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ABSTRACT

In machine learning, the scaling law describes how the model performance im-
proves with the model and data size scaling up. From a learning theory per-
spective, this class of results establishes upper and lower generalization bounds
for a specific learning algorithm. Here, the exact algorithm running using a spe-
cific model parameterization often offers a crucial implicit regularization effect,
leading to good generalization. To characterize the scaling law, previous theoret-
ical studies mainly focus on linear models, whereas, feature learning, a notable
process that contributes to the remarkable empirical success of neural networks,
is regretfully vacant. This paper studies the scaling law over a linear regres-
sion with the model being quadratically parameterized. We consider infinitely
dimensional data and slope ground truth, both signals exhibiting certain power-
law decay rates. We study convergence rates for Stochastic Gradient Descent and
demonstrate the learning rates for variables will automatically adapt to the ground
truth. As a result, in the canonical linear regression, we provide explicit separa-
tions for generalization curves between SGD with and without feature learning,
and the information-theoretical lower bound that is agnostic to parametrization
method and the algorithm. Our analysis for decaying ground truth provides a new
characterization for the learning dynamic of the model.

1 INTRODUCTION

The rapid advancement of large-scale models has precipitated a paradigm shift across Al field, with
the empirical scaling law emerging as a foundational principle guiding practitioners to scale up the
model. The neural scaling law (Kaplan et al., [ 2020; Bahri et al., 2024) characterized a polynomial-
type decay of excess risk against both the model size and training data volume. Originated from
empirical observations, this law predict the substantial improvements of the model performance
given abundant training resources. Enough powerful validations have supported the law as critical
tools for development of model architecture and allocation of computational resources.

From the statistical learning perspective, neural scaling law formalizes an algorithm-dependent gen-
eralization that explicitly quantify how excess risk diminishes with increasing model size and sample
size. This paradigm diverges from the classical learning theory, which prioritizes algorithm-agnostic
guarantees through a uniform convergence argument for the hypotheses. Empirically, the neural
scaling law demonstrates a stable polynomial-type decay of excess risk. This phenomenon persists
even as model size approaches infinity, challenging the traditional intuitions about variance explo-
sion. Theoretically, this apparent contradiction implies the role of implicit regularization. Learning
algorithms, when coupled with specific parameterized architectures, realize good generalization that
suppresses variance explosion. The critical interplay between parameterization methods, optimiza-
tion dynamics, and generalization, positions algorithmic preferences as an implicit regularization
governing scalable learning.

Theoretical progress in characterization of the polynomial-type scaling law has largely centered on
linear models, motivated by two synergistic insights. First, the Neural Tangent Kernel (NTK) theory
(Jacot et al.,|2018}; |Arora et al., 2019) reveals that wide neural networks, when specially scaled and
randomly initialized, can be approximated by linearized models, bridging nonlinear architectures to
analytically tractable regimes. Second, linear systems allow for precise characterization of learning
dynamics. The excess risk of linear model is associated with two key factors, the covariance operator



Under review as a conference paper at ICLR 2026

Plot of Mean Error vs Time Step Plot of Mean Error vs Time Step Log-Log Plot of Mean Error vs Sample Size T

22 —— Mean Error of Quadratic —— Mean Error of Quadratic N
200 —— Mean Error of Linear 12 —— Mean Error of Linear

Mean Error
Mean Error

log(Mean Error)

“| —=— Mean Error of Quadratic

Mean Error of Linear
- Alg Rate of Quadratic
--- Alg Rate of Linear
7x10-2{ ---- Information Low

Phase 1 100 Phase 2 1 Phasel 60 Phase 2 10° 2x10° 3x10° 4x10°
Step (t) Step (t) log(Sample Size T)

(a) Quadratic v.s. Linear Model (b) Quadratic v.s. Linear Model (¢) Empirical v.s. Theoretical Results

Figure 1: Empirical results on the convergence rate of quadratically parameterized model with spec-
tral decay v.s. traditional linear model. (a) and (b) show the curve of mean error against the number
of iteration steps, with « = 2.5, = 1.51in (a) and a« = 3,8 = 2 in (b), respectively. (c) show
the logarithmic curve of final mean loss against the sample size, where the solid lines represent the
empirical results and the dashed lines represent the theoretical rates.

spectrum and the regularity of ground truth (Lin et al., 2024; Bahri et al.}2024). In the Reproducing
Kernel Hilbert Space (RKHS) framework, these factors can be described by the capacity of the
kernel and source conditions of the target function (Caponnetto & De Vitol 2007).

Compared with traditional studies in linear regression, recent analyses have shifted focus to high-
dimensional problems with non-uniform and fine-grained covariance spectra and source condi-
tions (Caponnetto & De Vitol [2007; Bartlett et all [2021). The NTK spectrum is shown to ex-
hibit power-law decay when the inputs are uniformly distributed on the unit sphere (Bietti & Mairal,
2019; Bietti & Bachl2021)). In the offline setting, Gradient Descent (GD) and kernel ridge regression
(KRR) exhibit the implicit regularization and multiple descents phenomena, under various geome-
tries of the covariance spectrum and source conditions (Gunasekar et al., [2017; Bartlett et al., 2020;
Ghorbani et al.l [2021; |[Zhang et al.| [2024b). In the more widely studied online setting, Stochastic
Gradient Descent (SGD) has been proven to achieve a polynomial excess risk under a power-law
decay covariance spectrum and ground truth parameter (Dieuleveut & Bach,|[2016}|Lin & Rosasco),
2017; W et al., [2022).

However, significant gaps persist in explaining the scaling laws when relying on simplified lin-
ear models. A primary limitation of these models is their inability to capture the feature learning
process, a mechanism that is widely regarded as crucial to the empirical success of deep neural
networks (LeCun et al.,2015). This process enables neural networks to autonomously extract high-
quality hierarchical representations from data, leading to effective generalization. This limitation
arises because linear models inherently restrict the capacity to learn feature representations and
tend to rapidly diverge from the initial conditions. In linear models, the parameter trajectory under
SGD follows a predictable pattern: the estimation bias contracts at a constant rate proportional to
the eigenvalue of each feature, while variance accumulates uniformly. However, neural networks
are not constrained by an initial feature set; instead, they adaptively reconfigure their internal rep-
resentations through coordinated parameter updates. The feature learning can often improve the
performances. For example, even the enhanced convolutional neural tangent kernel based on the lin-
earization of neural networks in the infinite-width limit has a performance gap compared to neural
networks on the CIFAR10 dataset (Li et al., 2019).

In this paper, we study a quadratically parameterized model: f (x) = <SX7 v®2>, where S €
RM x H is the sketch matrix, and x € H is the input data, and v € R™ are the model parameters,
as an alternative testbed to study the scaling law. This model can be regarded as a “diagonal”
linear neural network and exhibits feature learning capabilities. As shown in Figure [I] (a) and (b),
linear models exhibit a empirically suboptimal convergence rate on excess risk under SGD. This
suboptimal performance is not solely attributed to the limitations of SGD itself. As demonstrated
in Figure[T](c), SGD achieves a significantly faster convergence rate on excess risk in quadratically
parameterized models, aligning with our theoretical findings. Note that the previous studies for
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quadratically parameterized models (HaoChen et al., 2021)) often assume a sparse ground truth for
the model where the variance will explode with the number of non-zero elements increasing and
no polynomial rates are established. We instead consider an infinitely dimensional data input and
ground truth, whose signal exhibits certain power-law decay rates. Specifically, for constants «, 5 >
1, we assume that the eigenvalues of the covariance matrix decay as \; =< ¢~ and that v the ¢-th
alignment coordinate of the ground truth satisfies \; (v;")4 = i~%. Suppose the model has access to
the sketched covariates and their response, we study the excess risk of quadratically parameterized
predictor with M parameters and trained by SGD with tail geometric decay schedule of step size,
given T training samples.

We establish the upper bound for the excess risk, demonstrating that its follows a piecewise power
law with respect to both the model size and the sample size throughout the training process. More
concretely, the upper bounds of the excess risk R (vT) — E[£2] behaves as

1 o’D D 1
N A T e
~—— ~—~—

approximation variance bias

where D = min {Tl/ max{f,(a+5)/2} Nf } serves as the effective dimension. The above result
reveals that, for a fixed sample size, increasing the model size is initially beneficial, but the re-
turns begin to diminish once a certain threshold is reached. Moreover, when the model size is

large enough, SGD achieves the excess risk as 1) (TﬁH%) when o < 3, and the excess risk as

_28-2 Lo . . .
@ (T athB ) This indicates that when the true parameter aligns with the covariance spectrum

(a < B), the quadratically parameterized model, similar to the linear model, achieves the optimal
rate (Zhang et all 2024a). On the other hand, when the true parameter opposes the covariance

spectrum (o > ), SGD achieves a rate of o (T7%> in the quadratically parameterized model,

which outperforms the best rate SGD can achieve in the linear model ) (T_%> (Zhang et al.,
2024a)).

In our analysis, we characterize the learning process of SGD into two typical stages. In the first
“adaptation” stage, the algorithm implicitly truncates the first D coordinates to form the effective
dimension set S, based on the initial conditions. The variables within S grow and oscillate around
the ground truth, while the remaining variables are constrained by a constant multiple of the ground
truth, leading to an acceptable excess risk. In the second “estimation” stage, the variables in the
effective dimension set S converge to the ground truth, while the other variables remain within a
region that produces a tolerable level of excess risk. The advantage beyond the linear model is easy
to be observed in the “estimation” stage, where the step size is scaled by the certain magnitude of
the ground truth due to the adaption, resulting in a faster convergence rate for the bias term.

Due to the non-convex nature of the quadratically parameterized model, our analysis is much more
involved. The main challenge in our analysis is the diverse scaling of the ground truth signals and the
anisotropic gradient noise caused by the diverse data eigenvalues. This requires us to provide indi-
vidual bounds for the model parameters through the analysis and proposes a refined characterization
for the learning process. This challenge does not exist in the traditional analysis in the quadratically
parameterized model, since they consider near isotropic input data and ©(1) ground truth (HaoChen
et al.,[2021). By constructing non-trivial couplings and employing truncated sequences, we provide
a precise coordinate-wise analysis for the SGD dynamics, thereby overcoming this challenge.

We summarize the contribution of this paper as follows:

* The learning curves of SGD is proposed based on a quadratically parameterized model that
emphasizes feature learning. We establish excess risk against sample and model sizes.

* A theoretical analysis for the dynamic of the quadratically parameterized model is of-
fered, where we propose a new characterization to deal with the decaying ground truth
and anisotropic gradient noise.



Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Linear Regression. Linear regression, a cornerstone of statistical learning, achieves information-
theoretic optimality O (d02 / T) in finite dimensions for both offline and online settings (Bach &
Moulines, 2013} Jain et al., 2018} |Ge et al., 2019). Recent advances extend analyses to high-
dimensional regimes under eigenvalue regularity conditions and parameter structure (Raskutti et al.,
2014} |Gunasekar et al., 2017} |Bartlett et al., 2020; Hastie et al., 2022} Tsigler & Bartlett, [2023)).
Offline studies characterize implicit bias, benign overfitting, and multi-descent phenomena linked
to spectral geometries (Liang et al., 2020} |(Ghorbani et al.| 2021; Mei & Montanari, [2022; Lu et al.,
2023} |[Zhang et al., 2024b)), while online analyses reveal SGD’s phased complexity release and co-
variance spectrum-dependent overfitting (Dieuleveut & Bach|, 2016} Dieuleveut et al.| 2017} [Lin
& Rosasco, 2017 |Al1 et al.l [2020; [Zou et al.| 2021ajb; (Wu et al., [2022; [Varre et al., 2021). Re-
cent work quantifies SGD’s risk scaling under power-law spectral decays (Paquette et al.,2024; [Lin
et al., [2024; Bordelon et al.| 2024} Bahri et al., [2024). We follow the geometric decay schedule of
the step size (Ge et al.| 2019; Wu et al., 2022} |[Zhang et al., 2024a)) in Phase II due to its superior-
ity in balancing rapid early-phase convergence and stable asymptotic refinement (Ge et al., [2019).
However, in analysis of Phase II, we further require constructing auxiliary sequences to reach the
desired convergence rate, which is much more technical.

Feature Learning. The feature learning ability of neural networks is the core mechanism behind
their excellent generalization performance. In recent years, theoretical research has primarily fo-
cused on two directions: one is the analysis of infinitely wide networks within the mean-field
framework, see e.g. |[Mei et al.| (2018); |Chizat & Bach| (2018)), and the other is the study of how
networks align with low-dimensional objective functions including single-index models (Ba et al.,
2022; Mousavi-Hosseini et al., 2022 Lee et al., 2024} and multi-index models (Damian et al., 2022}
Vural & Erdogdul 2024). Although significant progress has been made in these areas, the mean-field
mode lacks a clear finite sample convergence rate. Assumptions such as sparse or low-dimensional
isotropic objective functions weaken the generality and fail to recover the polynomial decay of gen-
eralization error with respect to sample size and model parameters. In this paper, we follow the
previous quadratic parameterization (Vaskevicius et al., 2019; Woodworth et al., [2020; |[HaoChen
et al.,2021) while develop a generalization error analysis under an anisotropic covariance structure,
yielding generalization error results similar to those predicted by the neural scaling law.

3 SETUP

3.1 NOTATION

In this section, we introduce the following notations adopted throughout this work. Let O(-) and €(-)
denote upper and lower bounds, respectively, with a universal constants, while O(-) and (-) ignore
polylogarithmic dependencies. For functions f and g: f < g denotes f = O(g); f 2 ¢ denotes

f=Q(g); f < gindicates g < f < g. We denote R[z] <, as the vector space of polynomials with
real coefficients in variables z = (z1,--- ,z), of degree at most k. For a positive integer M, let
[M] denote the set {1,--- , M}.

3.2 QUADRATICALLY PARAMETERIZED MODEL

We denote the covariate (feature) vector by x € Hl, where H is a finite d-dimensional or countably
infinite dimensional Hilbert space, and the corresponding response by y € R. Notice that the
algorithm operates solely in finite-dimensional spaces. Following |[Lin et al.| (2024), we assume
access to M-dimensional sketched covariate vectors and their corresponding responses, denoted
(Sx,y), where S € RM x H is a fixed sketch matrix.

We focus on a quadratically parameterized model and measure the population risk of parameter v
by the mean squared loss as:

2

Rar (v) = Egxyynp ((Sx,v9%) — )7, )
where the expectation is taken over the joint distribution D of (x,y). In this paper, we study the
quadratically parameterized model with the predictor fy (x) := (Sx,v®?) for any v.€ R™. One
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can generally use the parameterization as (Sx, VS?Q — v®?) by the same technique as Woodworth

et al.| (2020). In contrast with linear model (Lin et al., 2024), quadratically parameterized model
allows discovery of discriminative features through learning towards dominant directions of target.
Thus, it models the feature learning mechanism while ensuring analytical tractability.

3.3 DATA DISTRIBUTION ASSUMPTIONS

We make the following assumptions of data distribution.

Assumption 3.1 (Anisotropic Gaussian Data, Sub-Gaussian Noise, and Gaussian Remainder).

[A1] (Independent Gaussian Data) For any i € [M], the sketched covariate (Sx); ~ N(0, \;). For
any ¢ # j, (Sx); and (Sx); are independent.

[A2] (Sub-Gaussian Noise and Gaussian Remainder Term) There exist v* € RM and a sub-Gaussian
random variable ¢ with parameter o > 0 (see Definition for details) such that the remainder
term Cpy =y — (Sx, v*©?) — ¢ follows a normal distribution A'(0, o¢, ). Moreover, E [£¢as] = 0.
Additionally, for any polynomial p(Sx) € R[Sx|<3, we have E [p(Sx){] = 0 and E [p(Sx)(p] = 0.

