
Published as a conference paper at COLM 2024

Continual Pre-Training for Cross-Lingual LLM Adaptation:
Enhancing Japanese Language Capabilities

Kazuki Fujii†∗∗ Taishi Nakamura†∗ Mengsay Loem† Hiroki Iida† Masanari Ohi†

Kakeru Hattori† Hirai Shota† Sakae Mizuki† Rio Yokota‡ Naoaki Okazaki†

† Department of Computer Science, School of Computing, Tokyo Institute of Technology
‡ Global Scientific Information and Computing Center, Tokyo Institute of Technology
{kazuki.fujii@rio.gsic, taishi.nakamura@rio.gsic, mengsay.loem@nlp.c

hiroki.iida@nlp.c, masanari.ohi@nlp.c, kakeru.hattori@nlp.c,
shota.hirai@nlp.c, sakae.mizuki@nlp.c, rioyokota@rio.gsic,
okazaki@c}.titech.ac.jp

Abstract

Cross-lingual continual pre-training of large language models (LLMs) ini-
tially trained on English corpus allows us to leverage the vast amount
of English language resources and reduce the pre-training cost. In this
study, we constructed Swallow, an LLM with enhanced Japanese capability,
by extending the vocabulary of Llama 2 to include Japanese characters
and conducting continual pre-training on a large Japanese web corpus.
Experimental results confirmed that the performance on Japanese tasks
drastically improved through continual pre-training, and the performance
monotonically increased with the amount of training data up to 100B to-
kens. Consequently, Swallow achieved superior performance compared
to other LLMs that were trained from scratch in English and Japanese. An
analysis of the effects of continual pre-training revealed that it was par-
ticularly effective for Japanese question answering tasks. Furthermore, to
elucidate effective methodologies for cross-lingual continual pre-training
from English to Japanese, we investigated the impact of vocabulary expan-
sion and the effectiveness of incorporating parallel corpora. The results
showed that the efficiency gained through vocabulary expansion had no
negative impact on performance, except for the summarization task, and
that the combined use of parallel corpora enhanced translation ability.

1 Introduction

Large language models (LLMs) such as ChatGPT have attracted significant attention by
demonstrating human-level language understanding and generation capabilities, as well as
generalizability to various fields. However, many LLMs, including Llama 2 (Touvron et al.,
2023), are primarily trained on English corpora, and their performance in other languages,
especially in those with syntactic structures and writing systems greatly different from
English, is decreased (OpenAI et al., 2023). Motivated by this performance gap, establishing
methods to build LLMs that excel in Japanese (hereafter referred to as Japanese LLMs) is
an important research issue in Japan. In particular, since English language resources are
outstanding in terms of quality and quantity, insights on effectively utilizing both Japanese
and English language resources are in high demand. For example, it is estimated that there
are approximately nine times more English web pages than Japanese web pages1. However,
pre-training from scratch using both Japanese and English language data requires enormous
computational resources, making it difficult to acquire insights in a timely manner.

∗Equal contribution.
1Statistics of Common Crawl Monthly Archives:

https://commoncrawl.github.io/cc-crawl-statistics
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Figure 1: Relative change in performance of Swallow compared to Llama 2. Japanese tasks
(left, see Table 2 for task details) improved by up to approximately 70%.

Therefore, we choose to conduct Japanese continual pre-training from English LLMs, aiming
to save computational resources, and obtain insights on how to transfer the knowledge and
abilities learned by English LLMs to Japanese. Recently, there has been an increasing number
of attempts to adapt LLMs to other languages using continual pre-training (Gupta et al.,
2023; Cui et al., 2023; Pires et al., 2023; Zhu et al., 2023; Zhao et al., 2024), but a comprehensive
investigation on the effectiveness of continual pre-training has not been conducted. For
example, the relationship between the amount of Japanese data used for continual pre-
training and model performance, and the impact of the model size on this relationship, are
unclear. We construct Swallow2, an LLM with enhanced Japanese capabilities, by performing
continual pre-training on Llama 2’s 7b, 13b, and 70b models using a Japanese corpus. We
then evaluate the performance on six types of tasks including question answering and
machine translation in both Japanese and English to analyze changes in knowledge and
abilities in both languages. As a result, we demonstrated performance improvements in
almost all Japanese tasks for all model sizes (Figure 1).

Furthermore, to identify efficient methodologies for cross-lingual continual pre-training,
we also investigate the impact of vocabulary expansion and the effectiveness of Japanese-
English parallel corpora. Vocabulary expansion has the effect of shortening token sequence
lengths and improving the learning and generation efficiency of Japanese text by adding
Japanese characters and words. However, previous studies have not sufficiently analyzed
the extra cost of optimizing parameters for the added vocabulary or the impact on per-
formance due to the increase in the amount of learnable text. Therefore, in this study,
we conducted a comprehensive evaluation of the impact of vocabulary expansion on the
performance of both Japanese and English. Vocabulary expansion improved Japanese text
generation efficiency by up to 78%, thanks to a 56.2% reduction in tokens in the Swallow
Corpus. This enhancement did not compromise downstream task accuracy, except for
summarization.

Parallel corpora are known to have the effect of promoting cross-lingual transfer in multilin-
gual models (Chi et al., 2022; Hu et al., 2020; Feng et al., 2022). However, the effectiveness
of parallel corpora in continual pre-training settings of the target language has not been
studied in detail. Our experimental results reveal that simply mixing parallel corpora with
plain text corpora improves the accuracy of machine translation tasks.

The contributions of this study are as follows:

• Swallow achieved the highest performance in Japanese among all models devel-
oped in Japan (as of December 2023). We demonstrate that cross-lingual continual
pre-training can achieve higher performance with fewer computational resources
compared to Japanese LLMs trained from scratch.

2The LLMs were released with a different official name, but we use this code name for the review.
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• We show that continual pre-training is effective for improving Japanese abilities,
especially question answering tasks that require Japanese knowledge.

• We provide evidence that the Japanese performance of language models improves
monotonically as the amount of Japanese training data increases.

• We show that vocabulary expansion does not affect performance in most tasks, and
only degrades performance in automatic summarization.

• We reveal that using parallel corpora together enhances translation ability without
affecting the performance of other tasks.

2 Related work

2.1 Continual pre-training

Continual pre-training is a form of domain adaptation where additional pre-training tasks
are performed on a pre-trained language model using text from the target downstream
task before fine-tuning the model on that task (Lee et al., 2019; Beltagy et al., 2019; Sung
et al., 2019). Since the emergence of open and high-performance English LLMs, there have
been an increasing number of attempts to perform continual pre-training to adapt LLMs to
other tasks and languages (Gupta et al., 2023; Cui et al., 2023; Pires et al., 2023; Zhu et al.,
2023; Zhao et al., 2024). However, a comprehensive investigation of the effects of continual
pre-training for various model sizes and training data sizes has not been conducted.

