks respectively.

All models were configured with a temperature

of 0, a maximum of 20 action steps, and a 60-
second timeout per action execution.

3.2 Experimental Result
3.241

As shown in Table 1, we compared the perfor-
mance of DS-Agent against baseline methods
across various base LLMs. The results demon-
strate that DS-Agent achieves superior evaluation
metrics across almost all models and difficulty lev-
els, except for a minor 2.04% decrease in maxi-
mum score at medium difficulty on Qwen2-72B-
Instruct. This indicates our method’s enhanced
capability to leverage LLMs’ reasoning potential
in most scenarios. Notably, DS-Agent (GPT-40)
achieves a peak accuracy of 42.26%, represent-
ing a 10.01 percentage-point improvement over
DA-Agent (GPT-40), which substantiates that our
methodology enables more effective exploitation
of LLMs’ latent capabilities. Furthermore, DS-
Agent (DeepSeek-V3) attains an average accuracy
of 31.55%, outperforming its DA-Agent counter-
part by 3.42 percentage points, which suggests
more consistent performance in complex data anal-
ysis tasks.

Figure 4 presents the performance comparison

Main results

Python(code="Write data to result.csv using
code.")

[Bash(command="cat result.csv")

| =>
>

result.csv content

overwritten before
format retrieval.

Error Case 1

Bash(command="cat table.csv")

Bash(command="head -n 5 table2.csv")

= T |
. Error Case 2
Value | ... | Value >

text and data rows

Y ‘ Allarge amount of uselessJ

SQL(file_path="database.sqlite", command="sql
for whole task")

SQL(file_path="database.sqlite",
command="optimized sql for whole task")

P ERROR
PN ERROR

Error Case 3

Figure 5: Typical Failure Cases of Existing Agents.

between our DS-Agent and the baseline DA-Agent
across various foundation models, with all task cat-
egories evaluated using the avg@3 metric. The
DS-Agent demonstrates superior performance over
the baseline in most task categories, achieving
up to several-fold improvements in certain cate-
gories. This highlights the generalizability of our
agent in data science tasks. For one or two spe-
cific task categories where occasional underper-
formance was observed, we hypothesize this may
stem from additional challenges such as requiring
extensive domain-specific knowledge or pushing
the exploratory capabilities of LLMs beyond their
limits.

Model | Method | Round1 | Round2 | Round3 | Total
| | Avg@1 | Avg@1 | Avg@l | Avg@3 Max@3
GPT.4o | OPenHands | 20 38.88 20 2629 38.88
DS-Agent | 38.38 | 41.06 | 325 | 3731 46.06

Table 2: Comparison with the OpenHands baseline on
GPT-4o.

In the DA-Agent study, the authors compared
DA-Agent with other agents (OpenHands, Auto-
Gen, X-Agent) on the DA-Code benchmark and
achieved the best performance. Due to time con-
straints, we randomly selected 10 samples from
DA-Code for secondary validation comparison
with OpenHands (the top-performing agent among

the alternatives), conducting three rounds of ex-
periments with the GPT-40 model. As shown in
Table 2, OpenHands exhibited significantly lower
performance than our proposed DS-Agent on this
type of problem.

Experimental Analysis of Framework Limita-
tions and Advantages. In Figure 5, we illustrate
classic failure cases of ReAct-based agents repre-
sented by DA-Agent:

* Format Ignorance: The LLM directly gen-
erates data processing code without querying
the format of result.csv, leading to final sub-
missions that violate task-specific formatting
requirements.

* Noise Propagation: When using permissive
commands like Bash to retrieve file informa-
tion, the LLM fails to filter out noisy outputs,
overwhelming the agent’s context manage-
ment with redundant text and data lines.

* Complex Task Handling: Direct execution
of Python/SQL solutions for complex tasks
often results in infinite debugging loops when
initial holistic attempts fail.

Our multi-agent framework addresses these lim-
itations through three key mechanisms (Figure 6):

solve error {

casel ReadTable(file_path="result.csv") }

[ReadTable(file_path="table.csv")]

[ReadText(file_path="......", task_goal="...") }:

task_goal="sql for whole task")

SQL(file_path="database.sqlite",

task_goal="sql for sub-task1") }[

Step 2 {

EpS
EpS
[SQL(file_path="database.sqlite",][:|’>
N

Program —> | structure info
solve error

case2

=

Text content related

TextAgent to the goal.