The assumption for independent Gaussian data is also used in other analyses for the quadratically
parameterized model, such as [HaoChen et al.| (2021)), whereas, we allow non-identical covariates.
The independence assumption resembles (is slightly stronger than) the RIP condition, and is widely
adopted in feature selection, e.g. |(Candes & Tao|(2005)), to ensure computational tractability, because
in the worst case, finding sparse features is NP-hard (Natarajan, |1995). To mitigate the limitations
associated with the independence assumption, we further introduce Assumption [3.2]and also estab-
lish a corresponding convergence guarantee (Theorem 4.2)) for SGD on quadratically parameterized
models under this assumption.

Assumption 3.2 (General Gaussian Data, Sub-Gaussian Noise and Remainder).

[A3] (General Gaussian Data) The sketched covariate vector Sx ~ N(0, A), where A is a positive
semi-definite (PSD) matrix. The singular value decomposition (SVD) of A is given by A = QA -

diag{Ai}ie(m) - Qa-

[A4] (Sub-Gaussian Noise and Remainder Term) There exist v* € R™ and a sub-Gaussian random
variable ¢ with parameter o¢ > 0 such that the remainder term (s == y — <Qj;Sx, v¥O2) — s
sub-Gaussian with parameter o¢,, > 0. Moreover, E [£C5s] = 0. Additionally, for any polynomial

p(QASx) € R[QASx]<3, we have E [p(QASx)¢] = 0and E [p(QASx)Cu] = 0.

Assumption[3.2]strictly generalizes Assumption[3.1]by allowing correlated Gaussian covariates with
an arbitrary PSD covariance and by requiring only a sub-Gaussian remainder with low-degree or-
thogonality. Under this broader correlated-Gaussian assumption, the SGD convergence and feature-
learning guarantees for diagonal-network predictors remain valid, and the diagonal independent case
is recovered as a special instance. Our formulation aligns with the sketch method proposed by [Lin
et al.[(2024). Furthermore, [A3] in Assumption holds for an arbitrary sketch matrix under the
assumption that x follows a zero-mean Gaussian distribution.

We derive the scaling law for SGD under the following power-law decay assumptions of the covari-
ance spectrum and prior conditions.

Assumption 3.3 (Specific Spectral Assumptions).

[As] (Polynomial Decay Eigenvalues) There exists o > 1 such that for any ¢ € [M], the eigenvalue
of data covariance \; satisfy \; < 7.

[A¢] (Source Condition) There exists 5 > 1 such that the ground truth parameter v* satisfies that for
any i € [M], \; (v})* < i~8. Moreover, 0l = 2ismi P
The polynomial decay of eigenvalues and the ground truth has been widely considered to study the
scaling laws for linear models like random feature model (Bahri et al.,|[2024; Bordelon et al.| [2024;
Paquette et al.|[2024) and infinite dimensional linear regression (Lin et al.,[2024), based on empirical
observations of NTK spectral decompositions on the realistic dataset (Bahri et al.,[2024}; Bordelon &
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Algorithm 1 Stochastic Gradient Descent (SGD)

Input: Initial weight vo = Q(min{1, M ~(F=2)/4})1,,, initial step-size 7, total sample size T,
middle phase length h, decaying phase length 77 = | (T — h)/log(T — h)].
while ¢ < T do

ift > hand (t — h) mod 71 = 0 then

1< n/2.

end if

Sample a fresh data (x!1, yi+1) ~ D.

vitl oyt — gvv (fvt(xt+1) _ yt+1)2.
end while

Pehlevan| 2021])). It is used in slope functional regression (Cai & Hall, 2006), and also analogous to
the capacity and source conditions in RKHS (Wainwright, [2019; |Bietti & Mairal, [2019). Given that
the optimization trajectory of linear models is intrinsically aligned with the principal directions of the
covariate feature space, this alignment motivates us to adopt analogous assumptions for our model,
thereby enabling direct comparison of learning dynamics through feature space decomposition.

3.4 ALGORITHM

We employ SGD with a geometric decay of step size to train the quadratically parameterized predic-
tor f, to minimize the objective equation Starting at v, the iteration of parameter vector v e RM
can be represented explicitly as follows:

vt =yt e (val (xt) _ yt) (Vt—l o Sxt)
S e (<Sxt’ (vz_1)®2> _ yt) (Vt—l ® Sxt) ’

fort =1,...,T, where {(x!, yt)}tT:1 are independent samples from distribution D and {nt}thl are
the step sizes.

We use the tail geometric decay of step size schedule as describe in |Wu et al.| (2022). The step
size remains constant for the first 77 + h iterations where h denotes the middle phase length and
Ty := [(T — h)/log(T — h)|. Then the step size halves every 77 steps. Specifically, the decay
schedule of step size is given by:

_ 777 0§t§T1+hv
T2, Ti4h<t<T, l=|(t—h)/T1],

The integration of warm-up with subsequent learning rate decay has become a prevalent technique in
deep learning optimization (Goyal, 2017). Within the decay stage, geometric decay schedules have
demonstrated superior empirical efficiency compared to polynomial alternatives, as geometric decay
achieves adaptively balancing aggressive early-stage learning with stable late-stage refinement (Ge
et al.| 2019). Motivated by these established advantages, our step size schedule design strategically
combines an initial constant stage with a subsequent geometrically decaying stage. This hybrid
approach inherits the computational benefits of geometric decay while maintaining the stability ben-
efits of warm-up initialization, creating synergistic effects that polynomial decay schedules cannot
achieve (Bubeck et al.| 2015).

The algorithm is summarized as Algorithm [I] The initial point v, and the initial step size 7 are
hyperparameters of Algorithm I} and they play a crucial role in determining whether the algorithm
can escape saddle points and converge to the optimal solution. Starting at an initial point near zero,
the constant step size stage allows the algorithm to adaptively extract the important features without
explicitly setting the truncation dimensions while keeping the remaining variables close to zero. The
subsequent geometric decay of the step size guarantees fast convergence to the ground truth.
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4 CONVERGENCE ANALYSIS

The upper bound of last iterate instantaneous risk for Algorithm [T] can be summarized by the fol-
lowing theorem, which provides the guarantee of global convergence for last iterate SGD with tail
geometrically decaying stepsize and a sufficiently small initialization.

Theorem 4.1. Under Assumptions and we consider a predictor trained by Algo-
rithm |I| with total sample size T and middle phase length h = [T/log(T)]. Let D =

min{7T/ max{8.(e+8)/2} N1} and =< D™{0-(@=B)/2} The error of output can be bounded from
above by

1 o’D D 1
—
approximation  variance bias

: e 2._ 2 2
with probability at least 0.95, where 0= := o + 0¢, .

Our bound exhibits two key properties: (1) Dimension-free: equation [3]depends on the effective di-
mension D rather than ambient dimension M. (2) Problem-adaptive: D is governed by the spectral
structure of diag{A\(v})?, -+, Aa(v3i,)?}, which is induced by the multiplicative coupling be-
tween the data covariance matrix and optimal solution determined by the problem. The risk bound
in equation (3| consists of three components: (1) approximation error term, (2) bias error term orig-
inating from v — vi,, atiteration Ty = [(T — h)/log(T — h)], and (3) variance error term
stemming from the multiplicative coupling between additive noise & + >, ;1 Xi(v;)? and ma-
trix diag{vj.,,}. The step size configuration in Theorem is strategically designed to achieve
faster convergence.

For larger M, Corollary . T|establishes the convergence rate for Algorithm[I]via Theorem 4.1}

Corollary 4.1. Under the setting of the parameters in Theorem .1} if T1/ max{f.(o+6)/2} = D <
M, we have

2 .
R (v!) = E[€°] = g7 + 755 ifB>a>1,
Ru(vT) —E[£?] =< 5= + 7m5arsy,  ifa>B>1,

with probability at least 0.95.

Corollary demonstrates that under Assumptions and when the model size M is suffi-
ciently large, the last iterate instantaneous risk of Algorithm [I] exhibits distinct behaviors in two
regimes: (I) 3 > a > 1 and (I) « > B > 1. We consider the total computational budget as
B = MT, reflecting that Algorithm [I]queries M-dimensional gradients 7" times.

Given B: If 5 > « > 1, the optimal last iterate risk is attained with parameter configurations:
~ ~ 3
M = Q(Bﬁ) and T' = Q(Bli*ﬁ). If @« > B > 1, the optimal last iterate risk is attained with

_ ~ 1 ~  _(atp)/2
parameter configurations: M = Q(B™@+/M72) and T = Q(BT+@+572),

Given Total Sample Size T: So as long as M > T/ max{f.(a+5)/2} Corollaryimplicates that
the risk can be effectively reduced by increasing the model size M as much as possible.

For smaller M, Corollary 4.2]provides the convergence rate for Algorithm|[I] through Theorem [4.1]

Corollary 4.2. Under the setting of the parameters in Theorem if M < Tt/ max{B.(a+5)/2} yye
have

1 o2+ 1)M
GEST

RM(VT) - E[§2] = Mﬂfl T

with probability at least 0.95.

The risk bound R p;(+) in Corollary decreases monotonically with increasing M. So as long
as M < 71/ max{B.(e+8)/2}  our analysis implies to increase the model size M until reaching the
computational budget.
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Remark 4.1. For any (random) algorithm ¥ based on i.i.d. data {(x;, y;) }?:1 from the true parameter
v, € V, the worst-case excess risk convergence rate is limited by the information-theoretic lower
bound. The scaling law, however, describes the excess risk trajectory of a specific algorithm in
a given context during training. Under the covariate distribution assumptions [3.1] and the ground
truth assumption prior work (Zhang et al., [2024a)) established the info-theoretic lower bound

as T~ 7. Our analysis shows two distinct regimes: When o« < 3, SGD in linear and quadratically
parameterized models hits the lower bound, proving statistical optimality. When « > 3, SGD in
both misses the bound, yet the quadratically parameterized model has better excess risk than the
linear one. This shows a capacity gap between the two model types, highlighting the importance of
feature learning and model adaptation.

When the coxaiiance matzix of Sx is a general PSD matrix A, we ﬁzst need to obtain an estimate of
A given by UUT, with U € RM>*M _ Then, based on the SVD of U = Qg - diag{~; }ie[n) - P%,
the form of the predictor f, (x) in Algorithm|I|is modified to:

fv(x) = <QIT~JSX, V®2> .

To establish convergence of SGD under this setting, we assume that the estimator U satisfies the
following accuracy condition:

Assumption 4.1. Defining Uy := QaX'/2 where ¥ := diag{\; }ie[n. then the following in-
equalities hold

L | pmaxifi(a+8)/2}-1
uuT - AH <2, min{ -, :
H e ) T

ats
. Ba 1 Dmax{B,T}—l
min UR—UAH <Ap - min M_max{o’ 2 }7—7— .
ReRM X M D T
RRT =I,,

For a PSD matrix A, numerous existing works (Stoger & Soltanolkotabi, [2021; |Zhuo et al., 2024;
Zhang et al., 2021} 2023; Xiong et al., [2023}; L1 et al., [2018}; Tu et al., |2016)) design algorithms
using the parametrization UU " with U € RM*M {0 achieve convergence in |[UUT — A|| or
dist (U, U ) which is defined as follows:

dist (U, Ua) = min [|UR—Ua|.

RRT =I,;

In our setting, we have access to random matrices Sx(Sx) ", where E[Sx(Sx) "] = A. Compared
to the deterministic matrix factorization problem (Stoger & Soltanolkotabil, 2021} Zhuo et al., 2024;
Zhang et al.,[2021;[2023), this only introduces an additional zero-mean random noise. Consequently,
by appropriately modifying existing algorithms for stochastic matrix factorization (e.g., those in
Xiong et al.| (2023)); Li et al.| (2018)); |Tu et al.[{(2016)) , we can technically obtain an estimator U that
satisfies Assumption[4.1]

Theorem 4.2. Under Assumptions [3.2] 3.3 and we consider a predictor trained by Al-
gorithm || with total sample size T and middle phase length h = [T/log(T)]. Let D =
min {7/ max{B.(e+8)/2} MY and n =< D™0(@=B)/2} The error of output can be bounded from
above by

1 oD D 1
RM(VT) _E[£2] S A1 + T +? + 7D5_1]lD<M
approximation  variance bias
+ ’ UU" — A|| +dist (ﬁ,UA> ,

with probability at least 0.95, where 02 = Jg + O’%M.

The proof of Theorem [4.2] follows a similar line of reasoning and technique as that of Theorem
This is because, after applying Qg to the sketched covariate vector, the covariance matrix of QﬁSx

does not deviate significantly from a diagonal matrix. In fact, the difference between the dynamics
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of the parameter v in Theorem[d.1]and those in Theorem[.2|can be controlled by the distance metric
dist(U, U,) and the norm |[UUT — A||, as detailed in section @ Since Theorem u is the core
result of this paper and the proof of Theorem .2 does not differ substantially from that of Theorem
[.1] we provide only a proof sketch for Theorem [4.T]in the next section.

5 PROOF SKETCH OF THEOREM [4.1]

In this section, we introduce the proof techniques sketch of our main result Theorem @.1] while a
more detailed version is available in section [A] The dynamics and analysis of SGD can be divided
into two phases. In Phase I (Adaptation), SGD autonomously truncates the top D coordinates
as S (i.e. S := [D]) without requiring explicit selection of D. Algorithm |I| can converge these
coordinates to a neighborhood of their optimal solutions within 7} iterations with high probability.
The core theorem in this phase is Theorem 5.1}

Theorem 5.1. Under Assumption[3.1] consider a predictor trained via Algorithm[I|with initializa-
tion v°. Let the step size n < n(D,c1), for the effective dimension D and the scaling constant
c1 € (0,1). The iteration number T requires:

T, € [Tl(D,C1),Tu(D,Cl)], ifD < M,
' [T;(M,c1),0), otherwise.

Then, with high probability, we have

vite[(l—c)vi,(L+e)vi], ifi€s, @
vfl € [O, %vf } , otherwise .

In Phase II (Estimation), global convergence to the risk minimizer is achieved over T, := T — T}
iterations, which can be approximated as SGD with geometrically decaying step sizes applied to a
linear regression problem in the reparameterized feature space Sx ® v*. This implies that for each
coordinate ¢ € S, the step size in Algorithm [I|is scaled by a certain magnitude of v;. The core
theorem in this phase is Theorem 5.2}

Theorem 5.2. Suppose Assumptions[3.1]and 3.3 hold. By selecting an appropriate step size 1y =
n(D) and middle phase length h, we obtain

2

N o“D D
Rur(vF) SRy (V") + == + o i T tr (Hpyag) + 75+ 0T tr (HD 1)

1 R 027'1"
+ <Il:D +Hpi1um, (I - TIOH)l = BO> ;
ol

with probability at least 0.95, where

H:= diag{)\i(v;‘)2 i]\il and H := diag{/\l(vf)2, e ,/\N(v}‘\,)2, OM-D}-

For the lower bound (see Appendix , our analysis reveals that for coordinates 7 > @) (D), the slow
ascent rate inherently prevents v§- from approaching the optimal solution v} upon algorithm termi-

nation. This phenomenon induces bias error’s scaling as Q(D’ﬁ“), matching our upper bound
characterization, up to logarithmic factors.