2.2 Vocabulary expansion

Vocabulary expansion is a method to increase the vocabulary of a trained LLM. The Japanese
writing system differs from English, where kanji characters tend to be converted into UTF-8
byte sequences. For example, a Japanese single-character noun猫 (cat) is represented by
three byte-level tokens <0xE7> <0x8C> <0xAB>, which do not provide any semantic meaning.
This treatment not only looks unreasonable as Japanese representation but also increases
the sequence length of Japanese text as well as the cost of text generation (Ahia et al., 2023).
Adding Japanese characters and words to the vocabulary can reduce the number of tokens
required to represent Japanese text and alleviate this problem. In domain adaptation of text
embedding models, it is known that adding vocabulary from the target domain can improve
performance (Sachidananda et al., 2021; Yao et al., 2021). In contrast, the main motivation
for vocabulary expansion in continual pre-training of LLMs is to improve training and
generation efficiency in the target language, and there is little knowledge about its impact
on performance.

Examples of vocabulary expansion in building Japanese LLMs 3 are limited to evaluating
Japanese language ability, and do not evaluate the English language ability. Examples of
vocabulary expansion in Chinese LLMs (Cui et al., 2023) only report the performance with
vocabulary expansion, and do not compare with a base model. In multilingual LLMs (Ahuja
et al., 2023), it was shown that the vocabulary size for each language correlates with perfor-
mance, but these studies train longer as the vocabulary is expanded, so the isolated impact
of vocabulary size remains unclear.

2.3 Parallel corpus

In multilingual text embedding models, it has been reported that pre-training with the
language modeling objective using parallel corpora mitigates language-specific hidden state
vectors and promotes cross-lingual transfer (Chi et al., 2022; Hu et al., 2020; Feng et al., 2022).
In applications to LLMs, it has been reported that using parallel sentences for instruction
tuning can improve translation ability more efficiently than using the same amount of
multilingual corpora (Zhu et al., 2023; Ranaldi et al., 2023). However, the effectiveness of
combining continual pre-training with parallel corpora remains unclear.

3Japanese Stable LM Beta: https://ja.stability.ai/blog/japanese-stable-lm-beta
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Params dmodel # Heads # Layers Context length GQA # Tokens LR

7B 4096 32 32 4096 × 100B 1.0 × 10−4

13B 5120 40 40 4096 × 100B 1.0 × 10−4

70B 8192 64 80 4096 ✓ 100B 5.0 × 10−5

Table 1: Architecture and hyperparameters of the Swallow models

3 Experimental settings for continual pre-training

The continual pre-training of Swallow involves expanding the vocabulary of a pre-trained
Llama 2 model and then performing continual pre-training using corpora primarily consist-
ing of Japanese. The models are evaluated on six types of tasks in Japanese and English.
The evaluation results are compared with LLMs developed in English-speaking regions
and in Japan, to demonstrate the comparative effectiveness of our continual pre-training
approach. In this section, we describe the training settings, training corpus, vocabulary
expansion method, and evaluation method.

3.1 Training details

Table 1 shows the hyperparameters of the Swallow models. Preliminary experiments were
conducted with reference to Llemma (Azerbayev et al., 2024) and Code Llama (Rozière
et al., 2023) to determine the parameters. Since continual pre-training is bound by the model
architecture of the base model, Swallow adopts the same Transformer decoder as Llama 2.
The hidden size, number of attention heads, number of layers, and context length are the
same as Llama 2. To maintain consistency with the pre-training phase, a batch size of 1024
was used for all model sizes in Swallow, matching the global batch size of 4M tokens in
Llama 2.

The AdamW optimizer (Loshchilov & Hutter, 2019) was employed for training the models,
with hyperparameters β1 = 0.9, β2 = 0.95, ϵ = 1.0 × 10−8. A cosine learning rate scheduler
was used, and the learning rate was set to reach its maximum value at 1,000 warmup
steps and finally decays to 1/30 of that value. Additionally, a weight decay of 0.1 and
gradient clipping of 1.0 were used. Furthermore, Flash Attention 2 (Dao, 2023) was adopted
for improved computational efficiency and memory footprints. Refer to Figure 8 in the
appendix for the training loss curve.

3.2 Training corpora

When continually pre-training with full parameters, forgetting previously learned knowl-
edge is a concern (Jin et al., 2022). One method to prevent forgetting is the Experience
Replay technique (Chaudhry et al., 2019). This method involves reusing a portion of the
data previously used for training the language model during continual pre-training (Scialom
et al., 2022). Following this approach, our study incorporates a portion of the English corpus
in addition to the target Japanese corpus for continual pre-training.

The corpus used for continual pre-training includes the Swallow Corpus, which is explained
in Appendix A, Japanese Wikipedia4, and for English, the RefinedWeb (Penedo et al., 2023)
and The Pile (Gao et al., 2020). From these corpora, approximately 100B tokens were sampled
for the training data of continual pre-training. The sampling was configured so that 5% of
the English text comes from RefinedWeb, another 5% from English arXiv paper texts within
The Pile, and the remaining 90% from Japanese texts. The Japanese text comprises about
1.6B tokens from Japanese Wikipedia, with the rest from the Swallow Corpus. The ratio of
Japanese to English data in the training set was decided based on preliminary experiments
(see Appendix B for details).

4https://dumps.wikimedia.org/other/cirrussearch/20230320: Dump dated March 20, 2023.
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3.3 Vocabulary expansion

In this study, we aim to adapt LLMs to languages with different writing systems from
the Latin alphabet. For this purpose, we performed vocabulary expansion. Vocabulary
expansion refers to the post-hoc addition of vocabulary to an existing LLM. This increases
the amount of text that can be trained and generated within the same computational
budget, thereby improving computational efficiency. In the vocabulary expansion adopted
in Swallow, we constructed Japanese vocabulary, initialized vectors, and added string
preprocessing.

We conducted preliminary experiments to determine the optimal vocabulary size by com-
paring sequence lengths with 16k, 32k, and 48k Japanese vocabularies. The sequence lengths
were 56.2%, 54.1%, and 53.2%, respectively, compared to using original LLaMA vocabulary.
Since there was no significant performance difference in Japanese tasks among these sizes,
we selected the 16k vocabulary for its advantage in training speed. The construction of
Japanese vocabulary involved creating a vocabulary (up to 16k) using the BPE algorithm on
the Swallow Corpus segmented by MeCab5 and the UniDic dictionary6. We then merged
the Japanese vocabulary (subwords) with the original LLaMA vocabulary, resulting in a
total vocabulary size of 43,176. Refer to Appendix E.1 for further details on the vocabulary
expansion procedure.

