

000 001 SCALING LAW FOR SGD IN QUADRATICALLY 002 PARAMETERIZED LINEAR REGRESSION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

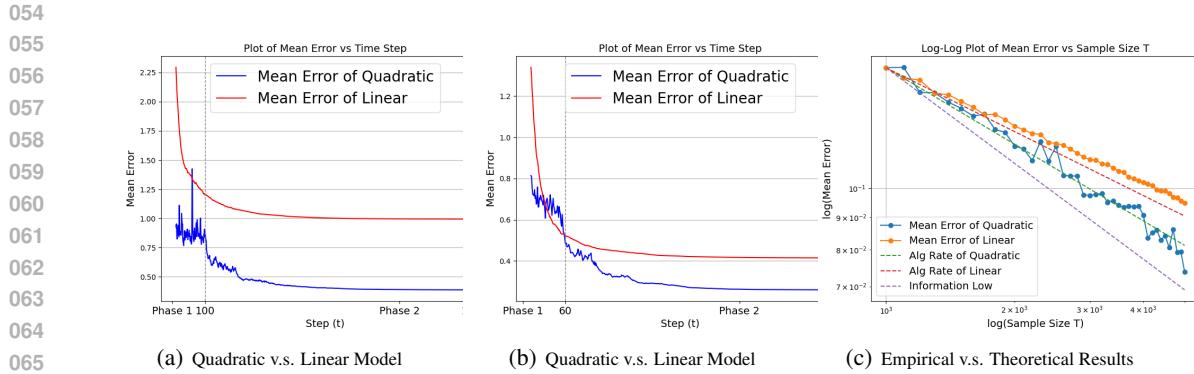
011 In machine learning, the scaling law describes how the model performance im-
012 proves with the model and data size scaling up. From a learning theory per-
013 spective, this class of results establishes upper and lower generalization bounds
014 for a specific learning algorithm. Here, the exact algorithm running using a spe-
015 cific model parameterization often offers a crucial implicit regularization effect,
016 leading to good generalization. To characterize the scaling law, previous theore-
017 tical studies mainly focus on linear models, whereas, feature learning, a notable
018 process that contributes to the remarkable empirical success of neural networks,
019 is regrettably vacant. This paper studies the scaling law over a linear regres-
020 sion with the model being quadratically parameterized. We consider infinitely
021 dimensional data and slope ground truth, both signals exhibiting certain power-
022 law decay rates. We study convergence rates for Stochastic Gradient Descent and
023 demonstrate the learning rates for variables will automatically adapt to the ground
024 truth. As a result, in the canonical linear regression, we provide explicit separa-
025 tions for generalization curves between SGD with and without feature learning,
026 and the information-theoretical lower bound that is agnostic to parametrization
027 method and the algorithm. Our analysis for decaying ground truth provides a new
028 characterization for the learning dynamic of the model.

029 1 INTRODUCTION 030

031 The rapid advancement of large-scale models has precipitated a paradigm shift across AI field, with
032 the empirical scaling law emerging as a foundational principle guiding practitioners to scale up the
033 model. The *neural scaling law* (Kaplan et al., 2020; Bahri et al., 2024) characterized a polynomial-
034 type decay of excess risk against both the model size and training data volume. Originated from
035 empirical observations, this law predict the substantial improvements of the model performance
036 given abundant training resources. Enough powerful validations have supported the law as critical
037 tools for development of model architecture and allocation of computational resources.

038 From the statistical learning perspective, neural scaling law formalizes an algorithm-dependent gen-
039 eralization that explicitly quantify how excess risk diminishes with increasing model size and sample
040 size. This paradigm diverges from the classical learning theory, which prioritizes algorithm-agnostic
041 guarantees through a uniform convergence argument for the hypotheses. Empirically, the neural
042 scaling law demonstrates a stable polynomial-type decay of excess risk. This phenomenon persists
043 even as model size approaches infinity, challenging the traditional intuitions about variance explo-
044 sion. Theoretically, this apparent contradiction implies the role of implicit regularization. Learning
045 algorithms, when coupled with specific parameterized architectures, realize good generalization that
046 suppresses variance explosion. The critical interplay between parameterization methods, optimiza-
047 tion dynamics, and generalization, positions algorithmic preferences as an implicit regularization
048 governing scalable learning.

049 Theoretical progress in characterization of the polynomial-type scaling law has largely centered on
050 linear models, motivated by two synergistic insights. First, the Neural Tangent Kernel (NTK) theory
051 (Jacot et al., 2018; Arora et al., 2019) reveals that wide neural networks, when specially scaled and
052 randomly initialized, can be approximated by linearized models, bridging nonlinear architectures to
053 analytically tractable regimes. Second, linear systems allow for precise characterization of learning
dynamics. The excess risk of linear model is associated with two key factors, the covariance operator



067 Figure 1: Empirical results on the convergence rate of quadratically parameterized model with spec-
068 tral decay v.s. traditional linear model. (a) and (b) show the curve of mean error against the number
069 of iteration steps, with $\alpha = 2.5, \beta = 1.5$ in (a) and $\alpha = 3, \beta = 2$ in (b), respectively. (c) show
070 the logarithmic curve of final mean loss against the sample size, where the solid lines represent the
071 empirical results and the dashed lines represent the theoretical rates.

072
073
074 spectrum and the regularity of ground truth (Lin et al., 2024; Bahri et al., 2024). In the Reproducing
075 Kernel Hilbert Space (RKHS) framework, these factors can be described by the capacity of the
076 kernel and source conditions of the target function (Caponnetto & De Vito, 2007).

077 Compared with traditional studies in linear regression, recent analyses have shifted focus to high-
078 dimensional problems with non-uniform and fine-grained covariance spectra and source con-
079 ditions (Caponnetto & De Vito, 2007; Bartlett et al., 2021). The NTK spectrum is shown to ex-
080 hibit power-law decay when the inputs are uniformly distributed on the unit sphere (Bietti & Mairal,
081 2019; Bietti & Bach, 2021). In the offline setting, Gradient Descent (GD) and kernel ridge regression
082 (KRR) exhibit the implicit regularization and multiple descents phenomena, under various geo-
083 metries of the covariance spectrum and source conditions (Gunasekar et al., 2017; Bartlett et al., 2020;
084 Ghorbani et al., 2021; Zhang et al., 2024b). In the more widely studied online setting, Stochastic
085 Gradient Descent (SGD) has been proven to achieve a polynomial excess risk under a power-law
086 decay covariance spectrum and ground truth parameter (Dieuleveut & Bach, 2016; Lin & Rosasco,
087 2017; Wu et al., 2022).

088 However, significant gaps persist in explaining the scaling laws when relying on simplified lin-
089 ear models. A primary limitation of these models is their inability to capture the feature learning
090 process, a mechanism that is widely regarded as crucial to the empirical success of deep neural
091 networks (LeCun et al., 2015). This process enables neural networks to autonomously extract high-
092 quality hierarchical representations from data, leading to effective generalization. This limitation
093 arises because linear models inherently restrict the capacity to learn feature representations and
094 tend to rapidly diverge from the initial conditions. In linear models, the parameter trajectory under
095 SGD follows a predictable pattern: the estimation bias contracts at a constant rate proportional to
096 the eigenvalue of each feature, while variance accumulates uniformly. However, neural networks
097 are not constrained by an initial feature set; instead, they adaptively reconfigure their internal rep-
098 resentations through coordinated parameter updates. The feature learning can often improve the
099 performances. For example, even the enhanced convolutional neural tangent kernel based on the lin-
100 earization of neural networks in the infinite-width limit has a performance gap compared to neural
101 networks on the CIFAR10 dataset (Li et al., 2019).

102 In this paper, we study a quadratically parameterized model: $f(\mathbf{x}) = \langle \mathbf{S}\mathbf{x}, \mathbf{v}^{\odot 2} \rangle$, where $\mathbf{S} \in$
103 $\mathbb{R}^M \times \mathbb{H}$ is the sketch matrix, and $\mathbf{x} \in \mathbb{H}$ is the input data, and $\mathbf{v} \in \mathbb{R}^M$ are the model parameters,
104 as an alternative testbed to study the scaling law. This model can be regarded as a “diagonal”
105 linear neural network and exhibits feature learning capabilities. As shown in Figure 1 (a) and (b),
106 linear models exhibit a empirically suboptimal convergence rate on excess risk under SGD. This
107 suboptimal performance is not solely attributed to the limitations of SGD itself. As demonstrated
108 in Figure 1 (c), SGD achieves a significantly faster convergence rate on excess risk in quadratically
109 parameterized models, aligning with our theoretical findings. Note that the previous studies for

108 quadratically parameterized models (HaoChen et al., 2021) often assume a sparse ground truth for
 109 the model where the variance will explode with the number of non-zero elements increasing and
 110 no polynomial rates are established. We instead consider an infinitely dimensional data input and
 111 ground truth, whose signal exhibits certain power-law decay rates. Specifically, for constants $\alpha, \beta >$
 112 1, we assume that the eigenvalues of the covariance matrix decay as $\lambda_i \asymp i^{-\alpha}$ and that \mathbf{v}_i^* the i -th
 113 alignment coordinate of the ground truth satisfies $\lambda_i (\mathbf{v}_i^*)^4 \asymp i^{-\beta}$. Suppose the model has access to
 114 the sketched covariates and their response, we study the excess risk of quadratically parameterized
 115 predictor with M parameters and trained by SGD with tail geometric decay schedule of step size,
 116 given T training samples.

117 We establish the upper bound for the excess risk, demonstrating that its follows a piecewise power
 118 law with respect to both the model size and the sample size throughout the training process. More
 119 concretely, the upper bounds of the excess risk $\mathcal{R}_M(\mathbf{v}^T) - \mathbb{E}[\xi^2]$ behaves as

$$121 \quad \underbrace{\frac{1}{M^{\beta-1}}}_{\text{approximation}} + \underbrace{\frac{\sigma^2 D}{T}}_{\text{variance}} + \underbrace{\frac{D}{T} + \frac{1}{D^{\beta-1}} \mathbf{1}_{D < M}}_{\text{bias}}$$

125 where $D = \min \{T^{1/\max\{\beta, (\alpha+\beta)/2\}}, M\}$ serves as the effective dimension. The above result
 126 reveals that, for a fixed sample size, increasing the model size is initially beneficial, but the re-
 127 turns begin to diminish once a certain threshold is reached. Moreover, when the model size is
 128 large enough, SGD achieves the excess risk as $\tilde{\mathcal{O}}(T^{-1+\frac{1}{\beta}})$ when $\alpha \leq \beta$, and the excess risk as
 129 $\tilde{\mathcal{O}}(T^{-\frac{2\beta-2}{\alpha+\beta}})$. This indicates that when the true parameter aligns with the covariance spectrum
 130 ($\alpha \leq \beta$), the quadratically parameterized model, similar to the linear model, achieves the optimal
 131 rate (Zhang et al., 2024a). On the other hand, when the true parameter opposes the covariance
 132 spectrum ($\alpha > \beta$), SGD achieves a rate of $\tilde{\mathcal{O}}(T^{-\frac{2\beta-2}{\alpha+\beta}})$ in the quadratically parameterized model,
 133 which outperforms the best rate SGD can achieve in the linear model $\tilde{\mathcal{O}}(T^{-\frac{\beta-1}{\alpha}})$ (Zhang et al.,
 134 2024a).

135 In our analysis, we characterize the learning process of SGD into two typical stages. In the first
 136 “adaptation” stage, the algorithm implicitly truncates the first D coordinates to form the effective
 137 dimension set \mathcal{S} , based on the initial conditions. The variables within \mathcal{S} grow and oscillate around
 138 the ground truth, while the remaining variables are constrained by a constant multiple of the ground
 139 truth, leading to an acceptable excess risk. In the second “estimation” stage, the variables in the
 140 effective dimension set \mathcal{S} converge to the ground truth, while the other variables remain within a
 141 region that produces a tolerable level of excess risk. The advantage beyond the linear model is easy
 142 to be observed in the “estimation” stage, where the step size is scaled by the certain magnitude of
 143 the ground truth due to the adaption, resulting in a faster convergence rate for the bias term.
 144

145 Due to the non-convex nature of the quadratically parameterized model, our analysis is much more
 146 involved. The main challenge in our analysis is the diverse scaling of the ground truth signals and the
 147 anisotropic gradient noise caused by the diverse data eigenvalues. This requires us to provide indi-
 148 vidual bounds for the model parameters through the analysis and proposes a refined characterization
 149 for the learning process. This challenge does not exist in the traditional analysis in the quadratically
 150 parameterized model, since they consider near isotropic input data and $\Theta(1)$ ground truth (HaoChen
 151 et al., 2021). By constructing non-trivial couplings and employing truncated sequences, we provide
 152 a precise coordinate-wise analysis for the SGD dynamics, thereby overcoming this challenge.
 153

154 We summarize the contribution of this paper as follows:

- 157 • The learning curves of SGD is proposed based on a quadratically parameterized model that
 158 emphasizes feature learning. We establish excess risk against sample and model sizes.
- 159 • A theoretical analysis for the dynamic of the quadratically parameterized model is of-
 160 fered, where we propose a new characterization to deal with the decaying ground truth
 161 and anisotropic gradient noise.

162

2 RELATED WORKS

163

164

Linear Regression. Linear regression, a cornerstone of statistical learning, achieves information-
165 theoretic optimality $\tilde{\mathcal{O}}(d\sigma^2/T)$ in finite dimensions for both offline and online settings (Bach &
166 Moulines, 2013; Jain et al., 2018; Ge et al., 2019). Recent advances extend analyses to high-
167 dimensional regimes under eigenvalue regularity conditions and parameter structure (Raskutti et al.,
168 2014; Gunasekar et al., 2017; Bartlett et al., 2020; Hastie et al., 2022; Tsigler & Bartlett, 2023).
169 Offline studies characterize implicit bias, benign overfitting, and multi-descent phenomena linked
170 to spectral geometries (Liang et al., 2020; Ghorbani et al., 2021; Mei & Montanari, 2022; Lu et al.,
171 2023; Zhang et al., 2024b), while online analyses reveal SGD’s phased complexity release and co-
172 variance spectrum-dependent overfitting (Dieuleveut & Bach, 2016; Dieuleveut et al., 2017; Lin
173 & Rosasco, 2017; Ali et al., 2020; Zou et al., 2021a;b; Wu et al., 2022; Varre et al., 2021). Re-
174 cent work quantifies SGD’s risk scaling under power-law spectral decays (Paquette et al., 2024; Lin
175 et al., 2024; Bordelon et al., 2024; Bahri et al., 2024). We follow the geometric decay schedule of
176 the step size (Ge et al., 2019; Wu et al., 2022; Zhang et al., 2024a) in Phase II due to its superior-
177 ity in balancing rapid early-phase convergence and stable asymptotic refinement (Ge et al., 2019).
178 However, in analysis of Phase II, we further require constructing auxiliary sequences to reach the
179 desired convergence rate, which is much more technical.

180

Feature Learning. The feature learning ability of neural networks is the core mechanism behind
181 their excellent generalization performance. In recent years, theoretical research has primarily fo-
182 cused on two directions: one is the analysis of infinitely wide networks within the mean-field
183 framework, see e.g. Mei et al. (2018); Chizat & Bach (2018), and the other is the study of how
184 networks align with low-dimensional objective functions including single-index models (Ba et al.,
185 2022; Mousavi-Hosseini et al., 2022; Lee et al., 2024) and multi-index models (Damian et al., 2022;
186 Vural & Erdogan, 2024). Although significant progress has been made in these areas, the mean-field
187 mode lacks a clear finite sample convergence rate. Assumptions such as sparse or low-dimensional
188 isotropic objective functions weaken the generality and fail to recover the polynomial decay of gen-
189 eralization error with respect to sample size and model parameters. In this paper, we follow the
190 previous quadratic parameterization (Vaskevicius et al., 2019; Woodworth et al., 2020; HaoChen
191 et al., 2021) while develop a generalization error analysis under an anisotropic covariance structure,
192 yielding generalization error results similar to those predicted by the neural scaling law.

193

3 SET UP

194

195

3.1 NOTATION

196

197

In this section, we introduce the following notations adopted throughout this work. Let $\mathcal{O}(\cdot)$ and $\Omega(\cdot)$
198 denote upper and lower bounds, respectively, with a universal constants, while $\tilde{\mathcal{O}}(\cdot)$ and $\tilde{\Omega}(\cdot)$ ignore
199 polylogarithmic dependencies. For functions f and g : $f \lesssim g$ denotes $f = \tilde{\mathcal{O}}(g)$; $f \gtrsim g$ denotes
200 $f = \tilde{\Omega}(g)$; $f \asymp g$ indicates $g \lesssim f \lesssim g$. We denote $\mathbb{R}[\mathbf{z}]_{\leq k}$ as the vector space of polynomials with
201 real coefficients in variables $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_M)$, of degree at most k . For a positive integer M , let
202 $[M]$ denote the set $\{1, \dots, M\}$.

204

3.2 QUADRATICALLY PARAMETERIZED MODEL

205

206

We denote the covariate (feature) vector by $\mathbf{x} \in \mathbb{H}$, where \mathbb{H} is a finite d -dimensional or countably
207 infinite dimensional Hilbert space, and the corresponding response by $y \in \mathbb{R}$. Notice that the
208 algorithm operates solely in finite-dimensional spaces. Following Lin et al. (2024), we assume
209 access to M -dimensional sketched covariate vectors and their corresponding responses, denoted
210 $(\mathbf{S}\mathbf{x}, y)$, where $\mathbf{S} \in \mathbb{R}^M \times \mathbb{H}$ is a fixed sketch matrix.

211

We focus on a quadratically parameterized model and measure the population risk of parameter \mathbf{v}
212 by the mean squared loss as:

213
$$\mathcal{R}_M(\mathbf{v}) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} (\langle \mathbf{S}\mathbf{x}, \mathbf{v}^{\odot 2} \rangle - y)^2, \quad (1)$$
214

215

where the expectation is taken over the joint distribution \mathcal{D} of (\mathbf{x}, y) . In this paper, we study the
216 quadratically parameterized model with the predictor $f_{\mathbf{v}}(\mathbf{x}) := \langle \mathbf{S}\mathbf{x}, \mathbf{v}^{\odot 2} \rangle$ for any $\mathbf{v} \in \mathbb{R}^M$. One

216 can generally use the parameterization as $\langle \mathbf{Sx}, \mathbf{v}_+^{\odot 2} - \mathbf{v}_-^{\odot 2} \rangle$ by the same technique as Woodworth
 217 et al. (2020). In contrast with linear model (Lin et al., 2024), quadratically parameterized model
 218 allows discovery of discriminative features through learning towards dominant directions of target.
 219 Thus, it models the feature learning mechanism while ensuring analytical tractability.
 220

221 **3.3 DATA DISTRIBUTION ASSUMPTIONS**
 222

223 We make the following assumptions of data distribution.

224 **Assumption 3.1** (Anisotropic Gaussian Data, Sub-Gaussian Noise, and Gaussian Remainder).

226 **[A₁]** (Independent Gaussian Data) For any $i \in [M]$, the sketched covariate $(\mathbf{Sx})_i \sim \mathcal{N}(0, \lambda_i)$. For
 227 any $i \neq j$, $(\mathbf{Sx})_i$ and $(\mathbf{Sx})_j$ are independent.

228 **[A₂]** (Sub-Gaussian Noise and Gaussian Remainder Term) There exist $\mathbf{v}^* \in \mathbb{R}^M$ and a sub-Gaussian
 229 random variable ξ with parameter $\sigma_\xi > 0$ (see Definition E.1 for details) such that the remainder
 230 term $\zeta_M := y - \langle \mathbf{Sx}, \mathbf{v}^{*\odot 2} \rangle - \xi$ follows a normal distribution $\mathcal{N}(0, \sigma_{\zeta_M}^2)$. Moreover, $\mathbb{E}[\xi \zeta_M] = 0$.
 231 Additionally, for any polynomial $p(\mathbf{Sx}) \in \mathbb{R}[\mathbf{Sx}]_{\leq 3}$, we have $\mathbb{E}[p(\mathbf{Sx})\xi] = 0$ and $\mathbb{E}[p(\mathbf{Sx})\zeta_M] = 0$.
 232

233 The assumption for independent Gaussian data is also used in other analyses for the quadratically
 234 parameterized model, such as HaoChen et al. (2021), whereas, we allow non-identical covariates.
 235 The independence assumption resembles (is slightly stronger than) the RIP condition, and is widely
 236 adopted in feature selection, e.g. Candes & Tao (2005), to ensure computational tractability, because
 237 in the worst case, finding sparse features is NP-hard (Natarajan, 1995). To mitigate the limitations
 238 associated with the independence assumption, we further introduce Assumption 3.2 and also estab-
 239 lish a corresponding convergence guarantee (Theorem 4.2) for SGD on quadratically parameterized
 240 models under this assumption.

241 **Assumption 3.2** (General Gaussian Data, Sub-Gaussian Noise and Remainder).

242 **[A₃]** (General Gaussian Data) The sketched covariate vector $\mathbf{Sx} \sim \mathcal{N}(\mathbf{0}, \mathbf{A})$, where \mathbf{A} is a positive
 243 semi-definite (PSD) matrix. The singular value decomposition (SVD) of \mathbf{A} is given by $\mathbf{A} = \mathbf{Q}_\mathbf{A} \cdot$
 244 $\text{diag}\{\lambda_i\}_{i \in [M]} \cdot \mathbf{Q}_\mathbf{A}^\top$.

245 **[A₄]** (Sub-Gaussian Noise and Remainder Term) There exist $\mathbf{v}^* \in \mathbb{R}^M$ and a sub-Gaussian random
 246 variable ξ with parameter $\sigma_\xi > 0$ such that the remainder term $\zeta_M := y - \langle \mathbf{Q}_\mathbf{A}^\top \mathbf{Sx}, \mathbf{v}^{*\odot 2} \rangle - \xi$ is
 247 sub-Gaussian with parameter $\sigma_{\zeta_M} > 0$. Moreover, $\mathbb{E}[\xi \zeta_M] = 0$. Additionally, for any polynomial
 248 $p(\mathbf{Q}_\mathbf{A}^\top \mathbf{Sx}) \in \mathbb{R}[\mathbf{Q}_\mathbf{A}^\top \mathbf{Sx}]_{\leq 3}$, we have $\mathbb{E}[p(\mathbf{Q}_\mathbf{A}^\top \mathbf{Sx})\xi] = 0$ and $\mathbb{E}[p(\mathbf{Q}_\mathbf{A}^\top \mathbf{Sx})\zeta_M] = 0$.
 249

250 Assumption 3.2 strictly generalizes Assumption 3.1 by allowing correlated Gaussian covariates with
 251 an arbitrary PSD covariance and by requiring only a sub-Gaussian remainder with low-degree or-
 252 thogonality. Under this broader correlated-Gaussian assumption, the SGD convergence and feature-
 253 learning guarantees for diagonal-network predictors remain valid, and the diagonal independent case
 254 is recovered as a special instance. Our formulation aligns with the sketch method proposed by Lin
 255 et al. (2024). Furthermore, **[A₃]** in Assumption 3.2 holds for an arbitrary sketch matrix under the
 256 assumption that \mathbf{x} follows a zero-mean Gaussian distribution.

257 We derive the scaling law for SGD under the following power-law decay assumptions of the covari-
 258 ance spectrum and prior conditions.

259 **Assumption 3.3** (Specific Spectral Assumptions).

260 **[A₅]** (Polynomial Decay Eigenvalues) There exists $\alpha > 1$ such that for any $i \in [M]$, the eigenvalue
 261 of data covariance λ_i satisfy $\lambda_i \asymp i^{-\alpha}$.

262 **[A₆]** (Source Condition) There exists $\beta > 1$ such that the ground truth parameter \mathbf{v}^* satisfies that for
 263 any $i \in [M]$, $\lambda_i (\mathbf{v}_i^*)^4 \asymp i^{-\beta}$. Moreover, $\sigma_{\zeta_M}^2 = \sum_{i > M} i^{-\beta}$.

264 The polynomial decay of eigenvalues and the ground truth has been widely considered to study the
 265 scaling laws for linear models like random feature model (Bahri et al., 2024; Bordelon et al., 2024;
 266 Paquette et al., 2024) and infinite dimensional linear regression (Lin et al., 2024), based on empirical
 267 observations of NTK spectral decompositions on the realistic dataset (Bahri et al., 2024; Bordelon &

270 **Algorithm 1** Stochastic Gradient Descent (SGD)

271 **Input:** Initial weight $\mathbf{v}_0 = \Omega(\min\{1, M^{-(\beta-\alpha)/4}\})\mathbf{1}_M$, initial step-size η , total sample size T ,
 272 middle phase length h , decaying phase length $T_1 = \lfloor (T-h)/\log(T-h) \rfloor$.
 273 **while** $t \leq T$ **do**
 274 **if** $t > h$ and $(t-h) \bmod T_1 = 0$ **then**
 275 $\eta \leftarrow \eta/2$.
 276 **end if**
 277 Sample a fresh data $(\mathbf{x}^{t+1}, y^{t+1}) \sim \mathcal{D}$.
 278 $\mathbf{v}^{t+1} \leftarrow \mathbf{v}^t - \frac{\eta}{2} \nabla_{\mathbf{v}} (f_{\mathbf{v}^t}(\mathbf{x}^{t+1}) - y^{t+1})^2$.
 279 **end while**

280
 281
 282 Pehlevan, 2021). It is used in slope functional regression (Cai & Hall, 2006), and also analogous to
 283 the capacity and source conditions in RKHS (Wainwright, 2019; Bietti & Mairal, 2019). Given that
 284 the optimization trajectory of linear models is intrinsically aligned with the principal directions of the
 285 covariate feature space, this alignment motivates us to adopt analogous assumptions for our model,
 286 thereby enabling direct comparison of learning dynamics through feature space decomposition.
 287

288 3.4 ALGORITHM

289 We employ SGD with a geometric decay of step size to train the quadratically parameterized predictor
 290 $f_{\mathbf{v}}$ to minimize the objective equation 1. Starting at \mathbf{v}^0 , the iteration of parameter vector $\mathbf{v} \in \mathbb{R}^M$
 291 can be represented explicitly as follows:

$$295 \mathbf{v}^t = \mathbf{v}^{t-1} - \eta_t (f_{\mathbf{v}^{t-1}}(\mathbf{x}^t) - y^t) (\mathbf{v}^{t-1} \odot \mathbf{Sx}^t) \\ 296 = \mathbf{v}^{t-1} - \eta_t \left(\langle \mathbf{Sx}^t, (\mathbf{v}^{t-1})^{\odot 2} \rangle - y^t \right) (\mathbf{v}^{t-1} \odot \mathbf{Sx}^t), \\ 297$$

298 for $t = 1, \dots, T$, where $\{(\mathbf{x}^t, y^t)\}_{t=1}^T$ are independent samples from distribution \mathcal{D} and $\{\eta_t\}_{t=1}^T$ are
 299 the step sizes.

300 We use the tail geometric decay of step size schedule as describe in Wu et al. (2022). The step
 301 size remains constant for the first $T_1 + h$ iterations where h denotes the middle phase length and
 302 $T_1 := \lfloor (T-h)/\log(T-h) \rfloor$. Then the step size halves every T_1 steps. Specifically, the decay
 303 schedule of step size is given by:

$$306 \eta_t = \begin{cases} \eta, & 0 \leq t \leq T_1 + h, \\ 307 \eta/2^l, & T_1 + h < t \leq T, l = \lfloor (t-h)/T_1 \rfloor, \\ 308 \end{cases}$$

310 The integration of warm-up with subsequent learning rate decay has become a prevalent technique in
 311 deep learning optimization (Goyal, 2017). Within the decay stage, geometric decay schedules have
 312 demonstrated superior empirical efficiency compared to polynomial alternatives, as geometric decay
 313 achieves adaptively balancing aggressive early-stage learning with stable late-stage refinement (Ge
 314 et al., 2019). Motivated by these established advantages, our step size schedule design strategically
 315 combines an initial constant stage with a subsequent geometrically decaying stage. This hybrid
 316 approach inherits the computational benefits of geometric decay while maintaining the stability ben-
 317 efits of warm-up initialization, creating synergistic effects that polynomial decay schedules cannot
 318 achieve (Bubeck et al., 2015).

319 The algorithm is summarized as Algorithm 1. The initial point \mathbf{v}_0 and the initial step size η are
 320 hyperparameters of Algorithm 1, and they play a crucial role in determining whether the algorithm
 321 can escape saddle points and converge to the optimal solution. Starting at an initial point near zero,
 322 the constant step size stage allows the algorithm to adaptively extract the important features without
 323 explicitly setting the truncation dimensions while keeping the remaining variables close to zero. The
 subsequent geometric decay of the step size guarantees fast convergence to the ground truth.

324 **4 CONVERGENCE ANALYSIS**

326 The upper bound of last iterate instantaneous risk for Algorithm 1 can be summarized by the following theorem, which provides the guarantee of global convergence for last iterate SGD with tail
327 geometrically decaying stepsize and a sufficiently small initialization.

328 **Theorem 4.1.** *Under Assumptions 3.1 and 3.3, we consider a predictor trained by Algorithm 1 with total sample size T and middle phase length $h = \lceil T/\log(T) \rceil$. Let $D \asymp \min\{T^{1/\max\{\beta,(\alpha+\beta)/2\}}, M\}$ and $\eta \asymp D^{\min\{0,(\alpha-\beta)/2\}}$. The error of output can be bounded from above by*

$$334 \quad \mathcal{R}_M(\mathbf{v}^T) - \mathbb{E}[\xi^2] \asymp \underbrace{\frac{1}{M^{\beta-1}}}_{\text{approximation}} + \underbrace{\frac{\sigma^2 D}{T}}_{\text{variance}} + \underbrace{\frac{D}{T} + \frac{1}{D^{\beta-1}} \mathbf{1}_{D < M}}_{\text{bias}}, \quad (2)$$

335 with probability at least 0.95, where $\sigma^2 := \sigma_\xi^2 + \sigma_{\zeta_M}^2$.

336 Our bound exhibits two key properties: (1) Dimension-free: equation 3 depends on the effective dimension D rather than ambient dimension M . (2) Problem-adaptive: D is governed by the spectral structure of $\text{diag}\{\lambda_1(\mathbf{v}_1^*)^2, \dots, \lambda_M(\mathbf{v}_M^*)^2\}$, which is induced by the multiplicative coupling between the data covariance matrix and optimal solution determined by the problem. The risk bound in equation 3 consists of three components: (1) approximation error term, (2) bias error term originating from $\mathbf{v}^{T_1} - \mathbf{v}_{1:M}^*$ at iteration $T_1 = \lceil (T-h)/\log(T-h) \rceil$, and (3) variance error term stemming from the multiplicative coupling between additive noise $\xi + \sum_{i \geq M+1} \mathbf{x}_i(\mathbf{v}_i^*)^2$ and matrix $\text{diag}\{\mathbf{v}_{1:M}^*\}$. The step size configuration in Theorem 4.1 is strategically designed to achieve faster convergence.

337 For larger M , Corollary 4.1 establishes the convergence rate for Algorithm 1 via Theorem 4.1.

338 **Corollary 4.1.** *Under the setting of the parameters in Theorem 4.1, if $T^{1/\max\{\beta,(\alpha+\beta)/2\}} \asymp D < M$, we have*

$$339 \quad \begin{cases} \mathcal{R}_M(\mathbf{v}^T) - \mathbb{E}[\xi^2] \asymp \frac{1}{M^{\beta-1}} + \frac{\sigma^2 + 1}{T^{1-1/\beta}}, & \text{if } \beta \geq \alpha > 1, \\ \mathcal{R}_M(\mathbf{v}^T) - \mathbb{E}[\xi^2] \asymp \frac{1}{M^{\beta-1}} + \frac{\sigma^2 + 1}{T^{(2\beta-2)/(\alpha+\beta)}}, & \text{if } \alpha > \beta > 1, \end{cases}$$

340 with probability at least 0.95.

341 Corollary 4.1 demonstrates that under Assumptions 3.1 and 3.3, when the model size M is sufficiently large, the last iterate instantaneous risk of Algorithm 1 exhibits distinct behaviors in two regimes: (I) $\beta \geq \alpha > 1$ and (II) $\alpha \geq \beta > 1$. We consider the total computational budget as $B = MT$, reflecting that Algorithm 1 queries M -dimensional gradients T times.

342 **Given B :** If $\beta > \alpha > 1$, the optimal last iterate risk is attained with parameter configurations: $343 M = \tilde{\Omega}(B^{\frac{1}{1+\beta}})$ and $T = \tilde{\Omega}(B^{\frac{\beta}{1+\beta}})$. If $\alpha \geq \beta > 1$, the optimal last iterate risk is attained with parameter configurations: $344 M = \tilde{\Omega}(B^{\frac{1}{1+(\alpha+\beta)/2}})$ and $T = \tilde{\Omega}(B^{\frac{(\alpha+\beta)/2}{1+(\alpha+\beta)/2}})$.

345 **Given Total Sample Size T :** So as long as $M \gtrsim T^{1/\max\{\beta,(\alpha+\beta)/2\}}$, Corollary 4.1 implicates that the risk can be effectively reduced by increasing the model size M as much as possible.

346 For smaller M , Corollary 4.2 provides the convergence rate for Algorithm 1 through Theorem 4.1.

347 **Corollary 4.2.** *Under the setting of the parameters in Theorem 4.1, if $M \lesssim T^{1/\max\{\beta,(\alpha+\beta)/2\}}$, we have*

$$348 \quad \mathcal{R}_M(\mathbf{v}^T) - \mathbb{E}[\xi^2] \asymp \frac{1}{M^{\beta-1}} + \frac{(\sigma^2 + 1)M}{T},$$

349 with probability at least 0.95.

350 The risk bound $\mathcal{R}_M(\cdot)$ in Corollary 4.2 decreases monotonically with increasing M . So as long as $M \lesssim T^{1/\max\{\beta,(\alpha+\beta)/2\}}$, our analysis implies to increase the model size M until reaching the computational budget.

378 *Remark 4.1.* For any (random) algorithm \hat{v} based on i.i.d. data $\{(\mathbf{x}_i, y_i)\}_{i=1}^T$ from the true parameter
 379 $\mathbf{v}_* \in \mathcal{V}$, the worst-case excess risk convergence rate is limited by the information-theoretic lower
 380 bound. The scaling law, however, describes the excess risk trajectory of a specific algorithm in
 381 a given context during training. Under the covariate distribution assumptions 3.1, and the ground
 382 truth assumption 3.3, prior work (Zhang et al., 2024a) established the info-theoretic lower bound
 383 as $T^{-\frac{1}{\beta}}$. Our analysis shows two distinct regimes: When $\alpha \leq \beta$, SGD in linear and quadratically
 384 parameterized models hits the lower bound, proving statistical optimality. When $\alpha > \beta$, SGD in
 385 both misses the bound, yet the quadratically parameterized model has better excess risk than the
 386 linear one. This shows a capacity gap between the two model types, highlighting the importance of
 387 feature learning and model adaptation.