6 CONCLUSIONS

In this paper, we construct the theoretical analysis for the dynamic of quadratically parameterized
model under decaying ground truth and anisotropic gradient noise. Our technique is based on the
precise analysis of two-stage dynamic of SGD, with adaptive selection of the effective dimension
set in the first stage and the approximation of linear model in the second stage. Our analysis charac-
terizes the feature learning and model adaptation ability with clear separations for convergence rates
in the canonical linear model.
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A DETAILED PROOF SKETCH OF THEOREM 4.1

A.1 PHASE I: ADAPTATION

During the “adaptation” phase, Algorithm|[T]implicitly identifies the first D coordinates as the effec-

tive dimension set S := [D]. Foreachi € S, V;‘Fl converges with high probability to a rectangular

neighborhood centered at v with half-width ¢;v}. Here, ¢; € (0, 1) denotes a scaling constant. For
eachi € §¢:= [M]\ S, V;‘Fl remains bounded above by %Vj with high probability.

To characterize the mainstream dynamic, our analysis employs a probabilistic sequence synchro-
nization technique. That is, from the sequence {Vt}tT;O generated by Algorithm , we construct a

control sequence {q'}}.., to rule out some low-probabilistic unbounded trajectories in {v'}7,. We
first establish Lemmas [A.THA 3] for the control sequence.

In the analysis of Phase I, we need to delve into the dynamic processes of the two-part parameters
separated by the effective dimension D. It is non-trivial because in the traditional analysis of prior
work to recover the sparse ground truth (HaoChen et al.l 2021]), it is unnecessary to introduce D. In
LemmalA_.T] utilizing a constructive supermartingale, we formally characterize the one-step iterative
behavior of q¢ when q¢ > v}, which approximately satisfies: q/"* —v¥ < (1-70(\;(v})?))(q! —
v}). Then we show the last iterate g satisfies a high-probability upper bound, matching the bound
in Theorem[3.1]

Lemma A.1. Under the setting ofTheorem both q?l < (14c1)v] foranyi € S and q?l < %V;k
Sfor any i € 8¢ occur with high probability.

Lemmas and collectively address the lower bound of q”* in Theorem To estab-
lish Lemma [A2] for any ¢« € S, we construct a submartingale to formally analyze the one-
step iterative behavior of qf when q¢ < (1 — ¢;/2)v}, which approximately satisfies: q‘t* >
(1 + ne1O(N\i(vi)?)q!l. According to the concentration inequalities, we obtain the following con-

clusion.
Lemma A.2. Under the setting of Theorem with high probability, either max;<r, @ > (1 —

c1/2)V for any i € S, or at least one of the following statements fails: ;" < (1 + c1)v} for any
1€ S and q;TFl < %Vj‘ forany i € S°.

Lemma establishes the lower bound for q" (i € S). The proof mirrors that of Lemma

Lemma A.3. Under the setting of Theorem for any i € S, with high probability, either
maxi<r, q° < (1 —c1/2)v} or qiT1 >(1—c)ve

According to the high-probability equivalence between {q’}*, and {v*}.,, Lemmas |A.1HA.3[s
conclusions transfer to v?* with high-probability guarantees. Therefore, we obtain Theorem 5.1

A.2 PHASE II: ESTIMATION

We now start the analysis of Phase II for Algorithm [I} The main idea stems from approximat-
ing Algorithm [Ifs iterations as SGD running over a linear model with rescaled features Sx © v*.
The adaptive rescale size v* enables the quadratic model to achieve accelerated convergence rates
compared to its linear counterpart.

The proof of Theorem|[5.2)is structured in two key parts. In Part I, Theorem establishes that Al-
gorithm I]iterates remain within an uniform neighborhood of v* (equation[5) with high probability.

Theorem A.1. Under Assumption we consider the iterative process of Algorithm[I} beginning
from step T with the same step size 1 as in Theorem IfD < M, let1l < Ty <T,(D) where
T.(D) € N, depends on D; otherwise, let Ty > 1. Then, with high probability, we have

T+t 1% 3% o
vi'"e[pviigvil, ifie (D],
i ! ! t e |1z 5
{ViTlth € [0,2v]], otherwise , vt eln] )

Let ¢; = 1. According to Theorem 5.1} v7* satisfies equation |4 with high probability. By employ-
ing the same construction method as that in Lemmas[A.T|and[A.1] we derive a family of compressed
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supermartingales to characterize the dynamics of {Qt}%F:Tl- Combining the supermartingales con-
centration inequality, we obtain equation [3]

In Part II, we construct an auxiliary bounded sequence {w'}72, which is the truncation of
{vTi+t172  The novelty and ingenuity of our analysis based on auxiliary sequence construction lie
in the alignment of {w*}72  and {v71**}72, as w”> = v with high probability by Theorem|A.1
Thus our proposed the last iterate risk for w2 can be extended to v’ Specifically, the update rule
of w' satisfies the following formula with high probability:

with = w' —pH' (W' — v*) + 7 R'SX’, (6)

where H! € RM*M depends on w' and x’, and R? € RM*M depends on w', (!, and £'. Com-

bining equation |§I with the constraint of {wt}tTil, we observe that the update process of w? approx-
imates that of SGD in traditional linear regression problems (Wu et al., 2022) with reparameterized
features Sx ® v*. The SGD iteration in linear model exhibits structural similarity to equation[6] but
differs in that its H* and R? are independent on iterative variables; this independence eliminates the
need for truncated sequences in analytical treatments. Our analysis innovatively introduces the trun-
cated sequence {Wt}?i , to maintain analytical tractability of H and R'. According to equation@
we decompose the risk R s (w??2) as follows:

E[Ry(w™)] —Ryu(v¥) < (H,B2)+ (H, V™). (7)
bias error variance error

For any t € [T3], B and V' are M x M matrices, derived from the bias and variance terms induced
by w! —v*, respectively. Since H* and R? in equation|6]are both dependent on w, it is a challenge
to directly establish the full-matrix recursion between V**! and V* (or B**! and B?) under the
SGD iteration process like the similar techniques in linear models (Wu et al.| |2022). To resolve
this challenge, we novelly consider the recursive relations between diagonal elements of {V* tTio
and {Bt}tTiO across discrete time steps, thereby obtaining the estimation for both variance and bias
errors for our linear approximation.

B PROOFS OF UPPER BOUND (THEOREM [4.1))

In this section, we introduce our proof techniques to prove our main result Theorem[B.4]on the upper
bound of the last-iteration instantaneous risk of Algorithm[I] As shown in Section [5] the dynamic
of SGD and our analysis can be basically divided into two phases. In the Phase I named “adaption”
phase, we demonstrate that SGD can adaptively identify the first D coordinates as the optimal set
S without explicit selection of D, and bound such D coordinates near the corresponding optimal
solutions by 7 iterations with high probability (refer to Theorem [B.T)). The analysis of Phase I can
be further separated into two parts:

1. We construct a high-probability upper bound of v’*. That is for any i € S, viT1 < (1+
c1)v} and forany i € S¢, vI' < 3v7 (refer to Lemma .

for any ¢ € S, max;<p, Vi converges to a neighborhood of v} (refer to Lemma

When max;<7, vﬁ resides within the v} -neighborhood, the lower bound satisfies v;-‘rl >
(1 — ¢1)v} with high probability (refer to Lemma [B.3).

2. We delve into the lower bound of max;<7, v} during T} iterations. With high probability,
B2)

Then we turn to the following Phase II with 75 iterations named “estimation” phase where we
establish the global convergence of Algorithm [I|for risk minimization (refer to Theorem B.2)). The
analysis of Algorithm [I]s iterations can be approximated to SGD with geometrically decaying step
sizes on a linear regression problem with reparameterized features Sx ® v*. It can also be separated
into two parts:

1. We demonstrate that {Vt}tT;}lTj_l remain confined within the neighborhood

17, [4vy, 3vi] < TTi 1[0, 2v7] with high probability (refer to Lemma|B.3).
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2. We construct an auxiliary sequence {w*}72, aligned to {v7:**}12 with high probability.
We approximate the update process of {W’f}tTi1 to SGD in traditional linear regression,
with separated bounds of variance term (refer to Lemmal[B.5) and bias term (refer to Lemma

B.12).

We propose our proof process step by step according to the above sketch. First, for clarity, we
formally define some of the notations to use. We let bold lowercase letters, for example, x € R4,
denote vectors, and bold uppercase letters, for example, A € R™*", denote matrices. We apply
scalar operators to vectors as the coordinate-wise operators of vectors. For vector x € R¢, denote
x| € R? with x|; = [x;|. For two vectors x,y € R4, denote x <y, if forall j € [d], x; < y;.
Additionally, we use (x,y)_; to denote 3¢ =t X;¥j. For a sequence of real numbers {v'};2, and

a,b € R with a < b, denote v'*°*2 € [a, b] 0 represent that v* € [a,b] forall t € [ty,ts].

Considering Assumption the random variable Sx € RM satisfies the sub-Gaussian condition

with parameter )\3/ ? for all i € [M], and the noise & is zero-mean sub-Gaussian with parameter o.
For any D € N, for simplification, we define

Omin(D) := min /\j(vj)Q, Tmin(D) := min (v} )2

JEID] jep)
Am'}x D) := 1 9 ~m X D) = Aj.
Omax(D) max log (vj),  Omax(D) e A

We also denote the matrix diag{\1,..., A} as Ay.ar. For b € RY, we define M(b) = (Zjle
Ab)Y2 and 02 = 0F + 0, , where o¢,, = (357,11 A (vi)*)!/2. We denote

‘Ft = O-{Voa (lea<11\47£1)7' o 7(Sxt7<]t\/17§t)}

as the filtration involving the full information of all the previous ¢ iterations with o {-}.

B.1 HIGH-PROBABILITY RESULTS GUARANTEE

Before the analyses of the two phases, we first introduce the guarantee of our high-probability re-
sults. We formally define a series of events for each iteration of Algorithm[I] We demonstrate that
these events occur with high probability throughout the whole T iterations, which indicates that
the control sequence {q’}’_, we define is aligned with the original sequence {v‘}1_; with high
probability. This fact is the basis of our high-probability results.

At the t-th iteration, Algorithm [I| requires sampling (Sx'*1, y**1), where y'*! = (Sx**! v*) +
Cﬂl + &1, For simplicity, we denote Sx as x. In order to simply rule out some low-probabilistic
unbounded cases, for each iteration ¢, we define the following four events as:

&t = {[xt| < AR}, vie M)
£ (v) = {|(v®? = v x") 5| <ri(VR}, V)€ [M],
5; = {’Cf\/{‘ < JCMR}’
& ={|¢"| < oeR},

where R := O(log(MT/6)) and r;(v) := O3, \i[(vi)* + (v)*])'/? for any v € RM.

i#]

In Algorithm |1} the original sequence {v‘}L_, follows the coordinate-wise update rule as

V§_+1 V; e (< t@27xt+1> _yt+1) ;+1 ;‘
ljf 0 <Vt®2—V*®2,Xt+1> t+1vt +77 (C}S\/}rl +£t+1) §+1V§,

for any j € [M]. Based on Assumption 3.1]and Proposition [E.1] we have
_ | | 5
min {P (") P (4'(v) P (&) P (€D} 21~ 0 <MT2> :
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for any j € [M] and ¢ € [T]. Then we define the compound event as

T M M

e=<MINE )AL E | N\ENE

t=1 j=1 j=1
We can directly obtain the probability union bound as follows:

M

1-3" [2-peEh) -pEnH +Y (2 P (5{¢) _Pp (5§’t(vt)>)

j=1

0
S1-0 (T) . ®)

The high-probability occurrence of event £ guarantees our analysis of the coordinate-wise update
dynamics for the control sequence {q'}7_, defined in RM as

P(E) =1 —P(£°)

Y

-~
—

qi™ =qf -, ((013)2 - (V§)2> () Lt oxi2 p9;

i te2 _ *x02 t+1 t+1 t
m <q v , X >—j ]l|<qt®2 —v*O2 xt+1)_|1<r;(qt)RX; ]l‘x§_+1‘§>\];/2qu

t+1 t+1 t+1 t
+ e (CM ]1|CR4‘§U<MR +¢ 1\£t|§o§R) X; ]l‘x;-Pl‘S)\;/?qua 9)

0 is consistent with the analysis of {v'}_, with high

for any j € [M] with initialization q° = v
probability as Proposition [B.1]

Proposition B.1. Forany t € [T], we have vt = q' with probability at least 1 — §/T.
To simplify the representation of {q'}7_, we introduce four truncated random variables as:

~ M . . A~ _ .
L. X € RY with entries X; = x; 1, 12, forany j € [M],

1<

2. z(q) € RM with entries Z;(q) = (q®2 — v*@2,x>_j Lj(qo2—v=02 x)_,|<r;(@)R
3. Cu = Culey<o,, B
4. € =Elecoer
Thus, the coordinate-wise update dynamics for {q}7_ in equation@]can be represented as:
o =)~ (@) = (v)") &) o) - miz T (a)R
o (Gt + ) R (10)
for any j € [M].

B.2 PROOF OF PHASE |

In this section, we formally propose the proof techniques of Phase I in Theorem Theorem [B.1
establishes that Algorithm [T] adaptively selects a effective dimension D € N with the following

convergence properties: (1) for j < D, val converges to an adaptive neighborhood of v7; (2) for
3> D, VjT1 is bounded by % max{v;f, QV?}. Theorem specifies the intrinsic relationship be-
tween Algorithm|[I]s key parameters: the recommended step size 7, effective dimension D, and total
sample size T". Furthermore, under Assumption Phase II analysis demonstrates the optimality

of the effective dimension D selected in Theorem [B.1]

Theorem B.1. [Formal version of Theorem ] Under Assumption [3.1] consider the dynamic
generated via Algorithm |I| with initialization vo. Denote (1) the threshold vector v* € RM
with coordinate v; = max{%v;-‘,?)v?} for any j € [M]; (2) the composite vector b =
(14 c1)(vip) " (Vhirar) ') . where the scaling constant ¢y € (0,1/2). Let the step size
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~ /2.
satisfy n < Q (W) for the given effective dimension D € N,. If the iteration

number T requires:

A (MDY | G & ax (D) .
" OC@MQJWWWWMMWH’ ifD <M
(@] %) : oo) , otherwise,
00 min

then the dynamic satisfies the following convergence property:

*

v e {E)’; —avi,vi+avi], ifje(D], (an

J , % max{vj, 2v§)}] , otherwise |

with probability at least 1 — 0.

Before the beginning of our proof, we define the b-capped coupling processes used in the following
lemmas as below.

Definition B.1 (b-capped coupling). Let {q'}7_, be a Markov chain in ]Rf adapted to filtration
{F},. Given threshold vector b € R, the b-capped coupling process {v’}]_ with initializa-
tion ¥9 = q° < b evolves as:

1. Updating state: If ¥* < b, let v!*! = g**1,

2. Absorbing state: Otherwise, maintain v'+! = ¥,

B.2.1 PART I: THE COORDINATE-WISE UPPER BOUNDS OF vt .

In this part, we establish coordinate-wise upper bounds for v’* in Lemma For each co-
ordinate ¢ € [M], we develop a geometrically compensated supermartingale {u! := (1 —
nO\;(vi)?)"H(¥! — v}/, using the b-capped coupling sequence {v'}/, derived from the
control sequence {qt}tT;O. We precisely calculate the sub-Gussian parameters of the supermartin-
gale increments through geometric series summation over S and linear summation over S¢. The
analysis enables the application of Bernstein-type inequalities to establish the claimed concentration
results in Lemma([B.1]

Lemma B.1. [Formal version of Lemma Under the setting of Theorem let {qt}?;o be a
Markov chain with its b-capped coupling process {\’/t}go. Whenn < Q (W%b)) the inequal-

ity V' > 0 holds for any t € [T}]. For any v € RM, define the truncation event A(v) := {v < b}.