The vectors for the embedding and output layers of the added subwords were initialized
with the average of the vectors of the subwords segmented by the LLaMA tokenizer, i.e.,
the subwords trained by Llama 2, following previous research (Yao et al., 2021). This
initialization method was adopted because we confirmed that random initialization led to
corrupted outputs.

String preprocessing was enhanced by adding NFKC normalization to utilize the pre-trained
knowledge of alphanumeric characters and symbols in the ASCII code range.

3.4 Evaluation method

The evaluation methods for Japanese and English are shown in Tables 2 and 3, respectively.
The dataset consists of five types of Japanese and four types of English tasks, with few-shot
settings for question answering (QA), reading comprehension (RC), automatic summariza-
tion (AS), arithmetic reasoning (AR), commonsense reasoning (CR) and machine translation
(MT). For details, see Appendix G. We evaluate these downstream tasks under few-shot
In-Context Learning without fine-tuning the model. Additionally, the evaluation datasets
were not included in our continual pre-training corpora to ensure an unbiased assessment
of the model’s performance. For all tasks, higher scores indicate better performance.

The selection of tasks was based on discussions in LLM-jp (Han et al., 2024) and the
methodology of the Llama 2 paper (Touvron et al., 2023), with an active adoption of tasks
related to inference and text generation. The natural language inference task in llm-jp-
eval was excluded from evaluation due to unstable scores in the 7b and 13b models (see
Appendix F).

4 Results

4.1 Effects of continual pre-training

Table 4 shows the evaluation results of Swallow and its base model Llama 2 on Japanese
and English tasks. Figure 1 displays the increase or decrease rate of Swallow ’s scores com-
pared to Llama 2 . The average score of Swallow on Japanese tasks surpasses Llama 2 by
approximately 7 points. On the other hand, the English scores are 2–5 points lower, but the
performance drop tends to be smaller as the model size increases. When looking at indi-

5https://taku910.github.io/mecab/
6https://clrd.ninjal.ac.jp/unidic/
7https://github.com/Stability-AI/lm-evaluation-harness
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Benchmark llm-jp-eval (Han et al., 2024) (v1.0.0) JP LM Evaluation Harness7 (commit #9b42d41)
Eval. task Question Answering RC AS AR Machine Translation
Dataset JCQA JEMHQA NIILC JSQuAD XL-Sum MGSM WMT’20En-Ja WMT’20Ja-En

Instances 1,119 120 198 4,442 766 250 1,000 993
Few-shots 4 4 4 4 1 4 4 4
Eval. metric EM acc. Char-F1 Char-F1 Char-F1 ROUGE-2 EM acc. BLEU

Table 2: Japanese datasets. Acc. stands for accuracy, EM for exact match. Evaluation datasets
include JCQA for JCommonsenseQA (Kurihara et al., 2022), JEMHQA for JEMHopQA (Ishii
et al., 2023), NIILC (Sekine, 2003), JSQuAD (Kurihara et al., 2022), XL-Sum (Hasan et al.,
2021), MGSM (Shi et al., 2023), and WMT’20 (Barrault et al., 2020).

Benchmark LM Evaluation Harness (Gao et al., 2022) (v0.3.0)
Eval. task QA RC CR AR
Dataset OBQA TrQA SQuAD2 HS XW GSM8K

Instances 500 17,944 11,873 10,042 2,325 1,319
Few-shots 8 8 8 8 8 8
Eval. metric acc. EM acc. EM acc. acc. acc. EM acc.

Table 3: English datasets. OBQA for OpenBookQA (Mihaylov et al., 2018), TrQA for Trivi-
aQA (Joshi et al., 2017), HS for HellaSwag (Zellers et al., 2019), XW for XWINO (Tikhonov &
Ryabinin, 2021), SQuAD2 (Rajpurkar et al., 2018), and GSM8K (Cobbe et al., 2021).

vidual tasks8, Japanese question answering (JCQA, JEMHQA, NIILC) shows a significant
improvement of up to 75%, and arithmetic reasoning (MGSM) improves by 36–63%. In
contrast, English question answering (TrQA) and arithmetic reasoning (GSM8K) degrade
by 6–23%. The change in automatic summarization (XL-Sum) is less than 5%. Machine
translation shows contrasting results depending on the direction, with a 15–41% improve-
ment in English-to-Japanese (En-Ja) and a 4–13% degradation in Japanese-to-English (Ja-En).
Japanese reading comprehension (JSQuAD) has limited room for improvement as Llama 2 ’s
score is above 0.8, resulting in less than 10% improvement.

We analyze the impact of continual pre-training on Japanese abilities and knowledge. In the
case of arithmetic reasoning (Ja: MGSM, En: GSM8K), while Llama 2 shows superiority in
English (GSM8K > MGSM), Swallow improves MGSM, but GSM8K degrades to a similar
level, suggesting that the reasoning ability in English has not been fully transferred to
Japanese. Considering the reports of reasoning ability transfer in instruction tuning (Ye
et al., 2023), combining instruction datasets could be a promising strategy to bring Japanese
arithmetic reasoning to the same level observed in English.

Regarding knowledge, the significant improvement in question answering suggests that
the acquisition of Japanese knowledge has progressed. Figure 2 illustrates the impact of
continual pre-training on the scoring of each question in the NIILC QA dataset. The dense
color in the upper left corner indicates that many questions have shifted from incorrect
to correct answers, while the opposite is uncommon. This trend suggests that continual
pre-training successfully incorporated new knowledge and corrected inaccurate responses.

4.2 Comparison with full-scratch models

Table 5 shows the evaluation results of the Swallow and major Japanese LLMs trained from
scratch (see Table 12 in the appendix for model references). Note that these models are
all general-purpose language models without instruction tuning. Compared to the LLMs
trained from scratch in Japan (calm-7b, llm-jp-13b-v1.0, PLaMo-13b) (see Appendix I.1 for de-
tails of each model), the average score of Swallow is 8.4 to 17.4 points higher, demonstrating
the usefulness of continual pre-training.

8We assess performance changes on a relative scale, considering the differences in task score levels.
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Evaluation in Japanese
Model JCQA JEMHQA NIILC JSQuAD XL-Sum MGSM En-Ja Ja-En Avg

Llama 2-7b 38.5 42.4 34.1 79.2 19.1 7.6 17.8 17.4 32.0
Swallow-7b 48.1 50.8 59.7 85.7 18.3 12.4 25.1 15.1 39.4
Llama 2-13b 70.0 44.2 41.7 85.3 21.4 13.2 21.5 19.8 39.6
Swallow-13b 78.4 50.6 64.0 90.1 21.7 20.4 27.2 17.7 46.3
Llama 2-70b 86.9 46.6 52.6 90.8 23.6 35.6 26.4 24.0 48.3
Swallow-70b 93.5 62.9 69.6 91.8 22.7 48.4 30.4 23.0 55.3

Evaluation in English
Model OBQA TrQA HS SQuAD2 XW GSM8K Avg

Llama 2-7b 35.8 62.7 58.6 32.1 90.5 14.1 49.0
Swallow-7b 31.8 48.4 53.1 31.3 88.2 11.3 44.0
Llama 2-13b 37.6 72.6 61.5 36.8 91.4 24.0 54.0
Swallow-13b 35.0 58.5 56.6 34.1 90.8 20.4 49.2
Llama 2-70b 42.8 82.4 67.4 37.7 92.9 52.8 62.7
Swallow-70b 42.2 77.6 64.6 37.5 92.0 48.7 60.4

Table 4: Evaluation of Swallow and its pre-training source, Llama 2, in Japanese and English.

