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ABSTRACT

In machine learning, the scaling law describes how the model performance im-
proves with the model and data size scaling up. From a learning theory per-
spective, this class of results establishes upper and lower generalization bounds
for a specific learning algorithm. Here, the exact algorithm running using a spe-
cific model parameterization often offers a crucial implicit regularization effect,
leading to good generalization. To characterize the scaling law, previous theoret-
ical studies mainly focus on linear models, whereas, feature learning, a notable
process that contributes to the remarkable empirical success of neural networks,
is regretfully vacant. This paper studies the scaling law over a linear regres-
sion with the model being quadratically parameterized. We consider infinitely
dimensional data and slope ground truth, both signals exhibiting certain power-
law decay rates. We study convergence rates for Stochastic Gradient Descent and
demonstrate the learning rates for variables will automatically adapt to the ground
truth. As a result, in the canonical linear regression, we provide explicit separa-
tions for generalization curves between SGD with and without feature learning,
and the information-theoretical lower bound that is agnostic to parametrization
method and the algorithm. Our analysis for decaying ground truth provides a new
characterization for the learning dynamic of the model.

1 INTRODUCTION

The rapid advancement of large-scale models has precipitated a paradigm shift across AI field, with
the empirical scaling law emerging as a foundational principle guiding practitioners to scale up the
model. The neural scaling law (Kaplan et al., 2020; Bahri et al., 2024) characterized a polynomial-
type decay of excess risk against both the model size and training data volume. Originated from
empirical observations, this law predict the substantial improvements of the model performance
given abundant training resources. Enough powerful validations have supported the law as critical
tools for development of model architecture and allocation of computational resources.

From the statistical learning perspective, neural scaling law formalizes an algorithm-dependent gen-
eralization that explicitly quantify how excess risk diminishes with increasing model size and sample
size. This paradigm diverges from the classical learning theory, which prioritizes algorithm-agnostic
guarantees through a uniform convergence argument for the hypotheses. Empirically, the neural
scaling law demonstrates a stable polynomial-type decay of excess risk. This phenomenon persists
even as model size approaches infinity, challenging the traditional intuitions about variance explo-
sion. Theoretically, this apparent contradiction implies the role of implicit regularization. Learning
algorithms, when coupled with specific parameterized architectures, realize good generalization that
suppresses variance explosion. The critical interplay between parameterization methods, optimiza-
tion dynamics, and generalization, positions algorithmic preferences as an implicit regularization
governing scalable learning.

Theoretical progress in characterization of the polynomial-type scaling law has largely centered on
linear models, motivated by two synergistic insights. First, the Neural Tangent Kernel (NTK) theory
(Jacot et al., 2018; Arora et al., 2019) reveals that wide neural networks, when specially scaled and
randomly initialized, can be approximated by linearized models, bridging nonlinear architectures to
analytically tractable regimes. Second, linear systems allow for precise characterization of learning
dynamics. The excess risk of linear model is associated with two key factors, the covariance operator
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(a) Quadratic v.s. Linear Model (b) Quadratic v.s. Linear Model (c) Empirical v.s. Theoretical Results

Figure 1: Empirical results on the convergence rate of quadratically parameterized model with spec-
tral decay v.s. traditional linear model. (a) and (b) show the curve of mean error against the number
of iteration steps, with α = 2.5, β = 1.5 in (a) and α = 3, β = 2 in (b), respectively. (c) show
the logarithmic curve of final mean loss against the sample size, where the solid lines represent the
empirical results and the dashed lines represent the theoretical rates.

spectrum and the regularity of ground truth (Lin et al., 2024; Bahri et al., 2024). In the Reproducing
Kernel Hilbert Space (RKHS) framework, these factors can be described by the capacity of the
kernel and source conditions of the target function (Caponnetto & De Vito, 2007).

Compared with traditional studies in linear regression, recent analyses have shifted focus to high-
dimensional problems with non-uniform and fine-grained covariance spectra and source condi-
tions (Caponnetto & De Vito, 2007; Bartlett et al., 2021). The NTK spectrum is shown to ex-
hibit power-law decay when the inputs are uniformly distributed on the unit sphere (Bietti & Mairal,
2019; Bietti & Bach, 2021). In the offline setting, Gradient Descent (GD) and kernel ridge regression
(KRR) exhibit the implicit regularization and multiple descents phenomena, under various geome-
tries of the covariance spectrum and source conditions (Gunasekar et al., 2017; Bartlett et al., 2020;
Ghorbani et al., 2021; Zhang et al., 2024b). In the more widely studied online setting, Stochastic
Gradient Descent (SGD) has been proven to achieve a polynomial excess risk under a power-law
decay covariance spectrum and ground truth parameter (Dieuleveut & Bach, 2016; Lin & Rosasco,
2017; Wu et al., 2022).

However, significant gaps persist in explaining the scaling laws when relying on simplified lin-
ear models. A primary limitation of these models is their inability to capture the feature learning
process, a mechanism that is widely regarded as crucial to the empirical success of deep neural
networks (LeCun et al., 2015). This process enables neural networks to autonomously extract high-
quality hierarchical representations from data, leading to effective generalization. This limitation
arises because linear models inherently restrict the capacity to learn feature representations and
tend to rapidly diverge from the initial conditions. In linear models, the parameter trajectory under
SGD follows a predictable pattern: the estimation bias contracts at a constant rate proportional to
the eigenvalue of each feature, while variance accumulates uniformly. However, neural networks
are not constrained by an initial feature set; instead, they adaptively reconfigure their internal rep-
resentations through coordinated parameter updates. The feature learning can often improve the
performances. For example, even the enhanced convolutional neural tangent kernel based on the lin-
earization of neural networks in the infinite-width limit has a performance gap compared to neural
networks on the CIFAR10 dataset (Li et al., 2019).

In this paper, we study a quadratically parameterized model: f (x) =
〈
Sx,v⊙2

〉
, where S ∈

RM × H is the sketch matrix, and x ∈ H is the input data, and v ∈ RM are the model parameters,
as an alternative testbed to study the scaling law. This model can be regarded as a “diagonal”
linear neural network and exhibits feature learning capabilities. As shown in Figure 1 (a) and (b),
linear models exhibit a empirically suboptimal convergence rate on excess risk under SGD. This
suboptimal performance is not solely attributed to the limitations of SGD itself. As demonstrated
in Figure 1 (c), SGD achieves a significantly faster convergence rate on excess risk in quadratically
parameterized models, aligning with our theoretical findings. Note that the previous studies for
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quadratically parameterized models (HaoChen et al., 2021) often assume a sparse ground truth for
the model where the variance will explode with the number of non-zero elements increasing and
no polynomial rates are established. We instead consider an infinitely dimensional data input and
ground truth, whose signal exhibits certain power-law decay rates. Specifically, for constants α, β >
1, we assume that the eigenvalues of the covariance matrix decay as λi ≍ i−α and that v∗

i the i-th
alignment coordinate of the ground truth satisfies λi (v∗

i )
4 ≍ i−β . Suppose the model has access to

the sketched covariates and their response, we study the excess risk of quadratically parameterized
predictor with M parameters and trained by SGD with tail geometric decay schedule of step size,
given T training samples.

We establish the upper bound for the excess risk, demonstrating that its follows a piecewise power
law with respect to both the model size and the sample size throughout the training process. More
concretely, the upper bounds of the excess riskRM (vT )− E[ξ2] behaves as

1

Mβ−1︸ ︷︷ ︸
approximation

+
σ2D

T︸ ︷︷ ︸
variance

+
D

T
+

1

Dβ−1
1D<M︸ ︷︷ ︸

bias

where D = min
{
T 1/max{β,(α+β)/2},M

}
serves as the effective dimension. The above result

reveals that, for a fixed sample size, increasing the model size is initially beneficial, but the re-
turns begin to diminish once a certain threshold is reached. Moreover, when the model size is
large enough, SGD achieves the excess risk as Õ

(
T−1+ 1

β

)
when α ≤ β, and the excess risk as

Õ
(
T− 2β−2

α+β

)
. This indicates that when the true parameter aligns with the covariance spectrum

(α ≤ β), the quadratically parameterized model, similar to the linear model, achieves the optimal
rate (Zhang et al., 2024a). On the other hand, when the true parameter opposes the covariance
spectrum (α > β), SGD achieves a rate of Õ

(
T− 2β−2

α+β

)
in the quadratically parameterized model,

which outperforms the best rate SGD can achieve in the linear model Õ
(
T− β−1

α

)
(Zhang et al.,

2024a).

In our analysis, we characterize the learning process of SGD into two typical stages. In the first
“adaptation” stage, the algorithm implicitly truncates the first D coordinates to form the effective
dimension set S, based on the initial conditions. The variables within S grow and oscillate around
the ground truth, while the remaining variables are constrained by a constant multiple of the ground
truth, leading to an acceptable excess risk. In the second “estimation” stage, the variables in the
effective dimension set S converge to the ground truth, while the other variables remain within a
region that produces a tolerable level of excess risk. The advantage beyond the linear model is easy
to be observed in the “estimation” stage, where the step size is scaled by the certain magnitude of
the ground truth due to the adaption, resulting in a faster convergence rate for the bias term.

Due to the non-convex nature of the quadratically parameterized model, our analysis is much more
involved. The main challenge in our analysis is the diverse scaling of the ground truth signals and the
anisotropic gradient noise caused by the diverse data eigenvalues. This requires us to provide indi-
vidual bounds for the model parameters through the analysis and proposes a refined characterization
for the learning process. This challenge does not exist in the traditional analysis in the quadratically
parameterized model, since they consider near isotropic input data and Θ(1) ground truth (HaoChen
et al., 2021). By constructing non-trivial couplings and employing truncated sequences, we provide
a precise coordinate-wise analysis for the SGD dynamics, thereby overcoming this challenge.

We summarize the contribution of this paper as follows:

• The learning curves of SGD is proposed based on a quadratically parameterized model that
emphasizes feature learning. We establish excess risk against sample and model sizes.

• A theoretical analysis for the dynamic of the quadratically parameterized model is of-
fered, where we propose a new characterization to deal with the decaying ground truth
and anisotropic gradient noise.
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2 RELATED WORKS

Linear Regression. Linear regression, a cornerstone of statistical learning, achieves information-
theoretic optimality Õ

(
dσ2/T

)
in finite dimensions for both offline and online settings (Bach &

Moulines, 2013; Jain et al., 2018; Ge et al., 2019). Recent advances extend analyses to high-
dimensional regimes under eigenvalue regularity conditions and parameter structure (Raskutti et al.,
2014; Gunasekar et al., 2017; Bartlett et al., 2020; Hastie et al., 2022; Tsigler & Bartlett, 2023).
Offline studies characterize implicit bias, benign overfitting, and multi-descent phenomena linked
to spectral geometries (Liang et al., 2020; Ghorbani et al., 2021; Mei & Montanari, 2022; Lu et al.,
2023; Zhang et al., 2024b), while online analyses reveal SGD’s phased complexity release and co-
variance spectrum-dependent overfitting (Dieuleveut & Bach, 2016; Dieuleveut et al., 2017; Lin
& Rosasco, 2017; Ali et al., 2020; Zou et al., 2021a;b; Wu et al., 2022; Varre et al., 2021). Re-
cent work quantifies SGD’s risk scaling under power-law spectral decays (Paquette et al., 2024; Lin
et al., 2024; Bordelon et al., 2024; Bahri et al., 2024). We follow the geometric decay schedule of
the step size (Ge et al., 2019; Wu et al., 2022; Zhang et al., 2024a) in Phase II due to its superior-
ity in balancing rapid early-phase convergence and stable asymptotic refinement (Ge et al., 2019).
However, in analysis of Phase II, we further require constructing auxiliary sequences to reach the
desired convergence rate, which is much more technical.

Feature Learning. The feature learning ability of neural networks is the core mechanism behind
their excellent generalization performance. In recent years, theoretical research has primarily fo-
cused on two directions: one is the analysis of infinitely wide networks within the mean-field
framework, see e.g. Mei et al. (2018); Chizat & Bach (2018), and the other is the study of how
networks align with low-dimensional objective functions including single-index models (Ba et al.,
2022; Mousavi-Hosseini et al., 2022; Lee et al., 2024) and multi-index models (Damian et al., 2022;
Vural & Erdogdu, 2024). Although significant progress has been made in these areas, the mean-field
mode lacks a clear finite sample convergence rate. Assumptions such as sparse or low-dimensional
isotropic objective functions weaken the generality and fail to recover the polynomial decay of gen-
eralization error with respect to sample size and model parameters. In this paper, we follow the
previous quadratic parameterization (Vaskevicius et al., 2019; Woodworth et al., 2020; HaoChen
et al., 2021) while develop a generalization error analysis under an anisotropic covariance structure,
yielding generalization error results similar to those predicted by the neural scaling law.

3 SET UP

3.1 NOTATION

In this section, we introduce the following notations adopted throughout this work. LetO(·) and Ω(·)
denote upper and lower bounds, respectively, with a universal constants, while Õ(·) and Ω̃(·) ignore
polylogarithmic dependencies. For functions f and g: f ≲ g denotes f = Õ(g); f ≳ g denotes
f = Ω̃(g); f ≍ g indicates g ≲ f ≲ g. We denote R[z]≤k as the vector space of polynomials with
real coefficients in variables z = (z1, · · · , zM ), of degree at most k. For a positive integer M , let
[M ] denote the set {1, · · · ,M}.

3.2 QUADRATICALLY PARAMETERIZED MODEL

We denote the covariate (feature) vector by x ∈ H, where H is a finite d-dimensional or countably
infinite dimensional Hilbert space, and the corresponding response by y ∈ R. Notice that the
algorithm operates solely in finite-dimensional spaces. Following Lin et al. (2024), we assume
access to M -dimensional sketched covariate vectors and their corresponding responses, denoted
(Sx, y), where S ∈ RM ×H is a fixed sketch matrix.

We focus on a quadratically parameterized model and measure the population risk of parameter v
by the mean squared loss as:

RM (v) = E(x,y)∼D
(〈
Sx,v⊙2

〉
− y
)2
, (1)

where the expectation is taken over the joint distribution D of (x, y). In this paper, we study the
quadratically parameterized model with the predictor fv (x) :=

〈
Sx,v⊙2

〉
for any v ∈ RM . One
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can generally use the parameterization as ⟨Sx,v⊙2
+ − v⊙2

− ⟩ by the same technique as Woodworth
et al. (2020). In contrast with linear model (Lin et al., 2024), quadratically parameterized model
allows discovery of discriminative features through learning towards dominant directions of target.
Thus, it models the feature learning mechanism while ensuring analytical tractability.

3.3 DATA DISTRIBUTION ASSUMPTIONS

We make the following assumptions of data distribution.

Assumption 3.1 (Anisotropic Gaussian Data, Sub-Gaussian Noise, and Gaussian Remainder).

[A1] (Independent Gaussian Data) For any i ∈ [M ], the sketched covariate (Sx)i ∼ N (0, λi). For
any i ̸= j, (Sx)i and (Sx)j are independent.

[A2] (Sub-Gaussian Noise and Gaussian Remainder Term) There exist v∗ ∈ RM and a sub-Gaussian
random variable ξ with parameter σξ > 0 (see Definition E.1 for details) such that the remainder
term ζM := y − ⟨Sx,v∗⊙2⟩ − ξ follows a normal distribution N (0, σ2

ζM
). Moreover, E [ξζM ] = 0.

Additionally, for any polynomial p(Sx) ∈ R[Sx]≤3, we have E [p(Sx)ξ] = 0 and E [p(Sx)ζM ] = 0.

The assumption for independent Gaussian data is also used in other analyses for the quadratically
parameterized model, such as HaoChen et al. (2021), whereas, we allow non-identical covariates.
The independence assumption resembles (is slightly stronger than) the RIP condition, and is widely
adopted in feature selection, e.g. Candes & Tao (2005), to ensure computational tractability, because
in the worst case, finding sparse features is NP-hard (Natarajan, 1995). To mitigate the limitations
associated with the independence assumption, we further introduce Assumption 3.2 and also estab-
lish a corresponding convergence guarantee (Theorem 4.2) for SGD on quadratically parameterized
models under this assumption.

Assumption 3.2 (General Gaussian Data, Sub-Gaussian Noise and Remainder).