For § € (0,1), the following conditions guarantee that A(VI1) holds with probability at least 1 — g:

1. Dominant coordinates condition: Gwmin(D) > %O([0* + M?(b)] log” (MTy /9)),
1

2. Residual spectrum condition: Gmax(D) > Tin*O([0? + M?(b)]log(max{M —
D,0}T1/6) log*(MT/6)).

Proof. Define the random variable
P = ()7 = ) 6 2 = Gt = ) 5
forany j € [M]and t € [0 : T} — 1]. Then in the updating state of {¥*}7., we have
G = (Lt )e, V) € [M], (12

Based on the boundedness of p*!

vt > 0, then we have v*+1 > %\’/t. Since v* > 0, we have ¥* > 0 for any ¢ € [T}] by induction.

Let 73, be the stopping time when \’/;b > b; for a certain coordinate j € [M], i.e.,

and the appropriately chosen step size 7 < Q (m), if

Tb :iItlf {t:3j € [M], s.. \7; >b;}.

18
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For each coordinate 1 < j < M, let 7, ; be the stopping time when \‘I;b’j > bj, ie.,
_ _ . Lot
Th,j = 1It1f {t PV > bj} .
Based on Definition when the stopping time 7, = to occurs for some to € [T}], the coupling

process satisfies vi = v?2 for all £ > t,. We categorize the following two cases and analyze the
probability bound respectively.

Case I: Suppose there exists j € [D] such that 7, ; = t. That is, the event A (v*) holds for all
t € [0 : to—1]. The boundedness of thrl and the dominant coordinates condition of 7 in Lemma

+
We aim to estlmate the following probability for coordinates j € [D] and time pairs t; < to € [T1]:

o 1 2 _ _
(w0 = {o < LR, A e [ Ao 1)

For any ¢ € [t; : t2 — 1], we have

indicate that v must traverse in and out of the threshold interval [1 o bj,b; ] before exceeding b ;.

E[v;™ =i | F] =Bty con iy [V =5 =]

J
(a) t * t *
1**77)\V(j+vj) (vj —vj)
< 1—714_01/2 A\ (v | (VE =)
= 1+ 01)2 J\V J J
where (a) is due to Assumption [3.1{and Lemma By applying Lemmato pg, we demonstrate
that pz- satisfies the sub-Gaussian property for all ¢ € [0 : 77 — 1]. Thus we have

220 (V)20 ([0 + M (b)] log*(MT1 /5)) }
2 b

(13)

E [exp { (v —E[vi* | 7))} | ] < exp{A

for any \ € R Combining Lemma [E.3|with equation [I3] we can establish the probability bound for
event 53, To,j= ( ) for any time pair t; < to € [T1] as

T, =t/ - B C%(V;)Q
JC (3))9’“’{ nO(W+M2(b>1log4<MT1/6>)}' 4

Case II: Suppose there exists j € [D + 1 : M] such that 7, ; = to. Similarly, \73» must traverse in

and out of the threshold interval [2b;, b;] before exceeding b;. Therefore, we aim to estimate the
following probability for coordinates j € [D + 1 : M| and time pairs ¢ < ¢2 € [T1]:

Tb, ;= . _ ot — 2 _
P <Ct1b$J " (j) = {V§1 < zbj /\V§1't2 1 € |:3bj,bj:| /\V;2 > bj}) .

For any ¢ € [t; : t2 — 1], we have

St+1 * t] t t+1t
E [Vj =i | F] =Byttt eria gt Vi —vj - np; V3]
1., _
< (1 gmumiss + ) ) (- ) (15)
—t
<v; —vj.

Similarly, based on Lemmal|E.T] we have

E [exp {A(V;H — IE[V;H | ft})} | ft] < exp{

A2, (b)20 ([0* + M?(b)] log* (MT1/5)) }
2 b

forany \ € R Combining Lemma [E.3|with equation [I5] we can establish the probability bound for
event CTb 9712 () for any time pair t; < to € [T7] as

o j=ta _ 1
P 0) s ew { TiN0 (0% + ME(0)] o (MT3/3) } B
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Finally, combining the probability bounds equation [14] and equation [I6] with the dominant coordi-
nates condition and residual spectrum condition in Lemma[B.1] we obtain the following probability
bound for complement event A¢(v71):

P <Y Y PERTG) Y Y ()
j=11

<t1<to<Ty J=D+11<t1<t2<T
_NT? expd - cf mini<j<p(v;)?
- nO ([0? + M2 (b)]log" (MT, /5))
min i A7t
+ max{M — D,0}Ty exp § — bii=i=l L
Tin?0 ([o? + M?2(b)]log*(MT; /5))

1)
<—. 1
<13 (17)

O

Lemma establishes the adaptive high-probability upper bounds for each coordinate of v7*. Ac-
cording to the construction methodology of the coupling process {\’ft}tT;O, these bounds can be
naturally extended to q”*. Moreover, the high-probability consistency between control sequence

{q*}_, and original sequence {v*}]_, (refer to Proposition [B.1) allows the direct application of
Lemma‘m to v71. It similarly holds for Lemmas and B.3| respectively.
B.2.2 PART II: THE COORDINATE-WISE LOWER BOUNDS OF v

Deriving a direct high-probability lower bound for ¥’ proves to be a challenge. We turn to
the lower bound of max;<7, v during T} iterations. First we propose Lemma to con-

struct such bounds for max;<7, \7§- adaptively over j € [D]. We derive a subcoupling sequence

{xvfivt}tT;O from the original coupling sequence {Vt}tT;O for any i« € S. Each subcoupling se-
quence undergoes logarithmic transformation to generate a linearly compensated submartingale
{—tlog(1 + nON\(v})?)) + log(v")}1,. These |S| submartingales exhibit monotonic growth
with sub-Gaussian increments. Applying Bernstein-type concentration inequalities, we obtain
max;<p, vi > (1 — ¢1/2)v} with high probability for any i € S in Lemma

Lemma B.2. [Formal version of Lemma Under the setting of Lemma let

La log™*(MTy/8) minje[p)(v})?
=700 + 1+ O)M2(b))

and

Ty > max { O (max;e(p] —log(v])) O ([0® + M?(b)]log®(MT1/4)) }

C1N0min (D) ’ i minjerpy (A (v3)*4)
The combined event set satisfies P ((ﬂle El,j) U 52> >1-— %. where

1-— 01/2 .
Hclbj}v Vj € [D],
and & := {A°(vT1)}.

Proof. For a fixed j € [D], we define the subcoupling {v*}7", with initialization ¥° = v as

follows:

1. Updating state: If event By(j) = {A(\“ft) AVE < 11_&{2 bj} holds, let vi+! = ¢t +1

2. Multiplicative scaling state: Otherwise, let viT1 = (1 + M)\j(v;f) vi.
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We aim to demonstrate that —¢ log(1 + M)‘j (v§)?) + log(v}) is a submartingale. If event

B¢(j) holds, we directly obtain Elog(v:™") | 7] > log(1 + 61(12”)")\]-( %)?) 4 log(v}). Other-
wise, letting

W} = (@Y < By — &, Ve [T
we have

E [log(vi™") | F*] =E [log(v4*) | F']
=Byt e ot [log (1—n ((V§)2 - (v;‘)Q) (5(5»“)2 - nw;»Hf(;H)}
+ log(v})

@ 3e1(1 —
Y log (1 n M )\j(v;)z)
—n°X;0 ([0% + (1 + C)M?(b)] log*(MTy /5)) + log(v!)
(b) 1-—
> log <1 + w)\j (v;‘)z) + log(v5)

© all—ca)p, . y
=log <1 + 1(21)/\j(vj)2> + log(V5),

where (a) is based on the following three facts: 1) the Taylor expansion of log(a + -) witha = 1 +
n((vi)? — (Vt)Q)E[(f{;H) |; 2) the property that YH'1 is zero-mean and independent of Xt+1 and

j
. c1(vi)? log ™ *(MTy /6 "
3) the step size np < é((ajglr(lic)(jug(lb/))) ensures that 1 —77((v5)? - (v7)? )[(xé“) 7E[(X§»+1) -

T wt+1xt+1 > 1/2 for any 7 € [0, 1], (b) is due to the inequality log(1 + <L=CU ) (v*)2) >
't y quality 2N (v

oy (9([0 + (1 4+ C)M?(b)] log*(MT1/6)), and (c) relies on the temporal exclusivity property
that if event B{(j) occurs at time ¢, then B;(j) is permanently excluded for all subsequent times
t' > t. Therefore, based on the submartingale, we obtain

1 701/2
PVt < —— "b;
{vj < 1+ j}

2 (T log (14 U521 (v)2) +log(v?) — log ( L=2L2b; ’
@ 1log {1+ 3 j(vi)?) +log(vy) — log Ther

< _

<exp Tyn2\;0 ([02 + M2(b)] log® (MTy /5))

(e) T 10g2 (1 + W)\j (V;‘)2)

< ex _

< exp 772)‘3'0 ([02 +M2(b)] 1Og6(MT1/6))

® §

<

— 12N’ (18)

where (d) is derived from Azuma’s inequality and the estimation of |log t+1) log(v )| below:
log(V:) — log ()| < nA/20 ([a + M2(b)]* log (MT1/6)) , (19)
which implies that
a(l—c)n, . y
log(v 25“) log <1 + f)\j(vj)2 — log(vé)

Moreover, since T} 1og(1+w)\j(v;‘?)2)/4 > —log(v )and AT (v > O([o*+M?(b)]
log®(MT} /6)), we obtain inequalities (e) and (f). If A(v7") holds, equation [18] illustrates that
P(&5 ;) < 125 Thus, we have P(EF ;N €5) < 5%- O

1/2

2
< 172)\j(’) ([02 + M?(b)] logg(MTl/é)) )

Second, we construct the high-probability lower bound for ¥2* for any j € [D] in Lemma
The proof technique of Lemma mirrors that of Lemma By contrast, we construct geo-
metrically compensated supermartingale {—uﬁ}tTél for each i € S. The proof is finished by ap-
plying Bernstein-type concentration inequalities to these constructed supermartingales, yielding the
required probabilistic bounds.
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Lemma B.3. [Formal version of Lemma Under the setting of Lemma let

n< 30min(D)
= O([0? + M?(b)] log* MT1/5))

The combined event set satisfies P (ﬂj 1 (Uk 3 45;”)> 2 where
1-— 61/2 1-— Cl .
. ot= t — - = Tl > -
YE {?%8%"3< T+e b"}’ b4 { »E gy Wl

Proof. Forany j € [D], if £5 ; occurs, there exists ¢ € [T1] such that v§ > 1 Cl/ 2b Define 79 ;

as the stopping time satisfying v T > 12 1-c/2 b, as:

1+cq
1—c1/2
=1 cvl > Tty L
70, 1rt1f {t Vit T b;
We also define 71 ; as the stopping time satisfying v; < 1 +Cl b; after 7 ; as:
1— C1
F= inf {t:vi< b, .
TLj t;r‘ll'o.j { V‘] 1 + J

Based on the definition of {vt}tT;o, once the event A°(v") occurs, the coupling process satisfies

vt = ¥ for any ¢ > t. Therefore, A(’t) holds for all ¢ < 71 ;. Moreover, v} must traverse in and

—C1 ~“b;. We aim to estimate the

1+c1 Ttey
following probability for coordinates j € [D] and time pairs to < t1 € [T1]:

) 1—¢1/2 _ 1—01 _
P DTI t1 _ to > b. to:ty— 16 t1 . )
< To=to (1) {J ~ 14+ AN 1+ b;, 1+C1 /\ 1+Cl b;

For any ¢ € [t : t1 — 1], we have
E [V =V | F =Bt cor con [Vi =5 40 (V)2 = (v))?) 57 + 25 (v)

’CIVI+1 oo

out of the threshold interval [ bj, - +c =—b; } before subceeding 1

“t+1 Ft+1) st+1ot+1
_C]\/}L _£+)Xj+ VjJr}

< (1 G e?) (v - ¥,

(20)

Applying Lemma to ((v5)? = (v + 2/ (") — Cort X, we have

2

[exp {)\( t+1 | Ft ] 7;{-&-1)} ‘ ]_—t] < exp { )\2772)\3'(";)2(’) ([0-2 + M? (b)] 10g4(MT1/5)) } 7

for any A € R. Therefore, combining Lemma [E.3| with equation 20| we establish the probability
bound for event DI* 1" (j) with any time pair ¢y < t; € [T}] as

To=to

T1=t1 ( ex _C%(V;)Q
P (DRZi; (4) < p{n(’)([a2+/\/l2(b)] log"(MT1/9)) }

T1 :tl

Notice that the occurrence of £5 ; A £ ; implies bf():to

Therefore, we have

P(es, N, )< > P(DRZH ()

1<t1<t2<Ty

(7) must hold for certain tq < t; € [T}].

<T—1 exp _C%( )2
~2 nO ([0 + M?(b)]log* (M T /5))

T—ex —c%minje[D](v;)2
2 PN 50 ([02 + M2(b)] log* (MT1/9))

IN
=
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1
<.
<N 2L

O

Combining Lemma|[B.1]in Part I and Lemma[B.2] Lemma B.3]in Part II, we have now completed
the proof of Theorem

Proof of Theorem|[B.1] First, we notice that in the setting of Theorem B.T]
C%a'min (D)
O ([o2 + M2(b)]log*(MT; /5))’

n < (22)

and

O([0®+M? (b)] log® (M Ty /8)—min, ¢ p) log(vY)) log~ % (MT /6) log((M—D)T,/8) -
 oanD) =< = =, Dot ey 0 tM>D
O([o?+M?(b)] logg%@@ : min; e[ pj log(v?)) <1, otherwise |

(23)
satisfy all assumptions in Lemmas Thus we can use all results in Lemma [B.IB.3] [B.]

yields P{vT* > b} < g. Lemma implies that P{min;e|p) max;<r, (Vv — 11j;f2b ) <
OAVE < b} <

Combining Lemma and we have P{min;¢c;p] max;<r, (v 5 —
ll_jlc/ ’b,;) < 0} 2. Moreover, Lemma indicates that P{min;ep) max;<r, (v} —
11_‘;2{2b ) > 0 Aminjep (V].Tl - hiib ) < 0} < 2. Combining these results, we establish
the final probability bound: IP’{|\7?D —Vvipl < 1% bup /\Vg_H v <bpyiy} >1— 26, and

IA ol

this bound can be extended to q”* by the definition of capped coupling process in Definition
By Proposition[B.T] we complete the proof. I

B.3 PROOF OF PHASE II

In this section, we introduce the proof techniques of Phase II in Theorem [B.2] where we construct
the global convergence analysis of Algorithm [I] for risk minimization. We demonstrate that after
Phase I (i.e., t > 7T1), the iterations of v! are confined within a neighborhood of v* with high
probability. Therefore, the SGD dynamics for the quadratic model can be well approximated by
the dynamics for the linear model with high probability. Therefore, we can extend the analytical
techniques for SGD in the linear model to obtain the conclusion of Theorem

Theorem [B.1] illustrates that the output of Algorithm [T]after 77 iterations lies in the nelghborhood
of the ground truth within a constant factor, namely, |vi.p — vi.p| < c1vi.p- Thus, we use v L
which satisfies equation as the initial point for the SGD iterations in Phase II, and set the
annealing learning rate to guarantee the output of Algorithm [T] fully converges to v*. Before we
formal propose Theorem we preliminarily introduce some of the coupling process, auxiliary
function, and notations used for our statement of Theoremand analysis in Phase II. We introduce
the truncated coupling {¥*}72 as follows:

vitl =yttt if G(v?') occurs |
vl =1y vr>t,  otherwise,

0 = v71 which satisfies equation[I 1] where event

with initialization ¥V
. 1,31 .. , .
G(v):=<v; € 3ViigVils Vie| /\vj [0,2vi], Vie[D+1:M]y, (24

for any v.€ RM and T, = T — T}. Moreover, we define the auxiliary function ) : RM — RM as

v*,  otherwise.