Figure 2: Joint distribution of Llama 2 (x-
axis) and Swallow (y-axis) scores (character
F1, with 1.0 representing an exact match) for
NIILC questions.

Figure 3: Scalability of continual pre-training
on Japanese tasks. Score at 0B tokens corre-
sponds to the baseline performance of the
Llama 2 model.

4.3 Scalability to training tokens

Figure 3 depicts the relationship between the volume of training data (number of tokens)
used for continual pre-training and the average performance score on the Japanese bench-
mark. We evaluated the performance of Swallow 7b, 13b, and 70b at each interval of
approximately 20B tokens of the training data. The figure reveals a monotonic upward
trend in average scores in correlation with the augmentation of Japanese training data
for continual pre-training. Notably, the largest performance increase occurs in the initial
training stage with 20B tokens, with subsequent gains diminishing. However, performance
consistently improves as the amount of training data increases, suggesting that the perfor-
mance improvement has not saturated even with approximately 100B tokens of continual
pre-training.
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Evaluation in Japanese
Model JCQA JEMHQA NIILC JSQuAD XL-Sum MGSM En-Ja Ja-En Avg

calm2-7b 22.0 50.5 50.7 78.0 2.3 6.0 23.5 15.0 31.0
Swallow -7b 48.1 50.8 59.7 85.7 18.3 12.4 25.1 15.1 39.4
llm-jp-13b-v1.0 22.6 47.9 38.6 77.4 10.8 2.4 19.6 11.9 28.9
PLaMo-13b 22.7 51.9 41.4 76.2 10.3 3.6 15.8 12.0 29.2
Swallow -13b 78.4 50.6 64.0 90.1 21.7 20.4 27.2 17.7 46.3

Table 5: Comparison of evaluation results between Swallow and models trained from scratch
on Japanese tasks.

5 Analysis

5.1 Vocabulary expansion

5.1.1 Experimental setup and motivation for vocabulary expansion

To investigate the impact of vocabulary expansion (VE) — specifically, the addition of
Japanese words and characters—we compare models pre-trained with and without VE. The
model pre-trained without VE is denoted as ¬VE hereafter. Incorporating VE can shorten
token sequences, thereby enhancing the efficiency of both training and generating Japanese
text. However, the impact of vocabulary expansion on performance is unclear. Intuitively,
if the added vocabulary is poorly optimized, it may degrade performance. Yet, studies on
domain adaptation scenarios report that VE enhances performance (Sachidananda et al.,
2021; Yao et al., 2021). Additionally, being able to train with more text within the same
computational budgets could positively influence performance.

5.1.2 Impact of vocabulary expansion

Figure 4 shows the performance of Swallow relative to Swallow¬VE, where the vocabulary
expansion was not applied to the latter. Regarding Japanese language capabilities, the
overall impact of vocabulary expansion on performance is minor. Appendix H provides the
absolute scores and a more detailed analysis. When examining specific tasks, we observe the
performance change in question answering approximately ±10%, yet there is no consistent
trend of either improvement or degradation across different model sizes. Therefore, the
increase in the amount of training text brought from the vocabulary expansion does not
directly affect performance. Additionally, from Figure 7, we did not observe any significant
difference in convergence characteristics in the performance curve of Japanese question-
answering task. In contrast, automatic summarization (XL-Sum) degraded by about 5–15%
with vocabulary expansion for all model sizes9. This suggests that the impact of vocabulary
expansion may be more apparent in tasks that involve processing longer contexts.

5.2 Parallel corpus

5.2.1 Experimental setup for parallel corpus

In the experiments to investigate the effectiveness of parallel corpora, we use Swallow¬VE as
the baseline to separate the impact of vocabulary expansion, and examine the performance
when incorporating parallel corpora in the continual pre-training. We used JParaCrawl
3.0 (Morishita et al., 2022) corpus, which contains approximately 22 million Japanese-English
parallel sentences extracted from the web.

We investigate three different settings to utilize a parallel corpus, as shown in Table 6. These
methods vary by training sequence and task format. The training sequence can be “two-

9This trend remained unchanged after instruction tuning, so it does not seem to be a problem with
instruction following ability.
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Figure 4: Relative change in performance
with versus without vocabulary expansion
(Swallow vs. Swallow¬VE).

Figure 5: Relative change in performance
when using parallel corpus compared to
Swallow¬VE.

Figure 6: Performance curve of Swallow¬VE
and Swallow in automatic summarization
(XL-Sum).

Figure 7: Performance curve of Swallow¬VE
and Swallow in the average score of question
answering task (JCQA, JEMHQA, NIILC).

staged”, where the parallel corpus is used first and followed by the multilingual corpus, or
“mixed”, where it is combined with the multilingual corpora from the start. The intention
behind the two-staged setting is the assumption that parallel sentences could facilitate the
switch from English-centric to Japanese-centric training.

For task formats, we have “next token prediction” (NTP), which involves concatenating
parallel sentences, and “translation instruction” (TI), where the target sentence is predicted
based on the source sentence and a translation instruction. Both formats are applied in two
directions, Ja→En and En→Ja, for each pair of parallel sentences. The following templates
show how parallel sentences are converted into NTP format (top) and TI format (bottom).
Note that for the TI format, only the target language sentence is the target for training.

[Japanese sentence] [English sentence]
[English sentence] [Japanese sentence]

Please translate the following Japanese text into English.
[Japanese sentence] [English sentence]
Please translate the following English text into Japanese.
[English sentence] [Japanese sentence]

9
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Task format Training seq. Number of training tokens [×109]

Next Token Prediction (NTP) Two-staged 5.6
Next Token Prediction (NTP) Mixed 5.6
Translation Instruction (TI) Two-staged 2.8

Table 6: List of experimental settings in the use of the parallel corpus.