388 When the covariance matrix of \mathbf{Sx} is a general PSD matrix \mathbf{A} , we first need to obtain an estimate of
 389 \mathbf{A} given by $\tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top$, with $\tilde{\mathbf{U}} \in \mathbb{R}^{M \times M}$. Then, based on the SVD of $\tilde{\mathbf{U}} = \mathbf{Q}_{\tilde{\mathbf{U}}} \cdot \text{diag}\{\gamma_i\}_{i \in [M]} \cdot \mathbf{P}_{\tilde{\mathbf{U}}}^\top$,
 390 the form of the predictor $f_{\mathbf{v}}(\mathbf{x})$ in Algorithm 1 is modified to:
 391

$$f_{\mathbf{v}}(\mathbf{x}) = \langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{Sx}, \mathbf{v}^{\odot 2} \rangle.$$

394 To establish convergence of SGD under this setting, we assume that the estimator $\tilde{\mathbf{U}}$ satisfies the
 395 following accuracy condition:
 396

397 **Assumption 4.1.** Defining $\mathbf{U}_\mathbf{A} := \mathbf{Q}_\mathbf{A} \Sigma^{1/2}$ where $\Sigma := \text{diag}\{\lambda_i\}_{i \in [M]}$, then the following in-
 398 equalities hold

$$\begin{aligned} \|\tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top - \mathbf{A}\| &\leq \lambda_M^2 \min \left\{ \frac{1}{D}, \frac{D^{\max\{\beta, (\alpha+\beta)/2\}-1}}{T} \right\}, \\ \min_{\substack{\mathbf{R} \in \mathbb{R}^{M \times M} \\ \mathbf{R}\mathbf{R}^\top = \mathbf{I}_M}} \|\tilde{\mathbf{U}}\mathbf{R} - \mathbf{U}_\mathbf{A}\| &\leq \lambda_M \cdot \min \left\{ M^{-\max\{0, \frac{\beta-\alpha}{2}\}}, \frac{1}{D}, \frac{D^{\max\{\beta, \frac{\alpha+\beta}{2}\}-1}}{T} \right\}. \end{aligned}$$

405 For a PSD matrix \mathbf{A} , numerous existing works (Stöger & Soltanolkotabi, 2021; Zhuo et al., 2024;
 406 Zhang et al., 2021; 2023; Xiong et al., 2023; Li et al., 2018; Tu et al., 2016) design algorithms
 407 using the parametrization $\mathbf{U}\mathbf{U}^\top$ with $\mathbf{U} \in \mathbb{R}^{M \times M}$ to achieve convergence in $\|\mathbf{U}\mathbf{U}^\top - \mathbf{A}\|$ or
 408 $\text{dist}(\mathbf{U}, \mathbf{U}_\mathbf{A})$ which is defined as follows:
 409

$$\text{dist}(\mathbf{U}, \mathbf{U}_\mathbf{A}) := \min_{\substack{\mathbf{R} \in \mathbb{R}^{M \times M} \\ \mathbf{R}\mathbf{R}^\top = \mathbf{I}_M}} \|\mathbf{U}\mathbf{R} - \mathbf{U}_\mathbf{A}\|.$$

412 In our setting, we have access to random matrices $\mathbf{Sx}(\mathbf{Sx})^\top$, where $\mathbb{E}[\mathbf{Sx}(\mathbf{Sx})^\top] = \mathbf{A}$. Compared
 413 to the deterministic matrix factorization problem (Stöger & Soltanolkotabi, 2021; Zhuo et al., 2024;
 414 Zhang et al., 2021; 2023), this only introduces an additional zero-mean random noise. Consequently,
 415 by appropriately modifying existing algorithms for stochastic matrix factorization (e.g., those in
 416 Xiong et al. (2023); Li et al. (2018); Tu et al. (2016)), we can technically obtain an estimator $\tilde{\mathbf{U}}$ that
 417 satisfies Assumption 4.1.

418 **Theorem 4.2.** Under Assumptions 3.2, 3.3 and 4.1, we consider a predictor trained by Al-
 419 gorithm 1 with total sample size T and middle phase length $h = \lceil T/\log(T) \rceil$. Let $D \asymp \min\{T^{1/\max\{\beta, (\alpha+\beta)/2\}}, M\}$ and $\eta \asymp D^{\min\{0, (\alpha-\beta)/2\}}$. The error of output can be bounded from
 420 above by
 421

$$\begin{aligned} \mathcal{R}_M(\mathbf{v}^T) - \mathbb{E}[\xi^2] &\lesssim \underbrace{\frac{1}{M^{\beta-1}}}_{\text{approximation}} + \underbrace{\frac{\sigma^2 D}{T}}_{\text{variance}} + \underbrace{\frac{D}{T} + \frac{1}{D^{\beta-1}} \mathbf{1}_{D < M}}_{\text{bias}} \\ &\quad + \|\tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top - \mathbf{A}\| + \text{dist}(\tilde{\mathbf{U}}, \mathbf{U}_\mathbf{A}), \end{aligned} \tag{3}$$

422 with probability at least 0.95, where $\sigma^2 := \sigma_\xi^2 + \sigma_{\zeta_M}^2$.
 423

424 The proof of Theorem 4.2 follows a similar line of reasoning and technique as that of Theorem 4.1.
 425 This is because, after applying $\mathbf{Q}_{\tilde{\mathbf{U}}}$ to the sketched covariate vector, the covariance matrix of $\mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{Sx}$
 426 does not deviate significantly from a diagonal matrix. In fact, the difference between the dynamics

432 of the parameter \mathbf{v} in Theorem 4.1 and those in Theorem 4.2 can be controlled by the distance metric
 433 $\text{dist}(\tilde{\mathbf{U}}, \mathbf{U}_A)$ and the norm $\|\tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top - \mathbf{A}\|$, as detailed in section D. Since Theorem 4.1 is the core
 434 result of this paper and the proof of Theorem 4.2 does not differ substantially from that of Theorem
 435 4.1, we provide only a proof sketch for Theorem 4.1 in the next section.
 436

437 5 PROOF SKETCH OF THEOREM 4.1

440 In this section, we introduce the proof techniques sketch of our main result Theorem 4.1, while a
 441 more detailed version is available in section A. The dynamics and analysis of SGD can be divided
 442 into two phases. In **Phase I (Adaptation)**, SGD autonomously truncates the top D coordinates
 443 as \mathcal{S} (i.e. $\mathcal{S} := [D]$) without requiring explicit selection of D . Algorithm 1 can converge these
 444 coordinates to a neighborhood of their optimal solutions within T_1 iterations with high probability.
 445 The core theorem in this phase is Theorem 5.1:

446 **Theorem 5.1.** *Under Assumption 3.1, consider a predictor trained via Algorithm 1 with initializa-
 447 tion \mathbf{v}^0 . Let the step size $\eta \leq \eta(D, c_1)$, for the effective dimension D and the scaling constant
 448 $c_1 \in (0, 1)$. The iteration number T_1 requires:*

$$449 \quad T_1 \in \begin{cases} [T_l(D, c_1), T_u(D, c_1)], & \text{if } D < M, \\ [T_l(M, c_1), \infty), & \text{otherwise.} \end{cases}$$

452 Then, with high probability, we have

$$454 \quad \begin{cases} \mathbf{v}_i^{T_1} \in [(1 - c_1)\mathbf{v}_i^*, (1 + c_1)\mathbf{v}_i^*], & \text{if } i \in \mathcal{S}, \\ \mathbf{v}_i^{T_1} \in [0, \frac{3}{2}\mathbf{v}_i^*], & \text{otherwise.} \end{cases} \quad (4)$$

457 In **Phase II (Estimation)**, global convergence to the risk minimizer is achieved over $T_2 := T - T_1$
 458 iterations, which can be approximated as SGD with geometrically decaying step sizes applied to a
 459 linear regression problem in the reparameterized feature space $\mathbf{Sx} \odot \mathbf{v}^*$. This implies that for each
 460 coordinate $i \in \mathcal{S}$, the step size in Algorithm 1 is scaled by a certain magnitude of \mathbf{v}_i^* . The core
 461 theorem in this phase is Theorem 5.2:

462 **Theorem 5.2.** *Suppose Assumptions 3.1 and 3.3 hold. By selecting an appropriate step size $\eta_0 =$
 463 $\eta(D)$ and middle phase length h , we obtain*

$$464 \quad \mathcal{R}_M(\mathbf{v}^T) \lesssim \mathcal{R}_M(\mathbf{v}^*) + \frac{\sigma^2 D}{T} + \sigma^2 \eta_0^2 T \text{tr}(\mathbf{H}_{D+1:M}^2) + \frac{D}{T} + \eta_0^2 T \text{tr}(\mathbf{H}_{D+1:M}^2) \\ 465 \quad + \left\langle \frac{1}{\eta_0 T} \mathbf{I}_{1:D} + \mathbf{H}_{D+1:M}, \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^{\frac{2T}{\log(T)}} \mathbf{B}^0 \right\rangle,$$

469 with probability at least 0.95, where

$$471 \quad \mathbf{H} := \text{diag}\{\lambda_i(\mathbf{v}_i^*)^2\}_{i=1}^M \quad \text{and} \quad \hat{\mathbf{H}} := \text{diag}\{\lambda_1(\mathbf{v}_1^*)^2, \dots, \lambda_N(\mathbf{v}_N^*)^2, \mathbf{0}_{M-D}\}.$$

473 For the *lower bound* (see Appendix C), our analysis reveals that for coordinates $j \geq \tilde{\mathcal{O}}(D)$, the slow
 474 ascent rate inherently prevents \mathbf{v}_j^t from approaching the optimal solution \mathbf{v}_j^* upon algorithm termina-
 475 tion. This phenomenon induces bias error's scaling as $\tilde{\Omega}(D^{-\beta+1})$, matching our upper bound
 476 characterization, up to logarithmic factors.
 477

479 6 CONCLUSIONS

481 In this paper, we construct the theoretical analysis for the dynamic of quadratically parameterized
 482 model under decaying ground truth and anisotropic gradient noise. Our technique is based on the
 483 precise analysis of two-stage dynamic of SGD, with adaptive selection of the effective dimension
 484 set in the first stage and the approximation of linear model in the second stage. Our analysis charac-
 485 terizes the feature learning and model adaptation ability with clear separations for convergence rates
 in the canonical linear model.

486 REFERENCES
487

488 Alnur Ali, Edgar Dobriban, and Ryan Tibshirani. The implicit regularization of stochastic gradient
489 flow for least squares. In *International Conference on Machine Learning*. PMLR, 2020.

490 Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
491 exact computation with an infinitely wide neural net. In *Neural Information Processing Systems*,
492 2019.

493 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
494 dimensional asymptotics of feature learning: How one gradient step improves the representation.
495 In *Neural Information Processing Systems*, 2022.

496 Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with con-
497 vergence rate $o(1/n)$. In *Neural Information Processing Systems*, 2013.

498 Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
499 scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.

500 Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
501 regression. *Proceedings of the National Academy of Sciences*, 2020.

502 Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
503 *Acta numerica*, 2021.

504 Alberto Bietti and Francis Bach. Deep equals shallow for reLU networks in kernel regimes. In
505 *International Conference on Learning Representations*, 2021.

506 Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In *Neural Infor-
507 mation Processing Systems*, 2019.

508 Blake Bordelon and Cengiz Pehlevan. Learning curves for SGD on structured features. *arXiv
509 preprint arXiv:2106.02713*, 2021.

510 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
511 laws. In *International Conference on Machine Learning*, 2024.

512 Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. *Foundations and
513 Trends® in Machine Learning*, 2015.

514 T. Tony Cai and Peter Hall. Prediction in functional linear regression. *The Annals of Statistics*, 2006.

515 Emmanuel J Candes and Terence Tao. Decoding by linear programming. *IEEE transactions on
516 information theory*, 2005.

517 Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
518 *Foundations of Computational Mathematics*, 2007.

519 Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-
520 parameterized models using optimal transport. In *Neural Information Processing Systems*, 2018.

521 Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
522 with gradient descent. In *Conference on Learning Theory*, 2022.

523 Aymeric Dieuleveut and Francis Bach. Nonparametric stochastic approximation with large step-
524 sizes. *The Annals of Statistics*, 2016.

525 Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger conver-
526 gence rates for least-squares regression. *Journal of Machine Learning Research*, 2017.

527 Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule:
528 A near optimal, geometrically decaying learning rate procedure for least squares. In *Neural
529 Information Processing Systems*, 2019.

530 Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
531 neural networks in high dimension. *The Annals of Statistics*, 2021.

540 P Goyal. Accurate, large minibatch SGD: Training imagenet in 1 hour. *arXiv preprint*
 541 *arXiv:1706.02677*, 2017.

542 Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
 543 Implicit regularization in matrix factorization. In *Neural Information Processing Systems*, 2017.

544 Jeff Z. HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the implicit
 545 bias of the noise covariance. In *Conference on Learning Theory*, 2021.

546 Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
 547 dimensional ridgeless least squares interpolation. *The Annals of Statistics*, 2022.

548 Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gen-
 549 eralization in neural networks. In *Neural Information Processing Systems*, 2018.

550 Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paralleliz-
 551 ing stochastic gradient descent for least squares regression: mini-batching, averaging, and model
 552 misspecification. *Journal of machine learning research*, 2018.

553 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 554 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 555 models. *arXiv preprint arXiv:2001.08361*, 2020.

556 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 557 2015.

558 Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
 559 polynomials with sgd near the information-theoretic limit. *arXiv preprint arXiv:2406.01581*,
 560 2024.

561 Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
 562 matrix sensing and neural networks with quadratic activations. In *Conference On Learning The-
 563 ory*, pp. 2–47. PMLR, 2018.

564 Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev
 565 Arora. Enhanced convolutional neural tangent kernels. *arXiv preprint arXiv:1911.00809*, 2019.

566 Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-norm
 567 interpolants and restricted lower isometry of kernels. In *Conference on Learning Theory*, 2020.

568 Junhong Lin and Lorenzo Rosasco. Optimal rates for multi-pass stochastic gradient methods. *Jour-
 569 nal of Machine Learning Research*, 2017.

570 Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter Bartlett, and Jason D. Lee. Scaling laws in linear
 571 regression: Compute, parameters, and data. In *Neural Information Processing Systems*, 2024.

572 Weihao Lu, Haobo Zhang, Yicheng Li, Manyun Xu, and Qian Lin. Optimal rate of kernel regression
 573 in large dimensions. *arXiv preprint arXiv:2309.04268*, 2023.

574 Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
 575 asymptotics and the double descent curve. *Communications on Pure and Applied Mathematics*,
 576 2022.

577 Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
 578 two-layer neural networks. *Proceedings of the National Academy of Sciences*, 2018.

579 Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu.
 580 Neural networks efficiently learn low-dimensional representations with sgd. *arXiv preprint*
 581 *arXiv:2209.14863*, 2022.

582 Balas Kausik Natarajan. Sparse approximate solutions to linear systems. *SIAM journal on comput-
 583 ing*, 1995.

584 Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+ 3 phases of compute-
 585 optimal neural scaling laws. *arXiv preprint arXiv:2405.15074*, 2024.

594 Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Early stopping and non-parametric regression:
 595 an optimal data-dependent stopping rule. *The Journal of Machine Learning Research*, 2014.
 596

597 Dominik Stöger and Mahdi Soltanolkotabi. Small random initialization is akin to spectral learning:
 598 Optimization and generalization guarantees for overparameterized low-rank matrix reconstruc-
 599 tion. In *Neural Information Processing Systems*, 2021.

600 Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. *Journal of Machine*
 601 *Learning Research*, 2023.

602 Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank so-
 603 lutions of linear matrix equations via procrustes flow. In *International Conference on Machine*
 604 *Learning*, pp. 964–973. PMLR, 2016.

605 Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion. Last iterate convergence
 606 of SGD for least-squares in the interpolation regime. In *Neural Information Processing Systems*,
 607 2021.

608 Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
 609 sparse recovery. In *Neural Information Processing Systems*, 2019.

610 Nuri Mert Vural and Murat A Erdogdu. Pruning is optimal for learning sparse features in high-
 611 dimensions. *arXiv preprint arXiv:2406.08658*, 2024.

612 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*. Cambridge univer-
 613 sity press, 2019.

614 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 615 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 616 *Conference on Learning Theory*, 2020.

617 Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last iterate risk
 618 bounds of SGD with decaying stepsize for overparameterized linear regression. In *International*
 619 *Conference on Machine Learning*, 2022.

620 Nuoya Xiong, Lijun Ding, and Simon Shaolei Du. How over-parameterization slows down gradient
 621 descent in matrix sensing: The curses of symmetry and initialization. In *International Conference*
 622 *on Learning Representations*, 2023.

623 Gavin Zhang, Salar Fattah, and Richard Y Zhang. Preconditioned gradient descent for overparam-
 624 eterized nonconvex burer-monteiro factorization with global optimality certification. *Journal of*
 625 *Machine Learning Research*, 24(163):1–55, 2023.

626 Haihan Zhang, Yuansi Liu, Qianwen Chen, and Cong Fang. The optimality of (accelerated) SGD
 627 for high-dimensional quadratic optimization. *arXiv preprint arXiv:2409.09745*, 2024a.

628 Haobo Zhang, Yicheng Li, Weihao Lu, and Qian Lin. Optimal rates of kernel ridge regression under
 629 source condition in large dimensions. *arXiv preprint arXiv:2401.01270*, 2024b.

630 Jialun Zhang, Salar Fattah, and Richard Y Zhang. Preconditioned gradient descent for over-
 631 parameterized nonconvex matrix factorization. *Advances in Neural Information Processing Sys-*
 632 *tems*, 34:5985–5996, 2021.

633 Jiacheng Zhuo, Jeongyeol Kwon, Nhat Ho, and Constantine Caramanis. On the computational
 634 and statistical complexity of over-parameterized matrix sensing. *Journal of Machine Learning*
 635 *Research*, 25(169):1–47, 2024.

636 Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P Foster, and Sham Kakade.
 637 The benefits of implicit regularization from SGD in least squares problems. In *Neural Information*
 638 *Processing Systems*, 2021a.

639 Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
 640 of constant-stepsize SGD for linear regression. In *Conference on Learning Theory*, 2021b.

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653		
654	2 Related Works	4
655		
656		
657	3 Set up	4
658	3.1 Notation	4
659	3.2 Quadratically Parameterized Model	4
660	3.3 Data Distribution Assumptions	5
661	3.4 Algorithm	6
662		
663		
664		
665	4 Convergence Analysis	7
666		
667		
668	5 Proof Sketch of Theorem 4.1	9
669		
670		
671	6 Conclusions	9
672		
673	A Detailed Proof Sketch of Theorem 4.1	14
674	A.1 Phase I: Adaptation	14
675	A.2 Phase II: Estimation	14
676		
677		
678		
679	B Proofs of Upper Bound (Theorem 4.1)	15
680	B.1 High-Probability Results Guarantee	16
681	B.2 Proof of Phase I	17
682	B.2.1 Part I: the coordinate-wise upper bounds of \mathbf{v}^{T_1}	18
683	B.2.2 Part II: The coordinate-wise lower bounds of $\bar{\mathbf{v}}^{T_1}$	20
684		
685		
686	B.3 Proof of Phase II	23
687	B.3.1 Part I: Bound the Output of Phase I	25
688	B.3.2 Part II: Linear Approximation of the dynamic	28
689		
690		
691	B.4 Proof of Main Results	35
692		
693		
694	C Proofs of Lower Bound (Theorem 4.1)	35
695		
696	D Proofs of Theorem 4.2	39
697		
698		
699	E Auxiliary Lemma	42
700		
701	F Simulations	46

702 A DETAILED PROOF SKETCH OF THEOREM 4.1
703704 A.1 PHASE I: ADAPTATION
705

706 During the “adaptation” phase, Algorithm 1 implicitly identifies the first D coordinates as the effective dimension set $\mathcal{S} := [D]$. For each $i \in \mathcal{S}$, $\mathbf{v}_i^{T_1}$ converges with high probability to a rectangular neighborhood centered at \mathbf{v}_i^* with half-width $c_1 \mathbf{v}_i^*$. Here, $c_1 \in (0, 1)$ denotes a scaling constant. For each $i \in \mathcal{S}^c := [M] \setminus \mathcal{S}$, $\mathbf{v}_i^{T_1}$ remains bounded above by $\frac{3}{2} \mathbf{v}_i^*$ with high probability.

710 To characterize the mainstream dynamic, our analysis employs a probabilistic sequence synchronization technique. That is, from the sequence $\{\mathbf{v}^t\}_{t=0}^{T_1}$ generated by Algorithm 1, we construct a control sequence $\{\mathbf{q}^t\}_{t=0}^{T_1}$ to rule out some low-probabilistic unbounded trajectories in $\{\mathbf{v}^t\}_{t=0}^{T_1}$. We first establish Lemmas A.1–A.3 for the control sequence.

715 In the analysis of **Phase I**, we need to delve into the dynamic processes of the two-part parameters separated by the effective dimension D . It is non-trivial because in the traditional analysis of prior work to recover the sparse ground truth (HaoChen et al., 2021), it is unnecessary to introduce D . In Lemma A.1, utilizing a constructive supermartingale, we formally characterize the one-step iterative behavior of \mathbf{q}_i^t when $\mathbf{q}_i^t > \mathbf{v}_i^*$, which approximately satisfies: $\mathbf{q}_i^{t+1} - \mathbf{v}_i^* \lesssim (1 - \eta \mathcal{O}(\lambda_i(\mathbf{v}_i^*)^2))(\mathbf{q}_i^t - \mathbf{v}_i^*)$. Then we show the last iterate \mathbf{q}^{T_1} satisfies a high-probability upper bound, matching the bound in Theorem 5.1.

722 **Lemma A.1.** *Under the setting of Theorem 5.1, both $\mathbf{q}_i^{T_1} \leq (1 + c_1) \mathbf{v}_i^*$ for any $i \in \mathcal{S}$ and $\mathbf{q}_i^{T_1} \leq \frac{3}{2} \mathbf{v}_i^*$ for any $i \in \mathcal{S}^c$ occur with high probability.*

724 Lemmas A.2 and A.3 collectively address the lower bound of \mathbf{q}^{T_1} in Theorem 5.1. To establish Lemma A.2, for any $i \in \mathcal{S}$, we construct a submartingale to formally analyze the one-step iterative behavior of \mathbf{q}_i^t when $\mathbf{q}_i^t < (1 - c_1/2) \mathbf{v}_i^*$, which approximately satisfies: $\mathbf{q}_i^{t+1} \gtrsim (1 + \eta c_1 \mathcal{O}(\lambda_i(\mathbf{v}_i^*)^2)) \mathbf{q}_i^t$. According to the concentration inequalities, we obtain the following conclusion.

729 **Lemma A.2.** *Under the setting of Theorem 5.1, with high probability, either $\max_{t \leq T_1} \mathbf{q}_i^t \geq (1 - c_1/2) \mathbf{v}_i^*$ for any $i \in \mathcal{S}$, or at least one of the following statements fails: $\mathbf{q}_i^{T_1} \leq (1 + c_1) \mathbf{v}_i^*$ for any $i \in \mathcal{S}$ and $\mathbf{q}_i^{T_1} \leq \frac{3}{2} \mathbf{v}_i^*$ for any $i \in \mathcal{S}^c$.*

733 Lemma A.3 establishes the lower bound for $\mathbf{q}_i^{T_1}$ ($i \in \mathcal{S}$). The proof mirrors that of Lemma A.1.

734 **Lemma A.3.** *Under the setting of Theorem 5.1, for any $i \in \mathcal{S}$, with high probability, either $\max_{t \leq T_1} \mathbf{q}_i^t < (1 - c_1/2) \mathbf{v}_i^*$ or $\mathbf{q}_i^{T_1} \geq (1 - c_1) \mathbf{v}_i^*$.*

737 According to the high-probability equivalence between $\{\mathbf{q}^t\}_{t=0}^{T_1}$ and $\{\mathbf{v}^t\}_{t=0}^{T_1}$, Lemmas A.1–A.3’s conclusions transfer to \mathbf{v}^{T_1} with high-probability guarantees. Therefore, we obtain Theorem 5.1.

740 A.2 PHASE II: ESTIMATION
741

742 We now start the analysis of **Phase II** for Algorithm 1. The main idea stems from approximating Algorithm 1’s iterations as SGD running over a linear model with rescaled features $\mathbf{Sx} \odot \mathbf{v}^*$. The adaptive rescale size \mathbf{v}^* enables the quadratic model to achieve accelerated convergence rates compared to its linear counterpart.

746 The proof of Theorem 5.2 is structured in two key parts. In **Part I**, Theorem A.1 establishes that Algorithm 1 iterates remain within an uniform neighborhood of \mathbf{v}^* (equation 5) with high probability.

748 **Theorem A.1.** *Under Assumption 3.1, we consider the iterative process of Algorithm 1, beginning from step T_1 with the same step size η as in Theorem 5.1. If $D < M$, let $1 \leq T_2 \leq T_u(D)$ where $T_u(D) \in \mathbb{N}_+$ depends on D ; otherwise, let $T_2 \geq 1$. Then, with high probability, we have*

$$751 \quad \begin{cases} \mathbf{v}_i^{T_1+t} \in [\frac{1}{2} \mathbf{v}_i^*, \frac{3}{2} \mathbf{v}_i^*], & \text{if } i \in [D], \\ 752 \quad \mathbf{v}_i^{T_1+t} \in [0, 2\mathbf{v}_i^*], & \text{otherwise,} \end{cases} \quad \forall t \in [T_2]. \quad (5)$$

754 Let $c_1 = \frac{1}{4}$. According to Theorem 5.1, \mathbf{v}^{T_1} satisfies equation 4 with high probability. By employing the same construction method as that in Lemmas A.1 and A.1, we derive a family of compressed

supermartingales to characterize the dynamics of $\{\mathbf{q}_t\}_{t=T_1}^T$. Combining the supermartingales concentration inequality, we obtain equation 5.

In **Part II**, we construct an auxiliary bounded sequence $\{\mathbf{w}^t\}_{t=1}^{T_2}$ which is the truncation of $\{\mathbf{v}^{T_1+t}\}_{t=1}^{T_2}$. The novelty and ingenuity of our analysis based on auxiliary sequence construction lie in the alignment of $\{\mathbf{w}^t\}_{t=1}^{T_2}$ and $\{\mathbf{v}^{T_1+t}\}_{t=1}^{T_2}$ as $\mathbf{w}^{T_2} = \mathbf{v}^T$ with high probability by Theorem A.1. Thus our proposed the last iterate risk for \mathbf{w}^{T_2} can be extended to \mathbf{v}^T . Specifically, the update rule of \mathbf{w}^t satisfies the following formula with high probability:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \mathbf{H}^t (\mathbf{w}^t - \mathbf{v}^*) + \eta_t \mathbf{R}^t \mathbf{S} \mathbf{x}^t, \quad (6)$$

where $\mathbf{H}^t \in \mathbb{R}^{M \times M}$ depends on \mathbf{w}^t and \mathbf{x}^t , and $\mathbf{R}^t \in \mathbb{R}^{M \times M}$ depends on \mathbf{w}^t , ζ_M^t and ξ^t . Combining equation 6 with the constraint of $\{\mathbf{w}^t\}_{t=1}^{T_2}$, we observe that the update process of \mathbf{w}^t approximates that of SGD in traditional linear regression problems (Wu et al., 2022) with reparameterized features $\mathbf{S} \mathbf{x} \odot \mathbf{v}^*$. The SGD iteration in linear model exhibits structural similarity to equation 6, but differs in that its \mathbf{H}^t and \mathbf{R}^t are independent on iterative variables; this independence eliminates the need for truncated sequences in analytical treatments. Our analysis innovatively introduces the truncated sequence $\{\mathbf{w}^t\}_{t=1}^{T_2}$ to maintain analytical tractability of \mathbf{H}^t and \mathbf{R}^t . According to equation 6, we decompose the risk $\mathcal{R}_M(\mathbf{w}^{T_2})$ as follows:

$$\mathbb{E} [\mathcal{R}_M(\mathbf{w}^{T_2})] - \mathcal{R}_M(\mathbf{v}^*) \lesssim \underbrace{\langle \mathbf{H}, \mathbf{B}^{T_2} \rangle}_{\text{bias error}} + \underbrace{\langle \mathbf{H}, \mathbf{V}^{T_2} \rangle}_{\text{variance error}}. \quad (7)$$

For any $t \in [T_2]$, \mathbf{B}^t and \mathbf{V}^t are $M \times M$ matrices, derived from the bias and variance terms induced by $\mathbf{w}^t - \mathbf{v}^*$, respectively. Since \mathbf{H}^t and \mathbf{R}^t in equation 6 are both dependent on \mathbf{w}^t , it is a challenge to directly establish the full-matrix recursion between \mathbf{V}^{t+1} and \mathbf{V}^t (or \mathbf{B}^{t+1} and \mathbf{B}^t) under the SGD iteration process like the similar techniques in linear models (Wu et al., 2022). To resolve this challenge, we novelly consider the recursive relations between diagonal elements of $\{\mathbf{V}^t\}_{t=0}^{T_2}$ and $\{\mathbf{B}^t\}_{t=0}^{T_2}$ across discrete time steps, thereby obtaining the estimation for both variance and bias errors for our linear approximation.

B PROOFS OF UPPER BOUND (THEOREM 4.1)

In this section, we introduce our proof techniques to prove our main result Theorem B.4 on the upper bound of the last-iteration instantaneous risk of Algorithm 1. As shown in Section 5, the dynamic of SGD and our analysis can be basically divided into two phases. In the **Phase I** named “adaption” phase, we demonstrate that SGD can adaptively identify the first D coordinates as the optimal set \mathcal{S} without explicit selection of D , and bound such D coordinates near the corresponding optimal solutions by T_1 iterations with high probability (refer to Theorem B.1). The analysis of **Phase I** can be further separated into two parts:

1. We construct a high-probability upper bound of \mathbf{v}^{T_1} . That is for any $i \in \mathcal{S}$, $\mathbf{v}_i^{T_1} \leq (1 + c_1) \mathbf{v}_i^*$ and for any $i \in \mathcal{S}^c$, $\mathbf{v}_i^{T_1} \leq \frac{3}{2} \mathbf{v}_i^*$ (refer to Lemma B.1).
2. We delve into the lower bound of $\max_{t \leq T_1} \mathbf{v}_i^t$ during T_1 iterations. With high probability, for any $i \in \mathcal{S}$, $\max_{t \leq T_1} \mathbf{v}_i^t$ converges to a neighborhood of \mathbf{v}_i^* (refer to Lemma B.2). When $\max_{t \leq T_1} \mathbf{v}_i^t$ resides within the \mathbf{v}_i^* -neighborhood, the lower bound satisfies $\mathbf{v}_i^{T_1} \geq (1 - c_1) \mathbf{v}_i^*$ with high probability (refer to Lemma B.3).

Then we turn to the following **Phase II** with T_2 iterations named “estimation” phase where we establish the global convergence of Algorithm 1 for risk minimization (refer to Theorem B.2). The analysis of Algorithm 1’s iterations can be approximated to SGD with geometrically decaying step sizes on a linear regression problem with reparameterized features $\mathbf{S} \mathbf{x} \odot \mathbf{v}^*$. It can also be separated into two parts:

1. We demonstrate that $\{\mathbf{v}^t\}_{t=T_1+1}^{T_1+T_2}$ remain confined within the neighborhood $\prod_{i=1}^D [\frac{1}{2} \mathbf{v}_i^*, \frac{3}{2} \mathbf{v}_i^*] \times \prod_{i=D+1}^M [0, 2\mathbf{v}_i^*]$ with high probability (refer to Lemma B.3).

810 2. We construct an auxiliary sequence $\{\mathbf{w}^t\}_{t=1}^{T_2}$ aligned to $\{\mathbf{v}^{T_1+t}\}_{t=1}^{T_2}$ with high probability.
 811 We approximate the update process of $\{\mathbf{w}^t\}_{t=1}^{T_2}$ to SGD in traditional linear regression,
 812 with separated bounds of variance term (refer to Lemma B.5) and bias term (refer to Lemma
 813 B.12).

815 We propose our proof process step by step according to the above sketch. First, for clarity, we
 816 formally define some of the notations to use. We let bold lowercase letters, for example, $\mathbf{x} \in \mathbb{R}^d$,
 817 denote vectors, and bold uppercase letters, for example, $\mathbf{A} \in \mathbb{R}^{m \times n}$, denote matrices. We apply
 818 scalar operators to vectors as the coordinate-wise operators of vectors. For vector $\mathbf{x} \in \mathbb{R}^d$, denote
 819 $|\mathbf{x}| \in \mathbb{R}^d$ with $|\mathbf{x}|_j = |\mathbf{x}_j|$. For two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, denote $\mathbf{x} \leq \mathbf{y}$, if for all $j \in [d]$, $\mathbf{x}_j \leq \mathbf{y}_j$.
 820 Additionally, we use $\langle \mathbf{x}, \mathbf{y} \rangle_{-i}$ to denote $\sum_{j=1}^d \mathbf{x}_j \mathbf{y}_j$. For a sequence of real numbers $\{v^t\}_{t=t_1}^{t_2}$ and
 821 $a, b \in \mathbb{R}$ with $a \leq b$, denote $v^{t_1:t_2} \in [a, b]$ to represent that $v^t \in [a, b]$ for all $t \in [t_1, t_2]$.

823 Considering Assumption 3.1, the random variable $\mathbf{Sx} \in \mathbb{R}^M$ satisfies the sub-Gaussian condition
 824 with parameter $\lambda_i^{1/2}$ for all $i \in [M]$, and the noise ξ is zero-mean sub-Gaussian with parameter σ_ξ .
 825 For any $D \in \mathbb{N}_+$, for simplification, we define

$$\begin{aligned}\sigma_{\min}(D) &:= \min_{j \in [D]} \lambda_j(\mathbf{v}_j^*)^2, \quad \bar{\sigma}_{\min}(D) := \min_{j \in [D]} (\mathbf{v}_j^*)^2, \\ \hat{\sigma}_{\max}(D) &:= \max_{j \in [D]} \log^{-1}(\mathbf{v}_j^0), \quad \tilde{\sigma}_{\max}(D) := \max_{j \in [D+1:M]} \lambda_j.\end{aligned}$$

830 We also denote the matrix $\text{diag}\{\lambda_1, \dots, \lambda_M\}$ as $\Lambda_{1:M}$. For $\mathbf{b} \in \mathbb{R}_+^M$, we define $\mathcal{M}(\mathbf{b}) = (\sum_{j=1}^M \lambda_j \mathbf{b}_j^4)^{1/2}$ and $\sigma^2 = \sigma_\xi^2 + \sigma_{\zeta_M}^2$, where $\sigma_{\zeta_M} = (\sum_{j=M+1}^\infty \lambda_j (\mathbf{v}_j^*)^4)^{1/2}$. We denote

$$\mathcal{F}^t = \sigma\{\mathbf{v}^0, (\mathbf{Sx}^1, \zeta_M^1, \xi^1), \dots, (\mathbf{Sx}^t, \zeta_M^t, \xi^t)\}$$

834 as the filtration involving the full information of all the previous t iterations with $\sigma\{\cdot\}$.