[A3] (General Gaussian Data) The sketched covariate vector Sx ∼ N (0,A), where A is a positive
semi-definite (PSD) matrix. The singular value decomposition (SVD) of A is given by A = QA ·
diag{λi}i∈[M ] ·Q⊤

A.

[A4] (Sub-Gaussian Noise and Remainder Term) There exist v∗ ∈ RM and a sub-Gaussian random
variable ξ with parameter σξ > 0 such that the remainder term ζM := y − ⟨Q⊤

ASx,v∗⊙2⟩ − ξ is
sub-Gaussian with parameter σζM > 0. Moreover, E [ξζM ] = 0. Additionally, for any polynomial
p(Q⊤

ASx) ∈ R[Q⊤
ASx]≤3, we have E

[
p(Q⊤

ASx)ξ
]
= 0 and E

[
p(Q⊤

ASx)ζM
]
= 0.

Assumption 3.2 strictly generalizes Assumption 3.1 by allowing correlated Gaussian covariates with
an arbitrary PSD covariance and by requiring only a sub-Gaussian remainder with low-degree or-
thogonality. Under this broader correlated-Gaussian assumption, the SGD convergence and feature-
learning guarantees for diagonal-network predictors remain valid, and the diagonal independent case
is recovered as a special instance. Our formulation aligns with the sketch method proposed by Lin
et al. (2024). Furthermore, [A3] in Assumption 3.2 holds for an arbitrary sketch matrix under the
assumption that x follows a zero-mean Gaussian distribution.

We derive the scaling law for SGD under the following power-law decay assumptions of the covari-
ance spectrum and prior conditions.

Assumption 3.3 (Specific Spectral Assumptions).

[A5] (Polynomial Decay Eigenvalues) There exists α > 1 such that for any i ∈ [M ], the eigenvalue
of data covariance λi satisfy λi ≍ i−α.

[A6] (Source Condition) There exists β > 1 such that the ground truth parameter v∗ satisfies that for
any i ∈ [M ], λi (v∗

i )
4 ≍ i−β . Moreover, σ2

ζM
=
∑

i>M i−β .

The polynomial decay of eigenvalues and the ground truth has been widely considered to study the
scaling laws for linear models like random feature model (Bahri et al., 2024; Bordelon et al., 2024;
Paquette et al., 2024) and infinite dimensional linear regression (Lin et al., 2024), based on empirical
observations of NTK spectral decompositions on the realistic dataset (Bahri et al., 2024; Bordelon &

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Stochastic Gradient Descent (SGD)

Input: Initial weight v0 = Ω(min{1,M−(β−α)/4})1M , initial step-size η, total sample size T ,
middle phase length h, decaying phase length T1 = ⌊(T − h)/ log(T − h)⌋.
while t ≤ T do

if t > h and (t− h) mod T1 = 0 then
η ← η/2.

end if
Sample a fresh data (xt+1, yt+1) ∼ D.
vt+1 ← vt − η

2∇v

(
fvt(xt+1)− yt+1

)2
.

end while

Pehlevan, 2021). It is used in slope functional regression (Cai & Hall, 2006), and also analogous to
the capacity and source conditions in RKHS (Wainwright, 2019; Bietti & Mairal, 2019). Given that
the optimization trajectory of linear models is intrinsically aligned with the principal directions of the
covariate feature space, this alignment motivates us to adopt analogous assumptions for our model,
thereby enabling direct comparison of learning dynamics through feature space decomposition.

3.4 ALGORITHM

We employ SGD with a geometric decay of step size to train the quadratically parameterized predic-
tor fv to minimize the objective equation 1. Starting at v0, the iteration of parameter vector v ∈ RM

can be represented explicitly as follows:

vt =vt−1 − ηt
(
fvt−1

(
xt)− yt) (vt−1 ⊙ Sxt)

=vt−1 − ηt
(〈

Sxt,
(
vt−1)⊙2

〉
− yt

) (
vt−1 ⊙ Sxt) ,

for t = 1, . . . , T , where {(xt, yt)}Tt=1 are independent samples from distributionD and {ηt}Tt=1 are
the step sizes.

We use the tail geometric decay of step size schedule as describe in Wu et al. (2022). The step
size remains constant for the first T1 + h iterations where h denotes the middle phase length and
T1 := ⌊(T − h)/ log(T − h)⌋. Then the step size halves every T1 steps. Specifically, the decay
schedule of step size is given by:

ηt =

{
η, 0 ≤ t ≤ T1 + h,

η/2l, T1 + h < t ≤ T, l = ⌊(t− h)/T1⌋ ,

The integration of warm-up with subsequent learning rate decay has become a prevalent technique in
deep learning optimization (Goyal, 2017). Within the decay stage, geometric decay schedules have
demonstrated superior empirical efficiency compared to polynomial alternatives, as geometric decay
achieves adaptively balancing aggressive early-stage learning with stable late-stage refinement (Ge
et al., 2019). Motivated by these established advantages, our step size schedule design strategically
combines an initial constant stage with a subsequent geometrically decaying stage. This hybrid
approach inherits the computational benefits of geometric decay while maintaining the stability ben-
efits of warm-up initialization, creating synergistic effects that polynomial decay schedules cannot
achieve (Bubeck et al., 2015).

The algorithm is summarized as Algorithm 1. The initial point v0 and the initial step size η are
hyperparameters of Algorithm 1, and they play a crucial role in determining whether the algorithm
can escape saddle points and converge to the optimal solution. Starting at an initial point near zero,
the constant step size stage allows the algorithm to adaptively extract the important features without
explicitly setting the truncation dimensions while keeping the remaining variables close to zero. The
subsequent geometric decay of the step size guarantees fast convergence to the ground truth.
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4 CONVERGENCE ANALYSIS

The upper bound of last iterate instantaneous risk for Algorithm 1 can be summarized by the fol-
lowing theorem, which provides the guarantee of global convergence for last iterate SGD with tail
geometrically decaying stepsize and a sufficiently small initialization.

Theorem 4.1. Under Assumptions 3.1 and 3.3, we consider a predictor trained by Algo-
rithm 1 with total sample size T and middle phase length h = ⌈T/ log(T )⌉. Let D ≍
min{T 1/max{β,(α+β)/2},M} and η ≍ Dmin{0,(α−β)/2}. The error of output can be bounded from
above by

RM (vT )− E[ξ2] ≍ 1

Mβ−1︸ ︷︷ ︸
approximation

+
σ2D

T︸ ︷︷ ︸
variance

+
D

T
+

1

Dβ−1
1D<M︸ ︷︷ ︸

bias

,
(2)

with probability at least 0.95, where σ2 := σ2
ξ + σ2

ζM
.

Our bound exhibits two key properties: (1) Dimension-free: equation 3 depends on the effective di-
mension D rather than ambient dimension M . (2) Problem-adaptive: D is governed by the spectral
structure of diag{λ1(v∗

1)
2, · · · , λM (v∗

M )2}, which is induced by the multiplicative coupling be-
tween the data covariance matrix and optimal solution determined by the problem. The risk bound
in equation 3 consists of three components: (1) approximation error term, (2) bias error term orig-
inating from vT1 − v∗

1:M at iteration T1 = ⌈(T − h)/ log(T − h)⌉, and (3) variance error term
stemming from the multiplicative coupling between additive noise ξ +

∑
i≥M+1 xi(v

∗
i )

2 and ma-
trix diag{v∗

1:M}. The step size configuration in Theorem 4.1 is strategically designed to achieve
faster convergence.

For larger M , Corollary 4.1 establishes the convergence rate for Algorithm 1 via Theorem 4.1.

Corollary 4.1. Under the setting of the parameters in Theorem 4.1, if T 1/max{β,(α+β)/2} ≍ D <
M , we have {

RM (vT )− E[ξ2] ≍ 1
Mβ−1 + σ2+1

T 1−1/β , if β ≥ α > 1,

RM (vT )− E[ξ2] ≍ 1
Mβ−1 + σ2+1

T (2β−2)/(α+β) , if α > β > 1,

with probability at least 0.95.

Corollary 4.1 demonstrates that under Assumptions 3.1 and 3.3, when the model size M is suffi-
ciently large, the last iterate instantaneous risk of Algorithm 1 exhibits distinct behaviors in two
regimes: (I) β ≥ α > 1 and (II) α ≥ β > 1. We consider the total computational budget as
B =MT , reflecting that Algorithm 1 queries M -dimensional gradients T times.

Given B: If β > α > 1, the optimal last iterate risk is attained with parameter configurations:
M = Ω̃(B

1
1+β ) and T = Ω̃(B

β
1+β ). If α ≥ β > 1, the optimal last iterate risk is attained with

parameter configurations: M = Ω̃(B
1

1+(α+β)/2 ) and T = Ω̃(B
(α+β)/2

1+(α+β)/2 ).

Given Total Sample Size T : So as long as M ≳ T 1/max{β,(α+β)/2}, Corollary 4.1 implicates that
the risk can be effectively reduced by increasing the model size M as much as possible.

For smaller M , Corollary 4.2 provides the convergence rate for Algorithm 1 through Theorem 4.1.

Corollary 4.2. Under the setting of the parameters in Theorem 4.1, if M ≲ T 1/max{β,(α+β)/2}, we
have

RM (vT )− E[ξ2] ≍ 1

Mβ−1
+

(σ2 + 1)M

T
,

with probability at least 0.95.

The risk bound RM (·) in Corollary 4.2 decreases monotonically with increasing M . So as long
as M ≲ T 1/max{β,(α+β)/2}, our analysis implies to increase the model size M until reaching the
computational budget.
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Remark 4.1. For any (random) algorithm v̂ based on i.i.d. data {(xi, yi)}Ti=1 from the true parameter
v∗ ∈ V , the worst-case excess risk convergence rate is limited by the information-theoretic lower
bound. The scaling law, however, describes the excess risk trajectory of a specific algorithm in
a given context during training. Under the covariate distribution assumptions 3.1, and the ground
truth assumption 3.3, prior work (Zhang et al., 2024a) established the info-theoretic lower bound
as T− 1

β . Our analysis shows two distinct regimes: When α ≤ β, SGD in linear and quadratically
parameterized models hits the lower bound, proving statistical optimality. When α > β, SGD in
both misses the bound, yet the quadratically parameterized model has better excess risk than the
linear one. This shows a capacity gap between the two model types, highlighting the importance of
feature learning and model adaptation.

When the covariance matrix of Sx is a general PSD matrix A, we first need to obtain an estimate of
A given by ŨŨ⊤, with Ũ ∈ RM×M . Then, based on the SVD of Ũ = QŨ · diag{γi}i∈[M ] ·P⊤

Ũ
,

the form of the predictor fv(x) in Algorithm 1 is modified to:

fv (x) =
〈
Q⊤

Ũ
Sx,v⊙2

〉
.

To establish convergence of SGD under this setting, we assume that the estimator Ũ satisfies the
following accuracy condition:

Assumption 4.1. Defining UA := QAΣ1/2 where Σ := diag{λi}i∈[M ], then the following in-
equalities hold ∥∥∥ŨŨ⊤ −A

∥∥∥ ≤λ2M min

{
1

D
,
Dmax{β,(α+β)/2}−1

T

}
,

min
R∈RM×M

RR⊤=IM

∥∥∥ŨR−UA

∥∥∥ ≤λM ·min

{
M−max{0, β−α

2 }, 1
D
,
Dmax{β,α+β

2 }−1

T

}
.

For a PSD matrix A, numerous existing works (Stöger & Soltanolkotabi, 2021; Zhuo et al., 2024;
Zhang et al., 2021; 2023; Xiong et al., 2023; Li et al., 2018; Tu et al., 2016) design algorithms
using the parametrization UU⊤ with U ∈ RM×M to achieve convergence in

∥∥UU⊤ −A
∥∥ or

dist (U,UA) which is defined as follows:

dist (U,UA) := min
R∈RM×M

RR⊤=IM

∥UR−UA∥ .

In our setting, we have access to random matrices Sx(Sx)⊤, where E[Sx(Sx)⊤] = A. Compared
to the deterministic matrix factorization problem (Stöger & Soltanolkotabi, 2021; Zhuo et al., 2024;
Zhang et al., 2021; 2023), this only introduces an additional zero-mean random noise. Consequently,
by appropriately modifying existing algorithms for stochastic matrix factorization (e.g., those in
Xiong et al. (2023); Li et al. (2018); Tu et al. (2016)) , we can technically obtain an estimator Ũ that
satisfies Assumption 4.1.
Theorem 4.2. Under Assumptions 3.2, 3.3 and 4.1, we consider a predictor trained by Al-
gorithm 1 with total sample size T and middle phase length h = ⌈T/ log(T )⌉. Let D ≍
min{T 1/max{β,(α+β)/2},M} and η ≍ Dmin{0,(α−β)/2}. The error of output can be bounded from
above by

RM (vT )− E[ξ2] ≲
1

Mβ−1︸ ︷︷ ︸
approximation

+
σ2D

T︸ ︷︷ ︸
variance

+
D

T
+

1

Dβ−1
1D<M︸ ︷︷ ︸

bias

+
∥∥∥ŨŨ⊤ −A

∥∥∥+ dist
(
Ũ,UA

)
,

(3)

with probability at least 0.95, where σ2 := σ2
ξ + σ2

ζM
.

The proof of Theorem 4.2 follows a similar line of reasoning and technique as that of Theorem 4.1.
This is because, after applying QŨ to the sketched covariate vector, the covariance matrix of Q⊤

Ũ
Sx

does not deviate significantly from a diagonal matrix. In fact, the difference between the dynamics

8
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of the parameter v in Theorem 4.1 and those in Theorem 4.2 can be controlled by the distance metric
dist(Ũ,UA) and the norm ∥ŨŨ⊤ −A∥, as detailed in section D. Since Theorem 4.1 is the core
result of this paper and the proof of Theorem 4.2 does not differ substantially from that of Theorem
4.1, we provide only a proof sketch for Theorem 4.1 in the next section.

5 PROOF SKETCH OF THEOREM 4.1

In this section, we introduce the proof techniques sketch of our main result Theorem 4.1, while a
more detailed version is available in section A. The dynamics and analysis of SGD can be divided
into two phases. In Phase I (Adaptation), SGD autonomously truncates the top D coordinates
as S (i.e. S := [D]) without requiring explicit selection of D. Algorithm 1 can converge these
coordinates to a neighborhood of their optimal solutions within T1 iterations with high probability.
The core theorem in this phase is Theorem 5.1:

Theorem 5.1. Under Assumption 3.1, consider a predictor trained via Algorithm 1 with initializa-
tion v0. Let the step size η ≤ η(D, c1), for the effective dimension D and the scaling constant
c1 ∈ (0, 1). The iteration number T1 requires:

T1 ∈
{
[Tl(D, c1), Tu(D, c1)] , if D < M,

[Tl(M, c1),∞) , otherwise.

Then, with high probability, we have{
vT1
i ∈ [(1− c1)v∗

i , (1 + c1)v
∗
i ] , if i ∈ S,

vT1
i ∈

[
0, 32v

∗
i

]
, otherwise .

(4)

In Phase II (Estimation), global convergence to the risk minimizer is achieved over T2 := T − T1
iterations, which can be approximated as SGD with geometrically decaying step sizes applied to a
linear regression problem in the reparameterized feature space Sx ⊙ v∗. This implies that for each
coordinate i ∈ S , the step size in Algorithm 1 is scaled by a certain magnitude of v∗

i . The core
theorem in this phase is Theorem 5.2:

Theorem 5.2. Suppose Assumptions 3.1 and 3.3 hold. By selecting an appropriate step size η0 =
η(D) and middle phase length h, we obtain

RM (vT ) ≲RM (v∗) +
σ2D

T
+ σ2η20T tr

(
H2

D+1:M

)
+
D

T
+ η20T tr

(
H2

D+1:M

)
+

〈
1

η0T
I1:D +HD+1:M ,

(
I− η0Ĥ

) 2T
log(T )

B0

〉
,

with probability at least 0.95, where

H := diag{λi(v∗
i )

2}Mi=1 and Ĥ := diag{λ1(v∗
1)

2, · · · , λN (v∗
N )2,0M−D}.