5.2.2 Effectiveness of parallel corpus

Figure 5 shows the rate of increase or decrease in scores when using a parallel corpus in
conjunction with continual pre-training, with Swallow¬VE without vocabulary expansion
as the baseline. Translation performance improved by 9–24% for En-Ja and 14–51% for
Ja-En. The improvement in Ja-En is particular to the parallel corpus. Regarding the usage
of the corpus, we found that the next token prediction format with a “mixed” setting
or the translation instruction format in a “two-staged” setting was effective. In other
words, we proved that simply mixing parallel sentences into the multilingual corpus and
conducting continual pre-training can effectively improve translation performance. This
finding is consistent with the claim that the translation capabilities of LLMs stem from
parallel sentences incidentally present in plain text corpora (Briakou et al., 2023).

The relative change in scores for tasks other than translation was within ±15%, without
showing consistent improvement or decline across different model sizes. Therefore, no
evidence was obtained that the parallel corpus promotes cross-lingual transfer and improves
abilities other than translation.

6 Conclusions

In this study, we developed Swallow, leveraging Llama 2 models for enhanced Japanese
language performance through continual pre-training on Japanese datasets, and analyzed
their performance to address the lack of comprehensiveness in model size, training data
size, and evaluation methods in previous studies. Through our evaluation, we found that
continual pre-training significantly boosts Japanese abilities, particularly in knowledge-
intensive question answering task. Consequently, we demonstrated that continual pre-
training is an efficient approach for achieving high performance, as the continual pre-trained
models outperform Japanese LLMs that are trained from scratch. We also observed that
performance improves in line with increases in training data. Furthermore, in our quest
for a more efficient methodology, we investigated how expanding the vocabulary and
incorporating parallel corpora into continual pre-training affect performance. We revealed
that while the vocabulary expansion improves computational efficiency, it has little impact
on performance except for summarization. Additionally, we found that simply integrating
parallel sentences into plain text corpora improves translation performance, particularly
for Japanese-English, but it does not hurt the performance of other tasks. The experimental
results and analyses in this study provide important insights into the effectiveness of
continual pre-training, the impact of vocabulary expansion, and the effects of using parallel
corpora in the development of LLMs for non-English languages.

10
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7 Ethical considerations

Swallow is subject to the same well-recognized limitations of other LLMs, including the
inability to update information after the pretraining phase, the potential for non-factual
generation such as unqualified advice, and a propensity towards hallucinations.

Similar to other large language models, Swallow may produce content that is harmful,
offensive, or biased due to being trained on datasets derived from publicly available on-
line sources. We commit to ongoing fine-tuning and plan to release updated versions of
Swallow as we make further advancements in resolving these issues.

8 Reproducibility statement

All models developed in this study (continual pre-training on Llama 2 7B, 13B, 70B) have
already been released on Hugging Face. The benchmark datasets used in this study are also
publicly available. Therefore, it is straightforward to reproduce our experimental results
reported in Table 4, 5, 11.
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B Ratio of training data

The ratio of mixing Japanese and English texts was determined through preliminary experi-
ments. We tested two experimental settings with a JA:EN ratio of 5:5 and 9:1, and compared
the average performance on Japanese tasks after training on approximately 20B tokens. In
the preliminary experiments, the 9:1 setting slightly outperformed the 5:5 setting in terms
of the average score on Japanese tasks, hence we adopted the 9:1 JA:EN ratio. While the
goal was to construct a powerful LLM specialized for the target language, transferring
knowledge from English was also one of the objectives. It has been shown that including
1% of the pre-trained data in training can prevent catastrophic forgetting (Scialom et al.,
2022), but due to the unavailability of Llama 2’s training data and budgetary constraints,
the preliminary experiments were conducted only with the 5:5 and 9:1 ratios.

C Training loss curves

Figure 8: Training loss curves (number of tokens trained and loss values) for Swallow 7b,
13b, and 70b

D Distributed parallel training of models

Training large language models on a single GPU is challenging due to both GPU memory
constraints and the time required for training. In terms of GPU memory, even using the
latest H100 80GB, it is difficult to train the 7B model used in this study. Moreover, even if
the model parameters, gradients, and optimizer states could fit on a single GPU, training
on a single GPU would require an unrealistic amount of time to complete. Therefore, in
this study, we adopted distributed parallel training, combining data parallelism and model
parallelism.

D.1 Training environment

We utilized the AI Bridging Cloud Infrastructure (ABCI) of the National Institute of Ad-
vanced Industrial Science and Technology, Japan for training. We employed mixed precision
(bfloat16) and used multiple NVIDIA A100 nodes for distributed parallel training. Each
node is equipped with eight NVIDIA A100 40GB GPUs, and the nodes are interconnected
via InfiniBand HDR.
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D.2 Distributed training

Number of Parameters DP TP PP SP Distributed Optimizer

7B 16 2 2 ✓ ✓
13B 8 2 4 ✓ ✓
70B 4 8 8 ✓ ✓

Table 7: Distributed training settings. DP, TP, PP, and SP represent Data Parallelism, Tensor
Parallelism, Pipeline Parallelism, and Sequence Parallelism, respectively.

To efficiently perform the training process, we adopted 3D parallelism, which integrates
data parallelism, tensor parallelism, and pipeline parallelism, aiming for high computa-
tional efficiency and efficient memory utilization. We used the Megatron-LM10 library for
training. Table 7 shows the distributed training settings for each model size. In addition, we
incorporated the following techniques:

Efficient Memory Consumption By using the Distributed Optimizer in Megatron-LM, we
distributed the optimizer states across data-parallel processes and eliminated redun-
dancy, reducing the required memory usage. The Distributed Optimizer efficiently
communicates using Reduce Scatter and All Gather, enabling memory reduction
with the same communication cost as regular data parallelism.

Topology-aware 3D Mapping In 3D parallelism, Transformer blocks are distributed across
multiple GPUs using pipeline parallelism, and the parameters within each layer
are distributed using tensor parallelism. As proposed in Megatron-LM (Narayanan
et al., 2021), we placed the workers requiring more communication (tensor parallel
workers) within the same node. This is because intra-node communication using
NVLink is faster than inter-node communication. Additionally, considering the
communication for gradient averaging in data parallelism, we placed data-parallel
workers within the same node as much as possible. Pipeline parallelism requires
less communication compared to other parallelization methods, using P2P (Point-
to-Point) communication. Therefore, we placed pipeline stages across nodes.

Adoption of 1F1B for Memory Efficiency By using PipeDream-Flush (Narayanan et al.,
2021), a 1F1B (one forward pass followed by one backward pass) pipeline par-
allelism, we ensured that only a number of micro-batches less than or equal to
the number of pipeline stages require activation, improving memory efficiency
compared to GPipe (Huang et al., 2019).

Parallelization using Sequence Parallelism Tensor parallelism parallelizes Self-Attention
and MLP blocks, but not Layer-Norms and Dropouts, resulting in redundant mem-
ory usage of these components across tensor-parallel processes. To improve ef-
ficiency, we utilized Sequence Parallelism (Korthikanti et al., 2023). By using Se-
quence Parallelism in conjunction with tensor parallelism, memory efficiency can
be achieved without the overhead of communication costs.