B.1 HIGH-PROBABILITY RESULTS GUARANTEE

839 Before the analyses of the two phases, we first introduce the guarantee of our high-probability re-
 840 sults. We formally define a series of events for each iteration of Algorithm 1. We demonstrate that
 841 these events occur with high probability throughout the whole T iterations, which indicates that
 842 the control sequence $\{\mathbf{q}^t\}_{t=0}^T$ we define is aligned with the original sequence $\{\mathbf{v}^t\}_{t=0}^T$ with high
 843 probability. This fact is the basis of our high-probability results.

844 At the t -th iteration, Algorithm 1 requires sampling $(\mathbf{Sx}^{t+1}, y^{t+1})$, where $y^{t+1} = \langle \mathbf{Sx}^{t+1}, \mathbf{v}^* \rangle +$
 845 $\zeta_M^{t+1} + \xi^{t+1}$. For simplicity, we denote \mathbf{Sx} as \mathbf{x} . In order to simply rule out some low-probabilistic
 846 unbounded cases, for each iteration t , we define the following four events as:

$$\left\{ \begin{array}{l} \mathcal{E}_1^{j,t} := \left\{ |\mathbf{x}_j^t| \leq \lambda_j^{1/2} R \right\}, \quad \forall j \in [M], \\ \mathcal{E}_2^{j,t}(\mathbf{v}) := \left\{ |\langle \mathbf{v}^{t \odot 2} - \mathbf{v}^{* \odot 2}, \mathbf{x}^t \rangle_{-j}| \leq r_j(\mathbf{v}) R \right\}, \quad \forall j \in [M], \\ \mathcal{E}_3^t := \left\{ |\zeta_M^t| \leq \sigma_{\zeta_M} R \right\}, \\ \mathcal{E}_4^t := \left\{ |\xi^t| \leq \sigma_\xi R \right\}, \end{array} \right\}$$

854 where $R := \mathcal{O}(\log(MT/\delta))$ and $r_j(\mathbf{v}) := \mathcal{O}(\sum_{i \neq j} \lambda_i [(\mathbf{v}_i)^4 + (\mathbf{v}_i^*)^4])^{1/2}$ for any $\mathbf{v} \in \mathbb{R}^M$.

855 In Algorithm 1, the original sequence $\{\mathbf{v}^t\}_{t=0}^T$ follows the coordinate-wise update rule as

$$\begin{aligned}\mathbf{v}_j^{t+1} &= \mathbf{v}_j^t - \eta_t (\langle \mathbf{v}^{t \odot 2}, \mathbf{x}^{t+1} \rangle - y^{t+1}) \mathbf{x}_j^{t+1} \mathbf{v}_j^t \\ &= \mathbf{v}_j^t - \eta_t \langle \mathbf{v}^{t \odot 2} - \mathbf{v}^{* \odot 2}, \mathbf{x}^{t+1} \rangle \mathbf{x}_j^{t+1} \mathbf{v}_j^t + \eta_t (\zeta_M^{t+1} + \xi^{t+1}) \mathbf{x}_j^{t+1} \mathbf{v}_j^t,\end{aligned}$$

860 for any $j \in [M]$. Based on Assumption 3.1 and Proposition E.1, we have

$$\min \left\{ \mathbb{P}(\mathcal{E}_1^{j,t}), \mathbb{P}(\mathcal{E}_2^{j,t}(\mathbf{v}^t)), \mathbb{P}(\mathcal{E}_3^t), \mathbb{P}(\mathcal{E}_4^t) \right\} \geq 1 - \mathcal{O}\left(\frac{\delta}{MT^2}\right),$$

864 for any $j \in [M]$ and $t \in [T]$. Then we define the compound event as
 865

$$866 \quad \mathcal{E} := \left\{ \bigcap_{t=1}^T \left(\left(\bigcap_{j=1}^M \mathcal{E}_1^{j,t} \right) \wedge \left(\bigcap_{j=1}^M \mathcal{E}_2^{j,t}(\mathbf{v}^t) \right) \wedge \mathcal{E}_3^t \wedge \mathcal{E}_4^t \right) \right\}.$$

869 We can directly obtain the probability union bound as follows:
 870

$$871 \quad \mathbb{P}(\mathcal{E}) = 1 - \mathbb{P}(\mathcal{E}^c) \geq 1 - \sum_{t=1}^T \left(2 - \mathbb{P}(\mathcal{E}_3^t) - \mathbb{P}(\mathcal{E}_4^t) + \sum_{j=1}^M \left(2 - \mathbb{P}(\mathcal{E}_1^{j,t}) - \mathbb{P}(\mathcal{E}_2^{j,t}(\mathbf{v}^t)) \right) \right) \\ 872 \quad \geq 1 - \mathcal{O}\left(\frac{\delta}{T}\right). \quad (8)$$

877 The high-probability occurrence of event \mathcal{E} guarantees our analysis of the coordinate-wise update
 878 dynamics for the control sequence $\{\mathbf{q}^t\}_{t=0}^T$ defined in \mathbb{R}^M as

$$879 \quad \mathbf{q}_j^{t+1} = \mathbf{q}_j^t - \eta_t \left((\mathbf{q}_j^t)^2 - (\mathbf{v}_j^*)^2 \right) (\mathbf{x}_j^{t+1})^2 \mathbb{1}_{|\mathbf{x}_j^{t+1}| \leq \lambda_j^{1/2} R} \mathbf{q}_j^t \\ 880 \quad - \eta_t \langle \mathbf{q}^{t \odot 2} - \mathbf{v}^{* \odot 2}, \mathbf{x}^{t+1} \rangle_{-j} \mathbb{1}_{|\langle \mathbf{q}^{t \odot 2} - \mathbf{v}^{* \odot 2}, \mathbf{x}^{t+1} \rangle_{-j}| \leq r_j(\mathbf{q}^t) R} \mathbf{x}_j^{t+1} \mathbb{1}_{|\mathbf{x}_j^{t+1}| \leq \lambda_j^{1/2} R} \mathbf{q}_j^t \\ 881 \quad + \eta_t \left(\zeta_M^{t+1} \mathbb{1}_{|\zeta_M^t| \leq \sigma_{\zeta_M} R} + \xi^{t+1} \mathbb{1}_{|\xi^t| \leq \sigma_{\xi} R} \right) \mathbf{x}_j^{t+1} \mathbb{1}_{|\mathbf{x}_j^{t+1}| \leq \lambda_j^{1/2} R} \mathbf{q}_j^t, \quad (9)$$

885 for any $j \in [M]$ with initialization $\mathbf{q}^0 = \mathbf{v}^0$ is consistent with the analysis of $\{\mathbf{v}^t\}_{t=0}^T$ with high
 886 probability as Proposition B.1.

887 **Proposition B.1.** *For any $t \in [T]$, we have $\mathbf{v}^t = \mathbf{q}^t$ with probability at least $1 - \delta/T$.*

889 To simplify the representation of $\{\mathbf{q}^t\}_{t=0}^T$, we introduce four truncated random variables as:
 890

- 891 1. $\hat{\mathbf{x}} \in \mathbb{R}^M$ with entries $\hat{\mathbf{x}}_j = \mathbf{x}_j \mathbb{1}_{|\mathbf{x}_j| \leq \lambda_j^{1/2} R}$ for any $j \in [M]$,
- 892 2. $\hat{\mathbf{z}}(\mathbf{q}) \in \mathbb{R}^M$ with entries $\hat{\mathbf{z}}_j(\mathbf{q}) = \langle \mathbf{q}^{\odot 2} - \mathbf{v}^{* \odot 2}, \mathbf{x} \rangle_{-j} \mathbb{1}_{|\langle \mathbf{q}^{\odot 2} - \mathbf{v}^{* \odot 2}, \mathbf{x} \rangle_{-j}| \leq r_j(\mathbf{q}) R}$
- 893 3. $\hat{\zeta}_M = \zeta_M \mathbb{1}_{\zeta_M \leq \sigma_{\zeta_M} R}$,
- 894 4. $\hat{\xi} = \xi \mathbb{1}_{\xi \leq \sigma_{\xi} R}$.

895 Thus, the coordinate-wise update dynamics for $\{\mathbf{q}^t\}_{t=0}^T$ in equation 9 can be represented as:
 896

$$900 \quad \mathbf{q}_j^{t+1} = \mathbf{q}_j^t - \eta_t \left((\mathbf{q}_j^t)^2 - (\mathbf{v}_j^*)^2 \right) (\hat{\mathbf{x}}_j^{t+1})^2 \mathbf{q}_j^t - \eta_t \hat{\mathbf{z}}_j^{t+1}(\mathbf{q}^t) \hat{\mathbf{x}}_j^{t+1} \mathbf{q}_j^t \\ 901 \quad + \eta_t \left(\hat{\zeta}_M^{t+1} + \hat{\xi}^{t+1} \right) \hat{\mathbf{x}}_j^{t+1} \mathbf{q}_j^t, \quad (10)$$

903 for any $j \in [M]$.

905 B.2 PROOF OF PHASE I

907 In this section, we formally propose the proof techniques of **Phase I** in Theorem B.1. Theorem B.1
 908 establishes that Algorithm 1 adaptively selects a effective dimension $D \in \mathbb{N}_+$ with the following
 909 convergence properties: (1) for $j \leq D$, $\mathbf{v}_j^{T_1}$ converges to an adaptive neighborhood of \mathbf{v}_j^* ; (2) for
 910 $j > D$, $\mathbf{v}_j^{T_1}$ is bounded by $\frac{3}{2} \max\{\mathbf{v}_j^*, 2\mathbf{v}_j^0\}$. Theorem B.1 specifies the intrinsic relationship be-
 911 tween Algorithm 1's key parameters: the recommended step size η , effective dimension D , and total
 912 sample size T . Furthermore, under Assumption 3.3, Phase II analysis demonstrates the optimality
 913 of the effective dimension D selected in Theorem B.1.

915 **Theorem B.1.** *[Formal version of Theorem 5.1] Under Assumption 3.1, consider the dynamic
 916 generated via Algorithm 1 with initialization \mathbf{v}_0 . Denote (1) the threshold vector $\hat{\mathbf{v}}^* \in \mathbb{R}^M$
 917 with coordinate $\hat{\mathbf{v}}_j^* = \max\{\frac{3}{2}\mathbf{v}_j^*, 3\mathbf{v}_j^0\}$ for any $j \in [M]$; (2) the composite vector $\mathbf{b} = ((1 + c_1)(\mathbf{v}_{1:D}^*)^\top, (\hat{\mathbf{v}}_{D+1:M}^*)^\top)^\top$, where the scaling constant $c_1 \in (0, 1/2)$. Let the step size η*

918 satisfy $\eta \leq \tilde{\Omega}\left(\frac{c_1^2 \tilde{\sigma}_{\min}(\max\{D, M\})}{[\sigma^2 + \mathcal{M}^2(\mathbf{b})]^2}\right)$ for the given effective dimension $D \in \mathbb{N}_+$. If the iteration
 919 number T_1 requires:
 920

$$921 \quad T_1 \in \begin{cases} \left[\tilde{\mathcal{O}}\left(\frac{\sigma^2 + \mathcal{M}^2(\mathbf{b})}{c_1^2 \eta \tilde{\sigma}_{\min}(D)}\right) : \tilde{\Omega}\left(\frac{\tilde{\sigma}_{\max}^{-1}(D)}{\eta^2 [\sigma^2 + \mathcal{M}^2(\mathbf{b})]}\right) \right], & \text{if } D < M, \\ \left[\tilde{\mathcal{O}}\left(\frac{\sigma^2 + \mathcal{M}^2(\mathbf{b})}{c_1^2 \eta \tilde{\sigma}_{\min}(M)}\right) : \infty \right], & \text{otherwise,} \end{cases}$$

924
 925 then the dynamic satisfies the following convergence property:
 926

$$926 \quad \mathbf{v}_j^{T_1} \in \begin{cases} [\mathbf{v}_j^* - c_1 \mathbf{v}_j^*, \mathbf{v}_j^* + c_1 \mathbf{v}_j^*], & \text{if } j \in [D], \\ [0, \frac{3}{2} \max\{\mathbf{v}_j^*, 2\mathbf{v}_j^0\}], & \text{otherwise,} \end{cases} \quad (11)$$

929 with probability at least $1 - \delta$.
 930

931 Before the beginning of our proof, we define the \mathbf{b} -capped coupling processes used in the following
 932 lemmas as below.
 933

934 **Definition B.1** (\mathbf{b} -capped coupling). Let $\{\mathbf{q}^t\}_{t=0}^T$ be a Markov chain in \mathbb{R}_+^M adapted to filtration
 935 $\{\mathcal{F}^t\}_{t=0}^T$. Given threshold vector $\mathbf{b} \in \mathbb{R}_+^M$, the \mathbf{b} -capped coupling process $\{\bar{\mathbf{v}}^t\}_{t=0}^T$ with initializa-
 936 tion $\bar{\mathbf{v}}^0 = \mathbf{q}^0 \leq \mathbf{b}$ evolves as:
 937

1. Updating state: If $\bar{\mathbf{v}}^t \leq \mathbf{b}$, let $\bar{\mathbf{v}}^{t+1} = \mathbf{q}^{t+1}$,
2. Absorbing state: Otherwise, maintain $\bar{\mathbf{v}}^{t+1} = \bar{\mathbf{v}}^t$.

940 B.2.1 PART I: THE COORDINATE-WISE UPPER BOUNDS OF \mathbf{v}^{T_1} .

942 In this part, we establish coordinate-wise upper bounds for \mathbf{v}^{T_1} in Lemma B.1. For each co-
 943 ordinate $i \in [M]$, we develop a geometrically compensated supermartingale $\{u_i^t := (1 -$
 944 $\eta \Theta(\lambda_i(\mathbf{v}_i^*)^2))^{-t}(\bar{\mathbf{v}}_i^t - \mathbf{v}_i^*)\}_{t=1}^{T_1}$ using the \mathbf{b} -capped coupling sequence $\{\bar{\mathbf{v}}^t\}_{t=0}^{T_1}$ derived from the
 945 control sequence $\{\mathbf{q}^t\}_{t=0}^{T_1}$. We precisely calculate the sub-Gaussian parameters of the supermartin-
 946 gale increments through geometric series summation over \mathcal{S} and linear summation over \mathcal{S}^c . The
 947 analysis enables the application of Bernstein-type inequalities to establish the claimed concentration
 948 results in Lemma B.1.

949 **Lemma B.1.** [Formal version of Lemma A.1] Under the setting of Theorem B.1, let $\{\mathbf{q}^t\}_{t=0}^{T_1}$ be a
 950 Markov chain with its \mathbf{b} -capped coupling process $\{\bar{\mathbf{v}}^t\}_{t=0}^{T_1}$. When $\eta \leq \tilde{\Omega}\left(\frac{1}{\sigma^2 + \mathcal{M}^2(\mathbf{b})}\right)$, the inequal-
 951 ity $\bar{\mathbf{v}}^t \geq \mathbf{0}$ holds for any $t \in [T_1]$. For any $\mathbf{v} \in \mathbb{R}^M$, define the truncation event $\mathcal{A}(\mathbf{v}) := \{\mathbf{v} \leq \mathbf{b}\}$.
 952 For $\delta \in (0, 1)$, the following conditions guarantee that $\mathcal{A}(\bar{\mathbf{v}}^{T_1})$ holds with probability at least $1 - \frac{\delta}{6}$:
 953

1. Dominant coordinates condition: $\bar{\sigma}_{\min}(D) \geq \frac{\eta}{c_1^2} \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^5(MT_1/\delta))$,
2. Residual spectrum condition: $\tilde{\sigma}_{\max}(D) \geq T_1 \eta^2 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log(\max\{M - D, 0\}T_1/\delta) \log^4(MT_1/\delta))$.

954
 955 *Proof.* Define the random variable
 956

$$957 \quad p_j^{t+1} := \left(((\bar{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2) \hat{\mathbf{x}}_j^{t+1} + \hat{\mathbf{z}}_j^{t+1}(\bar{\mathbf{v}}^t) - \hat{\zeta}_M^{t+1} - \hat{\xi}^{t+1} \right) \hat{\mathbf{x}}_j^{t+1}$$

958 for any $j \in [M]$ and $t \in [0 : T_1 - 1]$. Then in the updating state of $\{\bar{\mathbf{v}}^t\}_{t=0}^{T_1}$, we have
 959

$$960 \quad \bar{\mathbf{v}}_j^{t+1} = (1 - \eta p_j^{t+1}) \bar{\mathbf{v}}_j^t, \quad \forall j \in [M]. \quad (12)$$

961 Based on the boundedness of p_j^{t+1} and the appropriately chosen step size $\eta \leq \tilde{\Omega}\left(\frac{1}{\sigma^2 + \mathcal{M}^2(\mathbf{b})}\right)$, if
 962 $\bar{\mathbf{v}}^t > \mathbf{0}$, then we have $\bar{\mathbf{v}}^{t+1} \geq \frac{1}{2} \bar{\mathbf{v}}^t$. Since $\bar{\mathbf{v}}^0 > 0$, we have $\bar{\mathbf{v}}^t > 0$ for any $t \in [T_1]$ by induction.
 963 Let $\bar{\tau}_{\mathbf{b}}$ be the stopping time when $\bar{\mathbf{v}}_j^{\bar{\tau}_{\mathbf{b}}} > \mathbf{b}_j$ for a certain coordinate $j \in [M]$, i.e.,
 964

$$965 \quad \bar{\tau}_{\mathbf{b}} = \inf_t \{t : \exists j \in [M], \text{ s.t. } \bar{\mathbf{v}}_j^t > \mathbf{b}_j\}.$$

972 For each coordinate $1 \leq j \leq M$, let $\bar{\tau}_{\mathbf{b},j}$ be the stopping time when $\bar{\mathbf{v}}_j^{\bar{\tau}_{\mathbf{b},j}} > \mathbf{b}_j$, i.e.,
 973

$$974 \bar{\tau}_{\mathbf{b},j} = \inf_t \{t : \bar{\mathbf{v}}_j^t > \mathbf{b}_j\}.$$

975 Based on Definition B.1, when the stopping time $\bar{\tau}_{\mathbf{b}} = t_2$ occurs for some $t_2 \in [T_1]$, the coupling
 976 process satisfies $\bar{\mathbf{v}}^t = \bar{\mathbf{v}}^{t_2}$ for all $t > t_2$. We categorize the following two cases and analyze the
 977 probability bound respectively.
 978

979 **Case I:** Suppose there exists $j \in [D]$ such that $\bar{\tau}_{\mathbf{b},j} = t_2$. That is, the event $\mathcal{A}(\bar{\mathbf{v}}^t)$ holds for all
 980 $t \in [0 : t_2 - 1]$. The boundedness of p_j^{t+1} and the dominant coordinates condition of η in Lemma B.1
 981 indicate that $\bar{\mathbf{v}}_j^t$ must traverse in and out of the threshold interval $\left[\frac{1}{1+c_1}\mathbf{b}_j, \mathbf{b}_j\right]$ before exceeding \mathbf{b}_j .
 982 We aim to estimate the following probability for coordinates $j \in [D]$ and time pairs $t_1 < t_2 \in [T_1]$:
 983

$$984 \mathbb{P}\left(\mathcal{B}_{t_1}^{\bar{\tau}_{\mathbf{b},j}=t_2}(j) = \left\{\bar{\mathbf{v}}_j^{t_1} \leq \frac{1+c_1/2}{1+c_1}\mathbf{b}_j \wedge \bar{\mathbf{v}}_j^{t_1:t_2-1} \in \left[\frac{1}{1+c_1}\mathbf{b}_j, \mathbf{b}_j\right] \wedge \bar{\mathbf{v}}_j^{t_2} > \mathbf{b}_j\right\}\right).$$

985 For any $t \in [t_1 : t_2 - 1]$, we have

$$986 \begin{aligned} \mathbb{E}[\bar{\mathbf{v}}_j^{t+1} - \mathbf{v}_j^* \mid \mathcal{F}^t] &= \mathbb{E}_{\mathbf{x}_{1:M}^{t+1}, \xi^{t+1}, \zeta_M^{t+1}} [\bar{\mathbf{v}}_j^t - \mathbf{v}_j^* - \eta p_j^{t+1} \bar{\mathbf{v}}_j^t] \\ 987 &\stackrel{(a)}{\leq} \left(1 - \frac{1}{2}\eta\lambda_j \bar{\mathbf{v}}_j^t (\bar{\mathbf{v}}_j^t + \mathbf{v}_j^*)\right) (\bar{\mathbf{v}}_j^t - \mathbf{v}_j^*) \\ 988 &\leq \left(1 - \frac{1+c_1/2}{(1+c_1)^2}\eta\lambda_j (\mathbf{v}_j^*)^2\right) (\bar{\mathbf{v}}_j^t - \mathbf{v}_j^*), \end{aligned} \quad (13)$$

989 where (a) is due to Assumption 3.1 and Lemma E.2. By applying Lemma E.1 to p_j^t , we demonstrate
 990 that p_j^t satisfies the sub-Gaussian property for all $t \in [0 : T_1 - 1]$. Thus we have
 991

$$992 \mathbb{E}[\exp\{\lambda(\bar{\mathbf{v}}_j^{t+1} - \mathbb{E}[\bar{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t])\} \mid \mathcal{F}^t] \leq \exp\left\{\frac{\lambda^2\eta^2\lambda_j(\mathbf{v}_j^*)^2\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})]\log^4(MT_1/\delta))}{2}\right\},$$

993 for any $\lambda \in \mathbb{R}$. Combining Lemma E.3 with equation 13, we can establish the probability bound for
 994 event $\mathcal{B}_{t_1}^{\bar{\tau}_{\mathbf{b},j}=t_2}(j)$ for any time pair $t_1 < t_2 \in [T_1]$ as
 995

$$996 \mathbb{P}\left(\mathcal{B}_{t_1}^{\bar{\tau}_{\mathbf{b},j}=t_2}(j)\right) \leq \exp\left\{-\frac{c_1^2(\mathbf{v}_j^*)^2}{\eta\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})]\log^4(MT_1/\delta))}\right\}. \quad (14)$$

1000 **Case II:** Suppose there exists $j \in [D+1 : M]$ such that $\bar{\tau}_{\mathbf{b},j} = t_2$. Similarly, $\bar{\mathbf{v}}_j^t$ must traverse in
 1001 and out of the threshold interval $\left[\frac{2}{3}\mathbf{b}_j, \mathbf{b}_j\right]$ before exceeding \mathbf{b}_j . Therefore, we aim to estimate the
 1002 following probability for coordinates $j \in [D+1 : M]$ and time pairs $t_1 < t_2 \in [T_1]$:
 1003

$$1004 \mathbb{P}\left(\mathcal{C}_{t_1}^{\bar{\tau}_{\mathbf{b},j}=t_2}(j) = \left\{\bar{\mathbf{v}}_j^{t_1} \leq \frac{3}{4}\mathbf{b}_j \wedge \bar{\mathbf{v}}_j^{t_1:t_2-1} \in \left[\frac{2}{3}\mathbf{b}_j, \mathbf{b}_j\right] \wedge \bar{\mathbf{v}}_j^{t_2} > \mathbf{b}_j\right\}\right).$$

1005 For any $t \in [t_1 : t_2 - 1]$, we have

$$1006 \begin{aligned} \mathbb{E}[\bar{\mathbf{v}}_j^{t+1} - \mathbf{v}_j^* \mid \mathcal{F}^t] &= \mathbb{E}_{\mathbf{x}_{1:M}^{t+1}, \xi^{t+1}, \zeta_M^{t+1}} [\bar{\mathbf{v}}_j^t - \mathbf{v}_j^* - \eta p_j^{t+1} \bar{\mathbf{v}}_j^t] \\ 1007 &\leq \left(1 - \frac{1}{2}\eta\lambda_j \bar{\mathbf{v}}_j^t (\bar{\mathbf{v}}_j^t + \mathbf{v}_j^*)\right) (\bar{\mathbf{v}}_j^t - \mathbf{v}_j^*) \\ 1008 &\leq \bar{\mathbf{v}}_j^t - \mathbf{v}_j^*. \end{aligned} \quad (15)$$

1009 Similarly, based on Lemma E.1, we have

$$1010 \mathbb{E}[\exp\{\lambda(\bar{\mathbf{v}}_j^{t+1} - \mathbb{E}[\bar{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t])\} \mid \mathcal{F}^t] \leq \exp\left\{\frac{\lambda^2\eta^2\lambda_j(\mathbf{b}_j^*)^2\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})]\log^4(MT_1/\delta))}{2}\right\},$$

1011 for any $\lambda \in \mathbb{R}$. Combining Lemma E.3 with equation 15, we can establish the probability bound for
 1012 event $\mathcal{C}_{t_1}^{\bar{\tau}_{\mathbf{b},j}=t_2}(j)$ for any time pair $t_1 < t_2 \in [T_1]$ as
 1013

$$1014 \mathbb{P}\left(\mathcal{C}_{t_1}^{\bar{\tau}_{\mathbf{b},j}=t_2}(j)\right) \leq \exp\left\{-\frac{1}{T\eta^2\lambda_j\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})]\log^2(MT_1/\delta))}\right\}. \quad (16)$$

Finally, combining the probability bounds equation 14 and equation 16 with the dominant coordinates condition and residual spectrum condition in Lemma B.1, we obtain the following probability bound for complement event $\mathcal{A}^c(\bar{\mathbf{v}}^{T_1})$:

$$\begin{aligned}
\mathbb{P}(\mathcal{A}^c(\bar{\mathbf{v}}^{T_1})) &\leq \sum_{j=1}^D \sum_{1 \leq t_1 < t_2 \leq T_1} \mathbb{P}(\mathcal{B}_{t_1}^{\bar{\mathbf{b}}, j=t_2}(j)) + \sum_{j=D+1}^M \sum_{1 \leq t_1 < t_2 \leq T_1} \mathbb{P}(\mathcal{C}_{t_1}^{\bar{\mathbf{b}}, j=t_2}(j)) \\
&\leq \frac{NT_1^2}{2} \exp \left\{ -\frac{c_1^2 \min_{1 \leq j \leq D} (\mathbf{v}_j^*)^2}{\eta \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))} \right\} \\
&\quad + \max\{M-D, 0\} T_1 \exp \left\{ -\frac{\min_{D+1 \leq j \leq M} \lambda_j^{-1}}{T_1 \eta^2 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))} \right\} \\
&\leq \frac{\delta}{12}. \tag{17}
\end{aligned}$$

□

Lemma B.1 establishes the adaptive high-probability upper bounds for each coordinate of $\bar{\mathbf{v}}^{T_1}$. According to the construction methodology of the coupling process $\{\bar{\mathbf{v}}^t\}_{t=0}^{T_1}$, these bounds can be naturally extended to \mathbf{q}^{T_1} . Moreover, the high-probability consistency between control sequence $\{\mathbf{q}^t\}_{t=0}^T$ and original sequence $\{\mathbf{v}^t\}_{t=0}^T$ (refer to Proposition B.1) allows the direct application of Lemma B.1 to \mathbf{v}^{T_1} . It similarly holds for Lemmas B.2 and B.3, respectively.

B.2.2 PART II: THE COORDINATE-WISE LOWER BOUNDS OF $\bar{\mathbf{v}}^{T_1}$

Deriving a direct high-probability lower bound for $\bar{\mathbf{v}}^{T_1}$ proves to be a challenge. We turn to the lower bound of $\max_{t \leq T_1} \bar{\mathbf{v}}_i^t$ during T_1 iterations. First we propose Lemma B.2 to construct such bounds for $\max_{t \leq T_1} \bar{\mathbf{v}}_j^t$ adaptively over $j \in [D]$. We derive a subcoupling sequence $\{\check{\mathbf{v}}^{i,t}\}_{t=0}^{T_1}$ from the original coupling sequence $\{\bar{\mathbf{v}}^t\}_{t=0}^{T_1}$ for any $i \in \mathcal{S}$. Each subcoupling sequence undergoes logarithmic transformation to generate a linearly compensated submartingale $\{-t \log(1 + \eta \mathcal{O}(\lambda_i(\mathbf{v}_i^*)^2)) + \log(\check{\mathbf{v}}^{i,t})\}_{t=1}^{T_1}$. These $|\mathcal{S}|$ submartingales exhibit monotonic growth with sub-Gaussian increments. Applying Bernstein-type concentration inequalities, we obtain $\max_{t \leq T_1} \mathbf{v}_i^t \geq (1 - c_1/2) \mathbf{v}_i^*$ with high probability for any $i \in \mathcal{S}$ in Lemma B.2.

Lemma B.2. [Formal version of Lemma A.2] Under the setting of Lemma B.1, let

$$\eta \leq \frac{c_1 \log^{-4}(MT_1/\delta) \min_{j \in [D]} (\mathbf{v}_j^*)^2}{\mathcal{O}(\sigma^2 + (1+C)\mathcal{M}^2(\mathbf{b}))}$$

and

$$T_1 \geq \max \left\{ \frac{\mathcal{O}(\max_{j \in [D]} -\log(\mathbf{v}_j^0))}{c_1 \eta \sigma_{\min}(D)}, \frac{\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^8(MT_1/\delta))}{c_1^2 \min_{j \in [D]} (\lambda_j(\mathbf{v}_j^*)^4)} \right\}$$

The combined event set satisfies $\mathbb{P} \left(\left(\bigcap_{j=1}^D \mathcal{E}_{1,j} \right) \cup \mathcal{E}_2 \right) \geq 1 - \frac{\delta}{6}$. where

$$\mathcal{E}_{1,j} := \left\{ \max_{t \leq T_1} \bar{\mathbf{v}}_j^t \geq \frac{1 - c_1/2}{1 + c_1} \mathbf{b}_j \right\}, \quad \forall j \in [D],$$

and $\mathcal{E}_2 := \{\mathcal{A}^c(\bar{\mathbf{v}}^{T_1})\}$.

Proof. For a fixed $j \in [D]$, we define the subcoupling $\{\check{\mathbf{v}}^t\}_{t=0}^{T_1}$ with initialization $\check{\mathbf{v}}^0 = \bar{\mathbf{v}}^0$ as follows:

1. Updating state: If event $\mathcal{B}_t(j) = \{\mathcal{A}(\check{\mathbf{v}}^t) \wedge \check{\mathbf{v}}_j^t < \frac{1-c_1/2}{1+c_1} \mathbf{b}_j\}$ holds, let $\check{\mathbf{v}}^{t+1} = \bar{\mathbf{v}}^{t+1}$,
2. Multiplicative scaling state: Otherwise, let $\check{\mathbf{v}}^{t+1} = \left(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2\right) \check{\mathbf{v}}^t$.

We aim to demonstrate that $-t \log(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2) + \log(\check{\mathbf{v}}_j^t)$ is a submartingale. If event $\mathcal{B}_t^c(j)$ holds, we directly obtain $\mathbb{E}[\log(\check{\mathbf{v}}_j^{t+1}) | \mathcal{F}^t] \geq \log(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2) + \log(\check{\mathbf{v}}_j^t)$. Otherwise, letting

$$w_j^t := \hat{z}_j^t(\bar{\mathbf{v}}^{t-1}) - \hat{\zeta}_M^t - \hat{\xi}^t, \quad \forall t \in [T_1],$$

we have

$$\begin{aligned} \mathbb{E}[\log(\check{\mathbf{v}}_j^{t+1}) | \mathcal{F}^t] &= \mathbb{E}[\log(\bar{\mathbf{v}}_j^{t+1}) | \mathcal{F}^t] \\ &= \mathbb{E}_{\mathbf{x}_{1:M}^{t+1}, \xi^{t+1}, \zeta_M^{t+1}} [\log((1 - \eta((\bar{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2)(\hat{\mathbf{x}}_j^{t+1})^2 - \eta w_j^{t+1} \hat{\mathbf{x}}_j^{t+1})) \\ &\quad + \log(\bar{\mathbf{v}}_j^t)] \\ &\stackrel{(a)}{\geq} \log\left(1 + \frac{3c_1(1-c_1)\eta}{4} \lambda_j(\mathbf{v}_j^*)^2\right) \\ &\quad - \eta^2 \lambda_j \mathcal{O}([\sigma^2 + (1+C)\mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta)) + \log(\bar{\mathbf{v}}_j^t) \\ &\stackrel{(b)}{\geq} \log\left(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2\right) + \log(\bar{\mathbf{v}}_j^t) \\ &\stackrel{(c)}{=} \log\left(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2\right) + \log(\check{\mathbf{v}}_j^t), \end{aligned}$$

where (a) is based on the following three facts: 1) the Taylor expansion of $\log(a + \cdot)$ with $a = 1 + \eta((\mathbf{v}_j^*)^2 - (\bar{\mathbf{v}}_j^t)^2) \mathbb{E}[(\hat{\mathbf{x}}_j^{t+1})^2]$; 2) the property that Y_j^{t+1} is zero-mean and independent of $\hat{\mathbf{x}}_j^{t+1}$; and 3) the step size $\eta \leq \frac{c_1(\mathbf{v}_j^*)^2 \log^{-4}(MT_1/\delta)}{\mathcal{O}(\sigma^2 + (1+C)\mathcal{M}^2(\mathbf{b}))}$ ensures that $1 - \tau\eta((\bar{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2)[(\hat{\mathbf{x}}_j^{t+1})^2 - \mathbb{E}[(\hat{\mathbf{x}}_j^{t+1})^2]] - \tau\eta w_j^{t+1} \hat{\mathbf{x}}_j^{t+1} \geq 1/2$ for any $\tau \in [0, 1]$, (b) is due to the inequality $\log(1 + \frac{c_1(1-c_1)\eta}{16} \lambda_j(\mathbf{v}_j^*)^2) \geq \eta^2 \lambda_j \mathcal{O}([\sigma^2 + (1+C)\mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))$, and (c) relies on the temporal exclusivity property that if event $\mathcal{B}_t^c(j)$ occurs at time t , then $\mathcal{B}_t(j)$ is permanently excluded for all subsequent times $t' > t$. Therefore, based on the submartingale, we obtain

$$\begin{aligned} &\mathbb{P}\left\{\check{\mathbf{v}}_j^{T_1} < \frac{1-c_1/2}{1+c_1} \mathbf{b}_j\right\} \\ &\stackrel{(d)}{\leq} \exp\left\{-\frac{2\left(T_1 \log\left(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2\right) + \log(v_j^0) - \log\left(\frac{1-c_1/2}{1+c_1} \mathbf{b}_j\right)\right)^2}{T_1 \eta^2 \lambda_j \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^6(MT_1/\delta))}\right\} \\ &\stackrel{(e)}{\leq} \exp\left\{-\frac{T_1 \log^2\left(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2\right)}{\eta^2 \lambda_j \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^6(MT_1/\delta))}\right\} \\ &\stackrel{(f)}{\leq} \frac{\delta}{12N}, \end{aligned} \tag{18}$$

where (d) is derived from Azuma's inequality and the estimation of $|\log(\check{\mathbf{v}}_j^{t+1}) - \log(\check{\mathbf{v}}_j^t)|$ below:

$$|\log(\check{\mathbf{v}}_j^{t+1}) - \log(\check{\mathbf{v}}_j^t)| \leq \eta \lambda_j^{1/2} \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})]^{1/2} \log^4(MT_1/\delta)), \tag{19}$$

which implies that

$$\left|\log(\check{\mathbf{v}}_j^{t+1}) - \log\left(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2\right) - \log(\check{\mathbf{v}}_j^t)\right|^2 \leq \eta^2 \lambda_j \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^8(MT_1/\delta)).$$

Moreover, since $T_1 \log(1 + \frac{c_1(1-c_1)\eta}{2} \lambda_j(\mathbf{v}_j^*)^2)/4 \geq -\log(v_j^0)$ and $c_1^2 T_1 \lambda_j(\mathbf{v}_j^*)^4 \geq \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^8(MT_1/\delta))$, we obtain inequalities (e) and (f). If $\mathcal{A}(\bar{\mathbf{v}}^{T_1})$ holds, equation 18 illustrates that $\mathbb{P}(\mathcal{E}_{1,j}^c) \leq \frac{\delta}{12N}$. Thus, we have $\mathbb{P}(\mathcal{E}_{1,j}^c \cap \mathcal{E}_2^c) \leq \frac{\delta}{6N}$. \square

Second, we construct the high-probability lower bound for $\bar{\mathbf{v}}_j^{T_1}$ for any $j \in [D]$ in Lemma B.3. The proof technique of Lemma B.3 mirrors that of Lemma B.1. By contrast, we construct geometrically compensated supermartingale $\{-u_i^t\}_{t=1}^{T_1}$ for each $i \in \mathcal{S}$. The proof is finished by applying Bernstein-type concentration inequalities to these constructed supermartingales, yielding the required probabilistic bounds.