For the lower bound (see Appendix C), our analysis reveals that for coordinates j ≥ Õ(D), the slow
ascent rate inherently prevents vt

j from approaching the optimal solution v∗
j upon algorithm termi-

nation. This phenomenon induces bias error’s scaling as Ω̃(D−β+1), matching our upper bound
characterization, up to logarithmic factors.

6 CONCLUSIONS

In this paper, we construct the theoretical analysis for the dynamic of quadratically parameterized
model under decaying ground truth and anisotropic gradient noise. Our technique is based on the
precise analysis of two-stage dynamic of SGD, with adaptive selection of the effective dimension
set in the first stage and the approximation of linear model in the second stage. Our analysis charac-
terizes the feature learning and model adaptation ability with clear separations for convergence rates
in the canonical linear model.
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A DETAILED PROOF SKETCH OF THEOREM 4.1

A.1 PHASE I: ADAPTATION

During the “adaptation” phase, Algorithm 1 implicitly identifies the first D coordinates as the effec-
tive dimension set S := [D]. For each i ∈ S, vT1

i converges with high probability to a rectangular
neighborhood centered at v∗

i with half-width c1v∗
i . Here, c1 ∈ (0, 1) denotes a scaling constant. For

each i ∈ Sc := [M ] \ S , vT1
i remains bounded above by 3

2v
∗
i with high probability.

To characterize the mainstream dynamic, our analysis employs a probabilistic sequence synchro-
nization technique. That is, from the sequence {vt}T1

t=0 generated by Algorithm 1, we construct a
control sequence {qt}T1

t=0 to rule out some low-probabilistic unbounded trajectories in {vt}T1
t=0. We

first establish Lemmas A.1–A.3 for the control sequence.

In the analysis of Phase I, we need to delve into the dynamic processes of the two-part parameters
separated by the effective dimension D. It is non-trivial because in the traditional analysis of prior
work to recover the sparse ground truth (HaoChen et al., 2021), it is unnecessary to introduce D. In
Lemma A.1, utilizing a constructive supermartingale, we formally characterize the one-step iterative
behavior of qt

i when qt
i > v∗

i , which approximately satisfies: qt+1
i −v∗

i ≲ (1−ηO(λi(v∗
i )

2))(qt
i−

v∗
i ). Then we show the last iterate qT1 satisfies a high-probability upper bound, matching the bound

in Theorem 5.1.
Lemma A.1. Under the setting of Theorem 5.1, both qT1

i ≤ (1+c1)v
∗
i for any i ∈ S and qT1

i ≤ 3
2v

∗
i

for any i ∈ Sc occur with high probability.

Lemmas A.2 and A.3 collectively address the lower bound of qT1 in Theorem 5.1. To estab-
lish Lemma A.2, for any i ∈ S , we construct a submartingale to formally analyze the one-
step iterative behavior of qt

i when qt
i < (1 − c1/2)v

∗
i , which approximately satisfies: qt+1

i ≳
(1 + ηc1O(λi(v∗

i )
2)qt

i. According to the concentration inequalities, we obtain the following con-
clusion.
Lemma A.2. Under the setting of Theorem 5.1, with high probability, either maxt≤T1

qt
i ≥ (1 −

c1/2)v
∗
i for any i ∈ S , or at least one of the following statements fails: qT1

i ≤ (1 + c1)v
∗
i for any

i ∈ S and qT1
i ≤ 3

2v
∗
i for any i ∈ Sc.

Lemma A.3 establishes the lower bound for qT1
i (i ∈ S). The proof mirrors that of Lemma A.1.

Lemma A.3. Under the setting of Theorem 5.1, for any i ∈ S , with high probability, either
maxt≤T1

qt
i < (1− c1/2)v∗

i or qT1
i ≥ (1− c1)v∗

i .

According to the high-probability equivalence between {qt}T1
t=0 and {vt}T1

t=0, Lemmas A.1–A.3’s
conclusions transfer to vT1 with high-probability guarantees. Therefore, we obtain Theorem 5.1.

A.2 PHASE II: ESTIMATION

We now start the analysis of Phase II for Algorithm 1. The main idea stems from approximat-
ing Algorithm 1’s iterations as SGD running over a linear model with rescaled features Sx ⊙ v∗.
The adaptive rescale size v∗ enables the quadratic model to achieve accelerated convergence rates
compared to its linear counterpart.

The proof of Theorem 5.2 is structured in two key parts. In Part I, Theorem A.1 establishes that Al-
gorithm 1 iterates remain within an uniform neighborhood of v∗ (equation 5) with high probability.
Theorem A.1. Under Assumption 3.1, we consider the iterative process of Algorithm 1, beginning
from step T1 with the same step size η as in Theorem 5.1. If D < M , let 1 ≤ T2 ≤ Tu(D) where
Tu(D) ∈ N+ depends on D; otherwise, let T2 ≥ 1. Then, with high probability, we have{

vT1+t
i ∈

[
1
2v

∗
i ,

3
2v

∗
i

]
, if i ∈ [D],

vT1+t
i ∈ [0, 2v∗

i ] , otherwise ,
∀t ∈ [T2]. (5)

Let c1 = 1
4 . According to Theorem 5.1, vT1 satisfies equation 4 with high probability. By employ-

ing the same construction method as that in Lemmas A.1 and A.1, we derive a family of compressed
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supermartingales to characterize the dynamics of {qt}Tt=T1
. Combining the supermartingales con-

centration inequality, we obtain equation 5.

In Part II, we construct an auxiliary bounded sequence {wt}T2
t=1 which is the truncation of

{vT1+t}T2
t=1. The novelty and ingenuity of our analysis based on auxiliary sequence construction lie

in the alignment of {wt}T2
t=1 and {vT1+t}T2

t=1 as wT2 = vT with high probability by Theorem A.1.
Thus our proposed the last iterate risk for wT2 can be extended to vT . Specifically, the update rule
of wt satisfies the following formula with high probability:

wt+1 = wt − ηtHt(wt − v∗) + ηtR
tSxt, (6)

where Ht ∈ RM×M depends on wt and xt, and Rt ∈ RM×M depends on wt, ζtM and ξt. Com-
bining equation 6 with the constraint of {wt}T2

t=1, we observe that the update process of wt approx-
imates that of SGD in traditional linear regression problems (Wu et al., 2022) with reparameterized
features Sx⊙ v∗. The SGD iteration in linear model exhibits structural similarity to equation 6, but
differs in that its Ht and Rt are independent on iterative variables; this independence eliminates the
need for truncated sequences in analytical treatments. Our analysis innovatively introduces the trun-
cated sequence {wt}T2

t=1 to maintain analytical tractability of Ht and Rt. According to equation 6,
we decompose the riskRM (wT2) as follows:

E
[
RM (wT2)

]
−RM (v∗) ≲

〈
H,BT2

〉︸ ︷︷ ︸
bias error

+
〈
H,VT2

〉︸ ︷︷ ︸
variance error

. (7)

For any t ∈ [T2], Bt and Vt are M ×M matrices, derived from the bias and variance terms induced
by wt−v∗, respectively. Since Ht and Rt in equation 6 are both dependent on wt, it is a challenge
to directly establish the full-matrix recursion between Vt+1 and Vt (or Bt+1 and Bt) under the
SGD iteration process like the similar techniques in linear models (Wu et al., 2022). To resolve
this challenge, we novelly consider the recursive relations between diagonal elements of {Vt}T2

t=0

and {Bt}T2
t=0 across discrete time steps, thereby obtaining the estimation for both variance and bias

errors for our linear approximation.

B PROOFS OF UPPER BOUND (THEOREM 4.1)

In this section, we introduce our proof techniques to prove our main result Theorem B.4 on the upper
bound of the last-iteration instantaneous risk of Algorithm 1. As shown in Section 5, the dynamic
of SGD and our analysis can be basically divided into two phases. In the Phase I named “adaption”
phase, we demonstrate that SGD can adaptively identify the first D coordinates as the optimal set
S without explicit selection of D, and bound such D coordinates near the corresponding optimal
solutions by T1 iterations with high probability (refer to Theorem B.1). The analysis of Phase I can
be further separated into two parts:

1. We construct a high-probability upper bound of vT1 . That is for any i ∈ S, vT1
i ≤ (1 +

c1)v
∗
i and for any i ∈ Sc, vT1

i ≤ 3
2v

∗
i (refer to Lemma B.1).

2. We delve into the lower bound of maxt≤T1
vt
i during T1 iterations. With high probability,

for any i ∈ S , maxt≤T1
vt
i converges to a neighborhood of v∗

i (refer to Lemma B.2).
When maxt≤T1

vt
i resides within the v∗

i -neighborhood, the lower bound satisfies vT1
i ≥

(1− c1)v∗
i with high probability (refer to Lemma B.3).

Then we turn to the following Phase II with T2 iterations named “estimation” phase where we
establish the global convergence of Algorithm 1 for risk minimization (refer to Theorem B.2). The
analysis of Algorithm 1’s iterations can be approximated to SGD with geometrically decaying step
sizes on a linear regression problem with reparameterized features Sx⊙v∗. It can also be separated
into two parts:

1. We demonstrate that {vt}T1+T2

t=T1+1 remain confined within the neighborhood∏D
i=1[

1
2v

∗
i ,

3
2v

∗
i ]×

∏M
i=D+1[0, 2v

∗
i ] with high probability (refer to Lemma B.3).
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2. We construct an auxiliary sequence {wt}T2
t=1 aligned to {vT1+t}T2

t=1 with high probability.
We approximate the update process of {wt}T2

t=1 to SGD in traditional linear regression,
with separated bounds of variance term (refer to Lemma B.5) and bias term (refer to Lemma
B.12).

We propose our proof process step by step according to the above sketch. First, for clarity, we
formally define some of the notations to use. We let bold lowercase letters, for example, x ∈ Rd,
denote vectors, and bold uppercase letters, for example, A ∈ Rm×n, denote matrices. We apply
scalar operators to vectors as the coordinate-wise operators of vectors. For vector x ∈ Rd, denote
|x| ∈ Rd with |x|j = |xj |. For two vectors x,y ∈ Rd, denote x ≤ y, if for all j ∈ [d], xj ≤ yj .

Additionally, we use ⟨x,y⟩−i to denote
∑d

j=1
j ̸=i

xjyj . For a sequence of real numbers {vt}t2t=t1 and

a, b ∈ R with a ≤ b, denote vt1:t2 ∈ [a, b] to represent that vt ∈ [a, b] for all t ∈ [t1, t2].

Considering Assumption 3.1, the random variable Sx ∈ RM satisfies the sub-Gaussian condition
with parameter λ1/2i for all i ∈ [M ], and the noise ξ is zero-mean sub-Gaussian with parameter σξ.
For any D ∈ N+, for simplification, we define

σmin(D) := min
j∈[D]

λj(v
∗
j )

2, σ̄min(D) := min
j∈[D]

(v∗
j )

2,

σ̂max(D) := max
j∈[D]

log−1(v0
j ), σ̃max(D) := max

j∈[D+1:M ]
λj .

We also denote the matrix diag{λ1, . . . , λM} as Λ1:M . For b ∈ RM
+ , we defineM(b) = (

∑M
j=1

λjb
4
j )

1/2 and σ2 = σ2
ξ + σ2

ζM
, where σζM = (

∑∞
j=M+1 λj(v

∗
j )

4)1/2. We denote

F t = σ{v0, (Sx1, ζ1M , ξ
1), · · · , (Sxt, ζtM , ξ

t)}

as the filtration involving the full information of all the previous t iterations with σ{·}.

B.1 HIGH-PROBABILITY RESULTS GUARANTEE

Before the analyses of the two phases, we first introduce the guarantee of our high-probability re-
sults. We formally define a series of events for each iteration of Algorithm 1. We demonstrate that
these events occur with high probability throughout the whole T iterations, which indicates that
the control sequence {qt}Tt=0 we define is aligned with the original sequence {vt}Tt=0 with high
probability. This fact is the basis of our high-probability results.

At the t-th iteration, Algorithm 1 requires sampling (Sxt+1, yt+1), where yt+1 = ⟨Sxt+1,v∗⟩ +
ζt+1
M + ξt+1. For simplicity, we denote Sx as x. In order to simply rule out some low-probabilistic

unbounded cases, for each iteration t, we define the following four events as:
Ej,t1 :=

{∣∣xt
j

∣∣ ≤ λ1/2j R
}
, ∀j ∈ [M ],

Ej,t2 (v) :=
{∣∣⟨v⊙2 − v∗⊙2,xt⟩−j

∣∣ ≤ rj(v)R} , ∀j ∈ [M ],

Et3 :=
{∣∣ζtM ∣∣ ≤ σζMR} ,

Et4 :=
{∣∣ξt∣∣ ≤ σξR} ,


where R := O(log(MT/δ)) and rj(v) := O(

∑
i ̸=j λi[(vi)

4 + (v∗
i )

4])1/2 for any v ∈ RM .

In Algorithm 1, the original sequence {vt}Tt=0 follows the coordinate-wise update rule as

vt+1
j =vt

j − ηt
(
⟨vt⊙2,xt+1⟩ − yt+1

)
xt+1
j vt

j

=vt
j − ηt

〈
vt⊙2 − v∗⊙2,xt+1

〉
xt+1
j vt

j + ηt
(
ζt+1
M + ξt+1

)
xt+1
j vt

j ,

for any j ∈ [M ]. Based on Assumption 3.1 and Proposition E.1, we have

min
{
P
(
Ej,t1

)
,P
(
Ej,t2 (vt)

)
,P
(
Et3
)
,P
(
Et4
)}
≥ 1−O

(
δ

MT 2

)
,
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for any j ∈ [M ] and t ∈ [T ]. Then we define the compound event as

E :=


T⋂

t=1

 M⋂
j=1

Ej,t1

∧ M⋂
j=1

Ej,t2 (vt)

∧ Et3∧ Et4
 .

We can directly obtain the probability union bound as follows:

P(E) = 1− P(Ec) ≥1−
T∑

t=1

2− P(Et3)− P(Et4) +
M∑
j=1

(
2− P

(
Ej,t1

)
− P

(
Ej,t2 (vt)

))
≥1−O

(
δ

T

)
. (8)

The high-probability occurrence of event E guarantees our analysis of the coordinate-wise update
dynamics for the control sequence {qt}Tt=0 defined in RM as

qt+1
j = qt

j − ηt
((

qt
j

)2 − (v∗
j

)2) (
xt+1
j

)2
1|xt+1

j |≤λ
1/2
j R

qt
j

− ηt
〈
qt⊙2 − v∗⊙2,xt+1

〉
−j
1|⟨qt⊙2−v∗⊙2,xt+1⟩−j |≤rj(qt)Rx

t+1
j 1|xt+1

j |≤λ
1/2
j R

qt
j

+ ηt

(
ζt+1
M 1|ζt

M |≤σζM
R + ξt+11|ξt|≤σξR

)
xt+1
j 1|xt+1

j |≤λ
1/2
j R

qt
j , (9)

for any j ∈ [M ] with initialization q0 = v0 is consistent with the analysis of {vt}Tt=0 with high
probability as Proposition B.1.

Proposition B.1. For any t ∈ [T ], we have vt = qt with probability at least 1− δ/T .

To simplify the representation of {qt}Tt=0, we introduce four truncated random variables as:

1. x̂ ∈ RM with entries x̂j = xj1|xj |≤λ
1/2
j R

for any j ∈ [M ],

2. ẑ(q) ∈ RM with entries ẑj(q) =
〈
q⊙2 − v∗⊙2,x

〉
−j
1|⟨q⊙2−v∗⊙2,x⟩−j |≤rj(q)R

3. ζ̂M = ζM1ζM≤σζM
R,

4. ξ̂ = ξ1ξ≤σξR.

Thus, the coordinate-wise update dynamics for {qt}Tt=0 in equation 9 can be represented as:

qt+1
j =qt

j − ηt
((

qt
j

)2 − (v∗
j

)2) (
x̂t+1
j

)2
qt
j − ηtẑt+1

j (qt)x̂t+1
j qt

j

+ ηt

(
ζ̂t+1
M + ξ̂t+1

)
x̂t+1
j qt

j , (10)

for any j ∈ [M ].