D.3 Computational efficiency

Table 8 shows the computational performance in TFLOPS per GPU during the actual training
process. In terms of execution efficiency, the 70B model achieved over 50%, indicating that
the training was conducted efficiently11.

10https://github.com/NVIDIA/Megatron-LM
11The theoretical values (312 TFLOPS) are extracted from the specifications of the NVIDIA A100

BFLOAT16 Tensor Core (without sparsity):
https://www.nvidia.com/en-us/data-center/a100/.

18

https://github.com/NVIDIA/Megatron-LM
https://www.nvidia.com/en-us/data-center/a100/


Published as a conference paper at COLM 2024

# Params # Nodes TFLOPS/GPU Execution efficiency

7B 4 134 43.0 %
13B 8 143 45.8 %
70B 32 158 50.6 %

Table 8: TFLOPS/GPU for each model parameter

D.4 Computation required for training

The training of Swallow 7b, 13b, and 70b required approximately 5.0 × 1021 FLOPS, 9.4 ×
1021 FLOPS, 5.0 × 1022 FLOPS of computation, respectively. 12

E Details of experimental setup

E.1 Vocabulary expansion method

The Japanese vocabulary was constructed using a randomly sampled subset (1.5B tokens) of
the word-segmented Swallow Corpus. However, to treat symbols as independent subwords,
words containing symbols were split at both ends of the symbols. Following Llama 2, we
used the BPE algorithm implemented in SentencePiece (Kudo & Richardson, 2018). Two
post-processing steps were applied to the subword vocabulary constructed by SentencePiece.
Firstly, the whitespace escape characters added by SentencePiece were removed. This is
because, unlike during the vocabulary construction phase, word segmentation using MeCab
is not performed in tokenization during training and inference. Secondly, the size of the
additional vocabulary was intentionally adjusted to be a multiple of 8. This is a measure to
facilitate distributed parallel training of the model.

The scores of the added subwords were used as-is from the BPE results output by Senten-
cePiece. This decision was made based on the judgment that conflicts between the merge
rules of the original vocabulary and the added vocabulary are extremely rare. In fact, the
original vocabulary of the Llama 2 tokenizer does not contain Japanese subwords of two or
more characters.

F Issues in evaluating natural language inference tasks

For the natural language inference datasets included in llm-jp-eval, more specifically,
Jamp (Sugimoto et al., 2023), JaNLI (Yanaka & Mineshima, 2021), JNLI (Kurihara et al.,
2022), JSeM (Kawazoe et al., 2015), and JSICK (Yanaka & Mineshima, 2022), we confirmed
score fluctuations due to the class imbalance in multiple models. First, Figure 9 shows
the class distributions of both the ground truth and the predictions made by Swallow-7b.
Both the ground truth and predictions are greatly imbalanced, with the most frequent class
accounting for over 95% of all predictions in three datasets. As a result, scores significantly
fluctuate depending on whether the most frequent classes in predictions and ground truth
align by chance. Figure 10 shows the learning curve of Swallow-7b on these datasets. While
fluctuations of about 40 points occurred in two datasets, this was due to transitions in
the most frequent class of predictions. The imbalance in prediction was not unique to
Swallow but was also observed in other 7b and 13b models (Figure 11). From these obser-
vations, we concluded that it is misleading to discuss natural language inference abilities
based solely on scores, leading to the exclusion from our evaluation. For a fair and stable
evaluation of this task, addressing the imbalance in ground truth classes is recommended.

12The calculation of FLOPs is based on the formula presented in APPENDIX: FLOATING-POINT
OPERATIONS of (Narayanan et al., 2021), with modifications made to adapt to the Llama architecture.
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Figure 9: Class distributions in natural language inference task datasets. For each dataset,
the left bar presents the ground truth, and the right bar does the prediction by Swallow-7b.
The numbers in parentheses indicate the number of classes.

Figure 10: Accuracy curve of Swallow-7b on natural language inference during training.

G Evaluation methods for Japanese and English

Tables 2 and 3 present the evaluation benchmarks for Japanese and English, respectively.

The Japanese benchmarks include llm-jp-eval (Han et al., 2024) for a comprehensive eval-
uation of language models in Japanese, and the JP Language Model Evaluation Harness,
which is designed for a more focused assessment of language model capabilities. The
datasets cover a range of tasks including multiple-choice and open-ended question an-
swering (JCQA (Kurihara et al., 2022), JEMHQA (Ishii et al., 2023), NIILC (Sekine, 2003)),
machine reading comprehension (JSQuAD (Kurihara et al., 2022)), automatic summarization
(XL-Sum (Hasan et al., 2021)), arithmetic reasoning (MGSM (Shi et al., 2023)), and machine
translation (WMT’20 En-Ja and Ja-En (Barrault et al., 2020)). Below, we describe six notable
task datasets included in these benchmarks.

JCQA JCommonsenseQA (JCQA) is a Japanese question-answering dataset in a five-choice
format that assesses common sense knowledge. It is the Japanese version of Common-
senseQA (Talmor et al., 2019), which was created to evaluate common sense reasoning
ability, and consists of pairs of question sentence and answer choices. The knowledge
covered by JCQA has a good balance of Japanese linguistic knowledge and common sense
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Figure 11: The proportion of the majority class in predictions by various LLMs.

knowledge. Moreover, since the incorrect answers are generated by language models, the
dataset contains questions that cannot be solved just by avoiding semantically unrelated
choices.

JEMHQA JEMHopQA (JEMHQA) is a Japanese open-ended question answering dataset
that was originally designed as a multi-hop QA task. In our task setting, the dataset is used
to evaluate a model’s ability to generate answers directly from the given questions. The
questions in JEMHQA are created using information from the Japanese version of Wikipedia,
ensuring a diverse range of topics and entities. JEMHQA serves as an important benchmark
for evaluating the extent of knowledge and ability to answer questions through reasoning
with that knowledge.

JSQuAD JSQuAD is a Japanese machine reading comprehension dataset, which is the
Japanese version of SQuAD (Rajpurkar et al., 2016). It focuses on question-answering style,
which involves reading a document and a question, and then extracting a segment of text in
the document as the answer. JSQuAD utilizes article paragraphs from the Japanese version
of Wikipedia as its source documents.

NIILC NIILC is a dataset created for the purpose of developing question-answering
systems in Japanese, featuring relatively straightforward questions that can be answered
by referencing an encyclopedia. This makes it valuable for evaluating the encyclopedic
knowledge of LLMs. We use only the question and answer pairs from the dataset, although
the original dataset includes additional metadata like question types and evidence sentences.