1134 **Lemma B.3.** [Formal version of Lemma A.3] Under the setting of Lemma B.1, let
1135

$$1136 \quad \eta \leq \frac{c_1^2 \bar{\sigma}_{\min}(D)}{\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))}.$$

1137 The combined event set satisfies $\mathbb{P}\left(\bigcap_{j=1}^D \left(\bigcup_{k=3,4} \mathcal{E}_{k,j}\right)\right) \geq 1 - \frac{\delta}{6}$, where
1138

$$1139 \quad \mathcal{E}_{3,j} := \left\{ \max_{t \leq T_1} \bar{\mathbf{v}}_j^t < \frac{1 - c_1/2}{1 + c_1} \mathbf{b}_j \right\}, \quad \mathcal{E}_{4,j} := \left\{ \bar{\mathbf{v}}_j^{T_1} \geq \frac{1 - c_1}{1 + c_1} \mathbf{b}_j \right\}, \quad \forall j \in [D].$$

1140 *Proof.* For any $j \in [D]$, if $\mathcal{E}_{3,j}^c$ occurs, there exists $t \in [T_1]$ such that $\bar{\mathbf{v}}_j^t \geq \frac{1 - c_1/2}{1 + c_1} \mathbf{b}_j$. Define $\tau_{0,j}$
1141 as the stopping time satisfying $\bar{\mathbf{v}}_j^{\tau_{0,j}} \geq \frac{1 - c_1/2}{1 + c_1} \mathbf{b}_j$ as:
1142

$$1143 \quad \tau_{0,j} = \inf_t \left\{ t : \bar{\mathbf{v}}_j^t \geq \frac{1 - c_1/2}{1 + c_1} \mathbf{b}_j \right\}.$$

1144 We also define $\tau_{1,j}$ as the stopping time satisfying $\bar{\mathbf{v}}_j^{\tau_{1,j}} < \frac{1 - c_1}{1 + c_1} \mathbf{b}_j$ after $\tau_{0,j}$ as:
1145

$$1146 \quad \tau_{1,j} = \inf_{t > \tau_{0,j}} \left\{ t : \bar{\mathbf{v}}_j^t < \frac{1 - c_1}{1 + c_1} \mathbf{b}_j \right\}.$$

1147 Based on the definition of $\{\bar{\mathbf{v}}^t\}_{t=0}^{T_1}$, once the event $\mathcal{A}^c(\bar{\mathbf{v}}^t)$ occurs, the coupling process satisfies
1148 $\bar{\mathbf{v}}^{t'} = \bar{\mathbf{v}}^t$ for any $t' > t$. Therefore, $\mathcal{A}(\bar{\mathbf{v}}^t)$ holds for all $t \leq \tau_{1,j}$. Moreover, $\bar{\mathbf{v}}_j^t$ must traverse in and
1149 out of the threshold interval $\left[\frac{1 - c_1}{1 + c_1} \mathbf{b}_j, \frac{1}{1 + c_1} \mathbf{b}_j\right]$ before subceeding $\frac{1 - c_1}{1 + c_1} \mathbf{b}_j$. We aim to estimate the
1150 following probability for coordinates $j \in [D]$ and time pairs $t_0 < t_1 \in [T_1]$:
1151

$$1152 \quad \mathbb{P}\left(\bar{\mathcal{D}}_{\tau_0=t_0}^{\tau_1=t_1}(j) = \left\{ \bar{\mathbf{v}}_j^{t_0} \geq \frac{1 - c_1/2}{1 + c_1} \mathbf{b}_j \wedge \bar{\mathbf{v}}_j^{t_0:t_1-1} \in \left[\frac{1 - c_1}{1 + c_1} \mathbf{b}_j, \frac{1}{1 + c_1} \mathbf{b}_j\right] \wedge \bar{\mathbf{v}}_j^{t_1} < \frac{1 - c_1}{1 + c_1} \mathbf{b}_j \right\}\right).$$

1153 For any $t \in [t_0 : t_1 - 1]$, we have
1154

$$1155 \quad \mathbb{E}[\mathbf{v}_j^* - \bar{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t] = \mathbb{E}_{\mathbf{x}_{1:M}^{t+1}, \xi^{t+1}, \zeta_{M+1:\infty}^{t+1}} [\mathbf{v}_j^* - \bar{\mathbf{v}}_j^t + \eta(((\bar{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2) \hat{\mathbf{x}}_j^{t+1} + \hat{\mathbf{z}}_j^{t+1}(\bar{\mathbf{v}}^t) - \hat{\zeta}_M^{t+1} - \hat{\xi}^{t+1}) \hat{\mathbf{x}}_j^{t+1} \bar{\mathbf{v}}_j^{t+1}] \\ 1156 \quad \leq \left(1 - \frac{1 - c_1}{(1 + c_1)^2} \eta \lambda_j(\mathbf{v}_j^*)^2\right) (\mathbf{v}_j^* - \bar{\mathbf{v}}_j^t). \quad (20)$$

1157 Applying Lemma E.1 to $((\bar{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2) \hat{\mathbf{x}}_j^{t+1} + \hat{\mathbf{z}}_j^{t+1}(\bar{\mathbf{v}}^t) - \hat{\zeta}_M^{t+1} - \hat{\xi}^{t+1}) \hat{\mathbf{x}}_j^{t+1}$, we have
1158

$$1159 \quad \mathbb{E}[\exp\{\lambda(\mathbb{E}[\bar{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t] - \bar{\mathbf{v}}_j^{t+1})\} \mid \mathcal{F}^t] \leq \exp\left\{\frac{\lambda^2 \eta^2 \lambda_j(\mathbf{v}_j^*)^2 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))}{2}\right\},$$

1160 for any $\lambda \in \mathbb{R}$. Therefore, combining Lemma E.3 with equation 20, we establish the probability
1161 bound for event $\bar{\mathcal{D}}_{\tau_0=t_0}^{\tau_1=t_1}(j)$ with any time pair $t_0 < t_1 \in [T_1]$ as
1162

$$1163 \quad \mathbb{P}(\bar{\mathcal{D}}_{\tau_0=t_0}^{\tau_1=t_1}(j)) \leq \exp\left\{\frac{-c_1^2(\mathbf{v}_j^*)^2}{\eta \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))}\right\}.$$

1164 Notice that the occurrence of $\mathcal{E}_{3,j}^c \wedge \mathcal{E}_{4,j}^c$ implies $\bar{\mathcal{D}}_{\tau_0=t_0}^{\tau_1=t_1}(j)$ must hold for certain $t_0 < t_1 \in [T_1]$.
1165 Therefore, we have

$$1166 \quad \mathbb{P}(\mathcal{E}_{3,j}^c \wedge \mathcal{E}_{4,j}^c) \leq \sum_{1 \leq t_1 < t_2 \leq T_1} \mathbb{P}(\bar{\mathcal{D}}_{\tau_0=t_0}^{\tau_1=t_1}(j)) \\ 1167 \leq \frac{T_1^2}{2} \exp\left\{\frac{-c_1^2(\mathbf{v}_j^*)^2}{\eta \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))}\right\} \\ 1168 \leq \frac{T_1^2}{2} \exp\left\{\frac{-c_1^2 \min_{j \in [D]}(\mathbf{v}_j^*)^2}{\eta \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))}\right\}$$

$$1188 \leq \frac{\delta}{6N}. \quad (21)$$

1190
1191
11921193 Combining Lemma B.1 in **Part I** and Lemma B.2, Lemma B.3 in **Part II**, we have now completed
1194 the proof of Theorem B.1.

1195

1196 *Proof of Theorem B.1.* First, we notice that in the setting of Theorem B.1,

$$1197 \eta \leq \frac{c_1^2 \bar{\sigma}_{\min}(D)}{\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_1/\delta))}, \quad (22)$$

1200

and

$$1201 \begin{cases} \frac{\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^8(MT_1/\delta) - \min_{j \in [D]} \log(\mathbf{v}_j^0))}{c_1^2 \eta \sigma_{\min}(D)} \leq T_1 \leq \frac{\log^{-4}(MT_1/\delta) \log((M-D)T_1/\delta)}{\eta^2 \bar{\sigma}_{\max}(D) \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})])}, & \text{if } M > D, \\ 1202 \frac{\mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^8(MT_1/\delta) - \min_{j \in [D]} \log(\mathbf{v}_j^0))}{c_1^2 \eta \sigma_{\min}(D)} \leq T_1, & \text{otherwise.} \end{cases} \quad (23)$$

1205

1206 satisfy all assumptions in Lemmas B.1-B.3. Thus we can use all results in Lemma B.1-B.3. B.1
1207 yields $\mathbb{P}\{\bar{\mathbf{v}}^{T_1} > \mathbf{b}\} \leq \frac{\delta}{6}$. Lemma B.2 implies that $\mathbb{P}\{\min_{j \in [D]} \max_{t \leq T_1} (\bar{\mathbf{v}}_j^t - \frac{1-c_1/2}{1+c_1} \mathbf{b}_j) < 0 \wedge \bar{\mathbf{v}}^{T_1} \leq \mathbf{b}\} \leq \frac{\delta}{6}$. Combining Lemma B.1 and B.2, we have $\mathbb{P}\{\min_{j \in [D]} \max_{t \leq T_1} (\bar{\mathbf{v}}_j^t - \frac{1-c_1/2}{1+c_1} \mathbf{b}_j) < 0\} \leq \frac{\delta}{3}$. Moreover, Lemma B.3 indicates that $\mathbb{P}\{\min_{j \in [D]} \max_{t \leq T_1} (\bar{\mathbf{v}}_j^t - \frac{1-c_1/2}{1+c_1} \mathbf{b}_j) \geq 0 \wedge \min_{j \in [D]} (\bar{\mathbf{v}}_j^{T_1} - \frac{1-c_1}{1+c_1} \mathbf{b}_j) < 0\} \leq \frac{\delta}{6}$. Combining these results, we establish
1211 the final probability bound: $\mathbb{P}\{|\bar{\mathbf{v}}_{1:D}^{T_1} - \mathbf{v}_{1:D}^*| \leq \frac{c_1}{1+c_1} \mathbf{b}_{1:D} \wedge \bar{\mathbf{v}}_{D+1:M}^{T_1} \leq \mathbf{b}_{D+1:M}\} \geq 1 - \frac{2}{3}\delta$, and
1212 this bound can be extended to \mathbf{q}^{T_1} by the definition of capped coupling process in Definition B.1.
1213 By Proposition B.1, we complete the proof. \square

1214

1215 B.3 PROOF OF PHASE II

1216

1217 In this section, we introduce the proof techniques of **Phase II** in Theorem B.2, where we construct
1218 the global convergence analysis of Algorithm 1 for risk minimization. We demonstrate that after
1219 Phase I (i.e., $t > T_1$), the iterations of \mathbf{v}^t are confined within a neighborhood of \mathbf{v}^* with high
1220 probability. Therefore, the SGD dynamics for the quadratic model can be well approximated by
1221 the dynamics for the linear model with high probability. Therefore, we can extend the analytical
1222 techniques for SGD in the linear model to obtain the conclusion of Theorem B.2.

1223

1224 Theorem B.1 illustrates that the output of Algorithm 1 after T_1 iterations lies in the neighborhood
1225 of the ground truth within a constant factor, namely, $|\mathbf{v}_{1:D} - \mathbf{v}_{1:D}^*| \leq c_1 \mathbf{v}_{1:D}^*$. Thus, we use \mathbf{v}^{T_1} ,
1226 which satisfies equation 11, as the initial point for the SGD iterations in **Phase II**, and set the
1227 annealing learning rate to guarantee the output of Algorithm 1 fully converges to \mathbf{v}^* . Before we
1228 formal propose Theorem B.2, we preliminarily introduce some of the coupling process, auxiliary
1229 function, and notations used for our statement of Theorem B.2 and analysis in Phase II. We introduce
1230 the truncated coupling $\{\hat{\mathbf{v}}^t\}_{t=0}^{T_2}$ as follows:

$$1231 \begin{cases} \hat{\mathbf{v}}^{t+1} = \mathbf{v}^{T_1+t+1}, & \text{if } \mathcal{G}(\hat{\mathbf{v}}^t) \text{ occurs,} \\ 1232 \hat{\mathbf{v}}^{\tau+1} = \frac{13}{4} \mathbf{v}^*, & \forall \tau \geq t, \text{ otherwise,} \end{cases}$$

1233 with initialization $\hat{\mathbf{v}}^0 = \mathbf{v}^{T_1}$ which satisfies equation 11, where event

$$1236 \mathcal{G}(\mathbf{v}) := \left\{ \mathbf{v}_j \in \left[\frac{1}{2} \mathbf{v}_j^*, \frac{3}{2} \mathbf{v}_j^* \right], \forall j \in [D] \wedge \mathbf{v}_j \in [0, 2\mathbf{v}_j^*], \forall j \in [D+1 : M] \right\}, \quad (24)$$

1237

1238 for any $\mathbf{v} \in \mathbb{R}^M$ and $T_2 = T - T_1$. Moreover, we define the auxiliary function $\psi : \mathbb{R}^M \rightarrow \mathbb{R}^M$ as:

1239

$$1240 \psi(\mathbf{v}) = \begin{cases} \mathbf{v}, & \text{if } \mathcal{G}(\mathbf{v}) \text{ occurs,} \\ 1241 \mathbf{v}^*, & \text{otherwise.} \end{cases}$$

1242 Thus we construct the truncated sequence $\{\mathbf{w}^t = \psi(\hat{\mathbf{v}}^t)\}_{t=0}^{T_2}$. In this phase, our analysis primarily
 1243 focuses on the trajectory of \mathbf{w}^t . Based on the generation mechanism of the sequence $\{\mathbf{w}^t\}_{t=0}^{T_2}$, the
 1244 update from \mathbf{w}^t to \mathbf{w}^{t+1} can be categorized into two cases: Case I) \mathbf{w}^{t+1} remains updated, with its
 1245 iteration closely approximating SGD updates in linear models (Wu et al., 2022); Case II) For any
 1246 $\tau \geq t$, $\mathbf{w}^{\tau+1}$ does not update and remains constant at \mathbf{v}^* .

1247 We also define some notations for simplifying the representation. For any $\mathbf{v}, \mathbf{u} \in \mathbb{R}^d$, we define
 1248 $\mathbf{v} \odot \mathbf{u} = (\mathbf{v}_1 \mathbf{u}_1, \dots, \mathbf{v}_d \mathbf{u}_d)^\top$ and $\text{diag}\{\mathbf{v}\} = \text{diag}\{\mathbf{v}_1, \dots, \mathbf{v}_d\} \in \mathbb{R}^{d \times d}$. Let $\mathbf{H} = \frac{25}{4} \Lambda \text{diag}\{\hat{\mathbf{b}} \odot$
 1249 $\hat{\mathbf{b}}\}$ with $\hat{\mathbf{b}}^\top = ((\mathbf{v}_{1:D}^*)^\top, (\hat{\mathbf{v}}_{D+1:M}^*)^\top)$ and $\hat{\mathbf{v}}^*$ satisfies $\hat{\mathbf{v}}_j^* = \max\{\frac{3}{2}\mathbf{v}_j^*, 3\mathbf{v}_j^0\}$. We also denote
 1250 $\mathbf{H}_{\mathbf{w}}^t = (\mathbf{w}^t \odot \mathbf{x}^{t+1}) \otimes ((\mathbf{w}^t + \mathbf{v}^*) \odot \mathbf{x}^{t+1})$ and $\mathbf{R}_{\mathbf{w}}^t = (\xi^{t+1} + \zeta_M^{t+1}) \text{diag}\{\mathbf{w}^t\}$ for simplicity. We
 1251 denote the following linear operators that will be used in the proof:
 1252

$$\mathcal{I} := \mathbf{I} \otimes \mathbf{I}, \quad \mathcal{H}_{\mathbf{w}}^t := \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t \otimes (\mathbf{H}_{\mathbf{w}}^t)^\top], \quad \tilde{\mathcal{H}}_{\mathbf{w}}^t := \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t] \otimes \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t],$$

$$\mathcal{G}_{\mathbf{w}}^t := \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t] \otimes \mathbf{I} + \mathbf{I} \otimes \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t] - \eta_t \mathcal{H}_{\mathbf{w}}^t, \quad \tilde{\mathcal{G}}_{\mathbf{w}}^t := \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t] \otimes \mathbf{I} + \mathbf{I} \otimes \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t] - \eta_t \tilde{\mathcal{H}}_{\mathbf{w}}^t,$$

1253 where $\mathbb{E}_t[\cdot] = \mathbb{E}[\cdot \mid \mathcal{F}^t]$. For any operator \mathcal{A} , we use $\mathcal{A} \circ \mathbf{A}$ to denote \mathcal{A} acting on a symmetric
 1254 matrix \mathbf{A} . It's easy to directly verify the following rules for above operators acting on a symmetric
 1255 matrix \mathbf{A} :

$$\begin{aligned} \mathcal{I} \circ \mathbf{A} &= \mathbf{A}, \quad \mathcal{H}_{\mathbf{w}}^t \circ \mathbf{A} = \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t \mathbf{A} (\mathbf{H}_{\mathbf{w}}^t)^\top], \quad \tilde{\mathcal{H}}_{\mathbf{w}}^t \circ \mathbf{A} = \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t] \mathbf{A} \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t], \\ (\mathcal{I} - \eta_t \mathcal{G}_{\mathbf{w}}^t) \circ \mathbf{A} &= \mathbb{E}_t [(\mathbf{I} - \eta_t \mathbf{H}_{\mathbf{w}}^t) \mathbf{A} (\mathbf{I} - \eta_t \mathbf{H}_{\mathbf{w}}^t)], \\ (\mathcal{I} - \eta_t \tilde{\mathcal{G}}_{\mathbf{w}}^t) \circ \mathbf{A} &= (\mathbf{I} - \eta_t \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t]) \mathbf{A} (\mathbf{I} - \eta_t \mathbb{E}_t [\mathbf{H}_{\mathbf{w}}^t]). \end{aligned}$$

1256 The following is the formalized expression of the iteration process for \mathbf{w}^t . For all $t \in [0 : T_2 - 1]$,
 1257 if $\mathbf{w}^{t+1} = \mathbf{v}^{T_1+t+1}$ (i.e., event $\mathcal{G}(\mathbf{v}^{T_1+t+1})$ occurs), \mathbf{w}^{t+1} follows the update rule as:
 1258

$$\mathbf{w}^{t+1} - \mathbf{v}^* = \mathbf{w}^t - \mathbf{v}^* - \eta_t \mathbf{H}_{\mathbf{w}}^t (\mathbf{w}^t - \mathbf{v}^*) + \eta_t \mathbf{R}_{\mathbf{w}}^t \mathbf{x}^t. \quad (25)$$

1259 Otherwise, we have

$$\mathbf{w}^{\tau+1} = \mathbf{v}^*, \quad \forall \tau \geq t.$$

1260 Since $\mathbf{w}^{t+1} = \mathbf{v}^{T_1+t+1}$ implies $\mathbf{w}^t = \mathbf{v}^{T_1+t}$, but the converse does not necessarily hold, we derive
 1261 the recurrence process as:

$$\mathbb{E} [(\mathbf{w}^{t+1} - \mathbf{v}^*)^{\otimes 2}] \preceq \mathbb{E} [(\mathbf{w}^t - \mathbf{v}^* - \eta_t \mathbf{H}_{\mathbf{w}}^t (\mathbf{w}^t - \mathbf{v}^*) + \eta_t \mathbf{R}_{\mathbf{w}}^t \mathbf{x}^t)^{\otimes 2} \mathbf{1}_{\mathbf{w}^t = \mathbf{v}^{T_1+t}}].$$

1262 Define $\hat{\mathbf{w}}^t := \mathbf{w}^t - \mathbf{v}^*$. The iterative update of $\hat{\mathbf{w}}^t$ can be decomposed into two random processes,
 1263

$$\hat{\mathbf{w}}^t = \mathbf{1}_{\mathbf{w}^t = \mathbf{v}^{T_1+t}} \cdot \hat{\mathbf{w}}_{\text{bias}}^t + \mathbf{1}_{\mathbf{w}^t = \mathbf{v}^{T_1+t}} \cdot \hat{\mathbf{w}}_{\text{variance}}^t, \quad \forall t \in [0 : T_2], \quad (26)$$

1264 where $\{\hat{\mathbf{w}}_{\text{variance}}^t\}_{t=1}^{T_2}$ is recursively defined by

$$\begin{cases} \hat{\mathbf{w}}_{\text{variance}}^{t+1} = (\mathbf{I} - \eta_t \mathbf{H}_{\mathbf{w}}^t) \hat{\mathbf{w}}_{\text{variance}}^t + \eta_t \mathbf{R}_{\mathbf{w}}^t \mathbf{x}^t, & \text{if } \mathbf{w}^t = \mathbf{v}^{T_1+t}, \\ \hat{\mathbf{w}}_{\text{variance}}^{t+1} = \mathbf{0}, & \text{otherwise,} \end{cases}$$

1265 for any $t \in [0 : T_2 - 1]$ with $\hat{\mathbf{w}}_{\text{variance}}^0 = \mathbf{0}$ and $\{\hat{\mathbf{w}}_{\text{bias}}^t\}_{t=1}^{T_2}$ is recursively defined by

$$\begin{cases} \hat{\mathbf{w}}_{\text{bias}}^{t+1} = (\mathbf{I} - \eta_t \mathbf{H}_{\mathbf{w}}^t) \hat{\mathbf{w}}_{\text{bias}}^t, & \text{if } \mathbf{w}^t = \mathbf{v}^{T_1+t}, \\ \hat{\mathbf{w}}_{\text{bias}}^{t+1} = \mathbf{0}, & \text{otherwise,} \end{cases}$$

1266 for any $t \in [0 : T_2 - 1]$ with $\hat{\mathbf{w}}_{\text{bias}}^0 = \mathbf{w}^0 - \mathbf{v}^*$. We define the t -th step bias iteration as $\mathbf{B}^t =$
 1267 $\mathbb{E}[\hat{\mathbf{w}}_{\text{bias}}^t \otimes \hat{\mathbf{w}}_{\text{bias}}^t]$ and t -th step variance iteration as $\mathbf{V}^t = \mathbb{E}[\hat{\mathbf{w}}_{\text{variance}}^t \otimes \hat{\mathbf{w}}_{\text{variance}}^t]$. Therefore, we
 1268 can derive the following relations for $\{\mathbf{B}^t\}_{t=0}^{T_2}$ and $\{\mathbf{V}^t\}_{t=0}^{T_2}$:

$$\begin{cases} \mathbf{B}^{t+1} \preceq \mathbb{E}[(\mathcal{I} - \eta_t \mathcal{G}_{\mathbf{w}}^t) \circ (\hat{\mathbf{w}}_{\text{bias}}^t \otimes \hat{\mathbf{w}}_{\text{bias}}^t)], \\ \mathbf{V}^{t+1} \preceq \mathbb{E}[(\mathcal{I} - \eta_t \mathcal{G}_{\mathbf{w}}^t) \circ (\hat{\mathbf{w}}_{\text{variance}}^t \otimes \hat{\mathbf{w}}_{\text{variance}}^t)] + \eta_t^2 \Sigma_{\mathbf{w}}^t, \end{cases} \quad \forall t \in [0 : T_2 - 1], \quad (27)$$

1269 with $\mathbf{B}^0 = (\mathbf{w}^0 - \mathbf{v}^*) (\mathbf{w}^0 - \mathbf{v}^*)^\top$ and $\mathbf{V}^0 = \mathbf{0}$, where $\Sigma_{\mathbf{w}}^t = \sigma^2 \Lambda \mathbb{E}[\text{diag}\{\mathbf{w}^t \odot \mathbf{w}^t\}]$.

1270 We formally propose Theorem B.2 as below.

1296 **Theorem B.2.** [Formal version of Theorem 5.2] Suppose Assumption 3.1 and 3.3 hold, and let
 1297 $T_1 = \lceil (T - h) / \log(T - h) \rceil$ and $h = \lceil T / \log(T) \rceil$. Under the following setting
 1298

1299 1. There exists $D < M$ such that $\eta_0 \leq \tilde{\Omega}(\min\{\text{tr}^{-1}(\mathbf{H}), \bar{\sigma}_{\min}(D)\})$ and $T_1 =$
 1300 $\tilde{\mathcal{O}}(\frac{\sigma^2 + \mathcal{M}^2(\hat{\mathbf{b}})}{\eta_0 \sigma_{\min}(D)})$,
 1301

1302 2. Let $D = M$, $\eta_0 \leq \tilde{\Omega}(\min\{\text{tr}^{-1}(\mathbf{H}), \bar{\sigma}_{\min}(M)\})$, and $T_1 \geq \tilde{\mathcal{O}}(\frac{\sigma^2 + \mathcal{M}^2(\hat{\mathbf{b}})}{\eta_0 \sigma_{\min}(M)})$,

1304 we have

1306
$$\mathbb{E} [\mathcal{R}_M(\mathbf{w}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*)] \lesssim \sigma^2 \left(\frac{N'_0}{K} + \eta_0 \sum_{i=N'_0+1}^{N_0} \lambda_i(\mathbf{v}_i^*)^2 \right)$$

 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316

$$+ \sigma^2 \eta_0^2 (h + T_1) \sum_{i=N_0+1}^M \lambda_i^2(\hat{\mathbf{b}}_i^*)^4$$

$$+ \left\langle \frac{1}{\eta_0 T_1} \mathbf{I}_{1:N_1} + \mathbf{H}_{N_1+1:M}, (\mathbf{I} - \eta_0 \hat{\mathbf{H}})^{2h} \mathbf{B}^0 \right\rangle$$

$$+ \Gamma(\mathbf{H}) \left\langle \frac{1}{\eta_0 h} \mathbf{I}_{1:N'_1} + \mathbf{H}_{N'_1+1:M}, \mathbf{B}^0 \right\rangle, \quad (28)$$

1317 for arbitrary $D \geq N_0 \geq N'_0 \geq 0$ and $D \geq N_1 \geq N'_1 \geq 0$, where $\Gamma(\mathbf{H}) := (\frac{625N'_1}{T_1} +$
 1318 $\frac{25\eta_0 h}{T_1} \text{tr}(\mathbf{H}_{N'_1+1:N_1}) + \eta_0^2 h \text{tr}(\mathbf{H}_{N_1+1:M}^2))$ and $T_2 = T - T_1$. Specially, we have

1321
$$\mathcal{R}_M(\mathbf{v}^T) - \mathcal{R}_M(\mathbf{v}^*) \lesssim \frac{\sigma^2 N}{T_1} + \sigma^2 \eta_0^2 (h + T_1) \sum_{i=D+1}^M \lambda_i^2(\hat{\mathbf{b}}_i^*)^4$$

 1322
 1323
 1324
 1325
 1326
 1327

$$+ \left\langle \frac{1}{\eta_0 T_1} \mathbf{I}_{1:D} + \mathbf{H}_{D+1:M}, (\mathbf{I} - \eta_0 \hat{\mathbf{H}})^{2h} \mathbf{B}^0 \right\rangle$$

$$+ \left(\frac{D}{T_1} + \eta_0^2 h \text{tr}(\mathbf{H}_{D+1:M}^2) \right) \left\langle \frac{1}{\eta_0 h} \mathbf{I}_{1:D} + \mathbf{H}_{D+1:M}, \mathbf{B}^0 \right\rangle, \quad (29)$$

1328 with probability at least 0.95.

1330 Before the beginning of our proof, we define the $(cv_{1:D}^*, \mathbf{b})$ -neighbor coupling process which will
 1331 be used in the following lemma as below.

1332 **Definition B.2.** [($cv_{1:D}^*$, \mathbf{b})-neighbor coupling] Let $\{\mathbf{q}^t\}_{t=0}^T$ be a Markov chain in \mathbb{R}_+^M adapted
 1333 to filtration $\{\mathcal{F}\}_{t=0}^T$. Given parameters: 1) Dimension index $D \in \mathbb{Z}_+$; 2) Tolerance $c > 0$; 3)
 1334 Threshold vector $\mathbf{b} \in \mathbb{R}_+^{M-D}$. With initial condition $\bar{\mathbf{v}}^0 = \mathbf{q}^0$, $|\bar{\mathbf{v}}_{1:D}^0 - \mathbf{v}_{1:D}^*| \leq cv_{1:D}^*$ and $\mathbf{0} \leq$
 1335 $\bar{\mathbf{v}}_{D+1:M}^0 \leq \mathbf{b}$, the $(cv_{1:D}^*, \mathbf{b})$ -neighbor coupling process $\{\bar{\mathbf{v}}^t\}_{t=0}^T$ evolves as:

1337 1. Updating state: If $|\bar{\mathbf{v}}_{1:D}^t - \mathbf{v}_{1:D}^*| \leq cv_{1:D}^*$ and $\mathbf{0} \leq \bar{\mathbf{v}}_{D+1:M}^t \leq \mathbf{b}$, let $\bar{\mathbf{v}}^{t+1} = \mathbf{v}^{t+1}$,
 1338

1339 2. Absorbing state: Otherwise, maintain $\bar{\mathbf{v}}^{t+1} = \bar{\mathbf{v}}^t$.

1341 B.3.1 PART I: BOUND THE OUTPUT OF PHASE I

1343 In this part, we demonstrate that the output of **Phase I** remains confirmed within the neighborhood
 1344 of the ground truth with high probability in Lemma B.3. Specifically, by constructing similar
 1345 supermartingales to that in the proofs of Lemma B.1 and Lemma B.3, we obtain a set of compressed
 1346 supermartingales dependent on the coordinate $i \in [M]$. Combining the compression properties of
 1347 these supermartingales with the sub-Gaussian property of their difference sequences, through con-
 1348 centration inequality, we obtain Lemma B.3 as below.

1349 **Theorem B.3.** [Formal version of Theorem A.1] Under Assumption 3.1, we consider the T_1 -th step
 of Algorithm 1 and its subsequent iterative process. Let $D \in \mathbb{N}_+$ represent the effective dimension.