The task is not completed
SQLAgent —>| successfully. Please execute
multiple simpler SQL tasks.......

SQLAgent —> i, s@
case3

PythonAgent—> result.csv

Figure 6: Hierarchical Task Solving Approach of DS-Agent.

* Global Planning via Tool Strategy: Step 1
employs a tool planning strategy for system-
atic retrieval, significantly reducing format-
related errors like Case 1.

* Noise-Resistant Retrieval: Customized re-
trieval tools filter irrelevant information, pre-
venting context overload observed in Case 2.

* Hierarchical Task Decomposition: The
multi-agent architecture enables SQLAgen-
t/PythonAgent to guide the planning module
in Step 2 to abandon overly complex tasks,
instead pursuing tractable subtasks through
feedback loops.

3.3 Ablation Study
3.3.1 Experimental Setup

We investigate the performance degradation in av-
erage accuracy and peak accuracy when removing
key functional designs of GPT-40-based Ds-Agent
for task processing (Table 3), using three rounds of
testing on the DA-Code-100 dataset.

Adequate information enhances the perfor-
mance of LLMs. As shown in Table 3, removing
the global information retrieval step (w/o Global
Information Retrieval) while retaining only ReAct-
based information acquisition leads to incomplete
critical information capture, resulting in perfor-
mance degradation in both average and peak ac-
curacy. Further removing database information re-
trieval through SQL agents (w/o Global & Database
Information Retrieval) causes additional accuracy
reduction.

Information filtering significantly improves
LLM performance. While prior studies often
use code as the sole interface to avoid tool cus-
tomization, our experiments reveal critical limi-
tations. In the w/o Information Filtering variant
(Table 3), we simulated unconstrained information
access (printing first 5 lines for tabular data and
full content for text files) while disabling guid-
ance during code/SQL generation failures. This
approach causes agents to accumulate excessive
irrelevant information in memory contexts, leading
to hallucination and catastrophic forgetting. The
performance decline stems from LLMs’ training on
human-written code where print outputs target hu-
man readers with inherent "forgetting" mechanisms.
Our customized retrieval tools implement artificial
memory management by filtering task-irrelevant
contexts, thereby enhancing agent performance.

Configuration | AAvg@3 AMax@3
w/o Global Information Retrieval | —1.44% —5.02%
w/o Global & Database

Information Retrieval -3.16% —5.35%
w/o Information Filtering —-354% —-357%
w/o Muti-Agent Framework &

Information Filtering —3.66% —7.4%

Table 3: Performance degradation of average and peak
accuracy under different ablation configurations.

Multi-agent collaboration proves crucial for
complex data science tasks. Removing the multi-
agent framework (w/o Multi-Agent Framework &
Information Filtering) forces the planning agent
to directly generate code/SQL, causing substantial
accuracy drops. Decentralizing context through

tool-based agent communication allows individual
agents to specialize in specific subtasks, demon-
strating that distributed contextual management
outperforms monolithic processing in complex
problem-solving scenarios.

4 Related Work

LLM-based Agent Systems: Agent systems con-
structed with LLMs have significantly enhanced the
performance of LLMs in solving various complex
tasks. Currently, there are four primary agent de-
sign patterns: (1) Reflection: Enabling agents to re-
view and revise based on self-generated outputs or
environmental feedback. SELF-REFINE (Madaan
et al., 2023), ReACT (Yao et al., 2023), and Re-
flexion (Shinn et al., 2023) demonstrate that post-
generation reflection effectively improves LLM
performance, though single-agent linear planning
tends to induce cyclic ineffective recursive itera-
tions. (2) Tool Invocation: Expanding LLM ca-
pabilities beyond pure NLP tasks by invoking ex-
ternal APIs. Gorilla (Patil et al., 2024) and Tool-
LLM (Qin et al., 2024) improve API-calling accu-
racy through API dataset construction and model
fine-tuning, while Chameleon (Lu et al., 2023) en-
hances LLM performance via plug-and-play mod-
ule integration. (3) Planning: Leveraging LLMs’
reasoning abilities to automate task decomposition
and execution planning. Methods like CoT (Wei
etal., 2022), PoT (Chen et al., 2023), and SCoT (Li
et al., 2025) enhance reasoning performance by
generating intermediate reasoning steps before fi-
nal solutions. (4) Multi-Agent Collaboration: Co-
ordinating multiple role-playing LLMs to accom-
plish complex tasks. Systems like ChatDev (Qian
et al., 2024) and AutoGen (Wu et al., 2024) simu-
late real-world collaborative environments to solve
intricate problems. The DS-Agent architecture
mimics human problem-solving patterns in data
science tasks through an integrated design combin-
ing agent-based reflection mechanisms (error feed-
back regeneration during code/SQL execution and
feedback-guided error correction after repeated er-
rors), tool utilization, strategic planning, and multi-
agent coordination. This design ensures sufficient
contextual relevance and task-specific validity dur-
ing LLM inference while strictly adhering to the
single-responsibility principle for computational
coherence.