XL-Sum XL-Sum Japanese version is a dataset created by extracting the Japanese portion
from XL-Sum, a large-scale summarization dataset collected from BBC News articles, and
further filtering it into a subset suitable for abstractive summarization. The dataset was
filtered by calculating the 15-gram overlap rate between articles and summaries, selecting
pairs with low overlap rates. Consequently, this dataset necessitates the ability to paraphrase
and abstract information, rather than simply extracting sentences.

MGSM MGSM is a dataset created by selecting 250 elementary school arithmetic word
problems from GSM8K (Cobbe et al., 2021) and manually translating them. As it deals with
Japanese arithmetic word problems, it requires both Japanese linguistic knowledge and
mathematical reasoning ability.
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Evaluation in Japanese

Model Tokens JCQA JEMHQA NIILC JSQuAD XL-Sum MGSM En-Ja Ja-En Avg

Swallow-7B-VE

20 39.2 55.4 51.2 83.5 14.7 7.2 22.4 14.6 36.0
40 45.8 52.4 52.6 84.6 15.9 8.8 23.6 14.4 37.2
60 42.2 51.2 58.3 84.3 18.4 10.4 24.6 14.7 38.0
80 49.2 49.5 60.3 86.0 18.4 9.6 24.9 15.0 39.1
100 48.1 50.8 59.7 85.7 18.3 12.4 25.1 15.1 39.4

Swallow-7B-¬VE

20 45.8 52.2 48.7 84.6 19.0 8.0 21.8 13.6 36.7
40 39.1 54.1 52.7 84.7 18.2 7.2 22.7 14.7 36.7
60 49.2 54.9 57.2 86.4 20.4 9.2 23.6 15.2 39.5
80 52.3 55.4 58.6 87.1 21.8 8.8 23.8 15.1 40.4
100 54.3 54.3 57.3 86.8 21.2 12.0 24.1 15.1 40.6

Swallow-13B-VE

20 76.6 51.8 58.6 88.5 18.9 12.0 24.4 16.0 43.3
40 75.3 52.0 59.4 88.8 19.5 15.6 25.9 16.3 44.1
60 71.9 50.5 63.1 89.4 20.6 18.0 27.0 17.3 44.7
80 75.8 48.9 63.5 89.7 21.2 22.8 27.1 17.5 45.8
100 78.4 50.6 64.0 90.1 21.7 20.4 27.2 17.7 46.3

Swallow-13B-¬VE

20 72.9 46.7 54.0 88.6 22.7 12.0 23.7 14.5 41.9
40 69.4 50.5 60.0 89.2 21.0 12.8 25.8 16.8 43.2
60 76.4 53.9 61.6 89.9 23.1 16.0 26.7 17.4 45.6
80 76.9 51.4 63.8 90.0 23.0 23.2 26.8 17.3 46.6
100 77.1 54.4 63.5 90.3 22.9 21.2 27.4 18.2 46.9

Swallow-70B-VE

20 90.8 59.9 65.3 92.0 22.2 38.0 28.4 22.3 52.4
40 92.1 62.0 69.2 92.0 22.6 40.0 29.8 22.1 53.7
60 92.2 61.2 67.8 91.8 22.7 48.0 29.7 22.7 54.5
80 93.4 60.4 69.6 91.8 22.5 47.2 30.6 23.1 54.8
100 93.5 62.9 69.6 91.8 22.7 48.4 30.4 23.0 55.3

Swallow-70B-¬VE

20 91.3 57.1 63.1 92.2 26.2 38.0 28.7 22.2 52.4
40 92.8 54.6 64.5 91.8 24.7 40.8 29.8 23.0 52.7
60 93.5 58.1 68.5 92.2 26.4 42.8 30.0 23.0 54.3
80 93.9 58.6 70.0 92.3 27.4 48.4 30.2 22.6 55.4
100 94.1 57.6 70.2 92.5 27.6 47.2 30.4 23.2 55.4

Table 9: Evaluation of Swallow models in Japanese tasks with and without vocabulary
expansion. “Tokens” represent the number of training tokens.

H Detail analysis of vocabulary expansion impact

Table 9 and 10 show the absolute performance scores for Swallow with and without vocab-
ulary expansion (Swallow ¬VE). While Figure 4 shows relative changes, this table provides
a comprehensive view of the absolute scores across different evaluation tasks.

Regarding Japanese language capabilities, we analyzed the overall impact of vocabulary
expansion on performance across various tasks and model sizes. Excluding the XL-Sum
task, the only dataset where we observed a relative change of more than 10% is JCQA for
the Swallow-7B-VE model. This kind of change was not observed in other model sizes or
evaluation tasks. Table 9 indicates that the training trajectory of JCQA score are not stable.
Unlike the XL-Sum task, where the model without vocabulary expansion (¬VE) consistently
outperforms the model with vocabulary expansion (VE), JCQA does not exhibit such a
consistent trend. For instance, at 40B training tokens, the VE model outperforms the ¬VE
model in JCQA. Based on these evaluation results and the observed instability, we conclude
that the impact of vocabulary expansion on overall performance is minor except for XL-Sum
task.
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Evaluation in English

Model Tokens OBQA TrQA HS SQuAD2 XW GSM8K Avg

Swallow-7B-VE

20 29.8 46.5 53.1 28.6 88.6 7.8 42.4
40 31.8 43.8 52.3 30.5 88.2 7.7 42.4
60 31.2 46.1 52.4 31.3 88.3 9.2 43.1
80 31.4 47.9 52.7 30.4 88.7 9.7 43.5
100 31.8 48.4 53.1 31.3 88.2 11.3 44.0

Swallow-7B-¬VE

20 30.6 48.2 52.9 27.6 87.8 7.9 42.5
40 30.6 46.2 52.2 29.2 88.0 8.0 42.4
60 30.0 48.6 52.9 31.2 88.7 9.7 43.5
80 32.0 49.6 53.0 29.8 88.5 8.5 43.6
100 31.8 50.8 53.3 29.2 88.2 9.9 43.9

Swallow-13B-VE

20 33.6 56.8 56.3 30.5 89.6 14.8 46.9
40 33.0 53.4 55.5 33.4 89.6 15.9 46.8
60 34.0 55.5 55.7 32.4 89.9 17.4 47.5
80 33.8 58.2 56.2 33.0 90.3 19.8 48.5
100 35.0 58.5 56.6 34.1 90.8 20.4 49.2

Swallow-13B-¬VE

20 35.2 56.8 56.2 31.1 89.9 13.7 47.1
40 33.6 55.2 55.6 33.4 89.9 15.6 47.2
60 33.4 57.5 56.7 34.5 89.9 16.8 48.1
80 35.2 59.3 56.7 34.5 90.0 17.0 48.8
100 34.6 60.3 57.0 34.8 90.1 17.5 49.0

Swallow-70B-VE

20 41.6 78.2 64.1 32.7 92.4 39.9 58.1
40 41.0 76.0 64.1 35.9 92.2 43.5 58.8
60 42.2 76.8 64.2 36.3 92.1 45.4 59.5
80 42.6 77.2 64.4 37.4 92.2 48.3 60.4
100 42.2 77.6 64.6 37.5 92.0 48.7 60.4

Swallow-70B-¬VE

20 40.8 78.1 64.2 35.1 92.3 41.1 58.6
40 41.6 76.8 64.0 31.0 91.9 43.4 58.1
60 41.6 77.1 64.2 34.0 92.1 46.9 59.3
80 43.6 78.0 64.6 33.7 92.4 49.1 60.2
100 42.0 78.3 64.7 33.3 92.2 49.7 60.0

Table 10: Evaluation of Swallow models in English tasks with and without vocabulary
expansion. “Tokens” represent the number of training tokens.