1350 Define $\eta_0 \leq \tilde{\Omega} \left(\frac{\tilde{\sigma}_{\min}(\max\{D, M\})}{\sigma^2 + \mathcal{M}^2(\mathbf{b})} \right)$, and let $\{\tilde{\mathbf{v}}^t\}_{t=0}^{T_2}$ be an $(1/2, 2)$ - \mathbf{v}^* neighbor coupling process
 1351 based on the control sequence $\{\mathbf{q}^{T_1+t}\}_{t=0}^{T_2}$. Recall the definition equation 24 of event $\mathcal{G}(\mathbf{v})$ for any
 1352 $\mathbf{v} \in \mathbb{R}^M$. If $D < M$, set the iteration number $T_2 \in \left[\tilde{\Omega} \left(\frac{\tilde{\sigma}_{\max}^{-1}(D)}{\eta_0^2[\sigma^2 + \mathcal{M}^2(\mathbf{b})]} \right) \right]$. Otherwise, set T_2 be an
 1353 arbitrary positive integer. Then, $\bigcap_{t=0}^{T_2} \mathcal{G}(\mathbf{v}^{T_1+t})$ holds with probability at least $1 - \delta$.
 1354

1355 *Proof.* Setting $c_1 = \frac{1}{4}$ in Theorem B.1, we have $|\mathbf{q}_{1:D}^{T_1} - \mathbf{v}_{1:D}^*| \leq \frac{1}{4} \mathbf{v}_{1:D}^*$ and $\mathbf{0}_{D+1:M} \leq \mathbf{q}_{D+1:M}^{T_1} \leq$
 1356 $\frac{3}{2} \mathbf{v}_{D+1:M}^*$ with probability at least $1 - \delta/6$. Without loss of generality, we assume \mathbf{q}^{T_1} satisfies
 1357 $|\mathbf{q}_{1:D}^{T_1} - \mathbf{v}_{1:D}^*| \leq \frac{1}{4} \mathbf{v}_{1:D}^*$ and $\mathbf{0}_{D+1:M} \leq \mathbf{q}_{D+1:M}^{T_1} \leq \frac{3}{2} \mathbf{v}_{D+1:M}^*$. Let $\hat{\tau}$ be the stopping time satisfying
 1358 $\mathcal{G}^c(\tilde{\mathbf{v}}^{\hat{\tau}})$, i.e.,
 1359

$$1360 \hat{\tau} = \inf \left\{ t : \exists j \in [D], \text{ s.t. } |\tilde{\mathbf{v}}_j^t - \mathbf{v}_j^*| > \frac{1}{2} \mathbf{v}_j^* \text{ or } \exists j \in [D+1 : M], \text{ s.t. } \tilde{\mathbf{v}}_j^t > 2\mathbf{v}_j^* \right\},$$

1361 For each coordinate $j \in [D]$, let $\hat{\tau}_{[D],j}^u$ and $\hat{\tau}_{[D],j}^l$ be the stopping time satisfying $\tilde{\mathbf{v}}_j^{\hat{\tau}_{[D],j}^u} > \frac{3}{2} \mathbf{v}_j^*$ and
 1362 $\tilde{\mathbf{v}}_j^{\hat{\tau}_{[D],j}^l} < \frac{1}{2} \mathbf{v}_j^*$, respectively, i.e.,
 1363

$$1364 \hat{\tau}_{[D],j}^u = \inf \left\{ t : \tilde{\mathbf{v}}_j^t > \frac{3}{2} \mathbf{v}_j^* \right\}, \quad \hat{\tau}_{[D],j}^l = \inf \left\{ t : \tilde{\mathbf{v}}_j^t < \frac{1}{2} \mathbf{v}_j^* \right\}.$$

1365 For each coordinate $j \in [D+1 : M]$, let $\hat{\tau}_{[D+1:M],j}$ be the stopping time satisfying $\tilde{\mathbf{v}}_j^{\hat{\tau}_{[D+1:M],j}} >$
 1366 $2\mathbf{v}_j^*$, i.e.,
 1367

$$1368 \hat{\tau}_{[D+1:M],j} = \inf \left\{ t : \tilde{\mathbf{v}}_j^t > 2\mathbf{v}_j^* \right\}.$$

1369 Based on Definition B.2, once the stopping time $\hat{\tau} = t_2$ occurs for certain $t_2 \in [T_2]$, the coupling
 1370 process satisfies $\tilde{\mathbf{v}}^t = \tilde{\mathbf{v}}^{t_2}$ for all $t > t_2$. Suppose there exists a certain $j \in [D]$ such that $\hat{\tau}_{[D],j}^u = t_2$.
 1371 Thus, the event $\mathcal{G}(\tilde{\mathbf{v}}^t)$ holds for all $t \in [0 : t_2 - 1]$. Similar to the proof of Lemma B.1 and B.3,
 1372 $\tilde{\mathbf{v}}_j^t$ must traverse in and out of the threshold interval $[\mathbf{v}_j^*, \frac{3}{2} \mathbf{v}_j^*]$ before exceeding $\frac{3}{2} \mathbf{v}_j^*$. We aim to
 1373 estimate the following probability for coordinates $j \in [D]$ and time pairs $t_1 < t_2 \in [0 : T_2]$ as:
 1374

$$1375 \mathbb{P} \left(\mathcal{B}_{t_1}^{\hat{\tau}_{[D],j}^u = t_2}(j) = \left\{ \tilde{\mathbf{v}}_j^{t_1} \leq \frac{5}{4} \mathbf{v}_j^* \wedge \tilde{\mathbf{v}}_j^{t_1:t_2-1} \in \left[\mathbf{v}_j^*, \frac{3}{2} \mathbf{v}_j^* \right] \right\} \right).$$

1376 For any $t \in [t_1 : t_2 - 1]$, we have
 1377

$$1378 \begin{aligned} \mathbb{E} [\tilde{\mathbf{v}}_j^{t+1} - \mathbf{v}_j^* \mid \mathcal{F}^t] &= \mathbb{E}_{\mathbf{x}_{1:M}^{t+1}, \xi^{t+1}, \zeta_M^{t+1}} [\tilde{\mathbf{v}}_j^t - \mathbf{v}_j^* - \eta \left(((\tilde{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2) \hat{\mathbf{x}}_j^{t+1} + \hat{\mathbf{z}}_j^{t+1}(\tilde{\mathbf{v}}^t) \right. \\ &\quad \left. - \hat{\zeta}_M^{t+1} - \hat{\xi}^{t+1} \right) \hat{\mathbf{x}}_j^{t+1} \tilde{\mathbf{v}}_j^{t+1}] \\ &\leq \left(1 - \frac{3\eta_t}{8} \lambda_j(\mathbf{v}_j^*)^2 \right) (\tilde{\mathbf{v}}_j^t - \mathbf{v}_j^*). \end{aligned} \quad (30)$$

1379 Applying Lemma E.1 to $((\tilde{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2) \hat{\mathbf{x}}_j^{t+1} + \hat{\mathbf{z}}_j^{t+1}(\tilde{\mathbf{v}}^t) - \hat{\zeta}_M^{t+1} - \hat{\xi}^{t+1}) \hat{\mathbf{x}}_j^{t+1} \tilde{\mathbf{v}}_j^{t+1}$, we obtain
 1380

$$1381 \mathbb{E} [\exp \{ \lambda (\tilde{\mathbf{v}}_j^{t+1} - \mathbb{E} [\tilde{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t]) \} \mid \mathcal{F}^t] \leq \exp \left\{ \frac{\lambda^2 \eta_t^2 \lambda_j(\mathbf{v}_j^*)^2 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2/\delta))}{2} \right\},$$

1382 for any $\lambda \in \mathbb{R}$. Therefore, based on Lemma E.3 and equation 30, we establish the probability bound
 1383 for event $\mathcal{B}_{t_1}^{\hat{\tau}_{[D],j}^u = t_2}(j)$ for any time pair $t_1 < t_2 \in [0 : T_2]$ as:
 1384

$$1385 \mathbb{P} \left\{ \mathcal{B}_{t_1}^{\hat{\tau}_{[D],j}^u = t_2}(j) \right\} \leq \exp \left\{ - \frac{(\mathbf{v}_j^*)^2}{V_j} \right\}, \quad (31)$$

1386 where V_j is denoted as
 1387

$$1388 V_j = \lambda_j(\mathbf{v}_j^*)^2 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2/\delta)) \sum_{t=0}^{T_2-1} \left(\prod_{i=t+1}^{T_2-1} (1 - \frac{3\eta_i}{4} \lambda_j(\mathbf{v}_j^*)^2)^2 \right) (\eta_t)^2.$$

1404 By Lemma E.4, we have $V_j \leq \mathcal{O}(\eta_0[\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2/\delta))$. Therefore, using equation 31,
 1405 we can derive

$$1406 \mathbb{P} \left\{ \mathcal{B}_{t_1}^{\hat{\tau}_{[D],j}^u=t_2}(j) \right\} \leq \exp \left\{ -\frac{(\mathbf{v}_j^*)^2}{\eta_0 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2/\delta))} \right\}. \quad (32)$$

1410 Similarly, suppose there exists a certain $j \in [D]$ such that $\hat{\tau}_{[D],j}^l = t_2$. Thus, the event $\mathcal{G}(\tilde{\mathbf{v}}^t)$ holds
 1411 for all $t \in [0 : t_2 - 1]$. $\tilde{\mathbf{v}}_j^t$ must traverse in and out of the threshold interval $[\frac{1}{2}\mathbf{v}_j^*, \mathbf{v}_j^*]$ before
 1412 subceeding $\frac{1}{2}\mathbf{v}_j^*$. We aim to estimate the following probability for coordinates $j \in [D]$ and time
 1413 pairs $t_1 < t_2 \in [T_2]$:

$$1415 \mathbb{P} \left(\mathcal{C}_{t_1}^{\hat{\tau}_{[D],j}^l=t_2}(j) = \left\{ \tilde{\mathbf{v}}_j^{t_1} \geq \frac{3}{4}\mathbf{v}_j^* \wedge \tilde{\mathbf{v}}_j^{t_1:t_2-1} \in \left[\frac{1}{2}\mathbf{v}_j^*, \mathbf{v}_j^* \right] \right\} \right).$$

1418 For any $t \in [t_1 : t_2 - 1]$, we have

$$1419 \mathbb{E} [\mathbf{v}_j^* - \tilde{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t] \leq \left(1 - \frac{3\eta_t}{8} \lambda_j(\mathbf{v}_j^*)^2 \right) (\mathbf{v}_j^* - \tilde{\mathbf{v}}_j^t).$$

1422 Based on Lemmas E.1, E.3, and E.4 sequentially, we obtain the probability bound for event
 1423 $\mathcal{C}_{t_1}^{\hat{\tau}_{[D],j}^l=t_2}(j)$ for any time pair $t_1 < t_2 \in [0 : T_2]$ as:

$$1425 \mathbb{P} \left\{ \mathcal{C}_{t_1}^{\hat{\tau}_{[D],j}^l=t_2}(j) \right\} \leq \exp \left\{ -\frac{(\mathbf{v}_j^*)^2}{V_j} \right\} \leq \exp \left\{ -\frac{(\mathbf{v}_j^*)^2}{\eta_0 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2/\delta))} \right\}. \quad (33)$$

1428 For the third stopping time, we also suppose there exists a certain $j \in [D+1 : M]$ such that
 1429 $\hat{\tau}_{[D+1:M],j} = t_2$. Thus, the event $\mathcal{G}(\tilde{\mathbf{v}}^t)$ holds for all $t \in [0 : t_2 - 1]$. Similarly, $\tilde{\mathbf{v}}_j^t$ must traverse in
 1430 and out of the threshold interval $[\mathbf{v}_j^*, 2\mathbf{v}_j^*]$ before exceeding $2\mathbf{v}_j^*$. We aim to estimate the following
 1431 probability for coordinates $j \in [D+1 : M]$ and time pairs $t_1 < t_2 \in [0 : T_2]$ as:

$$1433 \mathbb{P} \left(\mathcal{D}_{t_1}^{\hat{\tau}_{[D+1:M],j}^l=t_2}(j) = \left\{ \tilde{\mathbf{v}}_j^{t_1} \leq \frac{3}{2}\mathbf{v}_j^* \wedge \tilde{\mathbf{v}}_j^{t_1:t_2-1} \in [\mathbf{v}_j^*, 2\mathbf{v}_j^*] \right\} \right).$$

1435 For any $t \in [t_1 : t_2 - 1]$, we have

$$1437 \mathbb{E} [\tilde{\mathbf{v}}_j^{t+1} - \mathbf{v}_j^* \mid \mathcal{F}^t] \leq \tilde{\mathbf{v}}_j^t - \mathbf{v}_j^*. \quad (34)$$

1439 Applying Lemma E.1 to $((\tilde{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2)\hat{\mathbf{x}}_j^{t+1} + \hat{\mathbf{z}}_j^{t+1}(\tilde{\mathbf{v}}^t) - \hat{\zeta}_M^{t+1} - \hat{\xi}^{t+1})\hat{\mathbf{x}}_j^{t+1}\tilde{\mathbf{v}}_j^{t+1}$, we obtain

$$1441 \mathbb{E} [\exp \{ \lambda (\tilde{\mathbf{v}}_j^{t+1} - \mathbb{E} [\tilde{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t]) \} \mid \mathcal{F}^t] \leq \exp \left\{ \frac{\lambda^2 \eta_t^2 \lambda_j(\mathbf{v}_j^*)^2 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2/\delta))}{2} \right\},$$

1443 for any $\lambda \in \mathbb{R}$. Based on Lemma E.3 and equation 34, we establish the probability bound for the
 1444 event $\mathcal{D}_{t_1}^{\hat{\tau}_{[D+1:M],j}^l=t_2}(j)$ for any time pair $t_1 < t_2 \in [0 : T_2]$ as:

$$1446 \mathbb{P} \left\{ \mathcal{D}_{t_1}^{\hat{\tau}_{[D+1:M],j}^l=t_2}(j) \right\} \leq \exp \left\{ -\frac{(\mathbf{v}_j^*)^2}{V_j} \right\} \stackrel{(a)}{\leq} \exp \left\{ -\frac{\log^{-4}(MT_2/\delta)}{T_2 \eta_0^2 \lambda_j \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})])} \right\}, \quad (35)$$

1449 where (a) is derived from $V_j \leq T_2 \eta_0^2 \lambda_j \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2/\delta))$.

1451 Then, it is easy to notice that $\mathcal{G}^c(\tilde{\mathbf{v}}^{T_2})$ indicates that one of the following situation happens:

- 1453 1. For a certain coordinate $j \in [D]$ and time pairs $t_1 < t_2 \in [0 : T_2]$, either $\mathcal{B}_{t_1}^{\hat{\tau}_{[D],j}^u=t_2}(j)$ or
 1454 $\mathcal{C}_{t_1}^{\hat{\tau}_{[D],j}^l=t_2}(j)$ occurs,
- 1455 2. For a certain coordinate $j \in [D]$ and time pairs $t_1 < t_2 \in [0 : T_2]$, $\mathcal{D}_{t_1}^{\hat{\tau}_{[D+1:M],j}^l=t_2}(j)$
 1456 occurs.

1458 Therefore, by the setting of η_0 in Lemma B.3, we derive the following probability bound of event
 1459 $\mathcal{G}^c(\tilde{\mathbf{v}}^{T_2})$:
 1460

$$\begin{aligned}
 1461 \mathbb{P}\{\mathcal{G}^c(\tilde{\mathbf{v}}^{T_2})\} &\leq \sum_{t_1 < t_2} \left[\sum_{j \in [D]} \left(\mathbb{P}\left\{\mathcal{B}_{t_1}^{\hat{\tau}_{[D],j}^u = t_2}(j)\right\} + \mathbb{P}\left\{\mathcal{C}_{t_1}^{\hat{\tau}_{[D],j}^l = t_2}(j)\right\} \right) \right. \\
 1462 &\quad \left. + \sum_{j \in [D+1:M]} \mathbb{P}\left\{\mathcal{D}_{t_1}^{\hat{\tau}_{[D+1:M],j} = t_2}(j)\right\} \right] \\
 1463 &\leq 2T_2^2 N \exp \left\{ -\frac{\min_{j \in \mathcal{N}}(\mathbf{v}_j^*)^2}{\eta_0 \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})] \log^4(MT_2))} \right\} \\
 1464 &\quad + T_2^2 (\max\{M, D\} - D) \exp \left\{ -\frac{\log^{-4}(MT_2/\delta)}{T_2 \eta_0^2 \max_{j \in \mathcal{N}} \lambda_j \mathcal{O}([\sigma^2 + \mathcal{M}^2(\mathbf{b})])} \right\} \\
 1465 &\leq \delta/2.
 \end{aligned}$$

1474 According to the construction of the coupling process $\{\tilde{\mathbf{v}}^t\}_{t=0}^{T_2}$ in Definition B.2, we have
 1475 $\bigcap_{t=T_1}^{T_1+T_2} \mathcal{G}(\mathbf{q}^t)$ holds with probability at least $1 - \delta/2$. By Proposition B.1, the proof is com-
 1476 pleted. \square
 1477

1478 B.3.2 PART II: LINEAR APPROXIMATION OF THE DYNAMIC

1479 In part I, we have proved that $\bigcap_{t=0}^{T_2} \mathcal{G}(\mathbf{v}^{T_1+t})$ occurs with high probability, which implies the truncated
 1480 sequence $\{\mathbf{w}^t\}_{t=1}^{T_2}$ aligned to $\{\mathbf{v}^{T_1+t}\}_{t=1}^{T_2}$ with high probability. Then we approximate the
 1481 update process of $\{\mathbf{w}^t\}_{t=1}^{T_2}$ to SGD in traditional linear regression, with respective bounds of vari-
 1482 ance term and bias term.

1483 We estimate the risk between the last-step function value and the ground truth as:

$$1484 \mathbb{E} [\mathcal{R}_M(\mathbf{w}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*)] \stackrel{(a)}{\leq} \langle \mathbf{H}, \mathbb{E} [\hat{\mathbf{w}}^{T_2} \otimes \hat{\mathbf{w}}^{T_2}] \rangle \leq 2 \langle \mathbf{H}, \mathbf{B}^{T_2} \rangle + 2 \langle \mathbf{H}, \mathbf{V}^{T_2} \rangle, \quad (36)$$

1485 where $\mathbf{H} = \frac{25}{4} \Lambda \text{diag}\{\hat{\mathbf{b}} \odot \hat{\mathbf{b}}\}$ and $\hat{\mathbf{b}}^\top = ((\mathbf{v}_{1:D}^*)^\top, (\tilde{\mathbf{v}}_{D+1:M}^*)^\top)$. Here, (a) is derived from
 1486 combining
 1487

$$1488 \mathbb{E} [\mathcal{R}_M(\mathbf{w}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*)] = \mathbb{E} \left[\sum_{i=1}^M \lambda_i (\mathbf{w}_i^{T_2} + \mathbf{v}_i^*)^2 (\mathbf{w}_i^{T_2} - \mathbf{v}_i^*)^2 \right],$$

1489 with the uniform boundedness of \mathbf{w}^t over $t \in [0 : T_2]$. According to the definitions of \mathbf{w}^t and \mathbf{H}_w^t ,
 1490 we have $\mathbb{E}[\mathbf{H}_w^t] \preceq \mathbf{H}$. Use $\hat{\mathbf{H}}$ to denote $\frac{1}{4} \Lambda \text{diag}\{\bar{\mathbf{b}} \odot \bar{\mathbf{b}}\}$ where $\bar{\mathbf{b}}^\top = ((\mathbf{v}_{1:D}^*)^\top, \mathbf{0}^\top)$, and define
 1491 $\hat{\mathcal{G}} := \hat{\mathbf{H}} \otimes \mathbf{I} + \mathbf{I} \otimes \hat{\mathbf{H}} - \eta \hat{\mathbf{H}} \otimes \hat{\mathbf{H}}$. For simplicity, we let $K = T_1$. Moreover, we use C to denote
 1492 the constant such that $\mathbb{E}[|\mathbf{x}_i|^4] \leq C \mathbb{E}[|\mathbf{x}_i|^2]$ for any $i \geq 1$. Then we respectively bound the variance
 1493 and bias to obtain the estimation of $\mathcal{R}_M(\mathbf{v}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*)$.
 1494

1495 **Bound of Variance:** Lemma B.4 provides a uniform upper bound for \mathbf{V}^t over $t \in [0 : T_2]$.
 1496

1497 **Lemma B.4.** Suppose Assumption 3.1 holds. Under the setting of Theorem B.2, for any $t \in [0 : T_2]$,
 1498 we obtain

$$1499 \mathbf{V}_{\text{diag}}^t \precsim \eta_0 \sigma^2 \mathbf{I}. \quad (37)$$

1500 *Proof.* The definition of Σ_w^t and the boundedness of \mathbf{w}^t implicate that $\Sigma_w^t \preceq \sigma^2 \mathbb{E}[\mathbf{H}_w^t] \preceq \mathbf{H}$ given
 1501 $\mathbf{v}^* \geq \mathbf{0}$. The proof relies on induction. At $t = 0$, it follows that $\mathbf{V}_{\text{diag}}^0 = \mathbf{0} \precsim \eta_0 \sigma^2 \mathbf{I}$. Assuming
 1502 $\mathbf{V}_{\text{diag}}^\tau \precsim \eta_0 \sigma^2 \mathbf{I}$ for any $\tau \leq t$, we proceed to estimate \mathbf{V}^{t+1} by combining equation 27 as,
 1503

$$\begin{aligned}
 1504 \mathbf{V}_{\text{diag}}^{t+1} &\preceq (\mathbb{E} [(\mathcal{I} - \eta_t \mathcal{G}_w^t) \circ (\hat{\mathbf{w}}_{\text{variance}}^t \otimes \hat{\mathbf{w}}_{\text{variance}}^t)])_{\text{diag}} + \eta_t^2 \Sigma_w^t \\
 1505 &\preceq (\mathcal{I} - \eta_t \hat{\mathbf{H}} \otimes \mathbf{I} - \eta_t \mathbf{I} \otimes \hat{\mathbf{H}}) \circ \mathbf{V}_{\text{diag}}^t
 \end{aligned}$$

$$\begin{aligned}
& + \eta_t^2 (\mathbb{E} [\mathcal{H}_{\mathbf{w}}^t \circ (\hat{\mathbf{w}}_{\text{variance}}^t \otimes \hat{\mathbf{w}}_{\text{variance}}^t)])_{\text{diag}} + \eta_t^2 \sigma^2 \mathbf{H} \\
& \stackrel{(a)}{\preceq} (\mathbf{I} - 2\eta_t \hat{\mathbf{H}}) \mathbf{V}_{\text{diag}}^t + \mathcal{O} (\eta_t^2 (C+2) \langle \mathbf{H}, \mathbf{V}_{\text{diag}}^t \rangle \mathbf{H} + \eta_t^2 \sigma^2 \mathbf{H}) \\
& \preceq (\mathbf{I} - 2\eta_t \hat{\mathbf{H}}) \mathbf{V}_{\text{diag}}^t + \tilde{\mathcal{O}} (\eta_t^2 \eta_0 \sigma^2 (C+2) \text{tr}(\mathbf{H}) \mathbf{H} + \eta_t^2 \sigma^2 \mathbf{H}),
\end{aligned}$$

where (a) is derived from Lemma E.6 with $\mathbf{A} = \text{diag}\{\mathbf{v}^* + \mathbf{w}^t\}$ and $\mathbf{B} = \hat{\mathbf{w}}_{\text{variance}}^t \otimes \hat{\mathbf{w}}_{\text{variance}}^t$. For $i \in [D]$, we have

$$(\mathbf{V}_{\text{diag}}^{t+1})_{i,i} \leq (1 - 2\eta_t \hat{\mathbf{H}}_{i,i}) (\mathbf{V}_{\text{diag}}^t)_{i,i} + \tilde{\mathcal{O}} (\eta_t^2 \sigma^2 \hat{\mathbf{H}}_{i,i}). \quad (38)$$

The recursion given by equation 38 implies that $(\mathbf{V}_{\text{diag}}^{t+1})_{i,i} \lesssim \eta_0 \sigma^2$ for any $i \in [D]$, using Lemma E.4. For $i \in [D+1 : M]$, we obtain

$$(\mathbf{V}_{\text{diag}}^{t+1})_{i,i} \lesssim \sigma^2 \mathbf{H}_{i,i} \sum_{k=0}^t \eta_k^2 \lesssim \eta_0 \sigma^2. \quad (39)$$

Therefore, we complete the induction. \square

Lemma B.5. Suppose Assumption 3.1 holds. Under the setting of Theorem B.2, we have

$$\langle \mathbf{H}, \mathbf{V}^{T_2} \rangle \lesssim \sigma^2 \left(\frac{N'_0}{K} + \eta_0 \sum_{i=N'_0+1}^{N_0} \lambda_i (\mathbf{v}_i^*)^2 \right) + \sigma^2 \eta_0^2 (h+K) \sum_{i=N_0+1}^M \lambda_i^2 (\hat{\mathbf{b}}_i^*)^4, \quad (40)$$

for arbitrary $D \geq N_0 \geq N'_0 \geq 0$.

Proof. Applying equation 27, we obtain

$$\begin{aligned}
\mathbf{V}_{\text{diag}}^{t+1} & \preceq (\mathcal{I} - \eta_t \hat{\mathcal{G}}) \circ \mathbf{V}_{\text{diag}}^t + \eta_t^2 (\mathcal{H}_{\mathbf{w}}^t \circ (\hat{\mathbf{w}}_{\text{variance}}^t \otimes \hat{\mathbf{w}}_{\text{variance}}^t))_{\text{diag}} + \eta_t^2 \sigma^2 \mathbb{E}[\mathbf{H}_{\mathbf{w}}^t] \\
& \stackrel{(a)}{\preceq} (\mathcal{I} - \eta_t \hat{\mathcal{G}}) \circ \mathbf{V}_{\text{diag}}^t + \tilde{\mathcal{O}} (\eta_t^2 \sigma^2 \eta_0 (C+2) \text{tr}(\mathbf{H}) \mathbf{H} + \eta_t^2 \sigma^2 \mathbf{H}) \\
& = (\mathcal{I} - \eta_t \hat{\mathcal{G}}) \circ \mathbf{V}_{\text{diag}}^t + \tilde{\mathcal{O}} (\eta_t^2 \sigma^2 \mathbf{H}),
\end{aligned} \quad (41)$$

where (a) is derived from Lemma B.4. Therefore, the recursion for $\mathbf{V}_{\text{diag}}^{T_2}$ can be directly derived by incorporating equation 41 as

$$\mathbf{V}_{\text{diag}}^{T_2} \lesssim \sigma^2 \sum_{t=0}^{T_2} \eta_t^2 \prod_{i=t+1}^{T_2} (\mathcal{I} - \eta_i \hat{\mathcal{G}}) \circ \mathbf{H} \stackrel{(b)}{\lesssim} \underbrace{\sigma^2 \sum_{t=0}^{T_2} \eta_t^2 \prod_{i=t+1}^{T_2} (\mathbf{I} - \eta_i \hat{\mathbf{H}})}_{\textcolor{blue}{I}} \mathbf{H}, \quad (42)$$

where (b) is based on the inequality $(1 - \eta c_2)^2 c_3 \leq (1 - \eta c_2) c_3$, which holds for any $\eta \leq c_2^{-1}$ given fixed constants $c_2, c_3 > 0$. According to the update rule for η_t defined in Algorithm 1, we obtain

$$\begin{aligned}
\textcolor{blue}{I} & = \eta_0^2 \sum_{i=1}^h \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^{h-i} \prod_{j=1}^L \left(\mathbf{I} - \frac{\eta_0}{2^j} \hat{\mathbf{H}} \right)^K \mathbf{H} \\
& + \sum_{l=1}^L \left(\frac{\eta_0}{2^l} \right)^2 \sum_{i=1}^K \left(\mathbf{I} - \frac{\eta_0}{2^l} \hat{\mathbf{H}} \right)^{K-i} \prod_{j=l+1}^L \left(\mathbf{I} - \frac{\eta_0}{2^j} \hat{\mathbf{H}} \right)^K \mathbf{H} \\
& \preceq 4 \left(\left(\frac{\eta_0}{2} \right)^2 \sum_{i=1}^{h+K} \left(\mathbf{I} - \frac{\eta_0}{2} \hat{\mathbf{H}} \right)^{h+K-i} \prod_{j=1}^{L-1} \left(\mathbf{I} - \frac{\eta_0}{2^{1+j}} \hat{\mathbf{H}} \right)^K \mathbf{H} \right. \\
& \quad \left. + \sum_{l=1}^{L-1} \left(\frac{\eta_0}{2^{1+l}} \right)^2 \sum_{i=1}^K \left(\mathbf{I} - \frac{\eta_0}{2^{1+l}} \hat{\mathbf{H}} \right)^{K-i} \prod_{j=l+1}^{L-1} \left(\mathbf{I} - \frac{\eta_0}{2^{1+j}} \hat{\mathbf{H}} \right)^K \mathbf{H} \right)
\end{aligned}$$

$$\begin{aligned}
&\leq 100 \left(\frac{\eta_0}{2} \left(\mathbf{I} - \left(\mathbf{I} - \frac{\eta_0}{2} \widehat{\mathbf{H}}_{1:D} \right)^{h+K} \right) \prod_{j=1}^{L-1} \left(\mathbf{I} - \frac{\eta_0}{2^{1+j}} \widehat{\mathbf{H}}_{1:D} \right)^K \right. \\
&\quad \left. + \sum_{l=1}^{L-1} \frac{\eta_0}{2^{1+l}} \left(\mathbf{I} - \left(\mathbf{I} - \frac{\eta_0}{2^{1+l}} \widehat{\mathbf{H}}_{1:D} \right)^K \right) \prod_{j=l+1}^{L-1} \left(\mathbf{I} - \frac{\eta_0}{2^{1+j}} \widehat{\mathbf{H}}_{1:D} \right)^K \right) \\
&\quad + 2\eta_0^2(h+K)\mathbf{H}_{D+1:M}. \tag{43}
\end{aligned}$$

Then, we define the following scalar function

$$f(x) := x \left(1 - (1-x)^{h+K} \right) \prod_{j=1}^{L-1} \left(1 - \frac{x}{2^j} \right)^K + \sum_{l=1}^{L-1} \frac{x}{2^l} \left(1 - \left(1 - \frac{x}{2^l} \right)^K \right) \prod_{j=l+1}^{L-1} \left(1 - \frac{x}{2^j} \right)^K,$$

as similar as that in [Lemma C.2, Wu et al. (2022)]. Moreover, the following inequality can be directly derived

$$f\left(\frac{\eta_0}{2}\widehat{\mathbf{H}}_{1:D}\right) \leq \frac{8}{K}\mathbf{I}_{1:N'_0} + \eta_0\widehat{\mathbf{H}}_{N'_0+1:N_0} + \frac{\eta_0^2}{2}(h+K)\widehat{\mathbf{H}}_{N_0+1:D}^2, \tag{44}$$

for arbitrary $D \geq N_0 \geq N'_0 \geq 0$ by [Lemma C.3, Wu et al. (2022)]. Applying equation 44 to equation 43 and combining equation 42, we obtain

$$\mathbf{V}_{\text{diag}}^{T_2} \lesssim \sigma^2 \left(\frac{1}{K}\widehat{\mathbf{H}}_{1:N'_0}^{-1} + \eta_0\mathbf{I}_{N'_0+1:N_0} + \eta_0^2(h+K)\widehat{\mathbf{H}}_{N_0+1:D} + \eta_0^2(h+K)\mathbf{H}_{D+1:M} \right). \tag{45}$$

Consequently, we have

$$\begin{aligned}
\langle \mathbf{H}, \mathbf{V}^{T_2} \rangle &\lesssim \sigma^2 \left(\frac{N'_0}{K} + \eta_0 \text{tr} \left(\widehat{\mathbf{H}}_{N'_0+1:N_0} \right) + \eta_0^2(h+K) \text{tr} \left(\widehat{\mathbf{H}}_{N_0+1:D}^2 \right) \right) \\
&\quad + \sigma^2 \eta_0^2(h+K) \text{tr} \left(\mathbf{H}_{D+1:M}^2 \right) \\
&\lesssim \sigma^2 \left(\frac{N'_0}{K} + \eta_0 \sum_{i=N'_0+1}^{N_0} \lambda_i(\mathbf{v}_i^*)^2 \right) + \sigma^2 \eta_0^2(h+K) \sum_{i=N_0+1}^M \lambda_i^2(\widehat{\mathbf{b}}_i^*)^4. \tag{46}
\end{aligned}$$

□

Bound of Bias: We begin with an analysis of the bias error during a single period of Algorithm 1, where the bias iterations are updated using a constant step size $\eta_t \equiv \eta$ over \hat{T} steps. Based on equation 27, the bias iterations are updated according to the following rule:

$$\mathbf{B}^{t+1} \preceq \mathbb{E} \left[(\mathcal{I} - \eta \mathcal{G}_{\mathbf{w}}^t) \circ (\widehat{\mathbf{w}}_{\text{bias}}^t \otimes \widehat{\mathbf{w}}_{\text{bias}}^t) \right], \quad \forall t \in [0 : \hat{T} - 1]. \tag{47}$$

Combining equation 47, we have

$$\begin{aligned}
\mathbf{B}_{\text{diag}}^{t+1} &\preceq (\mathcal{I} - \eta \widehat{\mathcal{G}}) \circ \mathbf{B}_{\text{diag}}^t + \eta^2 \mathbb{E} \left[[\mathcal{H}_{\mathbf{w}}^t \circ \mathbf{B}^t] \right]_{\text{diag}} \\
&\preceq \prod_{i=0}^t (\mathcal{I} - \eta \widehat{\mathcal{G}}) \circ \mathbf{B}_{\text{diag}}^0 + \eta^2 \sum_{i=0}^t \prod_{j=i+1}^t (\mathcal{I} - \eta \widehat{\mathcal{G}}) \circ \mathbb{E} \left[[\mathcal{H}_{\mathbf{w}}^t \circ \mathbf{B}^t] \right]_{\text{diag}} \\
&\stackrel{(a)}{\preceq} \prod_{i=0}^t (\mathcal{I} - \eta \widehat{\mathcal{G}}) \circ \mathbf{B}_{\text{diag}}^0 + (C+2)\eta^2 \sum_{i=0}^t \prod_{j=i+1}^t (\mathcal{I} - \eta \widehat{\mathcal{G}}) \circ \mathbf{H} \langle \mathbf{H}, \mathbf{B}^i \rangle. \tag{48}
\end{aligned}$$

where (a) is derived from Lemma E.6 by selecting $\mathbf{A} = \frac{5}{2} \text{diag}\{\widehat{\mathbf{b}}\}$ and $\mathbf{B} = \mathbf{B}^i$. According to equation 48, we have

$$\mathbf{B}_{\text{diag}}^{t+1} \preceq (\mathcal{I} - \eta \widehat{\mathcal{G}})^{t+1} \circ \mathbf{B}_{\text{diag}}^0 + (C+2)\eta^2 \sum_{i=0}^t (\mathbf{I} - \eta \widehat{\mathbf{H}})^{2(t-i)} \mathbf{H} \langle \mathbf{H}, \mathbf{B}^i \rangle. \tag{49}$$

We utilize the following lemma to estimate $\langle \mathbf{H}, \mathbf{B}^{\hat{T}} \rangle$ under bias iteration defined in equation 47.