B.2 PROOF OF PHASE I

In this section, we formally propose the proof techniques of Phase I in Theorem B.1. Theorem B.1
establishes that Algorithm 1 adaptively selects a effective dimension D ∈ N+ with the following
convergence properties: (1) for j ≤ D, vT1

j converges to an adaptive neighborhood of v∗
j ; (2) for

j > D, vT1
j is bounded by 3

2 max{v∗
j , 2v

0
j}. Theorem B.1 specifies the intrinsic relationship be-

tween Algorithm 1’s key parameters: the recommended step size η, effective dimensionD, and total
sample size T . Furthermore, under Assumption 3.3, Phase II analysis demonstrates the optimality
of the effective dimension D selected in Theorem B.1.

Theorem B.1. [Formal version of Theorem 5.1 ] Under Assumption 3.1, consider the dynamic
generated via Algorithm 1 with initialization v0. Denote (1) the threshold vector v̂∗ ∈ RM

with coordinate v̂∗
j = max

{
3
2v

∗
j , 3v

0
j

}
for any j ∈ [M ]; (2) the composite vector b =

((1 + c1)(v
∗
1:D)⊤, (v̂∗

D+1:M )⊤)⊤, where the scaling constant c1 ∈ (0, 1/2). Let the step size η
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satisfy η ≤ Ω̃
(

c21σ̄min(max{D,M})
[σ2+M2(b)]2

)
for the given effective dimension D ∈ N+. If the iteration

number T1 requires:

T1 ∈


[
Õ
(

σ2+M2(b)
c21ησmin(D)

)
: Ω̃
(

σ̃−1
max(D)

η2[σ2+M2(b)]

)]
, if D < M,[

Õ
(

σ2+M2(b)
c21ησmin(M)

)
:∞
)
, otherwise,

then the dynamic satisfies the following convergence property:

vT1
j ∈

{[
v∗
j − c1v∗

j ,v
∗
j + c1v

∗
j

]
, if j ∈ [D],[

0, 32 max{v∗
j , 2v

0
j}
]
, otherwise ,

(11)

with probability at least 1− δ.

Before the beginning of our proof, we define the b-capped coupling processes used in the following
lemmas as below.

Definition B.1 (b-capped coupling). Let {qt}Tt=0 be a Markov chain in RM
+ adapted to filtration

{F t}Tt=0. Given threshold vector b ∈ RM
+ , the b-capped coupling process {v̄t}Tt=0 with initializa-

tion v̄0 = q0 ≤ b evolves as:

1. Updating state: If v̄t ≤ b, let v̄t+1 = qt+1,

2. Absorbing state: Otherwise, maintain v̄t+1 = v̄t.

B.2.1 PART I: THE COORDINATE-WISE UPPER BOUNDS OF vT1 .

In this part, we establish coordinate-wise upper bounds for vT1 in Lemma B.1. For each co-
ordinate i ∈ [M ], we develop a geometrically compensated supermartingale {uti := (1 −
ηΘ(λi(v

∗
i )

2))−t(v̄t
i − v∗

i )}
T1
t=1 using the b-capped coupling sequence {v̄t}T1

t=0 derived from the
control sequence {qt}T1

t=0. We precisely calculate the sub-Gussian parameters of the supermartin-
gale increments through geometric series summation over S and linear summation over Sc. The
analysis enables the application of Bernstein-type inequalities to establish the claimed concentration
results in Lemma B.1.

Lemma B.1. [Formal version of Lemma A.1] Under the setting of Theorem B.1, let {qt}T1
t=0 be a

Markov chain with its b-capped coupling process {v̄t}T1
t=0. When η ≤ Ω̃

(
1

σ2+M2(b)

)
, the inequal-

ity v̄t ≥ 0 holds for any t ∈ [T1]. For any v ∈ RM , define the truncation event A(v) := {v ≤ b}.
For δ ∈ (0, 1), the following conditions guarantee thatA(v̄T1) holds with probability at least 1− δ

6 :

1. Dominant coordinates condition: σ̄min(D) ≥ η
c21
O([σ2 +M2(b)] log5(MT1/δ)),

2. Residual spectrum condition: σ̃max(D) ≥ T1η
2O([σ2 + M2(b)] log(max{M −

D, 0}T1/δ) log4(MT1/δ)).

Proof. Define the random variable

pt+1
j :=

((
(v̄t

j)
2 − (v∗

j )
2
)
x̂t+1
j + ẑt+1

j (v̄t)− ζ̂t+1
M − ξ̂t+1

)
x̂t+1
j

for any j ∈ [M ] and t ∈ [0 : T1 − 1]. Then in the updating state of {v̄t}T1
t=0, we have

v̄t+1
j = (1− ηpt+1

j )v̄t
j , ∀j ∈ [M ]. (12)

Based on the boundedness of pt+1
j and the appropriately chosen step size η ≤ Ω̃

(
1

σ2+M2(b)

)
, if

v̄t > 0, then we have v̄t+1 ≥ 1
2 v̄

t. Since v̄0 > 0, we have v̄t > 0 for any t ∈ [T1] by induction.
Let τ̄b be the stopping time when v̄τ̄b

j > bj for a certain coordinate j ∈ [M ], i.e.,

τ̄b = inf
t

{
t : ∃j ∈ [M ], s.t. v̄t

j > bj

}
.
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For each coordinate 1 ≤ j ≤M , let τ̄b,j be the stopping time when v̄
τ̄b,j

j > bj , i.e.,

τ̄b,j = inf
t

{
t : v̄t

j > bj

}
.

Based on Definition B.1, when the stopping time τ̄b = t2 occurs for some t2 ∈ [T1], the coupling
process satisfies v̄t = v̄t2 for all t > t2. We categorize the following two cases and analyze the
probability bound respectively.

Case I: Suppose there exists j ∈ [D] such that τ̄b,j = t2. That is, the event A (v̄t) holds for all
t ∈ [0 : t2−1]. The boundedness of pt+1

j and the dominant coordinates condition of η in Lemma B.1

indicate that v̄t
j must traverse in and out of the threshold interval

[
1

1+c1
bj ,bj

]
before exceeding bj .

We aim to estimate the following probability for coordinates j ∈ [D] and time pairs t1 < t2 ∈ [T1]:

P
(
Bτ̄b,j=t2
t1 (j) =

{
v̄t1
j ≤

1 + c1/2

1 + c1
bj

∧
v̄t1:t2−1
j ∈

[
1

1 + c1
bj ,bj

]∧
v̄t2
j > bj

})
.

For any t ∈ [t1 : t2 − 1], we have

E
[
v̄t+1
j − v∗

j | F t
]
=Ext+1

1:M ,ξt+1,ζt+1
M

[
v̄t
j − v∗

j − ηpt+1
j v̄t

j

]
(a)
≤
(
1− 1

2
ηλjv̄

t
j(v̄

t
j + v∗

j )

)
(v̄t

j − v∗
j )

≤

(
1− 1 + c1/2

(1 + c1)
2 ηλj(v

∗
j )

2

)
(v̄t

j − v∗
j ),

(13)

where (a) is due to Assumption 3.1 and Lemma E.2. By applying Lemma E.1 to ptj , we demonstrate
that ptj satisfies the sub-Gaussian property for all t ∈ [0 : T1 − 1]. Thus we have

E
[
exp

{
λ
(
v̄t+1
j − E[v̄t+1

j | F t]
)}

| F t] ≤ exp

{
λ2η2λj(v

∗
j )

2O
([
σ2 +M2(b)

]
log4(MT1/δ)

)
2

}
,

for any λ ∈ R. Combining Lemma E.3 with equation 13, we can establish the probability bound for
event Bτ̄b,j=t2

t1 (j) for any time pair t1 < t2 ∈ [T1] as

P
(
Bτ̄b,j=t2
t1 (j)

)
≤ exp

{
−

c21(v
∗
j )

2

ηO
(
[σ2 +M2(b)] log4(MT1/δ)

)} . (14)

Case II: Suppose there exists j ∈ [D + 1 : M ] such that τ̄b,j = t2. Similarly, v̄t
j must traverse in

and out of the threshold interval [ 23bj ,bj ] before exceeding bj . Therefore, we aim to estimate the
following probability for coordinates j ∈ [D + 1 :M ] and time pairs t1 < t2 ∈ [T1]:

P
(
C τ̄b,j=t2
t1 (j) =

{
v̄t1
j ≤

3

4
bj

∧
v̄t1:t2−1
j ∈

[
2

3
bj ,bj

]∧
v̄t2
j > bj

})
.

For any t ∈ [t1 : t2 − 1], we have

E
[
v̄t+1
j − v∗

j | F t
]
=Ext+1

1:M ,ξt+1,ζt+1
M

[
v̄t
j − v∗

j − ηpt+1
j v̄t

j

]
≤
(
1− 1

2
ηλjv̄

t
j(v̄

t
j + v∗

j )

)
(v̄t

j − v∗
j )

≤v̄t
j − v∗

j .

(15)

Similarly, based on Lemma E.1, we have

E
[
exp

{
λ(v̄t+1

j − E[v̄t+1
j | F t])

}
| F t] ≤ exp

{
λ2η2λj(b

∗
j )

2O
([
σ2 +M2(b)

]
log4(MT1/δ)

)
2

}
,

for any λ ∈ R. Combining Lemma E.3 with equation 15, we can establish the probability bound for
event C τ̄b,j=t2

t1 (j) for any time pair t1 < t2 ∈ [T1] as

P
(
C τ̄b,j=t2
t1 (j)

)
≤ exp

{
− 1

Tη2λjO
(
[σ2 +M2(b)] log2(MT1/δ)

)} . (16)
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Finally, combining the probability bounds equation 14 and equation 16 with the dominant coordi-
nates condition and residual spectrum condition in Lemma B.1, we obtain the following probability
bound for complement event Ac(v̄T1):

P
(
Ac(v̄T1)

)
≤

D∑
j=1

∑
1≤t1<t2≤T1

P
(
Bτ̄b,j=t2
t1 (j)

)
+

M∑
j=D+1

∑
1≤t1<t2≤T1

P
(
C τ̄b,j=t2
t1 (j)

)

≤NT
2
1

2
exp

{
−

c21 min1≤j≤D(v∗
j )

2

ηO
(
[σ2 +M2(b)] log4(MT1/δ)

)}

+max{M −D, 0}T1 exp

{
−

minD+1≤j≤M λ−1
j

T1η2O
(
[σ2 +M2(b)] log4(MT1/δ)

)}

≤ δ

12
. (17)

Lemma B.1 establishes the adaptive high-probability upper bounds for each coordinate of v̄T1 . Ac-
cording to the construction methodology of the coupling process {v̄t}T1

t=0, these bounds can be
naturally extended to qT1 . Moreover, the high-probability consistency between control sequence
{qt}Tt=0 and original sequence {vt}Tt=0 (refer to Proposition B.1) allows the direct application of
Lemma B.1 to vT1 . It similarly holds for Lemmas B.2 and B.3, respectively.

B.2.2 PART II: THE COORDINATE-WISE LOWER BOUNDS OF v̄T1

Deriving a direct high-probability lower bound for v̄T1 proves to be a challenge. We turn to
the lower bound of maxt≤T1

v̄t
i during T1 iterations. First we propose Lemma B.2 to con-

struct such bounds for maxt≤T1
v̄t
j adaptively over j ∈ [D]. We derive a subcoupling sequence

{v̆i,t}T1
t=0 from the original coupling sequence {v̄t}T1

t=0 for any i ∈ S . Each subcoupling se-
quence undergoes logarithmic transformation to generate a linearly compensated submartingale
{−t log(1 + ηO(λi(v∗

i )
2)) + log(v̆i,t

i )}T1
t=1. These |S| submartingales exhibit monotonic growth

with sub-Gaussian increments. Applying Bernstein-type concentration inequalities, we obtain
maxt≤T1 v

t
i ≥ (1− c1/2)v∗

i with high probability for any i ∈ S in Lemma B.2.

Lemma B.2. [Formal version of Lemma A.2] Under the setting of Lemma B.1, let

η ≤
c1 log

−4(MT1/δ)minj∈[D](v
∗
j )

2

O(σ2 + (1 + C)M2(b))

and

T1 ≥ max

{
O
(
maxj∈[D]− log(v0

j )
)

c1ησmin(D)
,
O
(
[σ2 +M2(b)] log8(MT1/δ)

)
c21 minj∈[D](λj(v

∗
j )

4)

}

The combined event set satisfies P
((⋂D

j=1 E1,j
)⋃
E2
)
≥ 1− δ

6 . where

E1,j :=
{
max
t≤T1

v̄t
j ≥

1− c1/2
1 + c1

bj

}
, ∀j ∈ [D],

and E2 :=
{
Ac(v̄T1)

}
.

Proof. For a fixed j ∈ [D], we define the subcoupling {v̆t}T1
t=0 with initialization v̆0 = v̄0 as

follows:

1. Updating state: If event Bt(j) =
{
A(v̆t)

∧
v̆t
j <

1−c1/2
1+c1

bj

}
holds, let v̆t+1 = v̄t+1,

2. Multiplicative scaling state: Otherwise, let v̆t+1 =
(
1 + c1(1−c1)η

2 λj(v
∗
j )

2
)
v̆t.
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We aim to demonstrate that −t log(1 + c1(1−c1)η
2 λj(v

∗
j )

2) + log(v̆t
j) is a submartingale. If event

Bct (j) holds, we directly obtain E[log(v̆t+1
j ) | F t] ≥ log(1 + c1(1−c1)η

2 λj(v
∗
j )

2) + log(v̆t
j). Other-

wise, letting
wt

j := ẑtj(v̄
t−1)− ζ̂tM − ξ̂t, ∀t ∈ [T1],

we have
E
[
log(v̆t+1

j ) | F t
]
=E

[
log(v̄t+1

j ) | F t
]

=Ext+1
1:M ,ξt+1,ζt+1

M

[
log
(
1− η

(
(v̄t

j)
2 − (v∗

j )
2
)
(x̂t+1

j )2 − ηwt+1
j x̂t+1

j

)]
+ log(v̄t

j)

(a)
≥ log

(
1 +

3c1(1− c1)η
4

λj(v
∗
j )

2

)
− η2λjO

([
σ2 + (1 + C)M2(b)

]
log4(MT1/δ)

)
+ log(v̄t

j)

(b)
≥ log

(
1 +

c1(1− c1)η
2

λj(v
∗
j )

2

)
+ log(v̄t

j)

(c)
= log

(
1 +

c1(1− c1)η
2

λj(v
∗
j )

2

)
+ log(v̆t

j),

where (a) is based on the following three facts: 1) the Taylor expansion of log(a+ ·) with a = 1 +
η((v∗

j )
2 − (v̄t

j)
2)E[(x̂t+1

j )2]; 2) the property that Y t+1
j is zero-mean and independent of x̂t+1

j ; and

3) the step size η ≤ c1(v
∗
j )

2 log−4(MT1/δ)

O(σ2+(1+C)M2(b)) ensures that 1−τη((v̄t
j)

2−(v∗
j )

2)[(x̂t+1
j )2−E[(x̂t+1

j )2]]−
τηwt+1

j x̂t+1
j ≥ 1/2 for any τ ∈ [0, 1], (b) is due to the inequality log(1 + c1(1−c1)η

16 λj(v
∗
j )

2) ≥
η2λjO([σ2 + (1 + C)M2(b)] log4(MT1/δ)), and (c) relies on the temporal exclusivity property
that if event Bct (j) occurs at time t, then Bt(j) is permanently excluded for all subsequent times
t′ > t. Therefore, based on the submartingale, we obtain

P
{
v̆T1
j <

1− c1/2
1 + c1

bj

}
(d)
≤ exp

−
2
(
T1 log

(
1 + c1(1−c1)η

2 λj(v
∗
j )

2
)
+ log(v0j )− log

(
1−c1/2
1+c1

bj

))2
T1η2λjO

(
[σ2 +M2(b)] log6(MT1/δ)

)


(e)
≤ exp

− T1 log
2
(
1 + c1(1−c1)η

2 λj(v
∗
j )

2
)

η2λjO
(
[σ2 +M2(b)] log6(MT1/δ)

)


(f)
≤ δ

12N
, (18)

where (d) is derived from Azuma’s inequality and the estimation of
∣∣log(v̆t+1

j )− log(v̆t
j)
∣∣ below:∣∣log(v̆t+1

j )− log(v̆t
j)
∣∣ ≤ ηλ1/2j O

([
σ2 +M2(b)

]1/2
log4(MT1/δ)

)
, (19)

which implies that∣∣∣∣log(v̆t+1
j )− log

(
1 +

c1(1− c1)η
2

λj(v
∗
j )

2

)
− log(v̆t

j)

∣∣∣∣2 ≤ η2λjO ([σ2 +M2(b)] log8(MT1/δ)
)
.