I Comparison of models trained from scratch and other continual
pre-training models

Table 11 shows the evaluation results of pre-trained models and continual pre-training
models, with the majority developed in Japan (see Table 12 in the appendix for the sources
of the models). Some LLMs trained from scratch outside of Japan (Mistral v0.1, Qwen-
7B, Qwen-14B) show higher Japanese performance than Llama 2. The models that are
continually pre-trained from these LLMs (japanese-stablelm-base-gamma-7b, nekomata-7b,
nekomata-14b) show higher average scores than Swallow, suggesting that the performance
differences in the base models are reflected.

I.1 Details of models trained from scratch

calm2-7b A model with the Llama architecture trained on 1.3T tokens of Japanese and
English corpora.

llm-jp-13b-v1.0 A model with the GPT-2 architecture trained on 300B tokens of Japanese
and English corpora.

PLaMo-13b A model trained on 180B tokens of Japanese, 1.32T tokens of English, totaling
1.5T tokens.
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Model Japanese evaluation dataset
JCQA JEMHQA NIILC JSQuAD XL-Sum MGSM En-Ja Ja-En Avg

calm2-7b 22.0 50.5 50.7 78.0 2.3 6.0 23.5 15.0 31.0
J Stable LM β 7b 36.1 44.8 44.3 83.2 22.0 7.2 19.5 12.3 33.7
ELYZA-7b 57.9 47.0 40.2 82.3 13.1 6.0 18.0 12.9 34.7
youri-7b 46.2 47.8 50.0 85.1 19.6 6.4 26.7 19.7 37.7
Mistral v0.1 7B 73.0 42.5 27.2 85.6 20.1 17.6 14.1 17.3 37.2
J Stable LM γ 7b 73.6 46.4 55.7 89.1 22.9 16.8 23.9 15.6 43.0
Qwen-7B 77.1 42.3 23.8 85.9 13.7 21.6 16.9 18.0 37.4
nekomata-7b 74.2 49.3 50.2 87.1 16.8 12.4 26.7 18.2 41.8
Llama-2-7b 38.5 42.4 34.1 79.2 19.1 7.6 17.8 17.4 32.0
Swallow-7b 48.1 50.8 59.7 85.7 18.3 12.4 25.1 15.1 39.4
llm-jp-13b-v1.0 22.6 47.9 38.6 77.4 10.8 2.4 19.6 11.9 28.9
PLaMo-13b 22.7 51.9 41.4 76.2 10.3 3.6 15.8 12.0 29.2
ELYZA-13b 74.0 42.6 46.8 87.2 14.1 3.2 22.0 14.9 38.1
Qwen-14B 88.3 42.4 32.2 89.8 18.5 38.8 22.2 22.2 44.3
nekomata-14b 91.7 57.8 61.1 91.5 21.3 35.6 29.9 23.1 51.5
Llama-2-13b 70.0 44.2 41.7 85.3 21.4 13.2 21.5 19.8 39.6
Swallow-13b 78.4 50.6 64.0 90.1 21.7 20.4 27.2 17.7 46.3
J Stable LM β 70b 91.2 49.3 60.4 91.9 25.7 41.6 27.7 23.4 51.4
Llama-2-70b 86.9 46.6 52.6 90.8 23.6 35.6 26.4 24.0 48.3
Swallow-70b 93.5 62.9 69.6 91.8 22.7 48.4 30.4 23.0 55.3

Table 11: Evaluation results on Japanese evaluation datasets.

J Sources of evaluated models

Table 12 lists the names of the models used in the experiments and their corresponding
Hugging Face Model Names. The abbreviations in the “Training detail” column of Table 12
are defined as follows: VE for vocabulary expansion, CT for continual pre-training, and PT
for pre-training from scratch.

The models with “Ja & En” in their Training detail were trained on both Japanese and
English data, while those with “Zh & En” were trained using Chinese and English data.
Models with “Ja” were trained solely on Japanese data, and those with “En” were primarily
trained on English data.

Note that the “Training detail” column presents the major data source used for training.
However, some models may also use small amounts of other types of data in their training
data, for example, source code, mathematical texts, and corpora in other languages.
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Model Training detail Model name on Hugging Face
calm2-7b (PT, Ja & En) cyberagent/calm2-7b
J Stable LM β 7b (CT, Ja & En) stabilityai/japanese-stablelm-base-beta-7b
ELYZA-7b (CT, Ja) elyza/ELYZA-japanese-Llama-2-7b
youri-7b (CT, Ja & En) rinna/youri-7b
Mistral v0.1 (7B) (PT, En) mistralai/Mistral-7B-v0.1
J Stable LM γ 7b (CT, Ja & En) stabilityai/japanese-stablelm-base-gamma-7b
Qwen-7B (PT, Zh & En) Qwen/Qwen-7B
nekomata-7b (CT, Ja & En) rinna/nekomata-7b
Llama-2-7b (PT, En) meta-llama/Llama-2-7b-hf
Swallow-7b (CT, VE, Ja & En) tokyotech-llm/Swallow-7b-hf
llm-jp-13b-v1.0 (PT, Ja & En) llm-jp/llm-jp-13b-v1.0
PLaMo-13b (PT, Ja & En) pfnet/plamo-13b
ELYZA-13b (CT, Ja) elyza/ELYZA-japanese-Llama-2-13b
Qwen-14B (PT, Zh & En) Qwen/Qwen-14B
nekomata-14b (CT, Ja & En) rinna/nekomata-14b
Llama-2-13b (PT, En) meta-llama/Llama-2-13b-hf
Swallow-13b (CT, VE, Ja & En) tokyotech-llm/Swallow-3b-hf
J Stable LM β 70b (CT, Ja & En) stabilityai/japanese-stablelm-base-beta-70b
Llama-2-70b (PT, En) meta-llama/Llama-2-70b-hf
Swallow-70b (CT, VE, Ja & En) tokyotech-llm/Swallow-70b-hf

Table 12: Evaluated models and their distribution URLs
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