1620
1621 **Lemma B.6.** Suppose Assumption 3.1 and Assumption 3.3 hold, and \mathbf{B}^t is recursively defined by
1622 equation 47. Under the setting of Theorem B.2, letting $1 \leq \hat{T} \leq T$ and $\eta \leq \eta_0$, we have
1623

$$1624 \langle \mathbf{H}, \mathbf{B}^{\hat{T}} \rangle \leq \frac{2}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \left\langle \frac{25}{\eta \hat{T}} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \mathbf{B}^0 \right\rangle, \quad (50)$$

1625 where $N_0 \in [0 : D]$ is an arbitrary integer.
1626

1627 *Proof.* By Lemma E.5, we can derive $\eta(\mathbf{I} - \eta\hat{\mathbf{H}})^{2t}\mathbf{H} \preceq \frac{25}{t+1}\mathbf{I}$. Applying this to equation 49, we
1628 obtain
1629

$$1630 \mathbf{B}_{\text{diag}}^{t+1} \preceq \left(\mathcal{I} - \eta\hat{\mathcal{G}} \right)^{t+1} \circ \mathbf{B}_{\text{diag}}^0 + 25(C+2)\eta \sum_{i=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t+1-i} \cdot \mathbf{I}, \quad (51)$$

1633 for any $t \in [0 : \hat{T} - 1]$. Therefore, based on Lemma E.7, we have
1634

$$1635 \sum_{i=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t+1-i} \leq \left\langle \sum_{i=0}^t \frac{(\mathbf{I} - \eta\hat{\mathbf{H}})^{2i}\mathbf{H}}{t+1-i}, \mathbf{B}^0 \right\rangle + \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H}) \sum_{i=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t+1-i}, \quad (52)$$

1637 for any $t \in [\hat{T}]$. equation 52 implicates that
1638

$$1639 \sum_{t=0}^{\hat{T}-1} \frac{\langle \mathbf{H}, \mathbf{B}^t \rangle}{\hat{T}-t} \leq \frac{1}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \left\langle \sum_{t=0}^{\hat{T}-1} \frac{(\mathbf{I} - \eta\hat{\mathbf{H}})^{2t}\mathbf{H}}{\hat{T}-t}, \mathbf{B}^0 \right\rangle, \quad (53)$$

1642 since $\tilde{\mathcal{O}}\eta(C+2)\text{tr}(\mathbf{H}) < 1$. Combining equation 51 with equation 53, we obtain
1643

$$1644 \langle \mathbf{H}, \mathbf{B}^{\hat{T}} \rangle \leq \left\langle (\mathbf{I} - \eta\hat{\mathbf{H}})^{2\hat{T}}\mathbf{H}, \mathbf{B}^0 \right\rangle + \frac{\mathcal{O}(C+2)\eta \text{tr}(\mathbf{H})}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \left\langle \sum_{t=0}^{\hat{T}-1} \frac{(\mathbf{I} - \eta\hat{\mathbf{H}})^{2t}\mathbf{H}}{\hat{T}-t}, \mathbf{B}^0 \right\rangle \\ 1645 \stackrel{(a)}{\leq} \left\langle (\mathbf{I} - \eta\hat{\mathbf{H}})^{2\hat{T}}\mathbf{H}, \mathbf{B}^0 \right\rangle \\ 1646 + \frac{\mathcal{O}(C+2)\eta \text{tr}(\mathbf{H})}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \left\langle \frac{\mathbf{I}_{1:D} - (\mathbf{I}_{1:D} - \eta\hat{\mathbf{H}}_{1:D})^{\hat{T}}}{\eta\hat{T}} + (\mathbf{I}_{1:D} - \eta\hat{\mathbf{H}}_{1:D})^{\hat{T}}\hat{\mathbf{H}}_{1:D}, \mathbf{B}^0 \right\rangle \\ 1647 + \frac{\mathcal{O}(C+2)\eta \text{tr}(\mathbf{H})}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \langle \mathbf{H}_{D+1:M}, \mathbf{B}^0 \rangle \\ 1648 \stackrel{(b)}{\leq} \frac{2}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \left\langle \frac{25}{\eta\hat{T}} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \mathbf{B}^0 \right\rangle, \quad (54)$$

1657 where $N_0 \in [0 : D]$ is an arbitrary integer, (a) follows the technique in [Lemma C.4, Wu et al.
1658 (2022)], and (b) is derived from the invariant scaling relationship between $\hat{\mathbf{H}}_{1:D}$ and $\mathbf{H}_{1:D}$. \square
1659

1660 **Lemma B.7.** Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem B.2,
1661 letting $2 \leq \hat{T} \leq T$ and $\eta \leq \eta_0$, we have
1662

$$1663 \mathbf{B}_{\text{diag}}^{\hat{T}} \preceq \left(\mathbf{I} - \eta\hat{\mathbf{H}} \right)^{\hat{T}} \mathbf{B}_{\text{diag}}^0 \left(\mathbf{I} - \eta\hat{\mathbf{H}} \right)^{\hat{T}} + \frac{\tilde{\mathcal{O}}(C+2)\eta^2\hat{T}}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \langle \tilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \bar{\mathbf{H}}^{\hat{T}}, \quad (55)$$

1665 where $\tilde{\mathbf{H}}^t := \frac{25}{\eta t} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}$, and $\bar{\mathbf{H}}^t := \frac{25}{\eta t} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M}$ for any $t \geq 1$, and $N_0, N'_0 \in$
1666 $[0 : D]$ could be arbitrary integer.
1667

1668 *Proof.* Applying Lemma B.6 into equation 49, we obtain
1669

$$1670 \mathbf{B}_{\text{diag}}^{\hat{T}} \preceq \left(\mathcal{I} - \eta\hat{\mathcal{G}} \right)^{\hat{T}} \circ \mathbf{B}_{\text{diag}}^0 + (C+2)\eta^2 \left(\mathbf{I} - \eta\hat{\mathbf{H}} \right)^{2(\hat{T}-1)} \mathbf{H} \langle \mathbf{H}, \mathbf{B}^0 \rangle \\ 1671 + (C+2)\eta^2 \sum_{t=1}^{\hat{T}-1} \left(\mathbf{I} - \eta\hat{\mathbf{H}} \right)^{2(\hat{T}-1-t)} \mathbf{H} \langle \mathbf{H}, \mathbf{B}^t \rangle$$

$$\begin{aligned}
& \preceq \left(\mathcal{I} - \eta \widehat{\mathcal{G}} \right)^{\hat{T}} \circ \mathbf{B}_{\text{diag}}^0 + (C+2)\eta^2 \underbrace{\left(\mathbf{I} - \eta \widehat{\mathbf{H}} \right)^{2(\hat{T}-1)} \mathbf{H} \langle \mathbf{H}, \mathbf{B}^0 \rangle}_{\mathcal{I}} \\
& + \frac{2(C+2)\eta^2}{1 - 2\tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \underbrace{\sum_{t=1}^{\hat{T}-1} \left(\mathbf{I} - \eta \widehat{\mathbf{H}} \right)^{2(\hat{T}-1-t)} \mathbf{H} \langle \widetilde{\mathbf{H}}^t, \mathbf{B}^0 \rangle}_{\mathcal{I}\mathcal{I}}, \tag{56}
\end{aligned}$$

We then provide a bound of term $\mathcal{I}\mathcal{I}$ as follows:

$$\begin{aligned}
\mathcal{I}\mathcal{I} &= \left(\sum_{t=1}^{\hat{T}-1} \langle \widetilde{\mathbf{H}}^t, \mathbf{B}^0 \rangle \right) \mathbf{H}_{D+1:M} + 25 \sum_{t=1}^{\hat{T}-1} \left(\mathbf{I}_{1:D} - \eta \widehat{\mathbf{H}}_{1:D} \right)^{2(\hat{T}-1-t)} \widehat{\mathbf{H}}_{1:D} \langle \widetilde{\mathbf{H}}^t, \mathbf{B}^0 \rangle \\
&\preceq \hat{T} \log(\hat{T}) \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \mathbf{H}_{D+1:M} + 25 \left(\sum_{t=1}^{\hat{T}/2-1} \left(\mathbf{I}_{1:D} - \eta \widehat{\mathbf{H}}_{1:D} \right)^{\hat{T}} \widehat{\mathbf{H}}_{1:D} \langle \widetilde{\mathbf{H}}^t, \mathbf{B}^0 \rangle \right. \\
&\quad \left. + \sum_{t=\hat{T}/2}^{\hat{T}-1} \left(\mathbf{I}_{1:D} - \eta \widehat{\mathbf{H}}_{1:D} \right)^{\hat{T}-1-t} \widehat{\mathbf{H}}_{1:D} \langle \widetilde{\mathbf{H}}^{\hat{T}/2}, \mathbf{B}^0 \rangle \right) \\
&= \hat{T} \log(\hat{T}) \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \mathbf{H}_{D+1:M} + 25 \left(\left(\mathbf{I}_{1:D} - \eta \widehat{\mathbf{H}}_{1:D} \right)^{\hat{T}} \widehat{\mathbf{H}}_{1:D} \left\langle \sum_{t=1}^{\hat{T}/2-1} \widetilde{\mathbf{H}}^t, \mathbf{B}^0 \right\rangle \right. \\
&\quad \left. + \frac{\mathbf{I}_{1:D} - \left(\mathbf{I}_{1:D} - \eta \widehat{\mathbf{H}}_{1:D} \right)^{\hat{T}/2}}{\eta} \langle \widetilde{\mathbf{H}}^{\hat{T}/2}, \mathbf{B}^0 \rangle \right) \\
&\preceq \hat{T} \log(\hat{T}) \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \mathbf{H}_{D+1:M} + 25 \left(\hat{T} \log(\hat{T}) \left(\mathbf{I}_{1:D} - \eta \widehat{\mathbf{H}}_{1:D} \right)^{\hat{T}} \widehat{\mathbf{H}}_{1:D} \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \right. \\
&\quad \left. + 2 \frac{\mathbf{I}_{1:D} - \left(\mathbf{I}_{1:D} - \eta \widehat{\mathbf{H}}_{1:D} \right)^{\hat{T}/2}}{\eta} \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \right) \\
&\stackrel{(a)}{\preceq} \hat{T} \log(\hat{T}) \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \overline{\mathbf{H}}^{\hat{T}}, \tag{57}
\end{aligned}$$

where (a) follows the similar technique used in equation 54. We then proceed to establish bounds on \mathcal{I} . It's worth to notice that

$$\left(\mathbf{I} - \eta \widehat{\mathbf{H}} \right)^{2(\hat{T}-1)} \mathbf{H} \preceq \frac{25}{2\eta(\hat{T}-1)} \mathbf{I}_{1:N'_0} + 25 \widehat{\mathbf{H}}_{N'_0+1:D} + \mathbf{H}_{D+1:M} \preceq \overline{\mathbf{H}}^{\hat{T}}. \tag{58}$$

Applying equation 58 to \mathcal{I} , we obtain

$$\mathcal{I} \preceq \overline{\mathbf{H}}^{\hat{T}} \langle \mathbf{H}, \mathbf{B}^0 \rangle \preceq \hat{T} \overline{\mathbf{H}}^{\hat{T}} \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle, \tag{59}$$

where the last inequality is derived from the condition $\eta < 1/(25 \text{tr}(\mathbf{H}))$, which ensures $\lambda_i(\mathbf{H}) < 1/\eta$ holds for all $i \in [N_0]$. Combining the estimation of \mathcal{I} and $\mathcal{I}\mathcal{I}$ with equation 56, we have

$$\begin{aligned}
\mathbf{B}_{\text{diag}}^{\hat{T}} &\preceq \left(\mathcal{I} - \eta \widehat{\mathcal{G}} \right)^{\hat{T}} \circ \mathbf{B}_{\text{diag}}^0 + (C+2)\eta^2 \hat{T} \overline{\mathbf{H}}^{\hat{T}} \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \\
&\quad + \frac{2(C+2)\eta^2}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \hat{T} \log(\hat{T}) \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \overline{\mathbf{H}}^{\hat{T}} \\
&\preceq \left(\mathcal{I} - \eta \widehat{\mathcal{G}} \right)^{\hat{T}} \circ \mathbf{B}_{\text{diag}}^0 + \frac{\tilde{\mathcal{O}}(C+2)\eta^2 \hat{T}}{1 - \tilde{\mathcal{O}}(C+2)\eta \text{tr}(\mathbf{H})} \langle \widetilde{\mathbf{H}}^{\hat{T}}, \mathbf{B}^0 \rangle \overline{\mathbf{H}}^{\hat{T}}. \tag{60}
\end{aligned}$$

By the definition of $\widehat{\mathcal{G}}$, we complete the proof. \square

Notice that in **Phase II**, the step size η_t decays geometrically. Thus, we define the bias iteration at the end of the step-size-decaying phase as:

$$\tilde{\mathbf{B}}^l := \begin{cases} \mathbf{B}^h, & l = 0, \\ \mathbf{B}^{h+Kl}, & l \in [L]. \end{cases} \quad (61)$$

Based on the step-size iteration in Algorithm 1 and preceding definition, we formalize the iterative process of Algorithm 1 in Phase II as: 1) Phase when $l = 0$: Initialized from \mathbf{B}^0 , Algorithm 1 runs h iterations with step size η_0 , yielding $\tilde{\mathbf{B}}^0$; 2) Phase when $l \geq 1$: Initialized from $\tilde{\mathbf{B}}^{l-1}$, Algorithm 1 runs K iterations with step size $\eta_0/2^l$, yielding $\tilde{\mathbf{B}}^l$. This multi-phase process terminates at $l = L$, with $\tilde{\mathbf{B}}^L = \mathbf{B}^{T_2}$ as the final output.

Lemma B.8. *Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem B.2, we have*

$$\langle \mathbf{H}, \tilde{\mathbf{B}}^l \rangle \leq K_l := \begin{cases} 4 \left\langle \frac{25}{\eta_0 h} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \mathbf{B}^0 \right\rangle, & \text{for } l = 0, \\ 4 \left\langle \frac{25 \cdot 2^l}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \tilde{\mathbf{B}}^{l-1} \right\rangle, & \text{for } l \in [L], \end{cases} \quad (62)$$

for arbitrary $N_0 \in [0 : D]$.

Proof. For $\langle \mathbf{H}, \tilde{\mathbf{B}}^0 \rangle$, we apply Lemma B.6 with $\eta = \eta_0$ and $\hat{T} = h$, and use the condition that $\tilde{\mathcal{O}}(C + 2)\eta \text{tr}(\mathbf{H}) \leq 1/4$; For $\langle \mathbf{H}, \tilde{\mathbf{B}}^l \rangle$ with $l \geq 2$, we apply Lemma B.6 with $\eta = \eta_0/2^l$, $\hat{T} = K$ and $\mathbf{B}^0 = \tilde{\mathbf{B}}^{l-1}$, and use the condition that $\tilde{\mathcal{O}}(C + 2)\eta \text{tr}(\mathbf{H}) \leq 1/4$. \square

Lemma B.9. *Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem B.2, we have*

$$\tilde{\mathbf{B}}_{\text{diag}}^l \preceq \mathbf{R}^l := \begin{cases} \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^h \mathbf{B}_{\text{diag}}^0 \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^h + P_0 \bar{\mathbf{H}}_0^h, & \text{for } l = 0, \\ \left(\mathbf{I} - \frac{\eta_0}{2^l} \hat{\mathbf{H}} \right)^h \tilde{\mathbf{B}}_{\text{diag}}^{l-1} \left(\mathbf{I} - \frac{\eta_0}{2^l} \hat{\mathbf{H}} \right)^h + P_l \bar{\mathbf{H}}_l^K, & \text{for } l \in [L], \end{cases} \quad (63)$$

where $\bar{\mathbf{H}}_0^t := \frac{25}{\eta_0 t} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M}$ and $\bar{\mathbf{H}}_l^t := \frac{25 \cdot 2^l}{\eta_0 t} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M}$ for any $t \geq 1$ and arbitrary $N'_0 \in [0 : D]$, and $P_0 := \tilde{\mathcal{O}}(C + 2)\eta_0^2 h \langle \tilde{\mathbf{H}}_0^h, \mathbf{B}^0 \rangle$ with $\tilde{\mathbf{H}}_0^h := \frac{25}{\eta_0 h} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}$ and $P_l := \tilde{\mathcal{O}}(C + 2)(\frac{\eta_0}{2^l})^2 K \langle \tilde{\mathbf{H}}_l^K, \tilde{\mathbf{B}}^{l-1} \rangle$ for $l \in [L]$ with $\tilde{\mathbf{H}}_l^K := \frac{25 \cdot 2^l}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}$ for arbitrary $N_0 \in [0 : D]$.

Proof. For $\tilde{\mathbf{B}}^0$, we apply Lemma B.7 with $\eta = \eta_0$ and $\hat{T} = h$, and use the condition that $\tilde{\mathcal{O}}(C + 2)\eta \text{tr}(\mathbf{H}) \leq 1/4$. For $\tilde{\mathbf{B}}^l$ with $l \geq 2$, we apply Lemma B.7 with $\eta = \eta_0/2^l$, $\hat{T} = K$ and $\mathbf{B}^0 = \tilde{\mathbf{B}}^{l-1}$, and use the condition that $\tilde{\mathcal{O}}(C + 2)\eta \text{tr}(\mathbf{H}) \leq 1/8$. \square

Lemma B.10. *Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem B.2, we have*

$$\langle \mathbf{H}, \mathbf{B}^{T_2} \rangle = \langle \mathbf{H}, \tilde{\mathbf{B}}^L \rangle \leq e \langle \mathbf{H}, \tilde{\mathbf{B}}^1 \rangle \quad (64)$$

Proof. Consider $l \geq 1$. According to Lemma B.9, we obtain

$$\begin{aligned} \tilde{\mathbf{B}}_{\text{diag}}^l &\preceq \left(\mathbf{I} - \frac{\eta_0}{2^l} \hat{\mathbf{H}} \right)^h \tilde{\mathbf{B}}_{\text{diag}}^{l-1} \left(\mathbf{I} - \frac{\eta_0}{2^l} \hat{\mathbf{H}} \right)^h + P_l \tilde{\mathbf{H}}_l^K \\ &\stackrel{(a)}{\preceq} \tilde{\mathbf{B}}_{\text{diag}}^{l-1} + \tilde{\mathcal{O}}(C + 2) \log(K) \cdot \frac{\eta_0}{2^l} \cdot \langle \mathbf{H}, \tilde{\mathbf{B}}^{l-1} \rangle \mathbf{I}. \end{aligned} \quad (65)$$

where (a) is derived from choosing $N'_0 = D$ and $N_0 = 0$ in $\bar{\mathbf{H}}_l^K$ and $\tilde{\mathbf{H}}_l^K$ for any $l \in [L]$, respectively, and $\mathbf{H}_{D+1:M} \preceq \frac{\tilde{\mathcal{O}}(2^l)}{\eta_0 K} \mathbf{I}_{D+1:M}$. equation 65 implies that

$$\langle \mathbf{H}, \tilde{\mathbf{B}}^l \rangle \leq \left(1 + \tilde{\mathcal{O}}(C + 2) \text{tr}(\mathbf{H}) \log(K) \cdot \frac{\eta_0}{2^l} \right) \langle \mathbf{H}, \tilde{\mathbf{B}}^{l-1} \rangle. \quad (66)$$

1782 Therefore, we have following estimation of bias iterations using equation 66:
1783

$$\begin{aligned}
1784 \quad \langle \mathbf{H}, \tilde{\mathbf{B}}^L \rangle &\leq \prod_{l=1}^L \left(1 + \tilde{\mathcal{O}}(C+2) \text{tr}(\mathbf{H}) \log(K) \cdot \frac{\eta_0}{2^l} \right) \langle \mathbf{H}, \tilde{\mathbf{B}}^1 \rangle \\
1785 \\
1786 \\
1787 \quad &\leq \exp \left\{ \tilde{\mathcal{O}}(C+2)\eta_0 \text{tr}(\mathbf{H}) \log(K) \sum_{l=1}^L 2^{-l} \right\} \langle \mathbf{H}, \tilde{\mathbf{B}}^1 \rangle \\
1788 \\
1789 \quad &\leq e \langle \mathbf{H}, \tilde{\mathbf{B}}^1 \rangle. \\
1790 \\
1791 \end{aligned} \tag{67}$$

□

1792 **Lemma B.11.** *Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem
1793 B.2, we have*

$$\begin{aligned}
1794 \quad \langle \mathbf{H}, \tilde{\mathbf{B}}^1 \rangle &\leq 8 \left\langle \frac{25}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^{2h} \mathbf{B}^0 \right\rangle \\
1795 \\
1796 \quad &\quad + \tilde{\mathcal{O}}(C+2)\Gamma_K(\mathbf{H}) \left\langle \frac{25}{\eta_0 h} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M}, \mathbf{B}^0 \right\rangle, \\
1797 \\
1798 \end{aligned} \tag{68}$$

1800 where $\Gamma_K(\mathbf{H}) := \left(\frac{625N'_0}{K} + \frac{25\eta_0 h}{K} \text{tr}(\mathbf{H}_{N'_0+1:N_0}) + \eta_0^2 h \text{tr}(\mathbf{H}_{N_0+1:M}^2) \right)$ for arbitrary $D \geq N_0 \geq N'_0 \geq 0$.
1801
1802

1803 *Proof.* According to Lemma B.8, we have

$$\langle \mathbf{H}, \tilde{\mathbf{B}}^1 \rangle \leq 8 \left\langle \frac{25}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \tilde{\mathbf{B}}^0 \right\rangle,$$

1804 for arbitrary $N_0 \in [0 : D]$. Then, choosing $N_0 = N'_0$ in Lemma B.9, we obtain
1805

$$\begin{aligned}
1806 \quad \tilde{\mathbf{B}}_{\text{diag}}^0 &\preceq \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^h \mathbf{B}_{\text{diag}}^0 \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^h \\
1807 \\
1808 \quad &\quad + \tilde{\mathcal{O}}(C+2)\eta_0^2 h \left\langle \frac{25}{\eta_0 h} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M}, \mathbf{B}^0 \right\rangle \left(\frac{25}{\eta_0 h} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M} \right). \\
1809 \\
1810 \end{aligned}$$

1811 Combining above two inequalities, we have
1812

$$\begin{aligned}
1813 \quad \langle \mathbf{H}, \tilde{\mathbf{B}}^1 \rangle &\leq 8 \left\langle \frac{25}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^{2h} \mathbf{B}^0 \right\rangle \\
1814 \\
1815 \quad &\quad + \tilde{\mathcal{O}}(C+2)\eta_0^2 h \left\langle \frac{25}{\eta_0 h} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M}, \mathbf{B}^0 \right\rangle \\
1816 \\
1817 \quad &\quad \times \left\langle \frac{25}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \frac{25}{\eta_0 h} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M} \right\rangle, \\
1818 \\
1819 \end{aligned}$$

1820 where
1821

$$\begin{aligned}
1822 \quad &\left\langle \frac{25}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \frac{25}{\eta_0 h} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M} \right\rangle \\
1823 \\
1824 \quad &\leq \frac{625N'_0}{\eta_0^2 h K} + \frac{25}{\eta_0 K} \text{tr}(\mathbf{H}_{N'_0+1:N_0}) + \text{tr}(\mathbf{H}_{N_0+1:M}^2), \\
1825 \\
1826 \end{aligned} \tag{69}$$

1827 when $N_0 > N'_0$.
1828

□

1828 **Lemma B.12.** *Suppose Assumptions 3.1 and 3.3 hold. Under the setting of Theorem B.2, we have*
1829

$$\begin{aligned}
1830 \quad \langle \mathbf{H}, \mathbf{B}^{T_2} \rangle &\lesssim \left\langle \frac{1}{\eta_0 K} \mathbf{I}_{1:N_0} + \mathbf{H}_{N_0+1:M}, \left(\mathbf{I} - \eta_0 \hat{\mathbf{H}} \right)^{2h} \mathbf{B}^0 \right\rangle \\
1831 \\
1832 \quad &\quad + (C+2)\Gamma_K(\mathbf{H}) \left\langle \frac{1}{\eta_0 h} \mathbf{I}_{1:N'_0} + \mathbf{H}_{N'_0+1:M}, \mathbf{B}^0 \right\rangle, \\
1833 \\
1834 \end{aligned} \tag{70}$$

1834 where $\Gamma_K(\mathbf{H}) := \left(\frac{625N'_0}{K} + \frac{25\eta_0 h}{K} \text{tr}(\mathbf{H}_{N'_0+1:N_0}) + \eta_0^2 h \text{tr}(\mathbf{H}_{N_0+1:M}^2) \right)$ for arbitrary $D \geq N_0 \geq N'_0 \geq 0$.
1835

1836 *Proof.* Using Lemma B.10 and Lemma B.11 we directly obtain the results. \square

1837
1838 Finally, we will finish the proof of Theorem B.2.
1839

1840 *Proof of Theorem B.2.* Combining Lemma B.5 with Lemma B.12, we derive equation 28. Based on
1841 Theorem B.3, the equality $\mathbf{w}^{T_2} = \mathbf{v}^{T_1+T_2}$ holds with probability at least $1 - \delta$. By setting $N'_0 =$
1842 $N_0 = N'_1 = N_1 = D$ in equation 28 and applying Markov's inequality, we obtain equation 29. \square
1843

1844 B.4 PROOF OF MAIN RESULTS
1845

1846 In this section, we finally complete the proof of main results for the global convergence of Algorithm
1847 1 in Theorem B.4, based on the analysis of **Phase I** and **Phase II**. Before we propose the main
1848 Theorem B.4, we set the parameter as follows:

$$1849 L_1 = \tilde{\mathcal{O}}((\sigma^2 + \mathcal{M}^2(\mathbf{b}))^2 + \hat{\sigma}_{\max}(D)), \quad L_2 = \tilde{\mathcal{O}}(\sigma^2 + \mathcal{M}^2(\mathbf{b})), \quad L_3 = 1 + \frac{L_1 \tilde{\sigma}_{\max}(D) \tilde{\sigma}_{\min}(D)}{\sigma_{\min}(D)}, \quad (71)$$

1852 **Theorem B.4.** [Upper Bound in Theorem 4.1] Under Assumption 3.1 and 3.3, we consider a pre-
1853 dictor trained by Algorithm 1 with total sample size T . Let $h < T$ and $T_1 := \lceil (T-h)/\log(T-h) \rceil$.
1854 Suppose there exists $D \leq M$ such that $T_1 \in [\frac{L_1 L_3}{\sigma_{\min}(D) \tilde{\sigma}_{\min}(D)}, \frac{L_2 L_3^2}{\tilde{\sigma}_{\max}(D) \tilde{\sigma}_{\min}(D)}]$ with parameter set-
1855 ting equation 71 and let $\eta = \tilde{\Omega}(\frac{\tilde{\sigma}_{\min}(D)}{\sigma^2 + \mathcal{M}^2(\mathbf{b})})$. Then we have
1856
1857

$$1858 \mathcal{R}_M(\mathbf{v}^T) - \mathcal{R}_M(\mathbf{v}^*) \lesssim \frac{\sigma^2 D}{T_1} + \sigma^2 \eta^2 (h + T_1) \sum_{i=D+1}^M \lambda_i^2(\mathbf{v}_i^*)^4 \\ 1859 + \frac{1}{\eta T_1} \text{tr} \left(\left(\mathbf{I}_{1:D} - \frac{\eta}{4} \mathbf{H}_{1:D}^* \right)^{2h} \text{diag} \{(\mathbf{v}_{1:D}^*)^{\odot 2}\} \right) \\ 1860 + \langle \mathbf{H}_{D+1:M}^*, \text{diag} \{(\mathbf{v}_{D+1:M}^*)^{\odot 2}\} \rangle \\ 1861 + \left(\frac{D}{T_1} + \eta^2 h \text{tr}((\mathbf{H}_{D+1:M}^*)^2) \right) \left\langle \frac{1}{\eta h} \mathbf{I}_{1:D} + \mathbf{H}_{D+1:M}^*, \text{diag} \{(\mathbf{v}^*)^{\odot 2}\} \right\rangle,$$

1867 with probability at least 0.95. Otherwise, let $T_1 \in [\frac{L_1 L_3}{\sigma_{\min}(M) \tilde{\sigma}_{\min}(M)}, +\infty)$ with parameter setting
1868 equation 71 and $\eta = \tilde{\Omega}(\frac{\tilde{\sigma}_{\min}(M)}{\sigma^2 + \mathcal{M}^2(\mathbf{b})})$. Then we have
1869
1870

$$1871 \mathcal{R}_M(\mathbf{v}^T) - \mathcal{R}_M(\mathbf{v}^*) \lesssim \frac{\sigma^2 M}{T_1} + \frac{1}{\eta T_1} \text{tr} \left(\left(\mathbf{I} - \frac{\eta}{4} \mathbf{H}^* \right)^{2h} \text{diag} \{(\mathbf{v}^*)^{\odot 2}\} \right) \\ 1872 + \frac{M}{\eta h T_1} \text{tr}(\text{diag} \{(\mathbf{v}^*)^{\odot 2}\}),$$

1873 with probability at least 0.95.
1874

1875 *Proof.* Combining Theorem B.1 and Theorem B.2, we complete the proof. \square
1876

1877 C PROOFS OF LOWER BOUND (THEOREM 4.1)
1878

1879 In this section, we introduce the proof of the lower bound in Theorem C.1. Let $\bar{\sigma}^2 := \mathbb{E}[\xi^2] +$
1880 $\sum_{i=M+1}^{\infty} \lambda_i(\mathbf{v}_i^*)^4$. Recall the analysis in Phase I, \mathbf{v}^{T_1} satisfies the inequality $\bar{\mathbf{b}} \leq \mathbf{v}^{T_1} \leq \hat{\mathbf{b}}$ with
1881 high probability. Here, $\hat{\mathbf{b}}$ is defined as $\hat{\mathbf{b}}^\top = (\frac{3}{2}(\mathbf{v}_{1:D}^*)^\top, 3(\mathbf{v}_{D+1:M}^*)^\top)$, while $\bar{\mathbf{b}}$ is defined as
1882 $\bar{\mathbf{b}}^\top = (\frac{1}{2}(\mathbf{v}_{1:D}^*)^\top, \mathbf{0}^\top)$. We begin with the required concepts as below. A Markov chain $\{\check{\mathbf{v}}^t\}_{t=0}^{T_2}$ is
1883 constructed with initialization $\check{\mathbf{v}}^0$ satisfying $\bar{\mathbf{b}} \leq \check{\mathbf{v}}^0 \leq \hat{\mathbf{b}}$. The update rule is defined by
1884

$$1885 \check{\mathbf{v}}^{t+1} = \check{\mathbf{v}}^t - \eta_t \mathbf{H}_{\check{\mathbf{v}}}^t (\check{\mathbf{v}}^t - \mathbf{v}^*) + \eta_t \mathbf{R}_{\check{\mathbf{v}}}^t \mathbf{x}^t, \quad \forall t \in [0 : T_2 - 1],$$

1886 where $\mathbf{H}_{\check{\mathbf{v}}}^t$ and $\mathbf{R}_{\check{\mathbf{v}}}^t$ satisfy:
1887

1890 1. If $\bar{\mathbf{b}} \leq \check{\mathbf{v}}^t \leq \hat{\mathbf{b}}$, $\mathbf{H}_{\check{\mathbf{v}}}^t = (\check{\mathbf{v}}^t \odot \mathbf{x}^t) \otimes ((\check{\mathbf{v}}^t + \mathbf{v}^*) \odot \mathbf{x}^t)$ and $\mathbf{R}_{\check{\mathbf{v}}}^t = (\xi^t +$
 1891 $\sum_{i=M+1}^{\infty} \mathbf{x}_i^t (\mathbf{v}_i^*)^2) \text{diag}\{\check{\mathbf{v}}^t\}$,
 1892 2. Otherwise, for any $\tau \in [t : T_2 - 1]$, $\mathbf{H}_{\check{\mathbf{v}}}^{\tau} = \frac{25}{4}(\mathbf{v}^* \odot \Pi_M \mathbf{x}^{\tau}) \otimes (\mathbf{v}^* \odot \Pi_M \mathbf{x}^{\tau})$ and
 1893 $\mathbf{R}_{\check{\mathbf{v}}}^{\tau} = (\xi^{\tau} + \sum_{i=M+1}^{\infty} \mathbf{x}_i^{\tau} (\mathbf{v}_i^*)^2) \text{diag}\{\bar{\mathbf{b}}\}$.
 1894

1895 Let $\check{\mathbf{w}}^t := \check{\mathbf{v}}^t - \mathbf{v}^*$ be the error vector, and let $t_s := \inf\{t \mid \check{\mathbf{v}}^t \not\leq \hat{\mathbf{b}} \vee \check{\mathbf{v}}^t \not\geq \bar{\mathbf{b}}\}$ be the stopping time.
 1896 According to equation 72, $\{\check{\mathbf{w}}^t\}_{t=1}^{T_2}$ is recursively defined by
 1897

$$\check{\mathbf{w}}^{t+1} = (\mathbf{I} - \eta_t \mathbf{H}_{\check{\mathbf{v}}}^t) \check{\mathbf{w}}^t + \eta_t \mathbf{R}_{\check{\mathbf{v}}}^t \mathbf{x}^t.$$

1900 We define $\check{\mathbf{V}}^t = \mathbb{E}[\check{\mathbf{w}}^t \otimes \check{\mathbf{w}}^t]$. By the definitions of \mathcal{H}^t , $\tilde{\mathcal{H}}^t$, \mathcal{G}^t , and $\tilde{\mathcal{G}}^t$ in Phase II, we derive the
 1901 iterative relationship governing the sequence $\{\check{\mathbf{V}}^t\}_{t=0}^{T_2}$:
 1902

$$\check{\mathbf{V}}^{t+1} = \mathbb{E}[(\mathcal{I} - \eta_t \mathcal{G}_{\check{\mathbf{v}}}^t) \circ (\check{\mathbf{w}}^t \otimes \check{\mathbf{w}}^t)] + \eta_t^2 \Sigma_{\check{\mathbf{v}}}^t, \quad (72)$$

1903 for $t \in [0 : T_2 - 1]$ with $\mathbf{V}^0 = (\mathbf{w}^0 - \mathbf{v}^*) \otimes (\mathbf{w}^0 - \mathbf{v}^*)$. If $t < t_s$, $\Sigma_{\check{\mathbf{v}}}^t = \bar{\sigma}^2 \Lambda \mathbb{E}[\text{diag}\{\check{\mathbf{v}}^{t \odot 2}\}]$;
 1904 otherwise, $\Sigma_{\check{\mathbf{v}}}^{\tau} = \bar{\sigma}^2 \Lambda \text{diag}\{\bar{\mathbf{b}}^{\odot 2}\}$ for any $\tau \geq t$. According to the definitions above, we obtain
 1905 following estimation of the last-iteration function value:
 1906

$$\mathbb{E}[\mathcal{R}_M(\check{\mathbf{w}}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*)] \geq \frac{1}{24} \left\langle \check{\mathbf{H}}, \mathbb{E}[\check{\mathbf{w}}^{T_2} \otimes \check{\mathbf{w}}^{T_2}] \right\rangle \geq \frac{1}{24} \left\langle \check{\mathbf{H}}, \check{\mathbf{V}}^{T_2} \right\rangle, \quad (73)$$

1907 where $\check{\mathbf{H}} := 12\Lambda \text{diag}\{\mathbf{v}^* \odot \mathbf{v}^*\}$. We define $\check{\mathcal{G}}^i := \check{\mathbf{H}} \otimes \mathbf{I} + \mathbf{I} \otimes \check{\mathbf{H}} - \eta_i \check{\mathbf{H}} \otimes \check{\mathbf{H}}$. We formally propose
 1908 the lower bound of the estimate in Theorem C.1 as below.
 1909

1910 **Theorem C.1.** [Lower Bound in Theorem 4.1] Under Assumption 3.1 and 3.3, we consider a predictor
 1911 trained by Algorithm 1 with iteration number T and middle phase length $h > \lceil (T-h)/\log(T-h) \rceil$. Let $D \asymp \min\{T^{1/\max\{\beta, (\alpha+\beta)/2\}}, M\}$ and $\eta \asymp D^{\min\{0, (\alpha-\beta)/2\}}$. Then we have
 1912

$$\mathbb{E}[\mathcal{R}_M(\mathbf{v}^T)] - \mathbb{E}[\xi^2] \gtrsim \frac{1}{M^{\beta-1}} + \frac{\bar{\sigma}^2 D}{T} + \frac{1}{D^{\beta-1}} \mathbf{1}_{M>D}, \quad (74)$$

1913 where $\bar{\sigma}^2 := \mathbb{E}[\xi^2] + \sum_{i=M+1}^{\infty} \lambda_i(\mathbf{v}_i^*)^4$. Moreover, we can also obtain
 1914

$$\mathcal{R}_M(\mathbf{v}^T) - \mathbb{E}[\xi^2] \gtrsim \frac{1}{M^{\beta-1}} + \frac{\bar{\sigma}^2 D}{T} + \frac{1}{D^{\beta-1}} \mathbf{1}_{M>D}, \quad (75)$$

1915 with probability at least 0.95.
 1916

1917 *Proof.* The proof of Theorem C.1 is divided into two steps. **Step I** reveals that for coordinates
 1918 $j \geq \tilde{\mathcal{O}}(D)$, the slow ascent rate inherently prevents \mathbf{v}_j^t from attaining close proximity to the optimal
 1919 solution \mathbf{v}_j^* upon algorithmic termination.
 1920

1921 **Step I:** Let $M \gtrsim T^{1/\max\{\beta, (\alpha+\beta)/2\}}$, and define $T_1 := \lceil (T-h)/\log(T-h) \rceil$ and $D^{\dagger} :=$
 1922 $\mathcal{O}((\eta T)^{2/(\alpha+\beta)})$. Considering the b-capped coupling process $\{\bar{\mathbf{v}}^t\}_{t=0}^T$ mentioned in Phase I, we
 1923 denote $\hat{\tau}_j$ as the stopping time when $\bar{\mathbf{v}}_j^{\hat{\tau}_j} \geq \frac{1}{4}\mathbf{v}_j^*$ for each coordinate $D^{\dagger} \leq j \leq M$, i.e.,
 1924

$$\hat{\tau}_j = \inf \left\{ t : \bar{\mathbf{v}}_j^t \geq \frac{1}{4}\mathbf{v}_j^* \right\}.$$

1925 We aim to estimate the following probability for coordinates $j \in [D^{\dagger} : M]$ and times $t_1 \in [T_1]$:
 1926

$$\mathbb{P} \left(\mathcal{J}_{\hat{\tau}_j=t_1}(j) = \left\{ \bar{\mathbf{v}}_j^0 \leq \frac{1}{8}\mathbf{v}_j^* \wedge \bar{\mathbf{v}}_j^{0:t_1-1} \in \left[0 : \frac{1}{4}\mathbf{v}_j^* \right] \wedge \bar{\mathbf{v}}_j^{t_1} \geq \frac{1}{4}\mathbf{v}_j^* \right\} \right).$$

1927 For fixed $j \in [D^{\dagger} : M]$ and any $t \in [0 : t_1 - 1]$, we have
 1928

$$\begin{aligned} \mathbb{E}[\bar{\mathbf{v}}_j^{t+1} \mid \mathcal{F}^t] &= \mathbb{E}_{\mathbf{x}_{1:M}^{t+1}, \xi^{t+1}, \zeta_{M+1:\infty}^{t+1}} \left[\bar{\mathbf{v}}_j^t - \eta \left(((\bar{\mathbf{v}}_j^t)^2 - (\mathbf{v}_j^*)^2) \hat{\mathbf{x}}_j^{t+1} + \hat{\mathbf{z}}_j^{t+1}(\bar{\mathbf{v}}^t) \right. \right. \\ &\quad \left. \left. - \hat{\zeta}_{M+1:\infty}^{t+1} - \hat{\xi}^{t+1} \right) \hat{\mathbf{x}}_j^{t+1} \bar{\mathbf{v}}_j^{t+1} \right] \\ &\leq (1 + \eta \lambda_j(\mathbf{v}_j^*)^2) \bar{\mathbf{v}}_j^t. \end{aligned} \quad (76)$$

1944 Similarly, based on Lemma E.1, we have
 1945

$$1946 \mathbb{E} [\exp \{ \lambda (\bar{\mathbf{v}}_j^{t+1} - \mathbb{E}[\bar{\mathbf{v}}_j^{t+1} | \mathcal{F}^t]) \} | \mathcal{F}^t] \leq \exp \left\{ \frac{\lambda^2 \eta^2 \lambda_j (\mathbf{v}_j^*)^2 \mathcal{O}([\bar{\sigma}^2 + \mathcal{M}^2(\mathbf{v}^*)] \log^4(MT_1/\delta))}{2} \right\},$$

1948 for any $\lambda \in \mathbb{R}$. According to the setting of stepsize η , we have $(1 + \eta \lambda_i(\mathbf{v}_i^*)^2)^{T_1} \leq 2$ for any
 1949 $i \in [D^\dagger : M]$. Utilizing Corollary E.1 and equation 76, we can establish the probability bound for
 1950 event $\mathcal{J}^{\hat{\tau}_j=t_1}(j)$ for any time $t_1 \in [T_1]$ as
 1951

$$1952 \mathbb{P}(\mathcal{J}^{\hat{\tau}_j=t_1}(j)) \leq \exp \left\{ -\frac{1}{T_1 \eta^2 \lambda_j \mathcal{O}([\bar{\sigma}^2 + \mathcal{M}^2(\mathbf{v}^*)] \log^2(MT_1/\delta))} \right\}. \quad (77)$$

1955 Finally, combining the probability bounds equation 77 with the setting of η , we obtain the following
 1956 probability bound for complement event $\bigcup_{j=D^\dagger}^M \{\max_{t \in [T_1]} \bar{\mathbf{v}}_j^t \geq \frac{1}{4} \mathbf{v}_j^*\}$:
 1957

$$1959 \mathbb{P} \left(\bigcup_{j=D^\dagger}^M \left\{ \max_{t \in [T_1]} \bar{\mathbf{v}}_j^t \geq \frac{1}{4} \mathbf{v}_j^* \right\} \right) \leq \sum_{j=D^\dagger}^M \sum_{t_1=1}^{T_1} \mathbb{P}(\mathcal{J}^{\hat{\tau}_j=t_1}(j)) \\ 1960 \leq MT_1 \exp \left\{ -\frac{\min_{D^\dagger \leq j \leq M} \lambda_j^{-1}}{T_1 \eta^2 \mathcal{O}([\bar{\sigma}^2 + \mathcal{M}^2(\mathbf{v}^*)] \log^4(MT_1/\delta))} \right\} \\ 1961 \leq \frac{\delta}{2}. \quad (78)$$

1967 Therefore, we have $\bigcap_{j=D^\dagger}^M \{\max_{t \in [T_1]} \mathbf{v}_j^t < \frac{1}{4} \mathbf{v}_j^*\}$ with high probability.
 1968

1969 Similar to **Phase II**'s analysis, **Step II** derives the lower bound estimate of the risk by constructing
 1970 a recursive expression for $\{\check{\mathbf{V}}_{\text{diag}}^t\}_{t=0}^{T_2}$ where $T_2 = T - T_1$. We continue to use \mathbf{v}^{T_1} , which satisfies
 1971 equation 11, as the initial point for the SGD iterations in **Step II**. If $M \gtrsim T^{1/\max\{\beta,(\alpha+\beta)/2\}}$, we
 1972 further require that \mathbf{v}^{T_1} satisfies

$$1973 \mathbf{v}_j^{T_1} < \frac{1}{4} \mathbf{v}_j^*, \quad \forall j \in [\tilde{\mathcal{O}}(T^{1/\max\{\beta,(\alpha+\beta)/2\}}), M]. \quad (79)$$

1976 According to Theorem B.1 and the result of **Step I**, the assumption on \mathbf{v}^{T_1} can be satisfied with high
 1977 probability.