Moreover, since T1 log(1+
c1(1−c1)η

2 λj(v
∗
j )

2)/4 ≥ − log(v0j ) and c21T1λj(v
∗
j )

4 ≥ O([σ2+M2(b)]

log8(MT1/δ)), we obtain inequalities (e) and (f). If A(v̄T1) holds, equation 18 illustrates that
P(Ec1,j) ≤ δ

12N . Thus, we have P(Ec1,j
⋂
Ec2) ≤ δ

6N .

Second, we construct the high-probability lower bound for v̄T1
j for any j ∈ [D] in Lemma B.3.

The proof technique of Lemma B.3 mirrors that of Lemma B.1. By contrast, we construct geo-
metrically compensated supermartingale {−uti}

T1
t=1 for each i ∈ S . The proof is finished by ap-

plying Bernstein-type concentration inequalities to these constructed supermartingales, yielding the
required probabilistic bounds.
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Lemma B.3. [Formal version of Lemma A.3] Under the setting of Lemma B.1, let

η ≤ c21σ̄min(D)

O([σ2 +M2(b)] log4(MT1/δ))
.

The combined event set satisfies P
(⋂D

j=1

(⋃
k=3,4 Ek,j

))
≥ 1− δ

6 , where

E3,j :=
{
max
t≤T1

v̄t
j <

1− c1/2
1 + c1

bj

}
, E4,j :=

{
v̄T1
j ≥

1− c1
1 + c1

bj

}
, ∀j ∈ [D].

Proof. For any j ∈ [D], if Ec3,j occurs, there exists t ∈ [T1] such that v̄t
j ≥

1−c1/2
1+c1

bj . Define τ0,j
as the stopping time satisfying v̄

τ0,j
j ≥ 1−c1/2

1+c1
bj as:

τ0,j = inf
t

{
t : v̄t

j ≥
1− c1/2
1 + c1

bj

}
.

We also define τ1,j as the stopping time satisfying v̄
τ1,j
j < 1−c1

1+c1
bj after τ0,j as:

τ1,j = inf
t>τ0,j

{
t : v̄t

j <
1− c1
1 + c1

bj

}
.

Based on the definition of {v̄t}T1
t=0, once the event Ac(v̄t) occurs, the coupling process satisfies

v̄t′ = v̄t for any t′ > t. Therefore, A(v̄t) holds for all t ≤ τ1,j . Moreover, v̄t
j must traverse in and

out of the threshold interval
[
1−c1
1+c1

bj ,
1

1+c1
bj

]
before subceeding 1−c1

1+c1
bj . We aim to estimate the

following probability for coordinates j ∈ [D] and time pairs t0 < t1 ∈ [T1]:

P
(
D̄τ1=t1

τ0=t0 (j) =

{
v̄t0
j ≥

1− c1/2
1 + c1

bj

∧
v̄t0:t1−1
j ∈

[
1− c1
1 + c1

bj ,
1

1 + c1
bj

]∧
v̄t1
j <

1− c1
1 + c1

bj

})
.

For any t ∈ [t0 : t1 − 1], we have

E
[
v∗
j − v̄t+1

j | F t
]
=Ext+1

1:M ,ξt+1,ζt+1
M+1:∞

[
v∗
j − v̄t

j + η
((
(v̄t

j)
2 − (v∗

j )
2
)
x̂t+1
j + ẑt+1

j (v̄t)

−ζ̂t+1
M − ξ̂t+1

)
x̂t+1
j v̄t+1

j

]
≤
(
1− 1− c1

(1 + c1)2
ηλj(v

∗
j )

2

)
(v∗

j − v̄t
j).

(20)

Applying Lemma E.1 to (((v̄t
j)

2 − (v∗
j )

2)x̂t+1
j + ẑt+1

j (v̄t)− ζ̂t+1
M − ξ̂t+1)x̂t+1

j , we have

E
[
exp

{
λ
(
E[v̄t+1

j | F t]− v̄t+1
j

)}
| F t] ≤ exp

{
λ2η2λj(v

∗
j )

2O
([
σ2 +M2(b)

]
log4(MT1/δ)

)
2

}
,

for any λ ∈ R. Therefore, combining Lemma E.3 with equation 20, we establish the probability
bound for event D̄τ1=t1

τ0=t0 (j) with any time pair t0 < t1 ∈ [T1] as

P
(
D̄τ1=t1

τ0=t0 (j)
)
≤ exp

{
−c21(v∗

j )
2

ηO
(
[σ2 +M2(b)] log4(MT1/δ)

)} .
Notice that the occurrence of Ec3,j

∧
Ec4,j implies D̄τ1=t1

τ0=t0 (j) must hold for certain t0 < t1 ∈ [T1].
Therefore, we have

P
(
Ec3,j

∧
Ec4,j

)
≤

∑
1≤t1<t2≤T1

P
(
D̄τ1=t1

τ0=t0 (j)
)

≤T
2
1

2
exp

{
−c21(v∗

j )
2

ηO
(
[σ2 +M2(b)] log4(MT1/δ)

)}

≤T
2
1

2
exp

{
−c21 minj∈[D](v

∗
j )

2

ηO
(
[σ2 +M2(b)] log4(MT1/δ)

)}
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≤ δ

6N
. (21)

Combining Lemma B.1 in Part I and Lemma B.2, Lemma B.3 in Part II, we have now completed
the proof of Theorem B.1.

Proof of Theorem B.1. First, we notice that in the setting of Theorem B.1,

η ≤ c21σ̄min(D)

O
(
[σ2 +M2(b)] log4(MT1/δ)

) , (22)

and
O([σ2+M2(b)] log8(MT1/δ)−minj∈[D] log(v

0
j ))

c21ησmin(D)
≤ T1 ≤ log−4(MT1/δ) log((M−D)T1/δ)

η2σ̃max(D)O([σ2+M2(b)]) , if M > D,

O([σ2+M2(b)] log8(MT1/δ)−minj∈[D] log(v
0
j ))

c21ησmin(D)
≤ T1, otherwise .

(23)

satisfy all assumptions in Lemmas B.1-B.3. Thus we can use all results in Lemma B.1-B.3. B.1
yields P{v̄T1 > b} ≤ δ

6 . Lemma B.2 implies that P{minj∈[D] maxt≤T1
(v̄t

j −
1−c1/2
1+c1

bj) <

0
∧
v̄T1 ≤ b} ≤ δ

6 . Combining Lemma B.1 and B.2, we have P{minj∈[D] maxt≤T1(v̄
t
j −

1−c1/2
1+c1

bj) < 0} ≤ δ
3 . Moreover, Lemma B.3 indicates that P{minj∈[D] maxt≤T1

(v̄t
j −

1−c1/2
1+c1

bj) ≥ 0
∧
minj∈[D](v̄

T1
j −

1−c1
1+c1

bj) < 0} ≤ δ
6 . Combining these results, we establish

the final probability bound: P{|v̄T1

1:D − v∗
1:D| ≤

c1
1+c1

b1:D

∧
v̄T1

D+1:M ≤ bD+1:M} ≥ 1 − 2
3δ, and

this bound can be extended to qT1 by the definition of capped coupling process in Definition B.1.
By Proposition B.1, we complete the proof.

B.3 PROOF OF PHASE II

In this section, we introduce the proof techniques of Phase II in Theorem B.2, where we construct
the global convergence analysis of Algorithm 1 for risk minimization. We demonstrate that after
Phase I (i.e., t > T1), the iterations of vt are confined within a neighborhood of v∗ with high
probability. Therefore, the SGD dynamics for the quadratic model can be well approximated by
the dynamics for the linear model with high probability. Therefore, we can extend the analytical
techniques for SGD in the linear model to obtain the conclusion of Theorem B.2.

Theorem B.1 illustrates that the output of Algorithm 1 after T1 iterations lies in the neighborhood
of the ground truth within a constant factor, namely, |v1:D − v∗

1:D| ≤ c1v
∗
1:D. Thus, we use vT1 ,

which satisfies equation 11, as the initial point for the SGD iterations in Phase II, and set the
annealing learning rate to guarantee the output of Algorithm 1 fully converges to v∗. Before we
formal propose Theorem B.2, we preliminarily introduce some of the coupling process, auxiliary
function, and notations used for our statement of Theorem B.2 and analysis in Phase II. We introduce
the truncated coupling {v̂t}T2

t=0 as follows:{
v̂t+1 = vT1+t+1, if G(v̂t) occurs ,
v̂τ+1 = 13

4 v∗, ∀τ ≥ t, otherwise ,

with initialization v̂0 = vT1 which satisfies equation 11, where event

G(v) :=
{
vj ∈

[
1

2
v∗
j ,

3

2
v∗
j

]
, ∀j ∈ [D]

∧
vj ∈

[
0, 2v∗

j

]
, ∀j ∈ [D + 1 :M ]

}
, (24)

for any v ∈ RM and T2 = T − T1. Moreover, we define the auxiliary function ψ : RM → RM as:

ψ(v) =

{
v, if G(v) occurs ,
v∗, otherwise.
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Thus we construct the truncated sequence {wt = ψ(v̂t)}T2
t=0. In this phase, our analysis primarily

focuses on the trajectory of wt. Based on the generation mechanism of the sequence {wt}T2
t=0, the

update from wt to wt+1 can be categorized into two cases: Case I) wt+1 remains updated, with its
iteration closely approximating SGD updates in linear models (Wu et al., 2022); Case II) For any
τ ≥ t, wτ+1 does not update and remains constant at v∗.

We also define some notations for simplifying the representation. For any v,u ∈ Rd, we define
v⊙u = (v1u1, · · · ,vdud)

⊤ and diag{v} = diag{v1, · · · ,vd} ∈ Rd×d. Let H = 25
4 Λdiag{b̂⊙

b̂} with b̂⊤ =
(
(v∗

1:D)⊤, (v̂∗
D+1:M )⊤

)
and v̂∗ satisfies v̂∗

j = max
{

3
2v

∗
j , 3v

0
j

}
. We also denote

Ht
w = (wt ⊙ xt+1)⊗ ((wt + v∗)⊙ xt+1) and Rt

w = (ξt+1 + ζt+1
M ) diag{wt} for simplicity. We

denote the following linear operators that will be used in the proof:

I := I⊗ I, Ht
w := Et

[
Ht

w ⊗ (Ht
w)⊤

]
, H̃t

w := Et

[
Ht

w

]
⊗ Et

[
Ht

w

]
,

Gtw := Et

[
Ht

w

]
⊗ I+ I⊗Et

[
Ht

w

]
− ηtHt

w, G̃tw := Et

[
Ht

w

]
⊗ I+ I⊗ Et

[
Ht

w

]
− ηtH̃t

w,

where Et[·] = E[· | F t]. For any operator A, we use A ◦ A to denote A acting on a symmetric
matrix A. It’s easy to directly verify the following rules for above operators acting on a symmetric
matrix A:

I ◦A = A, Ht
w ◦A =Et

[
Ht

wA(Ht
w)⊤

]
, H̃t

w ◦A = Et

[
Ht

w

]
AEt

[
Ht

w

]
,(

I − ηtGtw
)
◦A =Et

[(
I− ηtHt

w

)
A
(
I− ηtHt

w

)]
,(

I − ηtG̃tw
)
◦A =

(
I− ηtEt

[
Ht

w

])
A
(
I− ηtEt

[
Ht

w

])
.

The following is the formalized expression of the iteration process for wt. For all t ∈ [0 : T2 − 1],
if wt+1 = vT1+t+1 (i.e., event G(vT1+t+1) occurs), wt+1 follows the update rule as:

wt+1 − v∗ = wt − v∗ − ηtHt
w

(
wt − v∗)+ ηtR

t
wxt. (25)

Otherwise, we have
wτ+1 = v∗, ∀τ ≥ t.

Since wt+1 = vT1+t+1 implies wt = vT1+t, but the converse does not necessarily hold, we derive
the recurrence process as:

E
[(
wt+1 − v∗)⊗2

]
⪯ E

[(
wt − v∗ − ηtHt

w

(
wt − v∗)+ ηtR

t
wxt

)⊗2
1wt=vT1+t

]
.

Define ŵt := wt − v∗. The iterative update of ŵt can be decomposed into two random processes,

ŵt = 1wt=vT1+t · ŵt
bias + 1wt=vT1+t · ŵt

variance, ∀t ∈ [0 : T2], (26)

where {ŵt
variance}

T2
t=1 is recursively defined by{
ŵt+1

variance = (I− ηtHt
w) ŵt

variance + ηtR
t
wxt, if wt = vT1+t,

ŵt+1
variance = 0, otherwise ,

for any t ∈ [0 : T2 − 1] with ŵ0
variance = 0 and {ŵt

bias}
T2
t=1 is recursively defined by{

ŵt+1
bias = (I− ηtHt

w) ŵt
bias, if wt = vT1+t,

ŵt+1
bias = 0, otherwise ,

for any t ∈ [0 : T2 − 1] with ŵ0
bias = w0 − v∗. We define the t-th step bias iteration as Bt =

E [ŵt
bias ⊗ ŵt

bias] and t-th step variance iteration as Vt = E [ŵt
variance ⊗ ŵt

variance]. Therefore, we
can derive the following relations for {Bt}T2

t=0 and {Vt}T2
t=0:{

Bt+1 ⪯ E [(I − ηtGtw) ◦ (ŵt
bias ⊗ ŵt

bias)] ,

Vt+1 ⪯ E [(I − ηtGtw) ◦ (ŵt
variance ⊗ ŵt

variance)] + η2tΣ
t
w,

∀t ∈ [0 : T2 − 1], (27)

with B0 =
(
w0 − v∗) (w0 − v∗)⊤ and V0 = 0, where Σt

w = σ2ΛE [diag{wt ⊙wt}].
We formally propose Theorem B.2 as below.
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Theorem B.2. [Formal version of Theorem 5.2] Suppose Assumption 3.1 and 3.3 hold, and let
T1 = ⌈(T − h)/ log(T − h)⌉ and h = ⌈T/ log(T )⌉. Under the following setting

1. There exists D < M such that η0 ≤ Ω̃(min{tr−1(H), σ̄min(D)}) and T1 =

Õ(σ
2+M2(b̂)

η0σmin(D) ),

2. Let D =M , η0 ≤ Ω̃(min{tr−1(H), σ̄min(M)}), and T1 ≥ Õ(σ
2+M2(b̂)

η0σmin(M) ),

we have

E
[
RM (wT2)−RM (v∗)

]
≲σ2

N ′
0

K
+ η0

N0∑
i=N ′

0+1

λi(v
∗
i )

2


+ σ2η20(h+ T1)

M∑
i=N0+1

λ2i (b̂
∗
i )

4

+

〈
1

η0T1
I1:N1 +HN1+1:M ,

(
I− η0Ĥ

)2h
B0

〉
+ Γ(H)

〈
1

η0h
I1:N ′

1
+HN ′

1+1:M ,B
0

〉
, (28)

for arbitrary D ≥ N0 ≥ N ′
0 ≥ 0 and D ≥ N1 ≥ N ′

1 ≥ 0, where Γ(H) := (
625N ′

1

T1
+

25η0h
T1

tr(HN ′
1+1:N1

) + η20h tr(H
2
N1+1:M )) and T2 = T − T1. Specially, we have

RM (vT )−RM (v∗) ≲
σ2N

T1
+ σ2η20(h+ T1)

M∑
i=D+1

λ2i (b̂
∗
i )

4

+

〈
1

η0T1
I1:D +HD+1:M ,

(
I− η0Ĥ

)2h
B0

〉
+

(
D

T1
+ η20h tr(H

2
D+1:M )

)〈
1

η0h
I1:D +HD+1:M ,B

0

〉
,

(29)

with probability at least 0.95.