Code as Action: LLMs have achieved remark-
able results on code generation benchmarks. Given

code’s universality, many systems employ code as
the primary agent-environment interaction medium.
VOYAGER (Wang et al., 2024a) enables automated
exploration in Minecraft through code-based inter-
actions. CodeAct (Wang et al., 2024b) exclusively
uses code for multi-step task solving, while Open-
Hands (Wang et al., 2024c¢) extends this paradigm
for coding-specific agents. However, prioritizing
generality through pure code generation often sacri-
fices accuracy. DS-Agent employs a tool-planning
and ReAct strategy to guide LLMs in acquiring
essential task-related information while filtering
out redundancies prior to code generation. When
tackling complex tasks through code, it steers
LLMs to abandon overly intricate tasks in favor
of task decomposition. Additionally, it regulates
the quality of environmental feedback after LLM-
environment interactions. These steps collectively
enhance LLMs’ performance in solving real-world
end-to-end data science tasks.

5 Conclusion

We present DS-Agent, a novel agent framework
designed to automate end-to-end data science
tasks in real-world scenarios. By integrating tool-
augmented planning with the ReAct strategy, DS-
Agent acquires critical information from multiple
data sources before generating code/SQL and en-
ables inter-agent communication through tool invo-
cation to accomplish complex tasks within limited
steps. Our method achieves state-of-the-art accu-
racy across multiple models and metrics on the
challenging DA-Code benchmark. With further
optimizations and novel algorithms built upon the
current design, we believe DS-Agent can attain
even stronger performance in broader application
scenarios.

6 Limitations

Domain Limitations: Our approach requires cus-
tomizing the workflows of agents to replace certain
decision-making processes of LLMs, which com-
promises some degree of generality. However, such
trade-offs are inevitable when constructing stable
and effective agents, as there exists an inherent
tension between generality and determinism.
Inaccuracy Issues: Despite our meticulous de-
sign of the agent architecture for accuracy, sev-
eral failure patterns persist: (1) During two-stage
planning, LLMs frequently generate overly com-
plex subsequent action objectives. Even with cus-

tomized prompting strategies to induce simpler
task decomposition, LLMs often reiterate identical
problematic goals; (2) When executing ReadText
actions, LLLMs occasionally extract only partial
task-relevant content, with omitted critical infor-
mation leading to subsequent operations deviating
from file-specified requirements; (3) Our current
assumption of a compact action space (to preserve
LLM context window capacity) may limit handling
of complex tasks requiring extensive actions. Po-
tential solutions could involve dynamic retrieval of
action sets via RAG (Retrieval-Augmented Gener-
ation) (Gao et al., 2023) prior to task planning.
These limitations highlight promising directions
for future agent research. While substantial opti-
mization opportunities remain, we maintain these
shortcomings do not diminish the significance of
our contributions. The current CtxWF framework,
despite employing basic code-generated actions
and a simplistic error feedback mechanism for
LLM reflection, already demonstrates competitive
performance. We posit that integrating domain
expert workflows (e.g., data scientists’ problem-
solving patterns) into agent architectures could en-
able LL.Ms to generate more effective solutions - a
valuable direction for subsequent research.

7 Ethics Statement

The system is designed to augment rather than re-
place data scientists. By incorporating human cog-
nitive decision-making processes into the agent
design architecture, our approach strategically en-
hances LLLM performance in data analysis through
controlled restriction of certain decision-making
authorities. All datasets employed in this study
were sourced from repositories with explicit MIT
open-source licenses. The complete implementa-
tion codebase, including evaluation datasets, will
subsequently be released under the same MIT li-
cense to ensure reproducibility and community ac-
cessibility.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,

Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Ben Alderson-Day and Charles Fernyhough. 2015. In-
ner speech: Development, cognitive functions, phe-
nomenology, and neurobiology. Psychological bul-
letin, 141(5):931.