1978 **Step II:** If $M \gtrsim T^{1/\max\{\beta,(\alpha+\beta)/2\}}$, assume that $\check{\mathbf{v}}^0$ further satisfies $\check{\mathbf{v}}^0_{D^\dagger:M} \leq \frac{1}{4} \mathbf{v}^*_{D^\dagger:M}$. Setting
 1979 $\eta_0 = \eta$ and $K = T_1$, we have
 1980

$$1981 \check{\mathbf{V}}_{\text{diag}}^{t+1} = \left(\mathbb{E} \left[(\mathcal{I} - \eta_t \tilde{\mathcal{G}}_{\check{\mathbf{v}}}^t) \circ (\check{\mathbf{w}}^t \otimes \check{\mathbf{w}}^t) \right] \right)_{\text{diag}} + \eta_t^2 \left(\mathbb{E} \left[(\mathcal{H}_{\check{\mathbf{v}}}^t - \tilde{\mathcal{H}}_{\check{\mathbf{v}}}^t) \circ (\check{\mathbf{w}}^t \otimes \check{\mathbf{w}}^t) \right] \right)_{\text{diag}} + \eta_t^2 \Sigma_{\check{\mathbf{v}}}^t \\ 1982 \succeq (\mathcal{I} - \eta_t \check{\mathcal{G}}^t) \circ \check{\mathbf{V}}_{\text{diag}}^t + \eta_t^2 \bar{\sigma}^2 \mathbf{\Lambda} \text{diag} \left\{ \bar{\mathbf{b}}^{\odot 2} \right\},$$

1985 for any $t \in [0 : T_2 - 1]$. According to the recursive step above, we obtain
 1986

$$1987 \check{\mathbf{V}}^{T_2} \succeq \bar{\sigma}^2 \sum_{t=1}^{T_2} \eta_t^2 \prod_{i=t+1}^{T_2} \left(\mathbf{I} - \eta_i \check{\mathbf{H}} \right)^2 \mathbf{\Lambda} \text{diag} \left\{ \bar{\mathbf{b}}^{\odot 2} \right\} + \underbrace{\left(\mathbf{I} - \eta_0 \check{\mathbf{H}} \right)^{2T_2} (\check{\mathbf{w}}^0 \otimes \check{\mathbf{w}}^0)}_{\mathcal{I}\mathcal{I}} \\ 1988 \succeq \bar{\sigma}^2 \sum_{t=1}^{T_2} \eta_t^2 \prod_{i=t+1}^{T_2} \left(\mathbf{I} - 2\eta_i \check{\mathbf{H}} \right) \mathbf{\Lambda} \text{diag} \left\{ \bar{\mathbf{b}}^{\odot 2} \right\} + \underbrace{\mathcal{I}\mathcal{I}}_{\mathcal{I}}. \quad (79)$$

1994 Recalling the step size decay rule in Algorithm 1, we have
 1995

$$1996 \mathcal{I} = \eta_0^2 \sum_{i=1}^h \left(\mathbf{I} - 2\eta_0 \check{\mathbf{H}} \right)^{h-i} \prod_{j=1}^{L-1} \left(\mathbf{I} - \frac{\eta_0}{2^{j-1}} \check{\mathbf{H}} \right)^K \mathbf{\Lambda} \text{diag} \left\{ \bar{\mathbf{b}}^{\odot 2} \right\}$$

$$\begin{aligned}
& + \sum_{l=1}^{L-1} \left(\frac{\eta_0}{2^l} \right)^2 \sum_{i=1}^K \left(\mathbf{I} - \frac{\eta_0}{2^{l-1}} \check{\mathbf{H}} \right)^{K-i} \prod_{j=l+1}^{L-1} \left(\mathbf{I} - \frac{\eta_0}{2^{j-1}} \check{\mathbf{H}} \right)^K \mathbf{A} \operatorname{diag} \left\{ \bar{\mathbf{b}}^{\odot 2} \right\} \\
& = \frac{\eta_0^2}{12} \sum_{i=1}^h \left(\mathbf{I}_{1:D} - 2\eta_0 \check{\mathbf{H}}_{1:D} \right)^{h-i} \prod_{j=1}^{L-1} \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{j-1}} \check{\mathbf{H}}_{1:D} \right)^K \check{\mathbf{H}}_{1:D} \\
& + \frac{1}{12} \sum_{l=1}^{L-1} \left(\frac{\eta_0}{2^l} \right)^2 \sum_{i=1}^K \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{l-1}} \check{\mathbf{H}}_{1:D} \right)^{K-i} \prod_{j=l+1}^{L-1} \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{j-1}} \check{\mathbf{H}}_{1:D} \right)^K \check{\mathbf{H}}_{1:D} \\
& = \frac{\eta_0}{24} \left(\mathbf{I}_{1:D} - \left(\mathbf{I}_{1:D} - 2\eta_0 \check{\mathbf{H}}_{1:D} \right)^h \right) \left(\prod_{j=1}^{L-1} \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{j-1}} \check{\mathbf{H}}_{1:D} \right) \right)^K \\
& + \sum_{l=1}^{L-1} \frac{\eta_0}{12 \cdot 2^{l+1}} \left(\mathbf{I}_{1:D} - \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{l-1}} \check{\mathbf{H}}_{1:D} \right)^K \right) \left(\prod_{j=l+1}^{L-1} \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{j-1}} \check{\mathbf{H}}_{1:D} \right) \right)^K \\
& \stackrel{(a)}{\geq} \frac{\eta_0}{24} \left(\mathbf{I}_{1:D} - \left(\mathbf{I}_{1:D} - 2\eta_0 \check{\mathbf{H}}_{1:D} \right)^h \right) \left(\mathbf{I}_{1:D} - 2\eta_0 \check{\mathbf{H}}_{1:D} \right)^K \\
& + \sum_{l=1}^{L-1} \frac{\eta_0}{12 \cdot 2^{l+1}} \left(\mathbf{I}_{1:D} - \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{l-1}} \check{\mathbf{H}}_{1:D} \right)^K \right) \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{l-1}} \check{\mathbf{H}}_{1:D} \right)^K, \tag{80}
\end{aligned}$$

where (a) is derived from following inequality

$$\prod_{i=l+1}^{L-1} \left(\mathbf{I}_{1:D} - \frac{\eta_0}{2^{i-1}} \check{\mathbf{H}}_{1:D} \right) \geq \mathbf{I}_{1:D} - \sum_{i=l+1}^{L-1} \frac{\eta_0}{2^{i-1}} \check{\mathbf{H}} \geq \mathbf{I}_{1:D} - \frac{\eta_0}{2^{l-1}} \check{\mathbf{H}}_{1:D}.$$

When $h > K$, we apply an auxiliary function analogous to [Lemma D.1, Wu et al. (2022)]'s:

$$f(x) := \frac{x}{2} \left(1 - (1 - 2x)^h \right) (1 - 2x)^K + \sum_{l=1}^{L-1} \frac{x}{2^{l+1}} \left(1 - \left(1 - \frac{x}{2^{l-1}} \right)^K \right) \left(1 - \frac{x}{2^{l-1}} \right)^K.$$

Then, we obtain

$$f(\eta_0 \check{\mathbf{H}}) \succeq \frac{1}{4800K} \mathbf{I}_{1:H_1} + \frac{\eta_0}{480} \check{\mathbf{H}}_{H_1+1:H_2} + \frac{\eta_0^2 h}{480} \check{\mathbf{H}}_{H_2+1:D}^2, \tag{81}$$

where $H_1 := \min\{D, \max\{i \mid \lambda_i(\mathbf{v}_i^*)^2 \geq \frac{1}{12\eta_0 K}\}\}$ and $H_2 := \min\{D, \max\{i \mid \lambda_i(\mathbf{v}_i^*)^2 \geq \frac{1}{12\eta_0 h}\}\}$.

For term $\mathcal{I}\mathcal{I}$, we have

$$\langle \check{\mathbf{H}}, \mathcal{I}\mathcal{I} \rangle \gtrsim \begin{cases} \sum_{i=D^\dagger}^M \lambda_i(\mathbf{v}_i^*)^4, & \text{if } M \gtrsim T^{1/\max\{\beta, (\alpha+\beta)/2\}}, \\ 0, & \text{otherwise,} \end{cases} \tag{82}$$

where the estimation for $\langle \check{\mathbf{H}}, \mathcal{I}\mathcal{I} \rangle$ under case $M \gtrsim T^{1/\max\{\beta, (\alpha+\beta)/2\}}$ is derived from the initialization $\check{\mathbf{v}}_{D^\dagger:M}^0 < \frac{1}{4} \mathbf{v}_{D^\dagger:M}^*$ and $(1 + \eta \lambda_i(\mathbf{v}_i^*)^2)^{2T_2} \leq 2$ for any $i \in [D^\dagger : M]$.

Therefore, using equation 73-equation 82, we derive

$$\begin{aligned}
\mathbb{E} [\mathcal{R}_M(\check{\mathbf{v}}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*)] & \gtrsim \bar{\sigma}^2 \left\langle \check{\mathbf{H}}, \frac{1}{K} \check{\mathbf{H}}_{1:H_1}^{-1} + \eta_0 \mathbf{I}_{H_1+1:H_2} + \eta_0^2 h \check{\mathbf{H}}_{H_2+1:D} \right\rangle + \langle \check{\mathbf{H}}, \mathcal{I}\mathcal{I} \rangle \\
& = \bar{\sigma}^2 \left(\frac{H_1}{K} + \eta_0 \sum_{i=H_1+1}^{H_2} \lambda_i(\mathbf{v}_i^*)^2 + \eta_0^2 h \sum_{i=H_2+1}^D \lambda_i^2(\mathbf{v}_i^*)^4 \right) + \langle \check{\mathbf{H}}, \mathcal{I}\mathcal{I} \rangle.
\end{aligned}$$

According to Lemma B.3, we have $\mathbb{P}(t_s \leq T_2) \leq \delta$, which implies that

$$\mathbb{E} [\mathcal{R}_M(\check{\mathbf{v}}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*) \mid t_s > T_2]$$

$$\begin{aligned}
& \geq \mathbb{E} [\mathcal{R}_M(\check{\mathbf{v}}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*)] - \sum_{i=1}^{T_2} \mathbb{P}(t_s = i) \mathbb{E} [\mathcal{R}_M(\check{\mathbf{v}}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*) \mid t_s = i] \\
& \stackrel{(b)}{\gtrsim} \bar{\sigma}^2 \left(\frac{H_1}{K} + \eta_0 \sum_{i=H_1+1}^{H_2} \lambda_i(\mathbf{v}_i^*)^2 + \eta_0^2 h \sum_{i=H_2+1}^D \lambda_i^2(\mathbf{v}_i^*)^4 \right) + \langle \check{\mathbf{H}}, \textcolor{blue}{\mathcal{I}} \mathcal{L} \rangle. \tag{83}
\end{aligned}$$

Since δ is sufficiently small, (b) is drawn from two facts: 1) $\check{\mathbf{v}}^{t_s}$ resides in a bounded neighborhood of $\bar{\mathbf{b}}$ or $\bar{\mathbf{b}}$; 2) the risk upper bound for SGD established in [Theorem 4.1, Wu et al. (2022)]. The lower bound established in equation 83 is uniformly valid for all $\check{\mathbf{v}}^0 \in [\bar{\mathbf{b}}, \hat{\mathbf{b}}]$. Denote event

$$\mathcal{K}(\mathbf{v}^{T_1}) := \left\{ \bar{\mathbf{b}} \leq \mathbf{v}^{T_1} \leq \hat{\mathbf{b}} \wedge \left\{ \mathbf{v}_{D^\dagger:M}^{T_1} \leq \frac{1}{4} \mathbf{v}_{D^\dagger:M}^*, \text{ if } M \gtrsim T^{1/\max\{\beta,(\alpha+\beta)/2\}} \right\} \right\}.$$

For $t_s > T_2$, the trajectory $\{\check{\mathbf{v}}^t\}_{t=0}^{T_2}$ aligns with Algorithm 1's iterations over $[T_1 : T]$, given the initialization $\check{\mathbf{v}}^0 = \mathbf{v}^{T_1}$ with $\mathcal{K}(\mathbf{v}^{T_1})$ occurs. Then, we have

$$\begin{aligned}
& \min_{\mathbf{v}^{T_1}} \mathbb{E} [\mathcal{R}_M(\mathbf{v}^T) - \mathcal{R}_M(\mathbf{v}^*) \mid \mathcal{K}(\mathbf{v}^{T_1})] \\
& \geq (1 - \delta) \min_{\mathbf{v}^{T_1}} \mathbb{E} [\mathcal{R}_M(\check{\mathbf{v}}^{T_2}) - \mathcal{R}_M(\mathbf{v}^*) \mid t_s > T_2 \wedge \check{\mathbf{v}}^0 = \mathbf{v}^{T_1} \wedge \mathcal{K}(\mathbf{v}^{T_1})] \\
& \stackrel{(b)}{\gtrsim} \bar{\sigma}^2 \left(\frac{H_1}{K} + \eta_0 \sum_{i=H_1+1}^{H_2} \lambda_i(\mathbf{v}_i^*)^2 + \eta_0^2 h \sum_{i=H_2+1}^D \lambda_i^2(\mathbf{v}_i^*)^4 \right) + \mathbb{1}_{M \gtrsim T^{1/\max\{\beta,(\alpha+\beta)/2\}}} \sum_{i=D^\dagger}^M \lambda_i(\mathbf{v}_i^*)^4. \tag{84}
\end{aligned}$$

Noticing that $\mathcal{K}(\mathbf{v}^{T_1})$ occurs with probability at least $1 - \delta$, and combining equation 83 with equation 84, we obtain

$$\begin{aligned}
\mathbb{E} [\mathcal{R}_M(\mathbf{v}^T) - \mathcal{R}_M(\mathbf{v}^*)] & \geq (1 - \delta) \min_{\mathbf{v}^{T_1}} \mathbb{E} [\mathcal{R}_M(\mathbf{v}^T) - \mathcal{R}_M(\mathbf{v}^*) \mid \mathcal{K}(\mathbf{v}^{T_1})] \\
& \stackrel{(b)}{\gtrsim} \bar{\sigma}^2 \left(\frac{H_1}{K} + \eta_0 \sum_{i=H_1+1}^{H_2} \lambda_i(\mathbf{v}_i^*)^2 + \eta_0^2 h \sum_{i=H_2+1}^D \lambda_i^2(\mathbf{v}_i^*)^4 \right) \\
& \quad + \mathbb{1}_{M \gtrsim T^{1/\max\{\beta,(\alpha+\beta)/2\}}} \sum_{i=D^\dagger}^M \lambda_i(\mathbf{v}_i^*)^4,
\end{aligned}$$

where $H_1 := \min\{D, \max\{i \mid \lambda_i(\mathbf{v}_i^*)^2 \geq \frac{1}{12\eta_0 K}\}\}$ and $H_2 := \min\{D, \max\{i \mid \lambda_i(\mathbf{v}_i^*)^2 \geq \frac{1}{12\eta_0 h}\}\}$. Furthermore, as analyzed in **Step I**, when $M \geq \tilde{\mathcal{O}}(T^{1/\max\{\beta,(\alpha+\beta)/2\}})$, the last iterate risk can be bounded below by $D^{1-\beta}$ with high probability; whereas when $M \leq \tilde{\mathcal{O}}(T^{1/\max\{\beta,(\alpha+\beta)/2\}})$, such a lower bound is governed by $M^{1-\beta}$ with high probability. Therefore, we complete the proof of the lower bound. \square

D PROOFS OF THEOREM 4.2

Proof. Without loss of generality, we suppose that the orthogonal matrix

$$\arg \min_{\mathbf{R} \in \mathbb{R}^{M \times M}, \mathbf{R} \mathbf{R}^\top = \mathbf{I}_M} \left\| \tilde{\mathbf{U}} \mathbf{R} - \mathbf{U}_A \right\|^2,$$

is \mathbf{I}_M . Moreover, let the SVD of $\tilde{\mathbf{U}} \tilde{\mathbf{U}}^\top$ be given by

$$\tilde{\mathbf{U}} \tilde{\mathbf{U}}^\top = \mathbf{Q}_{\tilde{\mathbf{U}}} \tilde{\Sigma} \mathbf{Q}_{\tilde{\mathbf{U}}}^\top.$$

The proof of Theorem 4.2 mirrors that of the upper bound established in Theorem 4.1. It is similarly divided into two parts: **Phase I** and **Phase II**. For simplicity, we denote $y - \langle \mathbf{Q}_A^\top \mathbf{S} \mathbf{x}, \mathbf{v}^{*\odot 2} \rangle - \xi$ as $\tilde{\xi}$,

2106 **Phase I:** According to the update rule of \mathbf{v}^t at $t + 1$ -th step, we have
2107

$$\begin{aligned}
2108 \mathbf{v}_j^{t+1} &= \mathbf{v}_j^t - \eta_t \left(\langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{S} \mathbf{x}^{t+1}, (\mathbf{v}^t)^{\odot 2} \rangle - \langle \mathbf{Q}_{\mathbf{A}}^\top \mathbf{S} \mathbf{x}^{t+1}, \mathbf{v}^{*\odot 2} \rangle - \xi^{t+1} - \tilde{\xi}^{t+1} \right) \cdot \left(\mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{S} \mathbf{x}^{t+1} \right)_j \cdot \mathbf{v}_j^t \\
2109 &= \mathbf{v}_j^t - \eta_t \left(\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, (\mathbf{v}^t)^{\odot 2} \rangle - \langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \rangle - \xi^{t+1} - \tilde{\xi}^{t+1} \right. \\
2110 &\quad \left. + \langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_{\mathbf{A}} - \tilde{\mathbf{U}}) \mathbf{z}^{t+1}, (\mathbf{v}^t)^{\odot 2} \rangle + \langle (\tilde{\Sigma}^{1/2} - \Sigma^{1/2}) \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \rangle \right) \\
2111 &\quad \cdot \left[\left(\tilde{\Sigma}^{1/2} \mathbf{z}^{t+1} \right)_j + \left(\mathbf{Q}_{\tilde{\mathbf{U}}} (\mathbf{U}_{\mathbf{A}} - \tilde{\mathbf{U}}) \mathbf{z}^{t+1} \right)_j \right] \cdot \mathbf{v}_j^t \\
2112 &= \mathbf{v}_j^t - \eta_t \underbrace{\left(\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, (\mathbf{v}^t)^{\odot 2} \rangle - \langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \rangle - \xi^{t+1} - \tilde{\xi}^{t+1} \right) \cdot \left(\tilde{\Sigma}^{1/2} \mathbf{z}^{t+1} \right)_j \cdot \mathbf{v}_j^t}_{\mathcal{I}} \\
2113 &\quad - \eta_t \left(\langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_{\mathbf{A}} - \tilde{\mathbf{U}}) \mathbf{z}^{t+1}, (\mathbf{v}^t)^{\odot 2} \rangle + \langle (\tilde{\Sigma}^{1/2} - \Sigma^{1/2}) \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \rangle \right) \\
2114 &\quad \cdot \left[\left(\tilde{\Sigma}^{1/2} \mathbf{z}^{t+1} \right)_j + \left(\mathbf{Q}_{\tilde{\mathbf{U}}} (\mathbf{U}_{\mathbf{A}} - \tilde{\mathbf{U}}) \mathbf{z}^{t+1} \right)_j \right] \cdot \mathbf{v}_j^t \\
2115 &\quad - \eta_t \left(\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, (\mathbf{v}^t)^{\odot 2} \rangle - \langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \rangle - \xi^{t+1} - \tilde{\xi}^{t+1} \right) \\
2116 &\quad \cdot \left(\mathbf{Q}_{\tilde{\mathbf{U}}} (\mathbf{U}_{\mathbf{A}} - \tilde{\mathbf{U}}) \mathbf{z}^{t+1} \right)_j \cdot \mathbf{v}_j^t,
\end{aligned}$$

2127 for any $j \in [M]$, where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_M)$ is a standard M -dimensional Gaussian vector. Note that
2128 term \mathcal{I} in the above expression is identical to the right-hand side of equation 12. Moreover, under
2129 Assumption 4.1, the influence of the remaining terms on the update of \mathbf{v}_j^t at step $t + 1$ is dominated
2130 by term \mathcal{I} . Therefore, using techniques similar to those employed in section B.2, we can derive a
2131 result analogous to Theorem B.1.

2132 **Phase II:** Following the technique in section B.3, we can construct a truncated coupling $\{\hat{\mathbf{v}}^t\}_{t=0}^{T_2}$
2133 and a truncated sequence $\{\mathbf{w}^t\}_{t=0}^{T_2}$. Similarly, we can derive a result analogous to Theorem B.3,
2134 which shows that with high probability, the trajectory of \mathbf{v}^t during **Phase II** ($t \in [T_1 : T]$) will
2135 remain within a neighborhood of \mathbf{v}^* . Then we estimate the risk between the last-step function value
2136 and the ground truth as:

$$\begin{aligned}
2138 &\mathbb{E} \left[\mathcal{R}_M(\mathbf{w}^{T_2}) - \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} (\langle \mathbf{Q}_{\mathbf{A}}^\top \mathbf{S} \mathbf{x}, \mathbf{v}^{*\odot 2} \rangle - y)^2 \right] \\
2139 &\stackrel{(a)}{=} \mathbb{E} \left[\left| \langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{S} \mathbf{x}, (\mathbf{w}^{T_2})^{\odot 2} \rangle - \langle \mathbf{Q}_{\mathbf{A}}^\top \mathbf{S} \mathbf{x}, \mathbf{v}^{*\odot 2} \rangle \right|^2 \right], \\
2140 &\stackrel{(b)}{\lesssim} \mathbb{E} \left[\left\langle \tilde{\Sigma}^{1/2} \mathbf{z}, (\mathbf{w}^{T_2})^{\odot 2} - \mathbf{v}^{*\odot 2} \right\rangle^2 \right] + \mathbb{E} \left[\left\langle (\Sigma^{1/2} - \tilde{\Sigma}^{1/2}) \mathbf{z}, \mathbf{v}^{*\odot 2} \right\rangle^2 \right] \\
2141 &\quad + \mathbb{E} \left[\left\langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_{\mathbf{A}} - \tilde{\mathbf{U}}) \mathbf{z}, (\mathbf{w}^{T_2})^{\odot 2} \right\rangle \right] \\
2142 &\stackrel{(c)}{\lesssim} \mathbb{E} \left[\left\langle \tilde{\Sigma}^{1/2} \mathbf{z}, (\mathbf{w}^{T_2})^{\odot 2} - \mathbf{v}^{*\odot 2} \right\rangle^2 \right] + \left\| \tilde{\mathbf{U}} \tilde{\mathbf{U}}^\top - \mathbf{A} \right\| + \left\| \tilde{\mathbf{U}} - \mathbf{U}_{\mathbf{A}} \right\|,
\end{aligned} \tag{85}$$

2149 where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_M)$ is a standard M -dimensional Gaussian vector. Here, (a) follows from condition
2150 **[A4]** in Assumption 3.2, (b) is derived from the Cauchy–Schwarz inequality, and (c) relies on
2151 Assumption 4.1.

2152 Therefore, according to Eq. equation 36 and the analysis in Part II (B.3.2) of section B.3, it suffices
2153 to use the update rule of \mathbf{w}^t to determine the quantities of both the variance \mathbf{V}^{T_2} and bias terms
2154 \mathbf{B}^{T_2} . We rewrite the update rule of \mathbf{w}^t as follows:

$$\begin{aligned}
2156 \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t \left(\mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{U}_{\mathbf{A}} \mathbf{z}^{t+1}, \langle (\mathbf{w}^t)^{\odot 2} \rangle - y^{t+1} \right) \cdot \left(\mathbf{w}^t \odot \mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{U}_{\mathbf{A}} \mathbf{z}^{t+1} \right) \\
2157 &= \mathbf{w}^t - \eta_t \left(\langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{U}_{\mathbf{A}} \mathbf{z}^{t+1}, (\mathbf{w}^t)^{\odot 2} \rangle - \langle \Sigma^{1/2} \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \rangle - \xi - \tilde{\xi} \right) \cdot \left(\mathbf{w}^t \odot \mathbf{Q}_{\tilde{\mathbf{U}}}^\top \mathbf{U}_{\mathbf{A}} \mathbf{z}^{t+1} \right) \\
2158 &= \mathbf{w}^t - \eta_t \left[\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, (\mathbf{w}^t)^{\odot 2} \rangle - \langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \rangle - \xi - \tilde{\xi} \right]
\end{aligned}$$

$$\begin{aligned}
& + \left\langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_A - \tilde{\mathbf{U}}) \mathbf{z}^{t+1}, (\mathbf{w}^t)^{\odot 2} \right\rangle - \left\langle (\tilde{\Sigma}^{1/2} - \Sigma^{1/2}) \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \right\rangle \\
& \cdot \left[\mathbf{w}^t \odot \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1} + \mathbf{w}^t \odot \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_A - \tilde{\mathbf{U}}) \mathbf{z}^{t+1} \right] \\
= & \mathbf{w}^t - \underbrace{\eta_t \left(\left\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, (\mathbf{w}^t)^{\odot 2} \right\rangle - \left\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \right\rangle - \xi - \tilde{\xi} \right) \cdot \left(\mathbf{w}^t \odot \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1} \right)}_{\mathcal{I}} \\
& - \underbrace{\eta_t \left(\left\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, (\mathbf{w}^t)^{\odot 2} \right\rangle - \left\langle \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \right\rangle - \xi - \tilde{\xi} \right) \cdot \left[\mathbf{w}^t \odot \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_A - \tilde{\mathbf{U}}) \mathbf{z}^{t+1} \right]}_{\mathcal{II}} \\
& - \underbrace{\eta_t \left\langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_A - \tilde{\mathbf{U}}) \mathbf{z}^{t+1}, (\mathbf{w}^t)^{\odot 2} \right\rangle \cdot \left(\mathbf{w}^t \odot \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1} \right)}_{\mathcal{III}} \\
& + \underbrace{\eta_t \left\langle (\tilde{\Sigma}^{1/2} - \Sigma^{1/2}) \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \right\rangle \cdot \left(\mathbf{w}^t \odot \tilde{\Sigma}^{1/2} \mathbf{z}^{t+1} \right)}_{\mathcal{IV}} \\
& - \underbrace{\eta_t \left\langle \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_A - \tilde{\mathbf{U}}) \mathbf{z}^{t+1}, (\mathbf{w}^t)^{\odot 2} \right\rangle \cdot \left(\mathbf{w}^t \odot \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_A - \tilde{\mathbf{U}}) \mathbf{z}^{t+1} \right)}_{\mathcal{V}} \\
& + \underbrace{\eta_t \left\langle (\tilde{\Sigma}^{1/2} - \Sigma^{1/2}) \mathbf{z}^{t+1}, \mathbf{v}^{*\odot 2} \right\rangle \cdot \left(\mathbf{w}^t \odot \mathbf{Q}_{\tilde{\mathbf{U}}}^\top (\mathbf{U}_A - \tilde{\mathbf{U}}) \mathbf{z}^{t+1} \right)}_{\mathcal{VI}}.
\end{aligned}$$

Here, \mathcal{I} corresponds to the term on the right-hand side of equation 25, while the remaining terms $\mathcal{II}, \mathcal{III}, \mathcal{IV}, \mathcal{V}$ and \mathcal{VI} only affect \mathbf{V}^{T_2} . For simplicity, define matrix $\mathbf{H} := \text{diag}\{\mathbf{v}^*\} \tilde{\Sigma} \text{diag}\{\mathbf{v}^*\}$ and let $K = T_1$. Combining the Cauchy–Schwarz inequality with the proof technique of Lemmas B.4 and B.5, we derive the estimation for $\langle \mathbf{H}, \mathbf{V}^{T_2} \rangle$ in the following form:

$$\begin{aligned}
\langle \mathbf{H}, \mathbf{V}^{T_2} \rangle & \lesssim \sigma^2 \left(\frac{N'_0}{K} + \eta_0 \sum_{i=N'_0+1}^{N_0} \lambda_i(\mathbf{v}_i^*)^2 \right) + \sigma^2 \eta_0^2 (h+K) \sum_{i=N_0+1}^M \lambda_i^2(\mathbf{v}_i^*)^4 \\
& + \langle \mathbf{H}, \mathbf{V}_{\mathcal{I}}^{T_2} \rangle + \langle \mathbf{H}, \mathbf{V}_{\mathcal{III}}^{T_2} \rangle + \langle \mathbf{H}, \mathbf{V}_{\mathcal{IV}}^{T_2} \rangle + \langle \mathbf{H}, \mathbf{V}_{\mathcal{V}}^{T_2} \rangle + \langle \mathbf{H}, \mathbf{V}_{\mathcal{VI}}^{T_2} \rangle \\
& \stackrel{(d)}{\lesssim} \sigma^2 \left(\frac{N'_0}{K} + \eta_0 \sum_{i=N'_0+1}^{N_0} \lambda_i(\mathbf{v}_i^*)^2 \right) + \sigma^2 \eta_0^2 (h+K) \sum_{i=N_0+1}^M \lambda_i^2(\mathbf{v}_i^*)^4 \\
& + \left\| \tilde{\mathbf{U}} \tilde{\mathbf{U}}^\top - \mathbf{A} \right\| + \left\| \tilde{\mathbf{U}} - \mathbf{U}_A \right\|,
\end{aligned} \tag{86}$$

where the diagonal matrices $\mathbf{V}_{\mathcal{I}}^{T_2}, \mathbf{V}_{\mathcal{III}}^{T_2}, \mathbf{V}_{\mathcal{IV}}^{T_2}, \mathbf{V}_{\mathcal{V}}^{T_2}$ and $\mathbf{V}_{\mathcal{VI}}^{T_2}$ are defined as follows:

$$\begin{aligned}
\left(\mathbf{V}_{\mathcal{I}}^{T_2} \right)_{i,i} & = \begin{cases} \left\| \tilde{\mathbf{U}} - \mathbf{U}_A \right\|^2 \cdot \frac{1}{\lambda_i^2(\mathbf{v}_i^*)^2}, & \text{if } i \leq D, \\ \left\| \tilde{\mathbf{U}} - \mathbf{U}_A \right\|^2 \cdot \frac{T\eta_0}{\lambda_i}, & \text{otherwise,} \end{cases} \\
\left(\mathbf{V}_{\mathcal{III}}^{T_2} \right)_{i,i} & = \begin{cases} \left\| \tilde{\mathbf{U}} - \mathbf{U}_A \right\|^2 \cdot \frac{\|\mathbf{v}^{*\odot 2}\|^2}{\lambda_i(\mathbf{v}_i^*)^2}, & \text{if } i \leq D, \\ \left\| \tilde{\mathbf{U}} - \mathbf{U}_A \right\|^2 \cdot T\eta_0 \|\mathbf{v}^{*\odot 2}\|^2, & \text{otherwise,} \end{cases} \\
\left(\mathbf{V}_{\mathcal{IV}}^{T_2} \right)_{i,i} & = \begin{cases} \left\| \tilde{\mathbf{U}} \tilde{\mathbf{U}}^\top - \mathbf{A} \right\|^2 \cdot \frac{\|\mathbf{v}^{*\odot 2}\|^2}{\lambda_M \lambda_i(\mathbf{v}_i^*)^2}, & \text{if } i \leq D, \\ \left\| \tilde{\mathbf{U}} \tilde{\mathbf{U}}^\top - \mathbf{A} \right\|^2 \cdot \frac{T\eta_0 \|\mathbf{v}^{*\odot 2}\|^2}{\lambda_M}, & \text{otherwise,} \end{cases} \\
\left(\mathbf{V}_{\mathcal{V}}^{T_2} \right)_{i,i} & = \begin{cases} \left\| \tilde{\mathbf{U}} - \mathbf{U}_A \right\|^4 \cdot \frac{\|\mathbf{v}^{*\odot 2}\|^2}{\lambda_i^2(\mathbf{v}_i^*)^2}, & \text{if } i \leq D, \\ \left\| \tilde{\mathbf{U}} - \mathbf{U}_A \right\|^4 \cdot \frac{T\eta_0 \|\mathbf{v}^{*\odot 2}\|^2}{\lambda_i}, & \text{otherwise,} \end{cases}
\end{aligned}$$

$$\left(\mathbf{V}_{\mathcal{V}\mathcal{U}}^{T_2}\right)_{i,i} = \begin{cases} \left\|\tilde{\mathbf{U}} - \mathbf{U}_A\right\|^2 \left\|\tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top - \mathbf{A}\right\|^2 \cdot \frac{\|\mathbf{v}^{*\odot 2}\|^2}{\lambda_M \lambda_i^2 (\mathbf{v}_i^*)^2}, & \text{if } i \leq D, \\ \left\|\tilde{\mathbf{U}} - \mathbf{U}_A\right\|^2 \left\|\tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top - \mathbf{A}\right\|^2 \cdot \frac{T\eta_0 \|\mathbf{v}^{*\odot 2}\|^2}{\lambda_M \lambda_i}, & \text{otherwise.} \end{cases}$$

Inequality (d) is derived from combining Assumption 4.1 with above definitions. The estimation for $\langle \mathbf{H}, \mathbf{V}^{T_2} \rangle$ has been provided. It therefore remains only to bound $\langle \mathbf{H}, \mathbf{B}^{T_2} \rangle$, which can be done by an analysis analogous to that of Lemma B.6. This completes the proof. \square

E AUXILIARY LEMMA

Definition E.1 (Sub-Gaussian Random Variable). A random variable x with mean $\mathbb{E}x$ is sub-Gaussian if there is $\sigma \in \mathbb{R}_+$ such that

$$\mathbb{E} \left[e^{\lambda(x - \mathbb{E}x)} \right] \leq e^{\frac{\lambda^2 \sigma^2}{2}}, \quad \forall \lambda \in \mathbb{R}.$$

Proposition E.1. [(Wainwright, 2019)] For a random variable x which satisfies the sub-Gaussian condition E.1 with parameter σ , we have

$$\mathbb{P}(|x - \mathbb{E}x| > c) \leq 2e^{-\frac{c^2}{2\sigma^2}}, \quad \forall c > 0. \quad (87)$$

Lemma E.1. Let X_1, \dots, X_n be independent and symmetric stochastic variables with zero mean. Denote $Y = \sum_{i=1}^n \mathbf{v}_i X_i \mathbf{1}_{|X_i| \leq R}$ for any unit vector $\mathbf{v} \in \mathbb{R}^n$ and positive scalar R . Then, we have $Y X_1 \mathbf{1}_{|X_1| \leq R}$ is sub-Gaussian with parameter at most $\sigma = \mathcal{O}(R^2 \|\mathbf{v}\|_2)$.