V() = {v, if G(v) occurs ,
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Thus we construct the truncated sequence {w’ = (¥*)}72,. In this phase, our analysis primarily
focuses on the trajectory of w’. Based on the generation mechanism of the sequence {wt}tTiO, the
update from w' to w'*! can be categorized into two cases: Case I) w'*! remains updated, with its
iteration closely approximating SGD updates in linear models (Wu et al.| |2022); Case II) For any
7 > t, w"t! does not update and remains constant at v*.

We also define some notations for simplifying the representation. For any v,u € R?, we define
vou=(viuy, - ,vqug)' and diag{v} = diag{vy, -+ ,va} € R4 Let H = 22A diag{g ©)
b} with b™ = ((vi.p) T, (Vhy1.s) ") and v* satisfies v5 = max {$v*,3v)}. We also denote
H., = (w' ox't) @ ((wh +v*) @ x!T!) and R, = (€1 + ¢EHY) diag{w'} for simplicity. We
denote the following linear operators that will be used in the proof:

IT:=1I0l #H, =E[H, oMH,"], #H, =E[H,]*E [H,],
Gl =E, [Hy] @ 1+ IQE, [HY,] — AL, G =E, [H,] @ T+ I E, [H] — nH,
where E;[-] = E[- | F*]. For any operator A, we use A o A to denote A acting on a symmetric

matrix A. It’s easy to directly verify the following rules for above operators acting on a symmetric
matrix A:

ToA=A, H oA=E [H,AMH,)"], HoA=E [H,]AE, [H,],
(Z—mGy) o A =E; [(T-nH,) A (T nH,)]
(T-mGh) o A= (T—nE [H,]) A (- B, [H,]).
The following is the formalized expression of the iteration process for w'. For all ¢ € [0 : Ty — 1],
if witl = vIi+itl (e, event G(vT1H1H1) occurs), wit! follows the update rule as:

witl v  =wl —v* — n:HY, (Wt — V*) +nRE X" (25)

Otherwise, we have
T = v* VYr >t

Since wit! = vI1+t+1 implies wt = v71 1, but the converse does not necessarily hold, we derive
the recurrence process as:

w

B (w1 —v")%] S [(w! = v* - L (W' = v) + R Lysyr

t

Define W' := w? — v*. The iterative update of W' can be decomposed into two random processes,

ot ~t1 ~t .
W' =1yt - Wiiae + LytmyTi+t - Wogtiances V6 € [0 : TQ], (26)
ot T - .
where {w?!_. 1.2, isrecursively defined by

e T t oot tt et — STt
{anrliance = (I - ntHw) Woariance + MR X", ifwh =viimt

S+ — .

variance = 05 otherwise ,

forany t € [0 : T — 1] with W2 = 0and {W{, }/2, is recursively defined by

variance

~t+1 o t ~¢ . b T+t
{Wbias =TI —nH,) W, ., ifw'=vIT

Af:qlb =0, otherwise ,
forany t € [0 : T — 1] with W, . = w® — v*. We define the {-th step bias iteration as B! =
E [wi,,. ® w{, .| and t-th step variance iterationas V! = E [w! . = @ w! . ] Therefore, we

can derive the following relations for {B*}/2, and {V*}!2:

Bt+1 j E [(I - ntg\tv) o (‘%\/f)ias ® wéias)] )
Vit JE[(Z - nGL) o (W ® w! )]+ 1

variance

vte0:T,—1], (27

variance

with B = (w? — v*) (w® — v*)T and VO = 0, where 3¢, = 02 AE [diag{w! © w'}].
We formally propose Theorem[B.2]as below.
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Theorem B.2. [Formal version of Theorem Suppose Assumption and hold, and let
Ty =[(T = h)/1log(T — h)] and h = [T/1og(T)]. Under the following setting

1. There exists D < M such that ny < Q(min{tr~'(H),min(D)}) and Ty =
Ay o2+ M2 (b)
O(roy)
TIOUmin(D) ’

2. Let D = M, no < Q(min{tr*(H), Fumin(M)}), and Ty > 6(%),

we have

N Yo
E [Rar(w?) — Ras(v¥)] <o ?0 +m0 %;+1Ai(v;)2
1=Ng

M
+o'ni(h+T) > A(b))*

i=No+1
1 N2k
+ EILN1 +Hny, 4100, (I - UOH) B
1
+I'(H) <77ohIlzN{ + HN{+1:M7BO> ; (28)

for arbitrary D > Ny > Nfj > 0and D > Ny > Ny > 0, where T(H) := (LQ%N{ +
2577“710h tr(Hyy1n,) + noh tT(H?V1+1:M)) and Ty = T — Ty. Specially, we have

M

Rar(v") = Rarlv) ST b ota(h+ 1) S N3B!
1 .
i=D+1
1 _\2h
+ < Lip +Hpiim, (I - 770H> BO> (29)
noT1

D 1
+ ( + nghtr(H2D+1:M)> <11:D +Hpi1:m, BO> ;
Ty noh
with probability at least 0.95.

Before the beginning of our proof, we define the (cv7., b)-neighbor coupling process which will
be used in the following lemma as below.

Definition B.2. [(cv}. ), b)-neighbor coupling] Let {q'}_, be a Markov chain in R}/ adapted
to filtration {F*}7_ . Given parameters: 1) Dimension index D € Z; 2) Tolerance ¢ > 0; 3)
Threshold vector b € R}'~". With initial condition v° = q°, |[¥,, — vi 5| < evipand 0 <
V) 1. < b, the (ev}, , b)-neighbor coupling process {v'}7_ evolves as:

1. Updating state: If [V}, , — vi,p| < evipand 0 < ¥, < b, let v/T! = v!T1,
2. Absorbing state: Otherwise, maintain vi+! = v,

B.3.1 PART I: BOUND THE OUTPUT OF PHASE I

In this part, we demonstrate that the output of Phase I remains confirmed within the neighborhood
of the ground truth with high probability in Lemma [B.3] Specifically, by constructing similar su-
permartingales to that in the proofs of Lemma[B.I]and Lemma B.3] we obtain a set of compressed
supermartingales dependent on the coordinate ¢ € [M]. Combining the compression properties of
these supermartingales with the sub-Gaussian property of their difference sequences, through con-
centration inequality, we obtain Lemma[B.3as below.

Theorem B.3. [Formal version of Theorem[A.1]] Under Assumption we consider the T -th step
of Algorithm(I|and its subsequent iterative process. Let D € N+ represent the effective dimension.
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Define ny < Q (%W) and let {Vt}tTiO be an (1/2,2)-v* neighbor coupling process
based on the control sequence {q"*T}2 . Recall the definition equation of event G(v) for any
v € RM, If D < M, set the iteration number T, € [ﬁ (%)} Otherwise, set Ty be an
arbitrary positive integer. Then, ﬂtTiO G(vTi+YY holds with probability at least 1 — 6.

Proof. Setting ¢; = % in Theorem we have \qilD —vipl < %vf:D and Opy 1.7 < qf,lH:M <
3v% 1.0 With probability at least 1 — /6. Without loss of generality, we assume q”* satisfies
laip—Vipl < ivipandOpyiar < q:ng:M < 3v}), 1.0 Let 7 be the stopping time satisfying
Ge(vh),ie

J

~ 1 ~
7= inf{t :3j € [D], st |V;5 —V;-‘} > iv* ordje[D+1:M] stv;> QV;}7

D]J

For each coordinate j € [D], let 72[“D] j and %[l D). be the stopping time satisfying v v > 7 and

T . .
vj[DJrl MLI < 2vj,respectlvely, ie.,

. . ~ 3 . . . ~ 1,
T[%],j = mf{t : v§ > 2vj}7 T[ZD]’j = inf {t : v§ < 2vj}.

For each coordinate j € [D + 1 : M], let 7{py1.a,; be the stopping time satisfying v,
2v

~TID+1:M],j

>
72[D+1:M],j = inf {t : ?; > QV;} .

Based on Defnition once the stopping time 7 = t occurs for certain ¢t € [T3], the coupling
process satisfies v! = v'2 for all t > t,. Suppose there exists a certain j € [D] such thati 1= = to.

Thus, the event G(v*) holds for all ¢ € [0 : ¢, — 1]. Similar to the proof of Lemma [B.1] and [B.3]

V; must traverse in and out of the threshold interval [v7, 3 v;] before exceeding 3 v;. We aim to

estimate the following probability for coordinates j € [D] and time pairs ¢1 < t3 € [0 : T3] as:

S )

For any ¢ € [t; : t2 — 1], we have
B[V = vi I 7] =By eon e [V = v5 =0 ()" = (v))?) 257" +257 (V)
<t+1 ét+1) ﬁ§+1v;+1}

J
377t * ~ *
<1 — 8)\j(vj)2> (V5 —v3).
Applying LemmalE.1fto (((¥4)? — (v})2)xiT! + 25 (v) — Ct - DXLV we obtain

[exp{)\( t+1 E[V;+1 |]_—t])} | ]_-t} Sexp{)\ 77t>\ (v ) O([UQ—FMQ(b)] log4(MT2/5))}’

(30)

2

for any A € R. Therefore, based on Lemma and equation 30} we establish the probability bound
for event B;[D]’Fh (4) for any time pair t; < t5 € [0 : T3] as:

~u _ * 2
{87 ()} < exp {—(Vé)} : (3D
J

where V; is denoted as

To—1 /To—1 )
Vi = A7)0 (0 + M2 (b)]log" (MT3/6)) 3 ( I]a- %ﬂv}f)?)?) ()

t=0 i=t+1
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By LemmalE.4] we have V; < O(no[o® + M?(b)] log*(MT5/5)). Therefore, using equation
we can derive

7ipy;=t2, . (V;'()2
P{Btl[ ! (J)} <exp {_T}OO (0% + M2(b)) log (MT5/3)) } (32)

Similarly, suppose there exists a certain j € [D] such that %[ZD] ; = t2. Thus, the event G (v') holds
forall ¢ € [0 : ¢t — 1]. v} must traverse in and out of the threshold interval [§v¥, v3] before
subceeding %vj We aim to estimate the following probability for coordinates j € [D] and time
pairs t; <ty € [T3]:

p) =tz . o 3 ~t1ita—1 1 . .
P{C, (J) =14V; 24 I\ € Vi Vi )

For any t € [t1 : ta — 1], we have
E[* Vit < (1 377t)\ 12 t
ViV | ]7 ] J(Vj) (VJ_VJ)
Based on Lemmas and sequentially, we obtain the probability bound for event

#pp =t
;17197 (5 for any time pair t; < ta € [0 : T] as:

1

oy =tz ox 7(V;)2 oxp 4 (v7)?
P{th ] (])} < p{ v }S p{ 1O (72 V()] 1Og4(MT2/5))}. (33)

For the third stopping time, we also suppose there exists a certain j € [D + 1 : M] such that
TiD+41:Mm],; = to. Thus, the event G(v*) holds for all ¢t € [0 : ty — 1]. Similarly, V; must traverse in
and out of the threshold interval [V}‘, 2V;-‘] before exceeding 2v7;. We aim to estimate the following
probability for coordinates j € [D + 1 : M| and time pairs t; < to € [0 : T3] as:

p (ol = {5 < i AT e} ).

For any ¢ € [t; : ta — 1], we have

E[W0H — v | F1] <90 — v

J J (34)

Applying Lemma(E.1fto (((V})? — (v5))%iT + 2871 () — ¢ff — £+ DRIHIVE we obtain

[exp {)\ ( t+1 _ [V§+l | ]_—t])} | ]_—t} < exp { )\277t2>\j(v;)20 ([0-2 + MQ(b)] 10g4(MT2/5)) } ,

2

for any A € R. Based on Lemma [E.3| and equation 34] we establish the probability bound for the

FD+1:M],5=12
Dtl[ + 1,3

event () for any time pair t; < ty € [0: T3] as:

T(D+1:M],5=82 _(V;)2 @ log74(MT2/5) }
p{D]! (y)}<exp{ 7 }<exp{ gmswoT (=g vizo S SRS

where (a) is derived from V; < Tond ;O ([0 + M?(b)] log* (M T5/6)).

Then, it is easy to notice that G¢(v72) indicates that one of the following situation happens:

cu
1. For a certain coordinate j € [D] and time pairs t; < to € [0 : T3], either B;[D“ *(4) or

~1
T =ta ,
C,!"M () occurs,

2. For a certain coordinate j € [D] and time pairs t; < to € [0 : Ty], DT[D+1 E0))
occurs.
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Therefore, by the setting of 79 in Lemma [B.3] we derive the following probability bound of event
Ge(vT2):

o< ¥ | T (P 0 {0 ))

t1<tz | j€[D]

+ Y D)

JE[D+1:M]

min; v¥)2
<2T22Nexp{— sen ]) }

1700 ([02 + M2(b)] 10g4(MT2))

log™*(MTy/6) }
Tyng max;e i A; O ([0* + M?(b)])

+ T3 (max{M, D} — D) exp {—
<§/2.

According to the construction of the coupling process {v'}2, in Definition m we have

ﬂtT;}sz G(q') holds with probability at least 1 — /2. By Proposition the proof is com-
O

pleted.

B.3.2 PART II: LINEAR APPROXIMATION OF THE DYNAMIC

In part I, we have proved that ﬂzzo G(vT1+t) occurs with high probability, which implies the trun-
cated sequence {w'}72, aligned to {v71+*}72, with high probability. Then we approximate the

update process of {wt}tTi1 to SGD in traditional linear regression, with respective bounds of vari-
ance term and bias term.

We estimate the risk between the last-step function value and the ground truth as:
()
E[Ry(w")—Ry(v¥)] < (HE[w™ @w"]) <2(H,B™) +2(H, V"), (36)
where H = 22A diag{g O] B} and b7 = ((vip) " (Vpirar) ). Here, (a) is derived from

combining
M
E[Ry(w") = Ru(v)] =E | > Ni(w/ + v (W] —v))?],
i=1
with the uniform boundedness of w’ over ¢ € [0 : T3]. According to the definitions of w' and HY, ,
we have E[H! ] < H. Use H to denote 1A diag{b ® b} where b = ((vi.p)",07), and define
QA —H RI+I® H- nﬁ ® H. For simplicity, we let K = T;. Moreover, we use C' to denote

the constant such that E[|x;|*] < CE[|x;|?] for any i > 1. Then we respectively bound the variance
and bias to obtain the estimation of Ry (v72) — Ry (v*).

Bound of Variance: Lemmaprovides a uniform upper bound for V¥ over ¢ € [0 : T5].