Alan Baddeley. 1992. Working memory. Science,
255(5044):556-559.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Anthony Steven Dick and Willis F. Overton. 2009. Self-
and social-regulation social interaction and the devel-
opment of social understanding and executive func-
tions.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
9118-9147. PMLR.

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong,
Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong Shen,
Chen Lin, Nan Duan, and Weizhu Chen. 2024a.
Competition-level problems are effective LLM eval-
uators. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 13526—13544,
Bangkok, Thailand. Association for Computational
Linguistics.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang,
Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang,
Xiao Liu, Jun Zhao, and Kang Liu. 2024b. DA-
code: Agent data science code generation benchmark
for large language models. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 13487-13521, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://doi.org/10.18653/v1/2024.findings-acl.803
https://doi.org/10.18653/v1/2024.findings-acl.803
https://doi.org/10.18653/v1/2024.findings-acl.803
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748

Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-
1000: A natural and reliable benchmark for data sci-
ence code generation. In Proceedings of the 40th
International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 18319-18345. PMLR.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2025. Struc-
tured chain-of-thought prompting for code genera-
tion. ACM Trans. Softw. Eng. Methodol., 34(2).

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NL2Bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng,
Zhenpeng Chen, Lingming Zhang, and Yiling Lou.
2024b. Large language model-based agents for
software engineering: A survey. arXiv preprint
arXiv:2409.02977.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 2507—
2521. Curran Associates, Inc.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models. In
Advances in Neural Information Processing Systems,
volume 36, pages 43447-43478. Curran Associates,
Inc.

Aleksandr Romanovich Luria. 1965. Ls vygotsky and
the problem of localization of functions. Neuropsy-
chologia, 3(4):387-392.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534-46594. Curran Associates, Inc.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,

10

et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2024. Gorilla: Large language model
connected with massive apis. In Advances in Neural
Information Processing Systems, volume 37, pages
126544-126565. Curran Associates, Inc.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024. ChatDev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15174-15186, Bangkok, Thailand. Association
for Computational Linguistics.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang,
Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue
Zhang, Lu Wang, et al. 2023. Taskweaver:
A code-first agent framework. arXiv preprint
arXiv:2311.17541.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Process-
ing Systems, volume 36, pages 8634—-8652. Curran
Associates, Inc.

X Team. 2023. Xagent: An autonomous agent for com-
plex task solving. XAgent blog.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2024a. Voyager: An open-ended
embodied agent with large language models. Trans-
actions on Machine Learning Research.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024b. Exe-
cutable code actions elicit better LLM agents. In
Forty-first International Conference on Machine
Learning.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi-
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, et al. 2024c. Openhands:
An open platform for ai software developers as gen-
eralist agents. arXiv preprint arXiv:2407.16741.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,

https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa

and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024.
Autogen: Enabling next-gen LLM applications via
multi-agent conversation. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in text-
based games. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8736—8754, Online. Association
for Computational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Ekaterina Zavershneva and Rene van der Veer. 2018.
Thinking and speech.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://api.semanticscholar.org/CorpusID:171433785

A Method
A.1 Step 1: Global Information Retrieval

Prompt for the preprocessing steps before proceed-
ing to the next action planning:

A.2.2 Description of tools
ReadTable

A.2 Step 2: Dynamic Planning
A.2.1 Prompt for planning

The prompt used in the first stage to predict the
next action:

ReadText

GenerateCode

GenerateSQL

ReadText

Decompress

A.3 Step 3: Implementation of tasks

GenerateCode
Prompt for generating code:

The implementation details of some tools are as
follows:
ReadTable

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

1684

1086
1087

1088

1089
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

111%

1118

1119
1120

1121
1122
1123
1124

GenerateSQL
Prompt for selecting relevant database table
names from the database before generating SQL:

Prompt for generating SQL:

14

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

1158

	Introduction
	Method
	Agent Workflow
	Designed Tools
	Rule-based Tools
	Agent-based Tools

	Experiments
	Experimental Setting
	Experimental Result
	Main results

	Ablation Study
	Experimental Setup

	Related Work
	Conclusion
	Limitations
	Ethics Statement
	Method
	Step 1: Global Information Retrieval
	Step 2: Dynamic Planning
	Prompt for planning
	Description of tools

	Step 3: Implementation of tasks