Proof. For simplicity, we denote $\hat{X}_i := X_i \mathbf{1}_{|X_i| \leq R}$ for any $i \in [1 : n]$, and $Y_{-1} = \sum_{i=2}^n \mathbf{v}_i \hat{X}_i$. One can notice the following holds

$$\mathbb{E} \left[e^{\lambda(Y \hat{X}_1 - \mathbb{E}[Y \hat{X}_1])} \right] = \mathbb{E} \left[e^{\lambda \mathbf{v}_i (\hat{X}_1^2 - \mathbb{E}[\hat{X}_1^2])} \mathbb{E} \left[e^{\lambda(Y_{-1} \hat{X}_1 - \mathbb{E}[Y_{-1} \hat{X}_1])} \mid \hat{X}_1 \right] \right], \quad (88)$$

for any $\lambda \in \mathbb{R}$. Letting \hat{X}'_i be an independent copy of \hat{X}_i for any $i \in [1 : n]$, then we have

$$\begin{aligned} \mathbb{E} \left[e^{\lambda(Y_{-1} \hat{X}_1 - \mathbb{E}[Y_{-1} \hat{X}_1])} \mid \hat{X}_1 \right] &\stackrel{(a)}{\leq} \mathbb{E} \left\{ \mathbb{E} \left[e^{\sum_{i=2}^n \lambda \mathbf{v}_i (\hat{X}_i \hat{X}_1 - \mathbb{E}[\hat{X}_i \hat{X}_1])} \mid \hat{X}_1, \hat{X}'_1 \right] \right\} \\ &\stackrel{(b)}{\leq} \mathbb{E} \left\{ \mathbb{E} \left[e^{\sum_{i=2}^n \lambda \mathbf{v}_i (\hat{X}_i \hat{X}_1 - \hat{X}'_i \hat{X}'_1)} \mid \hat{X}_1, \hat{X}'_1 \right] \right\}, \end{aligned} \quad (89)$$

where (a) and (b) are derived from the convexity of the exponential, and Jensen's inequality. Letting ξ be an independent Rademacher variable, since the distribution of $\hat{X}_i - \hat{X}'_i$ is the same as that of $\xi(\hat{X}_i - \hat{X}'_i)$ for any $i \in [1 : n]$, we obtain

$$\begin{aligned} &\mathbb{E} \left[e^{\sum_{i=2}^n \lambda \mathbf{v}_i (\hat{X}_i \hat{X}_1 - \hat{X}'_i \hat{X}'_1)} \mid \hat{X}_1, \hat{X}'_1 \right] \\ &= \prod_{i=2}^n \mathbb{E} \left[e^{\lambda \mathbf{v}_i [\hat{X}_1(\hat{X}_i - \hat{X}'_i) + \hat{X}'_i(\hat{X}_1 - \hat{X}'_1)]} \right] \\ &\stackrel{(c)}{\leq} \prod_{i=2}^n \left(\mathbb{E} \left[e^{2\lambda^2 \mathbf{v}_i^2 \hat{X}_1^2 (\hat{X}_i - \hat{X}'_i)^2} \mid \hat{X}_1, \hat{X}'_1 \right] \mathbb{E} \left[e^{2\lambda \mathbf{v}_i \hat{X}'_i (\hat{X}_1 - \hat{X}'_1)} \mid \hat{X}_1, \hat{X}'_1 \right] \right)^{1/2}. \end{aligned} \quad (90)$$

Noticing that $|\hat{X}_i - \hat{X}'_i| \leq 2R$ and $|\hat{X}_i| \leq R$, and applying the Hoeffding bound to \hat{X}_i for any $i \in [1 : n]$, we are guarantee that

$$\prod_{i=2}^n \left(\mathbb{E} \left[e^{2\lambda^2 \mathbf{v}_i^2 \hat{X}_1^2 (\hat{X}_i - \hat{X}'_i)^2} \mid \hat{X}_1, \hat{X}'_1 \right] \mathbb{E} \left[e^{2\lambda \mathbf{v}_i \hat{X}'_i (\hat{X}_1 - \hat{X}'_1)} \mid \hat{X}_1, \hat{X}'_1 \right] \right)^{1/2} \leq e^{\mathcal{O}(\lambda^2 R^4 \sum_{i=2}^n \mathbf{v}_i^2)}. \quad (91)$$

Combining Eq. 88-Eq. 91 and applying similar technique, we have

$$\mathbb{E} \left[e^{\lambda(Y \hat{X}_1 - \mathbb{E}[Y \hat{X}_1])} \right] \leq e^{\mathcal{O}(\lambda^2 R^4 \sum_{i=2}^n \mathbf{v}_i^2)} \mathbb{E} \left[e^{\lambda \mathbf{v}_i (\hat{X}_1^2 - \mathbb{E}[\hat{X}_1^2])} \right] \leq e^{\mathcal{O}(\lambda^2 R^4 \|\mathbf{v}\|_2^2)}.$$

\square

2268
2269 **Lemma E.2.** Consider a stochastic variable X which is zero-mean and sub-Gaussian with parameter σ for some $\sigma > 0$. Then, there exists $R > 0$ which depends on σ such that
2270

$$2271 \quad \mathbb{E} [X^2 \mathbb{1}_{|X| \leq R}] \geq \frac{1}{2} \mathbb{E} [X^2]. \quad (92)$$

2273
2274 *Proof.* According to Eq. equation 87, we have $\mathbb{P}(|X| \geq r) \leq 2e^{-\frac{r^2}{2\sigma^2}}$ for any $r > 0$. Therefore, we
2275 obtain

$$2276 \quad \mathbb{E} [X^2 \mathbb{1}_{|X| > R}] \stackrel{(a)}{=} 2 \int_0^\infty r \mathbb{P}(|X| \mathbb{1}_{|X| > R} > r) dr$$

$$2277 \quad = 2 \int_R^\infty r \mathbb{P}(|X| > r) dr + R^2 \mathbb{P}(|X| > R)$$

$$2278 \quad \leq 4 \int_R^\infty r e^{-\frac{r^2}{2\sigma^2}} dr + 2R^2 e^{-\frac{R^2}{2\sigma^2}} = 4\sigma^2 e^{-\frac{R^2}{\sigma^2}} + 2R^2 e^{-\frac{R^2}{2\sigma^2}}, \quad (93)$$

2283 where (a) is derived from [Lemma 2.2.13, Wainwright (2019)]. \square
2284

2285 **Lemma E.3.** Let $c > 0$, $\gamma < 1$ and $a_t > 0$ for any $t \in [0 : T - 1]$. Consider a sequence of random
2286 variables $\{v^i\}_{i=0}^{T-1} \subset [0, c]$, which satisfies either $v^t = v^{t+1} = \dots = v^T$, or $\mathbb{E} [v^{t+1} | \mathcal{F}^t] \leq$
2287 $(1 - \eta_t)v^t$ with stepsize $\eta_t \geq 0$, given $\mathbb{E}[e^{\lambda(v^{t+1} - \mathbb{E}[v^{t+1} | \mathcal{F}^t])} | \mathcal{F}^t] \leq e^{\frac{\lambda^2 a_t^2}{2}}$ almost surely for any
2288 $\lambda \in \mathbb{R}$. Then, there is
2289

$$2290 \quad \mathbb{P} (v^T > c \bigwedge v^0 \leq \gamma c) \leq \max_{t \in [1:T]} \exp \left\{ -\frac{(1 - \gamma)^2 c^2}{2 \sum_{j=0}^{t-1} a_j^2 \prod_{i=j+1}^{t-1} (1 - \eta_i)^2} \right\}.$$

2293
2294 *Proof.* Similarly, we begin with constructing a sequence of couplings $\{\tilde{v}^i\}_{i=0}^T$ as follows: $\tilde{v}^0 = v^0$;
2295 if $v^t = v^{t+1} = \dots = v^T$, let $\tilde{v}^{t+1} = (1 - \eta_t)\tilde{v}^t$; otherwise, let $\tilde{v}^{t+1} = v^{t+1}$. Notice that $\prod_{i=0}^{t-1} (1 - \eta_i)^{-1} \tilde{v}^t$ is a supermartingale. We define $D_{t+1} := \prod_{i=0}^t (1 - \eta_i)^{-1} \tilde{v}^{t+1} - \prod_{i=0}^{t-1} (1 - \eta_i)^{-1} \tilde{v}^t$ for
2296 any $t \in [0 : T - 1]$. Therefore, applying iterated expectation yields
2297

$$2298 \quad \mathbb{E} [e^{\lambda(\sum_{i=1}^t D_i)}] = \mathbb{E} [e^{\lambda(\sum_{i=1}^{t-1} D_i)}] \mathbb{E} [e^{\lambda D_t} | \mathcal{F}^{t-1}]$$

$$2299 \quad = \mathbb{E} [e^{\lambda(\sum_{i=1}^{t-1} D_i)}] \mathbb{E} \left[e^{\frac{\lambda}{\prod_{i=0}^{t-1} (1 - \eta_i)} (v^t - (1 - \eta_{t-1})v^{t-1})} | \mathcal{F}^{t-1} \right]$$

$$2300 \quad \stackrel{(a)}{\leq} \mathbb{E} [e^{\lambda(\sum_{i=1}^{t-1} D_i)}] \mathbb{E} \left[e^{\frac{\lambda}{\prod_{i=0}^{t-1} (1 - \eta_i)} (v^t - \mathbb{E}[v^t | \mathcal{F}^{t-1}])} | \mathcal{F}^{t-1} \right]$$

$$2301 \quad \stackrel{(b)}{\leq} e^{\frac{\lambda^2 a_{t-1}^2}{2 \prod_{i=0}^{t-1} (1 - \eta_i)^2}} \mathbb{E} [e^{\lambda(\sum_{i=1}^{t-1} D_i)}]$$

$$2302 \quad \leq e^{\frac{\lambda^2 \sum_{j=0}^{t-1} a_j^2 \prod_{i=0}^j (1 - \eta_i)^{-2}}{2}}, \quad (94)$$

2303
2304 for any $\lambda \in \mathbb{R}^+$ and $t \in [1 : T]$, where (a) is derived from that $\lambda(\mathbb{E}[v^t | \mathcal{F}^{t-1}] - (1 - \eta_{t-1})v^{t-1}) \leq 0$
2305 and (b) follows from the condition that $\mathbb{E}[e^{\lambda(v^{t+1} - (1 - \eta_t)v^t)} | \mathcal{F}^t] \leq e^{\frac{\lambda^2 a_t^2}{2}}$ almost surely for any
2306 $\lambda \in \mathbb{R}$. Then we obtain
2307

$$2308 \quad \mathbb{P} (v^T > c \bigwedge v^0 \leq \gamma c) \leq \max_{t \in [1:T]} \mathbb{P} \left(\prod_{i=0}^{t-1} (1 - \eta_i)^{-1} \tilde{v}^t > \prod_{i=0}^{t-1} (1 - \eta_i)^{-1} c \bigwedge \tilde{v}^0 \leq \gamma c \right)$$

$$2309 \quad \leq \max_{t \in [1:T]} \min_{\lambda > 0} \frac{\mathbb{E} [e^{\lambda(\sum_{i=1}^t D_i)}]}{e^{\lambda(\prod_{i=0}^{t-1} (1 - \eta_i)^{-1} c - \gamma c)}}$$

$$2310 \quad \stackrel{(b)}{\leq} \max_{t \in [1:T]} \exp \left\{ -\frac{\left(\prod_{i=0}^{t-1} (1 - \eta_i)^{-1} c - \gamma c \right)^2}{2 \sum_{j=0}^{t-1} a_j^2 \prod_{i=0}^j (1 - \eta_i)^{-2}} \right\}$$

$$\begin{aligned}
& \leq \max_{t \in [1:T]} \exp \left\{ -\frac{(1-\gamma)^2 \left(\prod_{i=0}^{t-1} (1-\eta_i)^{-1} c \right)^2}{2 \sum_{j=0}^{t-1} a_j^2 \prod_{i=0}^j (1-\eta_i)^{-2}} \right\} \\
& = \max_{t \in [1:T]} \exp \left\{ -\frac{(1-\gamma)^2 c^2}{2 \sum_{j=0}^{t-1} a_j^2 \prod_{i=j+1}^{t-1} (1-\eta_i)^2} \right\}, \tag{95}
\end{aligned}$$

where (b) is derived from Eq. equation 94. \square

Corollary E.1. *Let $c > 0$, $\gamma < 1$ and $a_t > 0$ for any $t \in [0 : T-1]$. Consider a sequence of random variables $\{v^i\}_{i=0}^{T-1} \subset [0, c]$, which satisfies $\prod_{i=0}^{T-1} (1+\eta_i)^{-1} c - v^0 \geq \gamma c$ and $\mathbb{E}[v^{t+1} | \mathcal{F}^t] \leq (1+\eta_t)v^t$ with stepsize $\eta_t \geq 0$, given $\mathbb{E}[e^{\lambda(v^{t+1} - \mathbb{E}[v^{t+1} | \mathcal{F}^t])} | \mathcal{F}^t] \leq e^{\frac{\lambda^2 a_t^2}{2}}$ almost surely for any $\lambda \in \mathbb{R}$. Then, there is*

$$\mathbb{P}(v^T > c) \leq \max_{t \in [1:T]} \exp \left\{ -\frac{\gamma^2 c^2}{2 \sum_{j=0}^{t-1} a_j^2 \prod_{i=0}^j (1+\eta_i)^{-2}} \right\}.$$

Lemma E.4. *For $L, K \in \mathbb{N}_+$, consider $T \in \mathbb{N}^+$ such that $LK \leq T < (L+1)K$. Then we have*

$$\sum_{t=0}^T \left(\prod_{i=t}^T (1-c\eta_i) \right) \eta_t^2 \leq \frac{2\eta_0}{c}, \tag{96}$$

where $\eta_t = \frac{\eta_0}{2^t}$ if $lK \leq t \leq \min\{(l+1)K-1, T\}$ for any $l \in [0 : L]$ and $c > 0$ is a constant.

Proof. For any $l \in [0 : L]$, we have

$$\begin{aligned}
\sum_{t=lK}^{(l+1)K-1} \left(\prod_{i=t}^T (1-c\eta_i) \right) \eta_t^2 &= \eta_{lK}^2 \left(\prod_{i=(l+1)K}^T (1-c\eta_i) \right) \sum_{t=lK}^{(l+1)K-1} (1-c\eta_{lK})^{(l+1)K-1-t} \\
&\leq \frac{\eta_{lK}}{c} \left(\prod_{i=(l+1)K}^T (1-c\eta_i) \right). \tag{97}
\end{aligned}$$

Therefore, we obtain the following estimation

$$\begin{aligned}
\sum_{t=0}^T \left(\prod_{i=t}^T (1-c\eta_i) \right) \eta_t^2 &\leq \sum_{t=0}^{LK-1} \left(\prod_{i=t}^T (1-c\eta_i) \right) \eta_t^2 + \sum_{t=LK}^T (1-c\eta_{LK})^{T-t} \eta_{LK}^2 \\
&\stackrel{(a)}{\leq} \frac{\sum_{l=0}^L \eta_{lK}}{c} \leq \frac{2\eta_0}{c}. \tag{98}
\end{aligned}$$

\square

Lemma E.5. *Under Assumption 3.3 and the setting of Theorem B.2, we have*

$$\eta(\mathbf{I} - \eta\widehat{\mathbf{H}})^{2t} \mathbf{H} \preceq \frac{25}{t+1} \mathbf{I},$$

for any $t \in [0 : T-1]$.

Proof. For index $i \in [1 : D]$, we have

$$\eta(\mathbf{I}_{1:D} - \eta\widehat{\mathbf{H}}_{1:D})^{2t} \mathbf{H}_{1:D} = 25\eta(\mathbf{I}_{1:D} - \eta\widehat{\mathbf{H}}_{1:D})^{2t} \widehat{\mathbf{H}}_{1:D} \preceq \frac{25}{t+1} \mathbf{I}_{1:D},$$

since $(1-x)^t \leq \frac{1}{(t+1)x}$ for any $x \in (0, 1)$. For index $i \in [D+1 : M]$, we obtain

$$\eta\mathbf{H}_{i,i} \leq \frac{1}{T} \leq \frac{1}{t+1}, \tag{99}$$

according to the parameter setting in Theorem B.2 for any $t \in [1 : T-1]$. \square

2376 **Lemma E.6.** Suppose Assumption 3.1 hold and let $\mathbf{z} = \Pi_M \mathbf{x} \in \mathbb{R}^M$. Then there exists a constant
2377 $\gamma > 0$ such that
2378

$$\mathbb{E} [\mathbf{A}\mathbf{z}\|\mathbf{z}\|_{\mathbf{A}^\top \mathbf{B}\mathbf{A}}^2 \mathbf{z}^\top \mathbf{A}^\top] \preceq \gamma \langle \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top, \mathbf{B} \rangle \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top, \quad (100)$$

2380 for any diagonal PSD matrix $\mathbf{A} \in \mathbb{R}^{M \times M}$ and PSD matrix $\mathbf{B} \in \mathbb{R}^{M \times M}$.
2381

2382 *Proof.* We denote $\mathbf{D} := \mathbb{E}[\mathbf{A}\mathbf{z}\|\mathbf{z}\|_{\mathbf{A}^\top \mathbf{B}\mathbf{A}}^2 \mathbf{z}^\top \mathbf{A}^\top]$. For any $i, j \in [1 : M]$ and $i \neq j$, we have
2383 $\mathbf{D}_{i,j} = 2\lambda_i \lambda_j \mathbf{A}_{i,i} \mathbf{A}_{j,j} (\mathbf{A}^\top \mathbf{B}\mathbf{A})_{i,j}$. In addition, we also have
2384

$$\mathbf{D}_{i,i} = \mathbb{E} [\|\mathbf{z}\|_{\mathbf{A}^\top \mathbf{B}\mathbf{A}}^2] \mathbf{A}_{i,i}^2 \lambda_i + (\mathbf{A}^\top \mathbf{B}\mathbf{A})_{i,i} \mathbf{A}_{i,i}^2 \text{Var} [\mathbf{z}_i^2] \leq (C+1) \mathbb{E} [\|\mathbf{z}\|_{\mathbf{A}^\top \mathbf{B}\mathbf{A}}^2] \mathbf{A}_{i,i}^2 \lambda_i.$$

2385 Therefore, we obtain that
2386

$$\begin{aligned} \mathbf{D} &\preceq (C+1) \mathbb{E} [\|\mathbf{z}\|_{\mathbf{A}^\top \mathbf{B}\mathbf{A}}^2] \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top + 2\mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top \mathbf{B}\mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top \\ &\preceq (C+1) \mathbb{E} [\|\mathbf{z}\|_{\mathbf{A}^\top \mathbf{B}\mathbf{A}}^2] \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top \\ &\quad + 2 \left\| (\mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top)^{1/2} \mathbf{B} (\mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top)^{1/2} \right\|_2^2 \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top \\ &\stackrel{(a)}{\preceq} (C+2) \langle \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top, \mathbf{B} \rangle \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top, \end{aligned}$$

2387 where (a) is derived from that $\langle \mathbf{A}\mathbb{E} [\mathbf{z}\mathbf{z}^\top] \mathbf{A}^\top, \mathbf{B} \rangle = \mathbb{E} [\|\mathbf{z}\|_{\mathbf{A}^\top \mathbf{B}\mathbf{A}}^2]$ and $\|\mathbf{H}^{1/2} \mathbf{B} \mathbf{H}^{1/2}\|_2^2 \leq \langle \mathbf{H}, \mathbf{B} \rangle$
2388 for any PSD matrix $\mathbf{B}, \mathbf{D} \in \mathbb{R}^{M \times M}$ since
2389

$$\begin{aligned} \mathbf{a}^\top \mathbf{H}^{1/2} \mathbf{B} \mathbf{H}^{1/2} \mathbf{a} &= \langle \mathbf{H}^{1/2} \mathbf{a} \mathbf{a}^\top \mathbf{H}^{1/2}, \mathbf{B} \rangle \\ &\leq \langle \mathbf{H}^{1/2} \mathbf{a} \mathbf{a}^\top \mathbf{H}^{1/2}, \mathbf{B} \rangle + \langle \mathbf{H}^{1/2} \mathbf{a}_\perp \mathbf{a}_\perp^\top \mathbf{H}^{1/2}, \mathbf{B} \rangle \\ &= \langle \mathbf{H}, \mathbf{B} \rangle. \end{aligned}$$

2390 Therefore, by choosing $\gamma = (C+2)$, we obtain Eq. equation 100. \square
2391

2392 **Lemma E.7.** Under the setting of Theorem B.2, suppose following inequality holds
2393

$$\mathbf{B}_{\text{diag}}^{t+1} \preceq \left(\mathbf{I} - \eta \widehat{\mathcal{G}} \right)^{t+1} \circ \mathbf{B}_{\text{diag}}^0 + \tau \eta \sum_{i=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t+1-i} \cdot \mathbf{I},$$

2394 for any $t \in [0 : T-1]$ and some constant $\tau > 0$. Then, we have
2395

$$\sum_{i=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t+1-i} \leq \left\langle \sum_{i=0}^t \frac{(\mathbf{I} - \eta \widehat{\mathbf{H}})^{2i} \mathbf{H}}{t+1-i}, \mathbf{B}^0 \right\rangle + 2\tau \eta \log(t) \text{tr}(\mathbf{H}) \sum_{i=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t+1-i},$$

2396 for any $t \in [1 : T]$.
2397

2398 *Proof.* According to the condition of this lemma, we have
2399

$$\langle \mathbf{H}, \mathbf{B}^t \rangle \leq \left\langle (\mathbf{I} - \eta \widehat{\mathbf{H}})^{2t} \mathbf{H}, \mathbf{B}^0 \right\rangle + \tau \eta \text{tr}(\mathbf{H}) \sum_{i=0}^{t-1} \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t-i}. \quad (101)$$

2400 Applying Eq. equation 101 to each $\langle \mathbf{H}, \mathbf{B}^t \rangle$, we obtain
2401

$$\begin{aligned} \sum_{i=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{t+1-i} &\leq \left\langle \sum_{i=0}^t \frac{(\mathbf{I} - \eta \widehat{\mathbf{H}})^{2i} \mathbf{H}}{t+1-i}, \mathbf{B}^0 \right\rangle + \tau \eta \text{tr}(\mathbf{H}) \sum_{i=0}^t \sum_{k=0}^{i-1} \frac{\langle \mathbf{H}, \mathbf{B}^i \rangle}{(t+1-i)(i-k)} \\ &\leq \left\langle \sum_{i=0}^t \frac{(\mathbf{I} - \eta \widehat{\mathbf{H}})^{2i} \mathbf{H}}{t+1-i}, \mathbf{B}^0 \right\rangle + \tau \eta \text{tr}(\mathbf{H}) \sum_{k=0}^{t-1} \frac{\langle \mathbf{H}, \mathbf{B}^k \rangle}{t+1-k} \sum_{i=k+1}^t \left(\frac{1}{t+1-i} + \frac{1}{i-k} \right) \\ &\leq \left\langle \sum_{i=0}^t \frac{(\mathbf{I} - \eta \widehat{\mathbf{H}})^{2i} \mathbf{H}}{t+1-i}, \mathbf{B}^0 \right\rangle + 2\tau \eta \log(t) \text{tr}(\mathbf{H}) \sum_{k=0}^t \frac{\langle \mathbf{H}, \mathbf{B}^k \rangle}{t+1-k}. \end{aligned}$$

2402 \square

2430

F SIMULATIONS

2431
 2432 In this paper, we present simulations in a finite but large dimension ($d = 10,000$). We artificially
 2433 generate samples from the model $y = \langle \mathbf{x}, (\mathbf{v}^*)^{\odot 2} \rangle + \xi$, where $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{H})$, $\mathbf{H} = \text{diag}\{i^{-\alpha}\}$,
 2434 $\mathbf{w}_i^* = i^{-\frac{\beta-\alpha}{4}}$, and $\xi \sim \mathcal{N}(0, 1)$ is independent of \mathbf{x} . In our simulations, given a total of T iteration,
 2435 we assume that Algorithm 1 can access T independent samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^T$ generated by the above
 2436 model. h in Algorithm 1 is set to $\frac{T}{\log_2(T)}$. We numerically approximate the expected error by
 2437 averaging the results of 100 independent repetitions of the experiment. In the following, we detail
 2438 the specific experimental settings and present the results obtained for each scenario.
 2439

2440

- **Figure F (a):** We compare the curve of mean error of SGD against the number of iteration
 2441 steps for both linear and quadratic models, under the setting $\alpha = 3, \beta = 2$ and $T = 500$.
 2442 The results show that the quadratic model exhibits a phase of diminishing error, while the
 2443 linear model demonstrates a continuous, steady decrease in error.
- **Figure F (b):** We compare the curve of mean error of SGD against the number of iteration
 2444 steps for both linear and quadratic models, under the setting $\alpha = 2.5, \beta = 1.5$ and $T = 500$.
 2445 The results show that the quadratic model exhibits a phase of diminishing error, while the
 2446 linear model demonstrates a continuous, steady decrease in error.
- **Figure F (c):** We compare the curve of mean error of SGD against the number of sample
 2447 size for both linear and quadratic models, under the setting $\alpha = 3, \beta = 2$ and T ranging
 2448 from 1000 to 5000. The results indicate that the quadratic model outperforms the linear
 2449 model and exhibits convergence behavior that is closer to the theoretical algorithm rate.
- **Figure F (d):** We compare the curve of mean error of SGD against the number of sample
 2450 size for both linear and quadratic models, under the setting $\alpha = 2.5, \beta = 1.5$ and T
 2451 ranging from 1000 to 5000. The results indicate that the quadratic model outperforms the
 2452 linear model and exhibits convergence behavior that is closer to the theoretical algorithm
 2453 rate.
- **Figure F (e):** We compare the curve of mean error of SGD against the number of sample
 2454 size for quadratic models with model size $M = 10, 30, 50, 100, 200$, under the setting
 2455 $\alpha = 3, \beta = 2$ and T ranging from 1 to 10000. The results show that for a fixed M , when
 2456 T is small, the convergence rate approaches the rate observed as $M \rightarrow \infty$. As T increases
 2457 sufficiently, the convergence rate stabilizes. Increasing M results in an increase in the value
 2458 of at which this stabilization occurs, which is consistent with the scaling law.
- **Figure F (f):** We compare the curve of mean error of SGD against the number of sample
 2459 size for quadratic models with model size $M = 10, 30, 50, 100, 200$, under the setting
 2460 $\alpha = 2.5, \beta = 1.5$ and T ranging from 1 to 10000. The results exhibit similar patterns to
 2461 those observed in the previous figure.

2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483

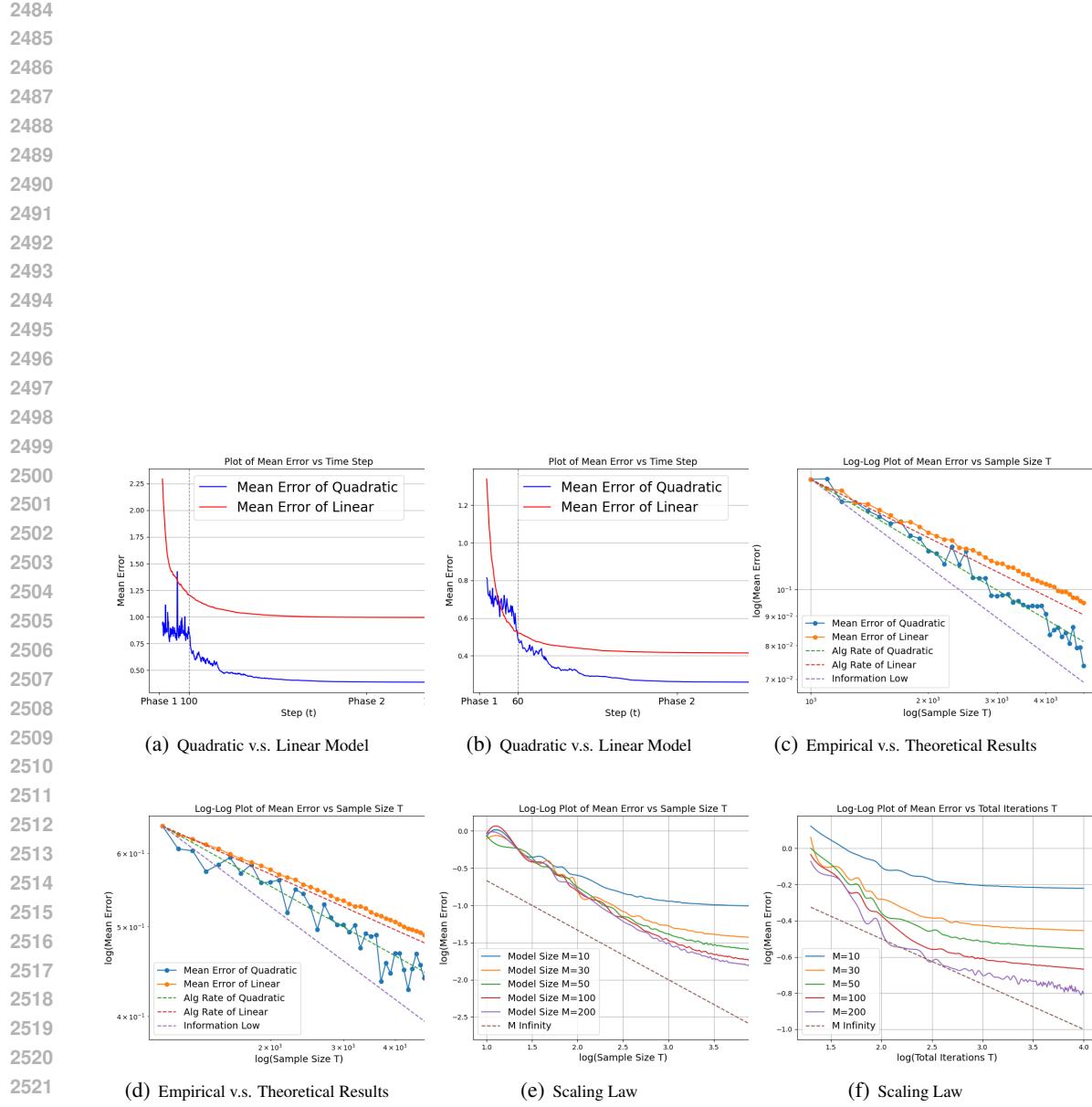


Figure 2: Numerical simulation results.