Lemma B.4. Suppose Assumptionholds. Under the setting of Theorem Sforanyt € [0 : Ty),
we obtain

Véiag ;5 770021' 37

Proof. The definition of X, and the boundedness of w' implicate that %, < o2E[H!,] < H given

v* > 0. The proof relies on induction. At ¢ = 0, it follows that V?ﬁag = 0 3 noo°l. Assuming

Viiag 2 noo1 for any 7 < ¢, we proceed to estimate V! by combining equationas,
t+1 ~ N 9
Vd-ii_ag j (E [(I - ntg€v> o (Wf/ariance oY Wf/ariance)] )diag + nt Eiv

5(177”1&@177”1@1&) 0 Viing
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~t
W ariance QW

+ 77? (E [Hf’v © (At variance)} )diag + 77,520'2H
(%) (I — 27}tﬁ) V(tjiag + O (77?(0 + 2)(H, thag>H + 77t202H)

~ (1 - zntﬁ) Viiag + O (00002 (C + 2) tr(H)H + 120 H) ,
where (a) is derived from Lemma [E.6| with A = diag{v* + w'} and B = W
For i € [D], we have

variance ® Wf/ariance'
(Vfi;;lg)ii < (1 - QWtﬁiﬂ') (Véiag)i,i + 6 (ntz‘TQﬁi,i) (38)

The recursion given by equationimplies that (Vfifalg)“ < noo? for any i € [D], using Lemma

Fori € [D +1: M], we obtain

t

t

t+1 2 2 2
(Vdiag), ) 5 o Hi’i an S oo -

2,2 k—o

Therefore, we complete the induction.

(39)
O

Lemma B.5. Suppose Assumption[3.1| holds. Under the setting of Theorem we have

N No M R
(B V) so? [ Z4mo D M) | +ofmi(h+K) 3 MDY @0
i=N{+1 i=No+1
for arbitrary D > Ny > N{ > 0.
Proof. Applying equation[27, we obtain
1
Viitag =

(a)

=

(Z-mG) o Vg + 12 (Hiy o (!

ot
variance QW

variance

))diag + 7o’ E[HY,]
(I - mgA) o thag +0O (77302170(0 +2)tr(H)H + nfoQH)
= (I — 77753) ) Véiag +0 (nt202H) ,
where (a) is derived from Lemma Therefore, the recursion for V
incorporating equation {4 1| as

(41)
T>

diag Can be directly derived by
Ts T ® T> T
T e
VdiZag j o’ Zn? H (I - nlg) oH j o’
t=0  i=t+1

S II (1-nB)H, @
t=0  i=t+1

I

where (b) is based on the inequality (1 —7cg)?c3 < (1 —1¢ca)cs, which holds for any 7 < c;* given

fixed constants ¢z, c3 > 0. According to the update rule for 7, defined in Algorithm[I] we obtain
h L
1=y (

I—770H>h_iH( s
=1

K
27
j=1
() (-5 L (- b
Z ol Z 9l H Y
=1 =1 j
h

N\NK
o5 1)
j=1
L—1 K L—1
o \?2 o K=
+ (1+l> Z(I 21+1H)
=1 i=1
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L-1
o 70 £ h+K m & K
=100 | 2 (I— (1- Do) ) [T (1- 5758
j=1
L-1
n K n o K
+ Z o1+ < ( 21+1H1 D) ) H (I_ WHLD)
j=l+1
+27]0(h+K)HD+1:M. (43)

Then, we define the following scalar function

=0 T 5) 25 (- 0-9)") T 0-5)"

Jj=1

as similar as that in [Lemma C.2, |Wu et al,| (2022)]. Moreover, the following inequality can be
directly derived

~ 8 . 2 R
f (%HLD) = EILN(') +noHn;+1:n8, + 77?O(h + K)HY, 1.0 (44)

for arbitrary D > Ny > N} > 0 by [Lemma C.3, |Wu et al.| (2022)]. Applying equation 44| to
equation 43| and combining equation[42] we obtain

Vﬁg N < H1 Nyt oIy, + ng(h + K)Hp, 1.0 + g (h + K)HD+1:M) . (45
Consequently, we have
N ~ .
(H, V") <o° (KO + 1o tr (HN{]+1:N0) + g (h + K) tr <H?v0+1zp>)

+ o’y (h+ K) tr (Hp, 1.0)

N No M R
<o? ?Mno ST NP +otih+ K) Y MDD (46)
i=Nj+1 i=No+1

O

Bound of Bias: We begin with an analysis of the bias error during a single period of Algorithm

where the bias iterations are updated using a constant step size 1y = n over 1 steps. Based on
equation [27} the bias iterations are updated according to the following rule:

B XE[(Z - nGL) 0 (Whias @ Whins)], VEE[0:T —1]. (47)
Combining equation |47}, we have

Bl < (I 1G) o Bliag + 1°E ([Hiy o B)

diag diag
ety oma o ] o) on om
1=0 j=i+1
(QH (I Ug) ° Bdlag +(C+2)n H (I 779) °H <H Bl> @
i=0 j=i+1

where (a) is derived from Lemma 6| by selecting A = 3 diag{g} and B = B?. According to
equation 48] we have

i (t—i) .
BYfL < (- ng) 0B, + (CH+2* Y (T- nH) H(H,B').  (49)
=0
We utilize the following lemma to estimate <H, BT> under bias iteration defined in equation
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Lemma B.6. Suppose Assumption|3.1| and Assumption n 3.3\ hold, and B is recursively defined by
equatlonn Under the setting of Theorem. letting 1 < T < T and 1 < no, we have

- 2 25
<H, BT> S = < ~ : + HN0+1:M7 B0> ) (50)
1-0(C+2)ntr(H) \nT

where Ny € [0 : D] is an arbitrary integer.

Proof. By Lemma [E.5| we can derive (I — nH)QtH = I Applying this to equation
obtain

¢ i
B < (1- ng) 0 BYuy +25(C +2) Z (H.B) | (51
0

diag —

forany t € [0 : 7' — 1]. Therefore, based on Lemma we have

(S ) e

i=0 i=0 t+l—1

forany ¢ € [T7. equationimplicates that

T—1 T—1

H, B! 1 (I— H%H
>8R <z ! 7B>, 3
— Tt —O(C +2)ntr(H part T-t

since 677(0 + 2) tr(H) < 1. Combining equationawith equation , we obtain

O(C + 2)n tr(H) Tz‘l (- 7H)H
—O(C + 2)ntr(H) T—t

<H,BT> < —yH)TH B0> n
1 t=0

%< I-4H)*"H B0>

O(C+2mte(H) [/ Typ — (Ii.p — nHyp)T P
+ ( Jn tr(H) 1.0 — ( Lb 0 1:D) + (I.p — nH1.p)"Hy.p, B’
—O(C + 2)ntr(H) nT'

O(C + 2)ntr(H)
—O(C + 2)ntr(H)
) 2 < 25 >
< ~ Iy, +H ,BY), (54)

—O(C +2)nte(H) \nT N0 TR

where Ny € [0 : D] is an arbitrary integer, (a) follows the technique in [Lemma C.4, Wu et al.
(2022)], and (b) is derived from the invariant scaling relationship between H;.p and H;.p. ]

Lemma B.7. Suppose Assumption[3.1and Assumption[3.3|hold. Under the setting of Theorem
letting 2 < T < T and n < ng, we have

1) ) G s

(Hpi1.:,B%)

where Ht := %L:No + Hpyy41:m, and H = %L:N(’) + HN(/)_,_l:Mfor anyt > 1, and Ny, N} €
[0 : D] could be arbitrary integer.

Proof. Applying Lemma [B.6]into equation[49] we obtain

2(T—1)
BT, < (I ng) 0 BYuy + (C +2)n (I — nH) H (H,B")
T-1 N 2(T—1-8)
+(C+2)n? (I - nH) H (H,B')

t=1
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= (I - U@)T °© Bgiag +(C + 2)n? (I - nITI)Q(Til) H (H,B°)
I
2(C +2)n T-1 2(T—1—t) ~
1-20(C + 2)ntr(H) = (I_”H) H<H7B > (56)
Iz

We then provide a bound of term Z7 as follows:
T-1 T-1 R 2T —1—1) _
77 = > (ALB%) | Hpaia +25 Y (Tup — nHlip) Hy.p (H',B°)
t=1 t=1
X T/2-1 7
=T'log(T) <HT, BO> Hpyi.m +25 Z (Il:D - 77H1:D> Hi.p <Ht>BO>
t=1
T-1

N Tol—t
+ Z (II:D — 77H1:D> Hi.p <HT/2 BO>
t=T/2

. N R T/2-1 _
:T log(T) <ﬁT; B0> HD+1:M + 25 (IlzD - nleD)T Hl:D < Z Ht7B0>

I.p— (11:0 —nHy.p
n

+

7/2
) <I~{T/2, B0>

<T'log(T) <ﬁT7 BO> Hp1.m +25 (Tlog(T) (IlzD - nﬁlzD)T Hi.p <ﬁT, BO>

I (I 5| )m
1:p — \11:p —N1:p PO
P ; <HT,B°>

+

(@) . ~ ~ 7 7
=T log(T) <HT, B°> 0, (57)

where (a) follows the similar technique used in equation We then proceed to establish bounds
on Z. It’s worth to notice that

~\2(T-1) 25 - =T

(I - WH) H =< mll:Né +25HN 1.0 + Hpyiv 2 H . (58)

Applying equation [58]to Z, we obtain
T<H (HB") < TH <ﬁT BO> , (59)

where the last inequality is derived from the condition n < 1/(25 tr(H)), which ensures A\;(H) <
1/n holds for all ¢ € [Ng]. Combining the estimation of Z and Z7 with equation |56} we have

BT, < (I ng) 0 BYy, + (C + 2)r?THT <ﬁT,BO>

~2(C+2)n Tlog(T) <ﬁT,BO>ﬁT
- @(C + 2)ntr(H)
~ O(C + 2)*T - —
< (I - ng) 0 By + (€ +2) <HT, B0> H (60)
—0O(C+2)ntr(H)
By the definition of G. , we complete the proof. O
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Notice that in Phase II, the step size 7, decays geometrically. Thus, we define the bias iteration at
the end of the step-size-decaying phase as:

~ B =0
L._ ) )
B = {BhW, = 1)

Based on the step-size iteration in Algorithm [I]and preceding definition, we formalize the iterative
process of Algorithm in Phase II as: 1) Phase when [ = 0: Initialized from B, Algorithmruns
h iterations with step size 7o, yielding B; 2) Phase when [ > 1: Initialized from B!~!, Algorithm
runs K iterations with step size 19/2", yielding B!. This multi-phase process terminates at [ = L,
with BL = B2 as the final output.

Lemma B.8. Suppose Assumption[3.1|and Assumption[3.3|hold. Under the setting of Theorem|B.2}
we have

<H ]§l> <K 4 %L:No + HNO+1:M,BO>7 for 1 =0,
3 = 1=

25.2! =1 (62)
4 ok Il:No +HN0+1:M,B >, fOr l S [L])

for arbitrary Ny € [0 : D].

Proof. For <H, ]§0>, we apply Lemma with 7 = no and T = h, and use the condition that

O(C + 2)ntr(H) < 1/4; For <H, ]§l> with [ > 2, we apply Lemmawith n=mn/2, T =K
and B = B!, and use the condition that O(C + 2)n tr(H) < 1/4. O

Lemma B.9. Suppose Assumption[3.1\and Assumption[3.3|hold. Under the setting of Theorem
we have

~\h \h o
Bl <R/ (I B nOH) Biliag (I - WOH) +PHy, for1=0,

diag = o €3 h,vl_1 1o h K
(1-%H) B, (1-%H) + PH, for €L,

(63)

where ﬁg = %ILN(I) +Hng11:m andﬁ;f = 21757(;215[1111\76 +Hpyy 1.0 for any t > 1 and arbitrary
Ng € [0 : D), and Py := O(C + 2)n3h(H}, B®) with H}} := 25115, + Hyy 1.0 and P, =
6(0 + 2)(37?)2K<ﬁl1<’]§171>f0rl € [L] with ﬁf( = %L:NO + Hp,+1.:m for arbitrary Ny €
[0: D]

Proof. For B, we apply Lemma with n = 79 and T = h, and use the condition that 6(6’ +
2)ntr(H) < 1/4. For B! with I > 2, we apply Lemmawith n=n0/2,, T = K and B® =
B!~!, and use the condition that O(C + 2)ntr(H) < 1/8. O

Lemma B.10. Suppose Assumption [3.1) and Assumption hold. Under the setting of Theorem
[B2| we have

(H,B"?) = <H,1§L> <e <H,1§1> (64)
Proof. Consider I > 1. According to Lemma[B.9] we obtain

~ ~\Nh ~ ~\h ~
Bl < (1- %H) Bl (1- %H) + RHS

diag ol
(_i)ﬁﬁgalg +O(C +2) log(K) - % : <H fal—1> I (65)
where (a) is derived from choosing Nj = D and Ny = 0 in ﬁlK and ITIlK for any [ € [L], respec-
tively, and Hp .57 = %IDH: M- equationimplies that
<H,}§l> < (1 +O(C +2) tr(H) log(K) - %) <H 1§l—1> . (66)
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Therefore, we have following estimation of bias iterations using equation [66}

<H7]§L> Sllf[l (1 + 6(0 +2) tr(H) log(K) - %) <H7E1>

<exp {6(0 + 2)no tr(H) log(K) Z 2_1} <H, ]~31>

=1
<e <H 1§1> . (67)
0

Lemma B.11. Suppose Assumption 31| and Assumption 3.3 hold. Under the setting of Theorem
[B2] we have
~1 25 ~\2h o
(H,B') <8(—Tin, + Hygrrr, (T-moH) B
no K
25

+0O(C 42Tk (H) <WILN6 +Hy 10, B°> : (68)

where T (H) := (62}5(]\]6 + 2Bk tr(Hng41:8,) + nghtr(H?VOH:M)) for arbitrary D > Ny >
N} > 0.

Proof. According to Lemma[B.8] we have

~ 25 -
<H7B1> < 8 <’)70I{11:N0 + HN0+1:J\1a B0> )

for arbitrary Ny € [0 : D]. Then, choosing Ny = N, in Lemma[B.9] we obtain

~ ~\h ~\ P
Bgiag = (I - WOH) Bgiag (I - UOH)

~ 25
—+ O(C + 2)77(2)h <770h11;1\/'6 + HNéJrl:Mv B0> (

Combining above two inequalities, we have

<H, ]§1> <8 <77ji(IlzN0 +Hngy1:01, (I - noﬁ) B BO>

25

nohIlzNé + HN6+1:M) :

~ 25
+O(C +2)nth <77ohIl:N‘/’ +Hny 1005 B°>

25 25
X <11:N0 +Hyg1:m, — Ling + HN0’+1:M> ,

no kK noh
where
25 25
—1;. H M, —ILi. vy + Hpyroq.
<770K 1:Np + Hing41:0, s + N0+1.M>
625N 25
< ?’]th(? + oK tr(HN(l)‘i'liNo) + tI‘(H?\/o+1:M)a (69)
0
when Ny > N{. O

Lemma B.12. Suppose Assumptions[3.1|and[3.3|hold. Under the setting of Theorem|[B.2} we have

1 _\ 2h
<H, BT2> 5 <7’IOI(11:NO + HNO+1:IW7 (I - UOH) BO>

1
+(C'+2)I'k(H) <77Oh11:N(; +Hnyp1:m, BO> ; (70)

where I'x (H) := (62;—’(]\]{’ + %tr(HN(/]H:NO) +nghtr(H?V0+1:M)) for arbitrary D > Ny >
N =o.
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Proof. Using Lemma[B.10/and Lemma [B-TT] we directly obtain the results. O
Finally, we will finish the proof of Theorem[B.2]

Proof of Theorem[B.2] Combining Lemma[B.3|with Lemma[B.12] we derive equation[28] Based on
Theorem the equality w’2 = v71+72 holds with probability at least 1 — §. By setting N/, =
No=N{ =Ny =Din equationand applying Markov’s inequality, we obtain equation O

B.4 PROOF OF MAIN RESULTS

In this section, we finally complete the proof of main results for the global convergence of Algorithm
[T} in Theorem [B:4] based on the analysis of Phase I and Phase II. Before we propose the main
Theorem [B-4] we set the parameter as follows:

Lla'max(D)a'min(D)

Omin (D) '
(71)

L1 = O ((6° + M*(b))* + 6max(D)) , Lo = O(c” + M*(b)), Lz =1+

Theorem B.4. [Upper Bound in Theorem{.1)] Under Assumption 3.1 and [3.3] we consider a pre-

dictor trained by Algorithm[I|with total sample size T. Let h < T and T := [(T —h)/log(T —h)].
2

Suppose there exists D < M such that T} € [g - (él)gg. D) 5 (LD"’)ﬁg_ )

ting equationand letn = Q(M) Then we have

| with parameter set-

o2+ M2(b)
2D M
Rar(v7) = Rar(v) T2 4 oa®2(h+T1) Y N3 (v))
Ty )
1=D+1
1 Noes 2P . .
+ E tr ((Il:D - ZHLD) dla’g {(VlzD)®2})

+ <HB+1:M,diag {(VE+1;J\4)®2}>
D 1 . "
+ (T1 + thtr ((H*D+1:]V[)2)> <77hIl:D + H*D-H:Madlag {(V )62}> )

with probability at least 0.95. Otherwise, let T} € [%, +00) with parameter setting

Tmin (M)Fmin (M)
equationand n= Q(U‘;:“T%) Then we have

* O.QM 1 T s 2h . *
Ru(vh) = Ry (v*) < T, +77Tltr(<1— ZH ) diag {(v )®2}>

+

nhMT1 tr (diag {(v*)QQ}) ,

with probability at least 0.95.