Before the beginning of our proof, we define the (cv∗
1:D,b)-neighbor coupling process which will

be used in the following lemma as below.

Definition B.2. [(cv∗
1:D,b)-neighbor coupling] Let {qt}Tt=0 be a Markov chain in RM

+ adapted
to filtration {F t}Tt=0. Given parameters: 1) Dimension index D ∈ Z+; 2) Tolerance c > 0; 3)
Threshold vector b ∈ RM−D

+ . With initial condition v̄0 = q0,
∣∣v̄0

1:D − v∗
1:D

∣∣ ≤ cv∗
1:D and 0 ≤

v̄0
D+1:M ≤ b, the (cv∗

1:D,b)-neighbor coupling process {v̄t}Tt=0 evolves as:

1. Updating state: If |v̄t
1:D − v∗

1:D| ≤ cv∗
1:D and 0 ≤ v̄t

D+1:M ≤ b, let v̄t+1 = vt+1,

2. Absorbing state: Otherwise, maintain v̄t+1 = v̄t.

B.3.1 PART I: BOUND THE OUTPUT OF PHASE I

In this part, we demonstrate that the output of Phase I remains confirmed within the neighborhood
of the ground truth with high probability in Lemma B.3. Specifically, by constructing similar su-
permartingales to that in the proofs of Lemma B.1 and Lemma B.3, we obtain a set of compressed
supermartingales dependent on the coordinate i ∈ [M ]. Combining the compression properties of
these supermartingales with the sub-Gaussian property of their difference sequences, through con-
centration inequality, we obtain Lemma B.3 as below.

Theorem B.3. [Formal version of Theorem A.1] Under Assumption 3.1, we consider the T1-th step
of Algorithm 1 and its subsequent iterative process. Let D ∈ N+ represent the effective dimension.
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Define η0 ≤ Ω̃
(

σ̄min(max{D,M})
σ2+M2(b)

)
, and let {ṽt}T2

t=0 be an (1/2, 2)-v∗ neighbor coupling process

based on the control sequence {qT1+t}T2
t=0. Recall the definition equation 24 of event G(v) for any

v ∈ RM . If D < M , set the iteration number T2 ∈
[
Ω̃
(

σ̃−1
max(D)

η2
0 [σ

2+M2(b)]

)]
. Otherwise, set T2 be an

arbitrary positive integer. Then,
⋂T2

t=0 G(vT1+t) holds with probability at least 1− δ.

Proof. Setting c1 = 1
4 in Theorem B.1, we have |qT1

1:D−v∗
1:D| ≤ 1

4v
∗
1:D and 0D+1:M ≤ qT1

D+1:M ≤
3
2v

∗
D+1:M with probability at least 1 − δ/6. Without loss of generality, we assume qT1 satisfies

|qT1

1:D−v∗
1:D| ≤ 1

4v
∗
1:D and 0D+1:M ≤ qT1

D+1:M ≤
3
2v

∗
D+1:M . Let τ̂ be the stopping time satisfying

Gc(ṽτ̂ ), i.e.,

τ̂ = inf

{
t : ∃j ∈ [D], s.t.

∣∣ṽt
j − v∗

j

∣∣ > 1

2
v∗
j or ∃j ∈ [D + 1 :M ], s.t. ṽt

j > 2v∗
j

}
,

For each coordinate j ∈ [D], let τ̂u[D],j and τ̂ l[D],j be the stopping time satisfying ṽ
τ̂u
[D],j

j > 3
2v

∗
j and

ṽ
τ̂ l
[D+1:M],j

j < 1
2v

∗
j , respectively, i.e.,

τ̂u[D],j = inf

{
t : ṽt

j >
3

2
v∗
j

}
, τ̂ l[D],j = inf

{
t : ṽt

j <
1

2
v∗
j

}
.

For each coordinate j ∈ [D + 1 : M ], let τ̂[D+1:M ],j be the stopping time satisfying ṽ
τ̂[D+1:M],j

j >
2v∗

j , i.e.,
τ̂[D+1:M ],j = inf

{
t : ṽt

j > 2v∗
j

}
.

Based on Defnition B.2, once the stopping time τ̂ = t2 occurs for certain t2 ∈ [T2], the coupling
process satisfies ṽt = ṽt2 for all t > t2. Suppose there exists a certain j ∈ [D] such that τ̂u[D],j = t2.
Thus, the event G(ṽt) holds for all t ∈ [0 : t2 − 1]. Similar to the proof of Lemma B.1 and B.3,
ṽt
j must traverse in and out of the threshold interval [v∗

j ,
3
2v

∗
j ] before exceeding 3

2v
∗
j . We aim to

estimate the following probability for coordinates j ∈ [D] and time pairs t1 < t2 ∈ [0 : T2] as:

P
(
Bτ̂

u
[D],j=t2

t1 (j) =

{
ṽt1
j ≤

5

4
v∗
j

∧
ṽt1:t2−1
j ∈

[
v∗
j ,

3

2
v∗
j

]})
.

For any t ∈ [t1 : t2 − 1], we have

E
[
ṽt+1
j − v∗

j | F t
]
=Ext+1

1:M ,ξt+1,ζt+1
M

[
ṽt
j − v∗

j − η
((
(ṽt

j)
2 − (v∗

j )
2
)
x̂t+1
j + ẑt+1

j (ṽt)

−ζ̂t+1
M − ξ̂t+1

)
x̂t+1
j ṽt+1

j

]
≤
(
1− 3ηt

8
λj(v

∗
j )

2

)
(ṽt

j − v∗
j ).

(30)

Applying Lemma E.1 to (((ṽt
j)

2 − (v∗
j )

2)x̂t+1
j + ẑt+1

j (ṽt)− ζ̂t+1
M − ξ̂t+1)x̂t+1

j ṽt+1
j , we obtain

E
[
exp

{
λ
(
ṽt+1
j − E

[
ṽt+1
j | F t])} | F t] ≤ exp

{
λ2η2

t λj(v
∗
j )

2O
([
σ2 +M2(b)

]
log4(MT2/δ)

)
2

}
,

for any λ ∈ R. Therefore, based on Lemma E.3 and equation 30, we establish the probability bound

for event Bτ̂
u
[D],j=t2

t1 (j) for any time pair t1 < t2 ∈ [0 : T2] as:

P
{
Bτ̂

u
[D],j=t2

t1 (j)
}
≤ exp

{
−
(v∗

j )
2

Vj

}
, (31)

where Vj is denoted as

Vj = λj(v
∗
j )

2O
(
[σ2 +M2(b)] log4(MT2/δ)

) T2−1∑
t=0

(
T2−1∏
i=t+1

(1− 3ηi
4
λj(v

∗
j )

2)2

)
(ηt)

2.
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By Lemma E.4, we have Vj ≤ O(η0[σ2 +M2(b)] log4(MT2/δ)). Therefore, using equation 31,
we can derive

P
{
Bτ̂

u
[D],j=t2

t1 (j)
}
≤ exp

{
−

(v∗
j )

2

η0O
(
[σ2 +M2(b)] log4(MT2/δ)

)} . (32)

Similarly, suppose there exists a certain j ∈ [D] such that τ̂ l[D],j = t2. Thus, the event G(ṽt) holds
for all t ∈ [0 : t2 − 1]. ṽt

j must traverse in and out of the threshold interval [ 12v
∗
j ,v

∗
j ] before

subceeding 1
2v

∗
j . We aim to estimate the following probability for coordinates j ∈ [D] and time

pairs t1 < t2 ∈ [T2]:

P
(
C τ̂

l
[D],j=t2

t1 (j) =

{
ṽt1
j ≥

3

4
v∗
j

∧
ṽt1:t2−1
j ∈

[
1

2
v∗
j ,v

∗
j

]})
.

For any t ∈ [t1 : t2 − 1], we have

E
[
v∗
j − ṽt+1

j | F t
]
≤
(
1− 3ηt

8
λj(v

∗
j )

2

)
(v∗

j − ṽt
j).

Based on Lemmas E.1, E.3, and E.4 sequentially, we obtain the probability bound for event

C τ̂
l
[D],j=t2

t1 (j) for any time pair t1 < t2 ∈ [0 : T2] as:

P
{
C τ̂

l
[D],j=t2

t1 (j)

}
≤ exp

{
−
(v∗

j )
2

Vj

}
≤ exp

{
−

(v∗
j )

2

η0O
(
[σ2 +M2(b)] log4(MT2/δ)

)} . (33)

For the third stopping time, we also suppose there exists a certain j ∈ [D + 1 : M ] such that
τ̂[D+1:M ],j = t2. Thus, the event G(ṽt) holds for all t ∈ [0 : t2 − 1]. Similarly, ṽt

j must traverse in
and out of the threshold interval [v∗

j , 2v
∗
j ] before exceeding 2v∗

j . We aim to estimate the following
probability for coordinates j ∈ [D + 1 :M ] and time pairs t1 < t2 ∈ [0 : T2] as:

P
(
Dτ̂[D+1:M],j=t2

t1 (j) =

{
ṽt1
j ≤

3

2
v∗
j

∧
ṽt1:t2−1
j ∈ [v∗

j , 2v
∗
j ]

})
.

For any t ∈ [t1 : t2 − 1], we have

E
[
ṽt+1
j − v∗

j | F t
]
≤ ṽt

j − v∗
j . (34)

Applying Lemma E.1 to (((ṽt
j)

2 − (v∗
j )

2)x̂t+1
j + ẑt+1

j (ṽt)− ζ̂t+1
M − ξ̂t+1)x̂t+1

j ṽt+1
j , we obtain

E
[
exp

{
λ
(
ṽt+1
j − E

[
ṽt+1
j | F t])} | F t] ≤ exp

{
λ2η2

t λj(v
∗
j )

2O
([
σ2 +M2(b)

]
log4(MT2/δ)

)
2

}
,

for any λ ∈ R. Based on Lemma E.3 and equation 34, we establish the probability bound for the
event Dτ̂[D+1:M],j=t2

t1 (j) for any time pair t1 < t2 ∈ [0 : T2] as:

P
{
Dτ̂[D+1:M],j=t2

t1 (j)
}
≤ exp

{
−
(v∗

j )
2

Vj

}
(a)
≤ exp

{
− log−4(MT2/δ)

T2η20λjO ([σ2 +M2(b)])

}
, (35)

where (a) is derived from Vj ≤ T2η20λjO
([
σ2 +M2(b)

]
log4(MT2/δ)

)
.

Then, it is easy to notice that Gc(ṽT2) indicates that one of the following situation happens:

1. For a certain coordinate j ∈ [D] and time pairs t1 < t2 ∈ [0 : T2], either Bτ̂
u
[D],j=t2

t1 (j) or

C τ̂
l
[D],j=t2

t1 (j) occurs,

2. For a certain coordinate j ∈ [D] and time pairs t1 < t2 ∈ [0 : T2], D
τ̂[D+1:M],j=t2
t1 (j)

occurs.
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Therefore, by the setting of η0 in Lemma B.3, we derive the following probability bound of event
Gc(ṽT2):

P{Gc(ṽT2)} ≤
∑
t1<t2

∑
j∈[D]

(
P
{
Bτ̂

u
[D],j=t2

t1 (j)
}
+ P

{
C τ̂

l
[D],j=t2

t1 (j)

})

+
∑

j∈[D+1:M ]

P
{
Dτ̂[D+1:M],j=t2

t1 (j)
}

≤2T 2
2N exp

{
−

minj∈N (v∗
j )

2

η0O
(
[σ2 +M2(b)] log4(MT2)

)}

+ T 2
2 (max{M,D} −D) exp

{
− log−4(MT2/δ)

T2η20 maxj∈N̄ λjO ([σ2 +M2(b)])

}
≤δ/2.

According to the construction of the coupling process {ṽt}T2
t=0 in Definition B.2, we have⋂T1+T2

t=T1
G(qt) holds with probability at least 1 − δ/2. By Proposition B.1, the proof is com-

pleted.

B.3.2 PART II: LINEAR APPROXIMATION OF THE DYNAMIC

In part I, we have proved that
⋂T2

t=0 G(vT1+t) occurs with high probability, which implies the trun-
cated sequence {wt}T2

t=1 aligned to {vT1+t}T2
t=1 with high probability. Then we approximate the

update process of {wt}T2
t=1 to SGD in traditional linear regression, with respective bounds of vari-

ance term and bias term.

We estimate the risk between the last-step function value and the ground truth as:

E
[
RM (wT2)−RM (v∗)

] (a)
≤
〈
H,E

[
ŵT2 ⊗ ŵT2

]〉
≤ 2

〈
H,BT2

〉
+ 2

〈
H,VT2

〉
, (36)

where H = 25
4 Λdiag{b̂ ⊙ b̂} and b̂⊤ =

(
(v∗

1:D)⊤, (v̂∗
D+1:M )⊤

)
. Here, (a) is derived from

combining

E
[
RM (wT2)−RM (v∗)

]
= E

[
M∑
i=1

λi(w
T2
i + v∗

i )
2(wT2

i − v∗
i )

2

]
,

with the uniform boundedness of wt over t ∈ [0 : T2]. According to the definitions of wt and Ht
w,

we have E[Ht
w] ⪯ H. Use Ĥ to denote 1

4Λdiag{b ⊙ b} where b
⊤
=
(
(v∗

1:D)⊤,0⊤), and define
Ĝ := Ĥ ⊗ I + I ⊗ Ĥ − ηĤ ⊗ Ĥ. For simplicity, we let K = T1. Moreover, we use C to denote
the constant such that E[|xi|4] ≤ CE[|xi|2] for any i ≥ 1. Then we respectively bound the variance
and bias to obtain the estimation ofRM (vT2)−RM (v∗).

Bound of Variance: Lemma B.4 provides a uniform upper bound for Vt over t ∈ [0 : T2].
Lemma B.4. Suppose Assumption 3.1 holds. Under the setting of Theorem B.2, for any t ∈ [0 : T2],
we obtain

Vt
diag ≾ η0σ

2I. (37)

Proof. The definition of Σt
w and the boundedness of wt implicate that Σt

w ⪯ σ2E[Ht
w] ⪯ H given

v∗ ≥ 0. The proof relies on induction. At t = 0, it follows that V0
diag = 0 ≾ η0σ

2I. Assuming
Vτ

diag ≾ η0σ
2I for any τ ≤ t, we proceed to estimate Vt+1 by combining equation 27 as,

Vt+1
diag ⪯

(
E
[(
I − ηtGtw

)
◦
(
ŵt

variance ⊗ ŵt
variance

)])
diag

+ η2tΣ
t
w

⪯
(
I − ηtĤ⊗ I− ηtI⊗ Ĥ

)
◦Vt

diag
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+ η2t
(
E
[
Ht

w ◦
(
ŵt

variance ⊗ ŵt
variance

)])
diag

+ η2t σ
2H

(a)
⪯
(
I− 2ηtĤ

)
Vt

diag +O
(
η2t (C + 2)⟨H,Vt

diag⟩H+ η2t σ
2H
)

⪯
(
I− 2ηtĤ

)
Vt

diag + Õ
(
η2t η0σ

2(C + 2) tr(H)H+ η2t σ
2H
)
,

where (a) is derived from Lemma E.6 with A = diag{v∗ + wt} and B = ŵt
variance ⊗ ŵt

variance.
For i ∈ [D], we have(

Vt+1
diag

)
i,i
≤
(
1− 2ηtĤi,i

) (
Vt

diag

)
i,i

+ Õ
(
η2t σ

2Ĥi,i

)
. (38)

The recursion given by equation 38 implies that (Vt+1
diag)i,i ≲ η0σ

2 for any i ∈ [D], using Lemma
E.4. For i ∈ [D + 1 :M ], we obtain(

Vt+1
diag

)
i,i

≲ σ2Hi,i

t∑
k=0

η2k ≲ η0σ
2. (39)

Therefore, we complete the induction.

Lemma B.5. Suppose Assumption 3.1 holds. Under the setting of Theorem B.2, we have

〈
H,VT2

〉
≲σ2

N ′
0

K
+ η0

N0∑
i=N ′

0+1

λi(v
∗
i )

2

+ σ2η20(h+K)

M∑
i=N0+1

λ2i (b̂
∗
i )

4, (40)

for arbitrary D ≥ N0 ≥ N ′
0 ≥ 0.