Proof. Combining Theorem [B:T]and Theorem[B.2] we complete the proof. O

C PROOFS OF LOWER BOUND (THEOREM [4.1))

In this section, we introduce the proof of the lower bound in Theorem Let 5% := E[¢?] +
Z;’i Ml Ai(vi)%. Recall the analysis in Phase I, v7! satisfies the inequality b < vI* < b with
hi§h probability. Here, b is defined as b7 = (2(vi.p)T.3(vhi1as) "), while b is defined as
. 1

b = (3(vi.p)",0"). We begin with the required concepts as below. A Markov chain {(vy]2, s

constructed with initialization v satisfying b < v9 < b. The update rule is defined by
Vit =yt — 77tH§, (\uft — V*) + ntRéXt, vVt € [0 Ty — 1],

where HY, and R, satisfy:

35



Under review as a conference paper at ICLR 2026

LIfb < ¥ < b H, = #ox)a (¥ +v)ox)adR, = (& +
S XH(v))?) ding (V')
2. Otherw1se forany 7 € [t : T — 1], H} = 2(v* 0 Iyx") ® (v* ® IIyx") and

(§T+ZZ M4+1 X4 T(v; ) )dlag{b}

Let w' := v! — v* be the error vector, and let ¢, := inf{t | v* & b\/ vt # b} be the stopping time.
According to equation {v“vt}tTE1 is recursively defined by

with = (I—nH) w' + pREX!
We define V! = E [w' ® w']. By the definitions of 7£!, Ht, G, and Gt in Phase TI, we derive the
iterative relationship governing the sequence {Vt tTEO
VI = E[(Z - nG) o (W' ©w')] + 7724, (72)
fort € [0:T> — 1] with VO = (W) —v*) @ (W — v*). If t < t,, =Y, = 72AE[diag{v'®?}];

. _ . 02
otherwise, X7 = F2A diag{b "} for any 7 > ¢. According to the definitions above, we obtain
following estimation of the last-iteration function value:

E [Rar (W) = Rar(v¥)] = 5 <H E[w ®w ]>>7<1“{ VT, (73)

where H := 12A diag{v* ®v*}. We define G =HeI+IoH- mH @H. We formally propose
the lower bound of the estimate in Theorem [C.1]as below.

Theorem C.1. [Lower Bound in Theorem[d.1|] Under Assumption[3.1jand[3.3| we consider a predic-
tor trained by Algorzthmlwzth iteration number T and middle phase length h. > [(T —h)/log(T —
Rh)]. Let D < min{T"/ ™ax{8:(a+8)/2} "N} and n < D™»{0:(e=P)/2} Then we have

1 a*D 1
E[Ra(vD)] Bl 2 555=1 + 7 + pam ImsDs (74)

where 52 := E[€%] + 77 1,11 Xi(v])* Moreover, we can also obtain

1 2D 1
Ru(v") ~E[€] 2 3757 + 7 + pa=r Im>n, (75)

with probability at least 0.95.

Proof. The proof of Theorem is divided into two steps. Step I reveals that for coordinates

j> o (D), the slow ascent rate inherently prevents v§- from attaining close proximity to the optimal
solution v upon algorithmic termination.

Step It Let M > T1/max{8.(a+5)/2} and define Ty := [(T — h)/log(T — h)] and D :=
O((nT)?/(@+8)). Considering the b-capped coupling process {v*}]_, mentioned in Phase I, we
denote 7; as the stopping time when V;j > %v; for each coordinate DT < i< M,ie.,

%j:inf{t:vt> V;‘}

We aim to estimate the following probability for coordinates j € [DT : M| and times t; € [T}]:

P = {o = g At e o i | Av = i} )
For fixed j € [DT : M]and any ¢ € [0 : ¢; — 1], we have
E Vi F) =By e e, [V =0 (7)) = (v))%) 57 + 257 (9
_gft\}il:oo _ ét-‘rl) X;_H‘—,;_ﬂ} (76)

< (T4nA(vi)?) v

o
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Similarly, based on Lemmal [E.T| we have

E [exp (M@ — B[ [ FD}F] < exp { AP (V)P0 ([0° + MP(v) ] log" (MT1/4)) }

k]

2

for any A € R. According to the setting of step51ze 77, we have (1 + n);(v)2)Tr < 2 for any

ic[D": = M]. Utilizing Corollary E.1|and equation [76] we can establish the probablhty bound for
event J7i=t1 () for any time ¢, € [T}] as

1
Tn2\;0 ([62 + M2(v*)]log*(MTy/6)) } '

P (jf-j:tl (])) < exp {_ (77)

Finally, combining the probability bounds equation[77) with the setting of 7, we obtain the following
probability bound for complement event U;Vi pt{max.ep, vh > %v;‘}:

M

1
=t * ‘rjft
Pl U {gg[%vj A ]} Z S B (g
j=Dt =Dt t1=1
. ) )\‘_1
<MTyexp{ — MM Pt <i<M i
Tin?0 ([62 + M?(v*)]log"(MT1/6))
)
<-—.
<35 (78)

Therefore, we have ﬂJM: pr{max,err,) v < vi} with high probability.

Similar to Phase IT’s analysis Step II derives the lower bound estimate of the risk by constructing
a recursive expression for {leag} where T, = T — T}. We continue to use v'*, which satisfies

equatlonn as the initial point for the SGD iterations in Step IL If M > T/ max{B.(a+5)/2} e
further require that v’ satisfies

1 = .
i< vl Vie @(Tl/max{ﬂ«aw)m}),M]

According to Theorem and the result of Step I, the assumption on v’* can be satisfied with high
probability.

Step II: If M/ > T/ max{f.(a+5)/2} agsume that v further satisfies v, < Lv* . Setting
1o = n and K = T}, we have

T B A (T | e
= (I - ntg“t) o Véiag + 7?52 A diag {BQQ} ,

forany ¢ € [0: T5 — 1]. According to the recursive step above, we obtain

T>

. Ty N2 . U\ 2T
V=S I (1 - mH) A diag {b®2} + (I - nOH) (%° @ w)

t=1 1=t+1

T
T>

52 i 7 11 (I _onH ) Adlag{ } YT, (79)

t=1 i=t+1

A

Recalling the step size decay rule in Algorithm|[I] we have

I:ngzh:@—???oH) ﬁ( 2;‘721U) Adag{ 62}

=1 Jj=1

h—1
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3 i it M0 K
:é Zl Li.p — 2noH, D) 1l (11:D ~ gj—1H1 D) Hip
i= j=
Ll e &K L1 7)0 } )
t133 (?) Z (Il-D -1 H1 D) H (Il:D THi. D) Hip
=1 i=1 j=l+1
U N (T U }
0 2 0
=0 I.—(I.fQ H) (I.f.—H.>
o < 1:D 1:D Not1:D > ]li[l LD~ 5577 HD
0 . . X L1 . K
0 0 0
+ Z 13 o141 (II:D - (11:13 - FHLD) ) H (11: i1 L )
=1 j=i+1
(a)770 o h . K
,24 Lip— (11:D - 277()H1:D) (11:0 - 2"70H1:D>
L-1 5 K . K
+ Z ﬁ (II:D - (IlzD - %HLD) ) <I1:D - 277_01H1:D) ) (80)
=1
where (a) is derived from following inequality
L-1 . L . .
I1 ( U s ) S C H>T.p - -0 H
: i—1 : < 11:D i—1 < 411:D -1 1:D-
i=l+1 2 i=l+1 2 2

When h > K, we apply an auxiliary function analogous to [Lemma D.1,|Wu et al.|(2022)]’s:

=3 (1= 0-27) a2+ 305t (1- (1- 5 ") (- 5)
=1

Then, we obtain

S 1 Mo h
f(noH) = mllﬂl + @HHﬁl:Hz 480HH2+1 D> (81)
where H; := min{D,max{i | \;(v})? > 12nﬁ}} and Hy := min{D, max{i | \;(v})? >
SeriaR
For term 77, we have
<151 ZI> > S pr M(VE)E, A M 2 T maxdBi(at8)/2 82)
’ ~ 1o, otherwise,

where the est1mat10n for <ﬁ T7) under case M > T/ max{B.(e+5)/2} i derived from the initial-
ization v, < tvi. . and (1+n\;(v))? )2T2"< 2 for any i € [D' : M].

Therefore, using equation [73}equation [82] we derive

1. 5 5
E [Ry(¥") = Ry (v¥)] 267 <H, —Hy +nolg,+18, + nthH2+1:D> + <H,II>

D
<+770 Z (Vi Hmgh Y /\f(v;*)4>+<f1,zz>.

i=H1+1 i=Hs+1

According to Lemma|[B.3] we have P(t, < T5) < &, which implies that
[RM( ) —Ru (V) | ts > Tz]
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>E [Ry(vV?) = R ZP E[Ru(¥") = Ry (v¥) | ts = i]

%5—2 <+no Z N(VHE+neh Z )\f(vf)4>+<ﬁ7II>. (83)

i=Hi+1 i=Ha+1

Since § is sufficiently small, (b) is drawn from two facts: 1) v*s resides in a bounded neighborhood
of b or b; 2) the risk upper bound for SGD established in [Theorem 4.1, [Wu et al.| (2022)]. The
lower bound established in equationis uniformly valid for all ¥* € [b, b]. Denote event

1
K(vh) = {b <vh < b/\{ Vit € 7Vbran M2 Tl/max{maw)/z}}} :

For t, > Tb, the trajectory {\vlt}t o aligns with Algorithm l’s iterations over [T} : T, given the
initialization ¥v0 = v71 with KC(v71) occurs. Then, we have

minE [Rys(v7) = R (v¥) | K(vT)]

v+l

>(1—d)minE [RM( T2y C Ry (v¥) [ ts > Ty /\\70 =vh /\IC(VTI)}

v Ty

M
<+770 Z )\ +’l70h Z )\2 ) +]IMZT1/max{5,(a+B)/2} Z )\i(V )4

1=H,+1 i=Ho+1 i=DT
(84)

Noticing that C(v7*) occurs with probability at least 1 — &, and combining equatlonﬂwnh equa-
tion [84] we obtain

E [RM(VT) — RM(V*)] >(1—0)minE [RM(VT) —Ru(v*) | IC(VTl)]

vT1
H.
>=2 H,y : 2
i=H 41 i=Ho+41

+ Lpr>71/ maxs.a+p)/23 Z Ai(v
i=Df
where 1 := min{D,max{i [ \i(v})* > g% }} and Ha := min{D,max{i | \i(v})* >
57 }}. Furthermore, as analyzed in Step I, when M > O(TY/ max{B.(o+5)/2}) | the last iterate risk
mo

can be bounded below by D'~# with high probability; whereas when M < O(T*/ max{f.(a+5)/2})
such a lower bound is governed by M'~# with high probability. Therefore, we complete the proof
of the lower bound. O

D PROOFS OF THEOREM [4.2]

Proof. Without loss of generality, we suppose that the orthogonal matrix

arg min
RGRIW X M ,RRT :IZ\/I

is I;. Moreover, let the SVD of UU T be given by
= QGEQI,

The proof of Theorem [@.2] mirrors that of the upper bound established in Theorem@ It is similarly
divided into two parts: Phase I and Phase II. For simplicity, we denote y — <Q ASx v*®2> & as

3
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Phase I: According to the update rule of v at ¢ + 1-th step, we have
v§,+1 :vj- — 1 <<Qgsxt+1, (Vt)®2> B <QXSxt+17v*®2> . §t+1> ) (Q%SXtJrl)j ~v§-
—vi— <<2~:1/2zt+1’ (vt)®2> _ <§1/2Zt+1’v*®2> _ gt g
+(Qf (Ua = T) 21, (v)) ) 4 (B2 = m1/2) 541, vo2) )
. {(ilﬂzt“)j + (Qﬁ (UA - INJ) z”l)j} v

:v; —n, (<Z~)1/2zt+1, (vt>®2> B <§~]1/22t+1,v*®2> gt gt+1) ) (§1/2Zt+1) -v§-

J

T

— M (<Q[IJ (UA — ﬁ) ztt (vt)®2> + <(§;1/2 _ 21/2) Zt+1’v*®2>)
. [(il/zzm) +(@g (Ua - 0) zm)]} v

— (<§31/2zt+17 (\,]t)®2> _ <§~]1/2zt+lyv*®2> gttt gtﬂ)

(Qo (Ua-0)z*) -,

for any j € [M], where z ~ N(0,In) is a standard M-dimensional Gaussian vector. Note that
term Z in the above expression is identical to the right-hand side of equation [[2] Moreover, under
Assumption , the influence of the remaining terms on the update of v§- at step ¢ 4 1 is dominated
by term Z. Therefore, using techniques similar to those employed in section we can derive a
result analogous to Theorem B.T]

Phase II: Following the technique in section we can construct a truncated coupling {Vt}Ti
and a truncated sequence {wt}fio. Similarly, we can derive a result analogous to Theorem
which shows that with high probability, the trajectory of v! during Phase II (¢t € [T} : T]) will
remain within a neighborhood of v*. Then we estimate the risk between the last-step function value
and the ground truth as:

E -’R«M(WTZ) - IE:(x,y)ND (<QXSX7 V*®2> - y)ﬂ

%5 | (Qgsx. (w™) ) - (@asxv )|

%)IE -<f)1/2z, (WT2)®2 — v*®2>2- +E [<<El/2 — 21/2) z,v*®2>2]

+2[(Q] (Ua - 0) 2, (w))]
© T 27

SE | (5127, (w)* - ve2) , (85)

+|[007 - A+ |U-ua

where z ~ A(0,Ing) is a standard M-dimensional Gaussian vector. Here, (a) follows from condi-
tion [A4] in Assumption [3.2] (b) is derived from the Cauchy—Schwarz inequality, and (c) relies on

Assumption

Therefore, according to Eq. equation [36|and the analysis in Part II of section it suffices
to use the update rule of w' to determine the quantities of both the variance V72 and bias terms
B2, We rewrite the update rule of w' as follows:

witl —wt _p, (Q%UAZt+17 <(Wt)®2> _ yt+1) ) (Wt ® QIIJUAZt-H)
(@t )~ (552) —-3) (o @)

—w' g [(3120, (W) ) — (81250 ) g ¢
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+ <QI1:T (UA _ fj) 2+ (Wt>®2> B <(2~:1/2 _ 21/2) zt+1,v*®2>}
. [wt © T2t 4wt o QIIJ (UA _ ﬁ) Zt—&-l}
—wt— (<§31/2Zt+17 (Wt)®2> _ <§~31/2Zt+1,v*®2> - g) ] (Wt ® ’21/2Zt+1)

T

e T
) (e

(32— 2 et er)  (wh o B

~n(Qf (Us - 0) Zt“,ﬂ(}wt)@2> (woql (Ua-0)at)

e (89 )i v (w0 (0 T) ).