Proof. Applying equation 27, we obtain

Vt+1
diag ⪯

(
I − ηtĜ

)
◦Vt

diag + η2t
(
Ht

w ◦
(
ŵt

variance ⊗ ŵt
variance

))
diag

+ η2t σ
2E[Ht

w]

(a)
⪯
(
I − ηtĜ

)
◦Vt

diag + Õ
(
η2t σ

2η0(C + 2) tr(H)H+ η2t σ
2H
)

=
(
I − ηtĜ

)
◦Vt

diag + Õ
(
η2t σ

2H
)
, (41)

where (a) is derived from Lemma B.4. Therefore, the recursion for VT2

diag can be directly derived by
incorporating equation 41 as

VT2

diag ≾ σ2
T2∑
t=0

η2t

T2∏
i=t+1

(
I − ηiĜ

)
◦H

(b)
≾ σ2

T2∑
t=0

η2t

T2∏
i=t+1

(
I− ηiĤ

)
H︸ ︷︷ ︸

I

, (42)

where (b) is based on the inequality (1−ηc2)2c3 ≤ (1−ηc2)c3, which holds for any η ≤ c−1
2 given

fixed constants c2, c3 > 0. According to the update rule for ηt defined in Algorithm 1, we obtain

I =η20

h∑
i=1

(
I− η0Ĥ

)h−i L∏
j=1

(
I− η0

2j
Ĥ
)K

H

+

L∑
l=1

(η0
2l

)2 K∑
i=1

(
I− η0

2l
Ĥ
)K−i L∏

j=l+1

(
I− η0

2j
Ĥ
)K

H

⪯4

(η0
2

)2 h+K∑
i=1

(
I− η0

2
Ĥ
)h+K−i L−1∏

j=1

(
I− η0

21+j
Ĥ
)K

H

+

L−1∑
l=1

( η0
21+l

)2 K∑
i=1

(
I− η0

21+l
Ĥ
)K−i L−1∏

j=l+1

(
I− η0

21+j
Ĥ
)K

H


29
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⪯100

η0
2

(
I−

(
I− η0

2
Ĥ1:D

)h+K
) L−1∏

j=1

(
I− η0

21+j
Ĥ1:D

)K

+

L−1∑
l=1

η0
21+l

(
I−

(
I− η0

21+l
Ĥ1:D

)K) L−1∏
j=l+1

(
I− η0

21+j
Ĥ1:D

)K
+ 2η20(h+K)HD+1:M . (43)

Then, we define the following scalar function

f(x) := x
(
1− (1− x)h+K

) L−1∏
j=1

(
1− x

2j

)K
+

L−1∑
l=1

x

2l

(
1−

(
1− x

2l

)K) L−1∏
j=l+1

(
1− x

2j

)K
,

as similar as that in [Lemma C.2, Wu et al. (2022)]. Moreover, the following inequality can be
directly derived

f
(η0
2
Ĥ1:D

)
⪯ 8

K
I1:N ′

0
+ η0ĤN ′

0+1:N0
+
η20
2
(h+K)Ĥ2

N0+1:D, (44)

for arbitrary D ≥ N0 ≥ N ′
0 ≥ 0 by [Lemma C.3, Wu et al. (2022)]. Applying equation 44 to

equation 43 and combining equation 42, we obtain

VT2

diag ≾σ2

(
1

K
Ĥ−1

1:N ′
0
+ η0IN ′

0+1:N0
+ η20(h+K)ĤN0+1:D + η20(h+K)HD+1:M

)
. (45)

Consequently, we have〈
H,VT2

〉
≲σ2

(
N ′

0

K
+ η0 tr

(
ĤN ′

0+1:N0

)
+ η20(h+K) tr

(
Ĥ2

N0+1:D

))
+ σ2η20(h+K) tr

(
H2

D+1:M

)
≲σ2

N ′
0

K
+ η0

N0∑
i=N ′

0+1

λi(v
∗
i )

2

+ σ2η20(h+K)

M∑
i=N0+1

λ2i (b̂
∗
i )

4. (46)

Bound of Bias: We begin with an analysis of the bias error during a single period of Algorithm
1, where the bias iterations are updated using a constant step size ηt ≡ η over T̂ steps. Based on
equation 27, the bias iterations are updated according to the following rule:

Bt+1 ⪯ E
[(
I − ηGtw

)
◦
(
ŵt

bias ⊗ ŵt
bias

)]
, ∀t ∈ [0 : T̂ − 1]. (47)

Combining equation 47, we have

Bt+1
diag ⪯

(
I − ηĜ

)
◦Bt

diag + η2E
([
Ht

w ◦Bt
])

diag

⪯
t∏

i=0

(
I − ηĜ

)
◦B0

diag + η2
t∑

i=0

t∏
j=i+1

(
I − ηĜ

)
◦ E
([
Ht

w ◦Bt
])

diag

(a)
⪯

t∏
i=0

(
I − ηĜ

)
◦B0

diag + (C + 2)η2
t∑

i=0

t∏
j=i+1

(
I − ηĜ

)
◦H

〈
H,Bi

〉
. (48)

where (a) is derived from Lemma E.6 by selecting A = 5
2 diag{b̂} and B = Bi. According to

equation 48, we have

Bt+1
diag ⪯

(
I − ηĜ

)t+1

◦B0
diag + (C + 2)η2

t∑
i=0

(
I− ηĤ

)2(t−i)

H
〈
H,Bi

〉
. (49)

We utilize the following lemma to estimate
〈
H,BT̂

〉
under bias iteration defined in equation 47.
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Lemma B.6. Suppose Assumption 3.1 and Assumption 3.3 hold, and Bt is recursively defined by
equation 47. Under the setting of Theorem B.2, letting 1 ≤ T̂ ≤ T and η ≤ η0, we have〈

H,BT̂
〉
≤ 2

1− Õ(C + 2)η tr(H)

〈
25

ηT̂
I1:N0 +HN0+1:M ,B

0

〉
, (50)

where N0 ∈ [0 : D] is an arbitrary integer.

Proof. By Lemma E.5, we can derive η(I − ηĤ)2tH ⪯ 25
t+1I. Applying this to equation 49, we

obtain

Bt+1
diag ⪯

(
I − ηĜ

)t+1

◦B0
diag + 25(C + 2)η

t∑
i=0

〈
H,Bi

〉
t+ 1− i

· I, (51)

for any t ∈ [0 : T̂ − 1]. Therefore, based on Lemma E.7, we have
t∑

i=0

〈
H,Bi

〉
t+ 1− i

≤

〈
t∑

i=0

(I− ηĤ)2iH

t+ 1− i
,B0

〉
+ Õ(C + 2)η tr(H)

t∑
i=0

〈
H,Bi

〉
t+ 1− i

, (52)

for any t ∈ [T̂ ]. equation 52 implicates that

T̂−1∑
t=0

⟨H,Bt⟩
T̂ − t

≤ 1

1− Õ(C + 2)η tr(H)

〈
T̂−1∑
t=0

(I− ηĤ)2tH

T̂ − t
,B0

〉
, (53)

since Õη(C + 2) tr(H) < 1. Combining equation 51 with equation 53, we obtain〈
H,BT̂

〉
≤
〈
(I− ηĤ)2T̂H,B0

〉
+
O(C + 2)η tr(H)

1− Õ(C + 2)η tr(H)

〈
T̂−1∑
t=0

(I− ηĤ)2tH

T̂ − t
,B0

〉
(a)
≤
〈
(I− ηĤ)2T̂H,B0

〉
+
O(C + 2)η tr(H)

1− Õ(C + 2)η tr(H)

〈
I1:D − (I1:D − ηĤ1:D)T̂

ηT̂
+ (I1:D − ηĤ1:D)T̂ Ĥ1:D,B

0

〉

+
O(C + 2)η tr(H)

1− Õ(C + 2)η tr(H)

〈
HD+1:M ,B

0
〉

(b)
≤ 2

1− Õ(C + 2)η tr(H)

〈
25

ηT
I1:N0

+HN0+1:M ,B
0

〉
, (54)

where N0 ∈ [0 : D] is an arbitrary integer, (a) follows the technique in [Lemma C.4, Wu et al.
(2022)], and (b) is derived from the invariant scaling relationship between Ĥ1:D and H1:D.

Lemma B.7. Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem B.2,
letting 2 ≤ T̂ ≤ T and η ≤ η0, we have

BT̂
diag ⪯

(
I− ηĤ

)T̂
B0

diag

(
I− ηĤ

)T̂
+

Õ(C + 2)η2T̂

1− Õ(C + 2)η tr(H)

〈
H̃T̂ ,B0

〉
H

T̂
, (55)

where H̃t := 25
ηt I1:N0

+HN0+1:M , and H
t
:= 25

ηt I1:N ′
0
+HN ′

0+1:M for any t ≥ 1, and N0, N
′
0 ∈

[0 : D] could be arbitrary integer.

Proof. Applying Lemma B.6 into equation 49, we obtain

BT̂
diag ⪯

(
I − ηĜ

)T̂
◦B0

diag + (C + 2)η2
(
I− ηĤ

)2(T̂−1)

H
〈
H,B0

〉
+ (C + 2)η2

T̂−1∑
t=1

(
I− ηĤ

)2(T̂−1−t)

H
〈
H,Bt

〉
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⪯
(
I − ηĜ

)T̂
◦B0

diag + (C + 2)η2
(
I− ηĤ

)2(T̂−1)

H
〈
H,B0

〉
︸ ︷︷ ︸

I

+
2(C + 2)η2

1− 2Õ(C + 2)η tr(H)

T̂−1∑
t=1

(
I− ηĤ

)2(T̂−1−t)

H
〈
H̃t,B0

〉
︸ ︷︷ ︸

II

, (56)

We then provide a bound of term II as follows:

II =

T̂−1∑
t=1

〈
H̃t,B0

〉HD+1:M + 25

T̂−1∑
t=1

(
I1:D − ηĤ1:D

)2(T̂−1−t)

Ĥ1:D

〈
H̃t,B0

〉

⪯T̂ log(T̂ )
〈
H̃T̂ ,B0

〉
HD+1:M + 25

T̂ /2−1∑
t=1

(
I1:D − ηĤ1:D

)T̂
Ĥ1:D

〈
H̃t,B0

〉

+

T̂−1∑
t=T̂ /2

(
I1:D − ηĤ1:D

)T̂−1−t

Ĥ1:D

〈
H̃T̂ /2,B0

〉
=T̂ log(T̂ )

〈
H̃T̂ ,B0

〉
HD+1:M + 25

(I1:D − ηĤ1:D

)T̂
Ĥ1:D

〈
T̂ /2−1∑
t=1

H̃t,B0

〉

+
I1:D −

(
I1:D − ηĤ1:D

)T̂ /2

η

〈
H̃T̂ /2,B0

〉
⪯T̂ log(T̂ )

〈
H̃T̂ ,B0

〉
HD+1:M + 25

(
T̂ log(T̂ )

(
I1:D − ηĤ1:D

)T̂
Ĥ1:D

〈
H̃T̂ ,B0

〉

+ 2
I1:D −

(
I1:D − ηĤ1:D

)T̂ /2

η

〈
H̃T̂ ,B0

〉
(a)
⪯T̂ log(T̂ )

〈
H̃T̂ ,B0

〉
H

T̂
, (57)

where (a) follows the similar technique used in equation 54. We then proceed to establish bounds
on I. It’s worth to notice that(

I− ηĤ
)2(T̂−1)

H ⪯ 25

2η(T̂ − 1)
I1:N ′

0
+ 25ĤN ′

0+1:D +HD+1:M ⪯ H
T̂
. (58)

Applying equation 58 to I, we obtain

I ⪯ H
T̂ 〈

H,B0
〉
⪯ T̂HT̂

〈
H̃T̂ ,B0

〉
, (59)

where the last inequality is derived from the condition η < 1/(25 tr(H)), which ensures λi(H) <
1/η holds for all i ∈ [N0]. Combining the estimation of I and II with equation 56, we have

BT̂
diag ⪯

(
I − ηĜ

)T̂
◦B0

diag + (C + 2)η2T̂ H̃T̂
〈
H̃T̂ ,B0

〉
+

2(C + 2)η2

1− Õ(C + 2)η tr(H)
T̂ log(T̂ )

〈
H̃T̂ ,B0

〉
H

T̂

⪯
(
I − ηĜ

)T̂
◦B0

diag +
Õ(C + 2)η2T̂

1− Õ(C + 2)η tr(H)

〈
H̃T̂ ,B0

〉
H

T
. (60)

By the definition of Ĝ, we complete the proof.
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Notice that in Phase II, the step size ηt decays geometrically. Thus, we define the bias iteration at
the end of the step-size-decaying phase as:

B̃l :=

{
Bh, l = 0,

Bh+Kl, l ∈ [L].
(61)

Based on the step-size iteration in Algorithm 1 and preceding definition, we formalize the iterative
process of Algorithm 1 in Phase II as: 1) Phase when l = 0: Initialized from B0, Algorithm 1 runs
h iterations with step size η0, yielding B̃0; 2) Phase when l ≥ 1: Initialized from B̃l−1, Algorithm
1 runs K iterations with step size η0/2l, yielding B̃l. This multi-phase process terminates at l = L,
with B̃L = BT2 as the final output.
Lemma B.8. Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem B.2,
we have 〈

H, B̃l
〉
≤ Kl :=

4
〈

25
η0h

I1:N0
+HN0+1:M ,B

0
〉
, for l = 0,

4
〈

25·2l
η0K

I1:N0
+HN0+1:M , B̃

l−1
〉
, for l ∈ [L],

(62)

for arbitrary N0 ∈ [0 : D].

Proof. For
〈
H, B̃0

〉
, we apply Lemma B.6 with η = η0 and T̂ = h, and use the condition that

Õ(C + 2)η tr(H) ≤ 1/4; For
〈
H, B̃l

〉
with l ≥ 2, we apply Lemma B.6 with η = η0/2

l, T̂ = K

and B0 = B̃l−1, and use the condition that Õ(C + 2)η tr(H) ≤ 1/4.

Lemma B.9. Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem B.2,
we have

B̃l
diag ⪯ Rl :=


(
I− η0Ĥ

)h
B0

diag

(
I− η0Ĥ

)h
+ P0H

h

0 , for l = 0,(
I− η0

2l
Ĥ
)h

B̃l−1
diag

(
I− η0

2l
Ĥ
)h

+ PlH
K

l , for l ∈ [L],
(63)

where H
t

0 := 25
η0t

I1:N ′
0
+HN ′

0+1:M and H
t

l :=
25·2l
η0t

I1:N ′
0
+HN ′

0+1:M for any t ≥ 1 and arbitrary

N ′
0 ∈ [0 : D], and P0 := Õ(C + 2)η20h⟨H̃h

0 ,B
0⟩ with H̃h

0 := 25
η0h

I1:N0 + HN0+1:M and Pl :=

Õ(C + 2)(η0

2l
)2K⟨H̃K

l , B̃
l−1⟩ for l ∈ [L] with H̃K

l := 25·2l
η0K

I1:N0
+HN0+1:M for arbitrary N0 ∈

[0 : D].

Proof. For B̃0, we apply Lemma B.7 with η = η0 and T̂ = h, and use the condition that Õ(C +

2)η tr(H) ≤ 1/4. For B̃l with l ≥ 2, we apply Lemma B.7 with η = η0/2
l, T̂ = K and B0 =

B̃l−1, and use the condition that Õ(C + 2)η tr(H) ≤ 1/8.