VI

Here, 7 corresponds to the term on the right-hand side of equation 25| while the remaining terms
I7,777,7V,V and VT only affect V2. For simplicity, define matrix H := diag{v*}X diag{v*}
and let K = T;. Combining the Cauchy—Schwarz inequality with the proof technique of Lemmas
and we derive the estimation for <H, VT2> in the following form:

N/ Ny M
(HVT) S0 [ =0+ o STONEDP | R+ K) > A (v
i=N§+1 i=No+1

+ (B VE) + (B VE) + (I VE) + (B VE) + (B V)

(d) N/ No M
Sot [ Z2m Y D)+t K) YD A
i=Nj+1 i=No+1

(86)

)

+||T07 - ||+ |[0-Ua

where the diagonal matrices V12, V72, V22, V1> and V7 are defined as follows:

~ 2

— A ifi < D.
VT2 _ U UA /\?(V:)z, if ¢ S D
)i ) I+ 2 r .
’ U-—-Ua|| -5, otherwise,
5 vl Il ‘s
VT2 U—UA W, IfZSD7
( III)M = ~ 2 o212 .
U-—-Ual| -Tno |v H , otherwise,
~ ~ 2 *02(|2
. UUT—AH A”Zi” ifi <D,
(V 2) = mAi(vE)
v 1,0 adady b 2 T??0| V*QZH2 .
uu’' — AH . o , otherwise,
SRR L s
I (R v T
(VV )iii -~ 4 T:7o|i1*®2H2 .
’ U-U H . v otherwise,
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~ 2 ~ o~ 2 | v*®2| 2
HU—UAH HUUT—AH AL ifi< D,
v _ A A2 (vy)
VI)., ~ 2 ||~ ~ 2 T770|V*®2H2
’ HU — UAH HUUT — AH S VS v otherwise.

Inequality (d) is derived from combining Assumption 4.1 with above definitions. The estimation for
<H, VT2> has been provided. It therefore remains only to bound <H, BT > which can be done by
an analysis analogous to that of Lemma|[B.6] This completes the proof. O

E AUXILIARY LEMMA

Definition E.1 (Sub-Gaussian Random Variable). A random variable x with mean Ex is sub-
Gaussian if there is o € R such that

E [e’\(‘”_E”)} < e#7 VA eR.

Proposition E.1. [(Wainwright, 2019)] For a random variable x which satisfies the sub-Gaussian
condition|[E.1|with parameter o, we have

2
P(lx —Ex| >c¢) <2 202, Ve>0. (87)

Lemma E.1. Ler X1, -, X, be independent and symmetric stochastic variables with zero mean.
Denote Y =31 v; X; 1, x,|<r for any unit vector v.€ R" and positive scalar R. Then, we have

Y X11,x,|<r is sub-Gaussian with parameter at most & = O (R?||v||z).

Proof. For simplicity, we denote X; := Xilx,<g forany i € [l : n],and Y_; = Y 7", viX;.
One can notice the following holds

E |:€A(YX1—]E[YX1])] — E |:€/\V1(X12_]E[X%])E |:€/\(Y,1X1—]E[Y,1X1]) ‘ X11|:| , (88)
for any A € R. Letting X ! be an independent copy of X, for any ¢ € [1 : n|, then we have

E {e,\(y,l)"(rza[y,lxl]) | Xl] %)]E {E [ezg;g Avi(Xi X —E[XXD) | Xl,X{”

(b) n T v il A A
<E (R[S X -X5D | 3 X[ (89)

where (a) and (b) are derived from the convexity of the exponential, and Jensen’s inequality. Letting
¢ be an independent Rademacher variable, since the distribution of X; — X/ is the same as that of
&(X; — X]) forany i € [1 : n], we obtain

n (Y. Y. Y'Y/ A~ ~
E[e o AVi (X X1 =X X)) |X1)X{}

—.

E [em [Xl(&—X;HX;(Xl—X;)]}

=2

(E {62/\2va§(&-7>€£)2 | th({} E [62/\viX£(XrX{) | Xl,X{DUQ. (90)

INS

=2

Noticing that | X; — X/| < 2R and |X;| < R, and applying the Hoeffding bound to X; for any
i € [1 : n], we are guarantee that

n

H (IE {ezvvf)"('f()?if)"(;)? | Xl,X{} E |:e2)\vif(£()217f({) | Xl,X{DI/Q < LCO(WRY S, vE)

i=2
oD
Combining Eq. equation [88}Eq. equation[91]and applying similar technique, we have
E {6A(YX1—IE[YX1])} <GO()\2R4 ViR [eAvi()A(f—]E[Xf])} < 6O(A2R4Hv\|§).
O
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Lemma E.2. Consider a stochastic variable X which is zero-mean and sub-Gaussian with param-
eter o for some o > 0. Then, there exists R > 0 which depends on o such that

1
E [X*1x|<r] > 5B [(X?]. (92)

r2
Proof. According to Eq. equation , we have P(|X| > r) < 2e™ 2-2 for any 7 > 0. Therefore, we
obtain

@, [
E [X*1x|>r] :2/ rP(I X1 x> g > 7)dr
0

:2/ rP(IX| > r)dr + R*B(X| > R)

R
> r2 R2 R2 R2
§4/ re 202dr 4+ 2R%e 202 = 40%e” o2 4+ 2R%e " 207, 93)
R
where (a) is derived from [Lemma 2.2.13, |Wainwright| (2019)]. ]

LemmaE.3. Letc > 0,7 < landa; > 0 foranyt € [0 : T — 1]. Consider a sequence of random
variables {v'}[ ;' C [0,c], which satisfies either v' = v'*t = ... = T, or E ! | F] <

242
(1 — my)vt with stepsize 1y > 0, given B[} —EL™FD | Ft] < ¢==*
A € R. Then, there is

1 2.2
P (’UT > c/\v0 < 70) < max exp ( 1>1 ¢ .
te[1:T] QZJ o J (1— ;)2

almost surely for any

i=j+1
Proof. Similarly, we begin with constructing a sequence of couplings {#°}7_ as follows: % = v%;
ifof = ot = ... = o7, let 5"+! = (1 — 1,)0"; otherwise, let #+1 = v+1. Notice that ['_} (1 —

;)" 1" is a supermartingale. We define Dy := [[}_o(1 — 7)o"+t — [['20(1 — n;)~ 1o for
any t € [0 : T — 1]. Therefore, applying iterated expectation yields

E [6)‘(25:1 Di)} —E [e / [e)‘Dt | Fi= 1]}
5| JE {enl T (T IFtIH

(b) Aitl B
<€2H1_D(1 702 R, |:e>\(21=1 DZ)]

t—1 —
D D N T

<e 2 . (94)

forany A € RT and ¢ € [1 : T, where (a) is derived from that A(E[v | F¢=1] — (1 —n,_1)vt 1) <0

2,2

and (b) follows from the condition that E[e*®""" ~(1=1)v") | F!] < ¢*Z* almost surely for any
A € R. Then we obtain

t—1
P(yT>c/\y0gyc)gtgﬁ%P(H(l—m >H1—m /\v <yc>

=0

E [, Dm}

< max min o -
te[1:7) A>0 AITiZo(1=n:)~e—re)

t—1 —1 2

®) (Hi o(l—m)~te— 70)
< max exp{ — -
tE[l T] 22] 0 j z:()(]. _771')72
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(-2 (b - no )

< max exp { —

te[1:T] 9 23‘;(1) a? 520(1 — )2
1 2.2
= max exp{ ( 11)1 c } ; (95)
te[1:T] sz o J (- DL
where (b) is derived from Eq. equation [94] O

Corollary E.1. Letc > 0, v < land a; > Ofor anyt € [0 : T —1]. Consider a sequence of random

variables {v'}L 1 C [0, ¢, which satisfies T]—y (1 + n¢)~'e — 00 > fyc and E [+ | F1] <
2

(1 + ne)vt with stepsize n, > 0, given E[e* A

A € R. Then, there is

IP’(vT > c) < max exp '7 ¢ .
<t 2SS T (1 + )

Lemma Ed. For L, K € N, consider T € N* such that LK <T < (L + 1)K. Then we have

T T 9
3 (H(l - cm)) < =, (96)

t=0 \i=t

Ep THFD | FY < e>= almost surely for any

where 1, = 3% if IK <t <min{(l + 1)K —1,T} foranyl € [0 : L] and ¢ > 0 is a constant.

Proof. Forany [ € [0 : L], we have

(I+1)K—-1 s T T (I+1)K—1
N (IR) LR (1 QRRRST) B ST
=l =t i=(+1)K t=IK
T
Sml H (I—cnt) |- 97)
i=(41)K

Therefore, we obtain the following estimation

T T LK—-1 T T
Z(HU—%O%SEZ(HO—%O%+§:OﬂmmT%h

t=0 \i=t t=0 \i=t t=LK
L
(a) 2
O Lo _ 2

< (98)
c c
O
Lemma E.5. Under Assumption[3.3|and the setting of Theorem|B.2} we have
25
I-pH)*H < 1,
1t =nH)TH 2L
foranyt e [0:T —1].
Proof. Forindex i € [1 : D], we have
~ ~ ~ 25
n(IlzD - ’r’Hl:D)thlzD - 257](11D - nHl:D)QtleD j t+ 111:D;
since (1 —z)t < (t+1) forany z € (0,1). Forindex i € [D 4 1 : M], we obtain
1 1
H;,; <~ S 99
i S S e 99)
according to the parameter setting in Theorem-for anyt € [1:T—1]. [
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Lemma E.6. Suppose Assumption hold and let z = T x € RM. Then there exists a constant
v > 0 such that

E [Az|z|3 a2z AT] <7(AE[zz" AT B)AE [zz"| AT, (100)
for any diagonal PSD matrix A € RM*M gnd PSD matrix B € RM*M
Proof. We denote D := E[Az||z|% 5,2z  AT]. Forany i,j € [1 : M]andi # j, we have
D;; =2X\\jA; ;A j(ATBA); ;. In addition, we also have

D,; =E[||z|3rpa] AZ;Ni + (ATBA); ;A7 Var [2] < (C + DE [||z]3rpa] A7\
Therefore, we obtain that
D =(C+1)E [HZHQATBAl A]E[ZZT]AT + QAE[ZZT]ATBAIE[ZZT}A—r
2(C+DE|||z|Arpa] AE[zz ]AT

1/2

+2 H (AE[ZZT]AT)1/2 B (AE[ZZ JA H AFE[zz ]A—r

(%)(C' +2) (AE [ZZT} AT, B) AE[zz']AT,

where (a) is derived from that (AE[zz"]AT,B) = E[[|z]|3 +g,] and |[H/?2BH'/?|)3 < (H, B)
for any PSD matrix B, D € RM*M gince

aTHY2BH2a — <H1/2aaTH1/2, B>
< <H1/2aaTH1/2, B> n <H1/2aLaIH1/2,B>
=(H,B).
Therefore, by choosing v = (C' + 2), we obtain Eq. equation [100] O
Lemma E.7. Under the setting of Theorem|B.2} suppose following inequality holds
T

foranyt € [0: T — 1] and some constant T > 0. Then, we have

¢ ¢ Y ¢ ;

(H, B) (I-yH)>H (H, B)

— ' B 211 ) tr( -_—

;t+1z—<; t+1—i + 2rnlog({) tr( ;wrlﬂ
foranyt e [1:T).

Proof. According to the condition of this lemma, we have

ty 2t 0>
<H,B>7<(I pH)*H, B + 7 tr(H ?:0 t_z (101)
Applying Eq. equation|101|to each (H, B?), we obtain
t ; t i t i1
(H,B) (I-4HH _, (H, B
- < - B t
i;tﬂ—z‘— ; T1-; B )trnH Zkzzo t+1—d)(i— k)
t o t— t
(1-4HH _, \ (H,BY) 1 1
< — B tr(H
—<Z s L RS LD e vy i) D oy wr iy
i=0 k=0 i=k+1
t i t
I-nH)*H _, (H,B)
< ———— B 21nlog(t) tr(H -
_<Zi_0 P B ) s aoste a3 R
[
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F SIMULATIONS

In this paper, we present simulations in a finite but large dimension (d = 10,000). We artificially
generate samples from the model y = <x, (v*)®2> + &, where x ~ N (0,H), H = diag {i~*},

_B-a . . . . L
wi =47 ,and £ ~ N (0,1) is independent of x. In our simulations, given a total of T iteration,

we assume that Algorithm|l|can access 7" independent samples { (x;, ¥;) }Z.T=1 generated by the above

model. h in Algorithm (1] is set to mgz%' We numerically approximate the expected error by

averaging the results of 100 independent repetitions of the experiment. In the following, we detail
the specific experimental settings and present the results obtained for each scenario.

* Figure[F|(a): We compare the curve of mean error of SGD against the number of iteration
steps for both linear and quadratic models, under the setting o« = 3, § = 2 and 7' = 500.
The results show that the quadratic model exhibits a phase of diminishing error, while the
linear model demonstrates a continuous, steady decrease in error.

* Figure[F](b): We compare the curve of mean error of SGD against the number of iteration
steps for both linear and quadratic models, under the setting o« = 2.5, § = 1.5 and T" =
500. The results show that the quadratic model exhibits a phase of diminishing error, while
the linear model demonstrates a continuous, steady decrease in error.

* Figure |F|(c): We compare the curve of mean error of SGD against the number of sample
size for both linear and quadratic models, under the setting « = 3, 5 = 2 and T ranging
from 1000 to 5000. The results indicate that the quadratic model outperforms the linear
model and exhibits convergence behavior that is closer to the theoretical algorithm rate.

* Figure[F](d): We compare the curve of mean error of SGD against the number of sample
size for both linear and quadratic models, under the setting o = 2.5, 5 = 1.5 and T
ranging from 1000 to 5000. The results indicate that the quadratic model outperforms the
linear model and exhibits convergence behavior that is closer to the theoretical algorithm
rate.

* Figure |F|(e): We compare the curve of mean error of SGD against the number of sample
size for quadratic models with model size M = 10, 30, 50, 100, 200, under the setting
a = 3, f = 2 and T ranging from 1 to 10000. The results show that for a fixed M, when
T is small, the convergence rate approaches the rate observed as M — co. As T increases
sufficiently, the convergence rate stabilizes. Increasing M results in an increase in the value
of at which this stabilization occurs, which is consistent with the scaling law.

* Figure [F] (f): We compare the curve of mean error of SGD against the number of sample
size for quadratic models with model size M = 10, 30, 50, 100, 200, under the setting
a = 2.5, § = 1.5 and T ranging from 1 to 10000. The results exhibit similar patterns to
those observed in the previous figure.
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Figure 2: Numerical simulation results.
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