Lemma B.10. Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem
B.2, we have 〈

H,BT2
〉
=
〈
H, B̃L

〉
≤ e

〈
H, B̃1

〉
(64)

Proof. Consider l ≥ 1. According to Lemma B.9, we obtain

B̃l
diag ⪯

(
I− η0

2l
Ĥ
)h

B̃l−1
diag

(
I− η0

2l
Ĥ
)h

+ PlH̃
K
l

(a)
⪯B̃l−1

diag + Õ(C + 2) log(K) · η0
2l
·
〈
H, B̃l−1

〉
I. (65)

where (a) is derived from choosing N ′
0 = D and N0 = 0 in H

K

l and H̃K
l for any l ∈ [L], respec-

tively, and HD+1:M ⪯ Õ(2l)
η0K

ID+1:M . equation 65 implies that〈
H, B̃l

〉
≤
(
1 + Õ(C + 2) tr(H) log(K) · η0

2l

)〈
H, B̃l−1

〉
. (66)
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Therefore, we have following estimation of bias iterations using equation 66:〈
H, B̃L

〉
≤

L∏
l=1

(
1 + Õ(C + 2) tr(H) log(K) · η0

2l

)〈
H, B̃1

〉
≤ exp

{
Õ(C + 2)η0 tr(H) log(K)

L∑
l=1

2−l

}〈
H, B̃1

〉
≤e
〈
H, B̃1

〉
. (67)

Lemma B.11. Suppose Assumption 3.1 and Assumption 3.3 hold. Under the setting of Theorem
B.2, we have 〈

H, B̃1
〉
≤8
〈

25

η0K
I1:N0

+HN0+1:M ,
(
I− η0Ĥ

)2h
B0

〉
+ Õ(C + 2)ΓK(H)

〈
25

η0h
I1:N ′

0
+HN ′

0+1:M ,B
0

〉
, (68)

where ΓK(H) :=
(

625N ′
0

K + 25η0h
K tr(HN ′

0+1:N0
) + η20h tr(H

2
N0+1:M )

)
for arbitrary D ≥ N0 ≥

N ′
0 ≥ 0.

Proof. According to Lemma B.8, we have〈
H, B̃1

〉
≤ 8

〈
25

η0K
I1:N0

+HN0+1:M , B̃
0

〉
,

for arbitrary N0 ∈ [0 : D]. Then, choosing N0 = N ′
0 in Lemma B.9, we obtain

B̃0
diag ⪯

(
I− η0Ĥ

)h
B0

diag

(
I− η0Ĥ

)h
+ Õ(C + 2)η20h

〈
25

η0h
I1:N ′

0
+HN ′

0+1:M ,B
0

〉(
25

η0h
I1:N ′

0
+HN ′

0+1:M

)
.

Combining above two inequalities, we have〈
H, B̃1

〉
≤8
〈

25

η0K
I1:N0 +HN0+1:M ,

(
I− η0Ĥ

)2h
B0

〉
+ Õ(C + 2)η20h

〈
25

η0h
I1:N ′

0
+HN ′

0+1:M ,B
0

〉
×
〈

25

η0K
I1:N0

+HN0+1:M ,
25

η0h
I1:N ′

0
+HN ′

0+1:M

〉
,

where 〈
25

η0K
I1:N0

+HN0+1:M ,
25

η0h
I1:N ′

0
+HN ′

0+1:M

〉
≤625N ′

0

η20hK
+

25

η0K
tr(HN ′

0+1:N0
) + tr(H2

N0+1:M ), (69)

when N0 > N ′
0.

Lemma B.12. Suppose Assumptions 3.1 and 3.3 hold. Under the setting of Theorem B.2, we have〈
H,BT2

〉
≲

〈
1

η0K
I1:N0

+HN0+1:M ,
(
I− η0Ĥ

)2h
B0

〉
+ (C + 2)ΓK(H)

〈
1

η0h
I1:N ′

0
+HN ′

0+1:M ,B
0

〉
, (70)

where ΓK(H) :=
(

625N ′
0

K + 25η0h
K tr(HN ′

0+1:N0
) + η20h tr(H

2
N0+1:M )

)
for arbitrary D ≥ N0 ≥

N ′
0 ≥ 0.
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Proof. Using Lemma B.10 and Lemma B.11 we directly obtain the results.

Finally, we will finish the proof of Theorem B.2.

Proof of Theorem B.2. Combining Lemma B.5 with Lemma B.12, we derive equation 28. Based on
Theorem B.3, the equality wT2 = vT1+T2 holds with probability at least 1 − δ. By setting N ′

0 =
N0 = N ′

1 = N1 = D in equation 28 and applying Markov’s inequality, we obtain equation 29.

B.4 PROOF OF MAIN RESULTS

In this section, we finally complete the proof of main results for the global convergence of Algorithm
1 in Theorem B.4, based on the analysis of Phase I and Phase II. Before we propose the main
Theorem B.4, we set the parameter as follows:

L1 = Õ
(
(σ2 +M2(b))2 + σ̂max(D)

)
, L2 = Õ(σ2 +M2(b)), L3 = 1 +

L1σ̃max(D)σ̄min(D)

σmin(D)
,

(71)

Theorem B.4. [Upper Bound in Theorem 4.1] Under Assumption 3.1 and 3.3, we consider a pre-
dictor trained by Algorithm 1 with total sample size T . Let h < T and T1 := ⌈(T−h)/ log(T−h)⌉.
Suppose there exists D ≤ M such that T1 ∈ [ L1L3

σmin(D)σ̄min(D) ,
L2L

2
3

σ̃max(D)σ̄2
min(D)

] with parameter set-

ting equation 71 and let η = Ω̃( σ̄min(D)
σ2+M2(b) ). Then we have

RM (vT )−RM (v∗) ≲
σ2D

T1
+ σ2η2(h+ T1)

M∑
i=D+1

λ2i (v
∗
i )

4

+
1

ηT1
tr

((
I1:D −

η

4
H∗

1:D

)2h
diag

{
(v∗

1:D)⊙2
})

+
〈
H∗

D+1:M ,diag
{
(v∗

D+1:M )⊙2
}〉

+

(
D

T1
+ η2h tr

(
(H∗

D+1:M )2
))〈 1

ηh
I1:D +H∗

D+1:M ,diag
{
(v∗)⊙2

}〉
,

with probability at least 0.95. Otherwise, let T1 ∈ [ L1L3

σmin(M)σ̄min(M) ,+∞) with parameter setting

equation 71 and η = Ω̃( σ̄min(M)
σ2+M2(b) ). Then we have

RM (vT )−RM (v∗) ≲
σ2M

T1
+

1

ηT1
tr

((
I− η

4
H∗
)2h

diag
{
(v∗)⊙2

})
+

M

ηhT1
tr
(
diag

{
(v∗)⊙2

})
,

with probability at least 0.95.

Proof. Combining Theorem B.1 and Theorem B.2, we complete the proof.

C PROOFS OF LOWER BOUND (THEOREM 4.1)

In this section, we introduce the proof of the lower bound in Theorem C.1. Let σ̄2 := E[ξ2] +∑∞
i=M+1 λi(v

∗
i )

4. Recall the analysis in Phase I, vT1 satisfies the inequality b ≤ vT1 ≤ b̂ with
high probability. Here, b̂ is defined as b̂⊤ = ( 32 (v

∗
1:D)⊤, 3(v∗

D+1:M )⊤), while b is defined as

b
⊤
= ( 12 (v

∗
1:D)⊤,0⊤). We begin with the required concepts as below. A Markov chain {v̆t}T2

t=0 is
constructed with initialization v̆0 satisfying b ≤ v̆0 ≤ b̂. The update rule is defined by

v̆t+1 = v̆t − ηtHt
v̆

(
v̆t − v∗)+ ηtR

t
v̆x

t, ∀t ∈ [0 : T2 − 1],

where Ht
v̆ and Rt

v̆ satisfy:
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1. If b ≤ v̆t ≤ b̂, Ht
v̆ = (v̆t ⊙ xt) ⊗ ((v̆t + v∗) ⊙ xt) and Rt

v̆ = (ξt +∑∞
i=M+1 x

t
i(v

∗
i )

2) diag{v̆t},

2. Otherwise, for any τ ∈ [t : T2 − 1], Hτ
v̆ = 25

4 (v∗ ⊙ ΠMxτ ) ⊗ (v∗ ⊙ ΠMxτ ) and
Rτ

v̆ = (ξτ +
∑∞

i=M+1 x
τ
i (v

∗
i )

2) diag{b}.

Let w̆t := v̆t−v∗ be the error vector, and let ts := inf{t | v̆t ⩽̸ b̂
∨

v̆t ⩾̸ b} be the stopping time.
According to equation 72, {w̆t}T2

t=1 is recursively defined by

w̆t+1 =
(
I− ηtHt

v̆

)
w̆t + ηtR

t
v̆x

t.

We define V̆t = E [w̆t ⊗ w̆t]. By the definitions of Ht
· , H̃t

· , Gt· , and G̃t· in Phase II, we derive the
iterative relationship governing the sequence {V̆t}T2

t=0:

V̆t+1 = E
[(
I − ηtGtv̆

)
◦
(
w̆t ⊗ w̆t

)]
+ η2tΣ

t
v̆, (72)

for t ∈ [0 : T2 − 1] with V0 =
(
w0 − v∗) ⊗ (w0 − v∗). If t < ts, Σt

v̆ = σ̄2ΛE[diag{v̆t⊙2}];
otherwise, Στ

v̆ = σ̄2Λdiag{b⊙2} for any τ ≥ t. According to the definitions above, we obtain
following estimation of the last-iteration function value:

E
[
RM (w̆T2)−RM (v∗)

]
≥ 1

24

〈
H̆,E

[
w̆T2 ⊗ w̆T2

]〉
≥ 1

24

〈
H̆, V̆T2

〉
, (73)

where H̆ := 12Λdiag{v∗⊙v∗}. We define Ği := H̆⊗I+I⊗H̆−ηiH̆⊗H̆. We formally propose
the lower bound of the estimate in Theorem C.1 as below.
Theorem C.1. [Lower Bound in Theorem 4.1] Under Assumption 3.1 and 3.3, we consider a predic-
tor trained by Algorithm 1 with iteration number T and middle phase length h > ⌈(T −h)/ log(T −
h)⌉. Let D ≍ min{T 1/max{β,(α+β)/2}, M} and η ≍ Dmin{0,(α−β)/2}. Then we have

E
[
RM (vT )

]
− E[ξ2] ≳

1

Mβ−1
+
σ̄2D

T
+

1

Dβ−1
1M>D, (74)

where σ̄2 := E[ξ2] +
∑∞

i=M+1 λi(v
∗
i )

4. Moreover, we can also obtain

RM (vT )− E
[
ξ2
]
≳

1

Mβ−1
+
σ̄2D

T
+

1

Dβ−1
1M>D, (75)

with probability at least 0.95.

Proof. The proof of Theorem C.1 is divided into two steps. Step I reveals that for coordinates
j ≥ Õ(D), the slow ascent rate inherently prevents vt

j from attaining close proximity to the optimal
solution v∗

j upon algorithmic termination.

Step I: Let M ≳ T 1/max{β,(α+β)/2}, and define T1 := ⌈(T − h)/ log(T − h)⌉ and D† :=
O((ηT )2/(α+β)). Considering the b-capped coupling process {v̄t}Tt=0 mentioned in Phase I, we
denote τ̂j as the stopping time when v̄

τ̂j
j ≥ 1

4v
∗
j for each coordinate D† ≤ j ≤M , i.e.,

τ̂j = inf

{
t : v̄t

j ≥
1

4
v∗
j

}
.

We aim to estimate the following probability for coordinates j ∈ [D† :M ] and times t1 ∈ [T1]:

P
(
J τ̂j=t1(j) =

{
v̄0
j ≤

1

8
v∗
j

∧
v̄0:t1−1
j ∈

[
0 :

1

4
v∗
j

]∧
v̄t1
j ≥

1

4
v∗
j

})
.

For fixed j ∈ [D† :M ] and any t ∈ [0 : t1 − 1], we have

E
[
v̄t+1
j | F t

]
=Ext+1

1:M ,ξt+1,ζt+1
M+1:∞

[
v̄t
j − η

((
(v̄t

j)
2 − (v∗

j )
2
)
x̂t+1
j + ẑt+1

j (v̄t)

−ζ̂t+1
M+1:∞ − ξ̂

t+1
)
x̂t+1
j v̄t+1

j

]
≤
(
1 + ηλj(v

∗
j )

2
)
v̄t
j .

(76)
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Similarly, based on Lemma E.1, we have

E
[
exp

{
λ(v̄t+1

j − E[v̄t+1
j | F t])

}
| F t] ≤ exp

{
λ2η2λj(v

∗
j )

2O
([
σ̄2 +M2(v∗)

]
log4(MT1/δ)

)
2

}
,

for any λ ∈ R. According to the setting of stepsize η, we have (1 + ηλi(v
∗
i )

2)T1 ≤ 2 for any
i ∈ [D† : M ]. Utilizing Corollary E.1 and equation 76, we can establish the probability bound for
event J τ̂j=t1(j) for any time t1 ∈ [T1] as

P
(
J τ̂j=t1(j)

)
≤ exp

{
− 1

Tη2λjO
(
[σ̄2 +M2(v∗)] log2(MT1/δ)

)} . (77)

Finally, combining the probability bounds equation 77 with the setting of η, we obtain the following
probability bound for complement event

⋃M
j=D†{maxt∈[T1] v̄

t
j ≥ 1

4v
∗
j}:

P

 M⋃
j=D†

{
max
t∈[T1]

v̄t
j ≥

1

4
v∗
j

} ≤ M∑
j=D†

T1∑
t1=1

P
(
J τ̂j=t1(j)

)
≤MT1 exp

{
−

minD†≤j≤M λ−1
j

T1η2O
(
[σ̄2 +M2(v∗)] log4(MT1/δ)

)}

≤δ
2
. (78)

Therefore, we have
⋂M

j=D†{maxt∈[T1] v
t
j <

1
4v

∗
j} with high probability.

Similar to Phase II’s analysis, Step II derives the lower bound estimate of the risk by constructing
a recursive expression for {V̆t

diag}
T2
t=0 where T2 = T − T1. We continue to use vT1 , which satisfies

equation 11, as the initial point for the SGD iterations in Step II. If M ≳ T 1/max{β,(α+β)/2}, we
further require that vT1 satisfies

vT1
j <

1

4
v∗
j , ∀j ∈

[
Õ(T 1/max{β,(α+β)/2}),M

]
.

According to Theorem B.1 and the result of Step I, the assumption on vT1 can be satisfied with high
probability.

Step II: If M ≳ T 1/max{β,(α+β)/2}, assume that v̆0 further satisfies v̆0
D†:M ≤

1
4v

∗
D†:M . Setting

η0 = η and K = T1, we have

V̆t+1
diag =

(
E
[(
I − ηtG̃tv̆

)
◦
(
w̆t ⊗ w̆t

)])
diag

+ η2t

(
E
[(
Ht

v̆ − H̃t
v̆

)
◦
(
w̆t ⊗ w̆t

)])
diag

+ η2tΣ
t
v̆

⪰
(
I − ηtĞt

)
◦ V̆t

diag + η2t σ̄
2Λdiag

{
b
⊙2
}
,

for any t ∈ [0 : T2 − 1]. According to the recursive step above, we obtain

V̆T2 ⪰σ̄2
T2∑
t=1

η2t

T2∏
i=t+1

(
I− ηiH̆

)2
Λdiag

{
b
⊙2
}
+
(
I− η0H̆

)2T2 (
w̆0 ⊗ w̆0

)
︸ ︷︷ ︸

II

⪰σ̄2
T2∑
t=1

η2t

T2∏
i=t+1

(
I− 2ηiH̆

)
Λdiag

{
b
⊙2
}

︸ ︷︷ ︸
I

+II. (79)

Recalling the step size decay rule in Algorithm 1, we have

I =η20

h∑
i=1

(
I− 2η0H̆

)h−i L−1∏
j=1

(
I− η0

2j−1
H̆
)K

Λdiag
{
b
⊙2
}
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+

L−1∑
l=1

(η0
2l

)2 K∑
i=1

(
I− η0

2l−1
H̆
)K−i L−1∏

j=l+1

(
I− η0

2j−1
H̆
)K

Λdiag
{
b
⊙2
}

=
η20
12

h∑
i=1

(
I1:D − 2η0H̆1:D

)h−i L−1∏
j=1

(
I1:D −

η0
2j−1

H̆1:D

)K
H̆1:D

+
1

12

L−1∑
l=1

(η0
2l

)2 K∑
i=1

(
I1:D −

η0
2l−1

H̆1:D

)K−i L−1∏
j=l+1

(
I1:D −

η0
2j−1

H̆1:D

)K
H̆1:D

=
η0
24

(
I1:D −

(
I1:D − 2η0H̆1:D

)h)L−1∏
j=1

(
I1:D −

η0
2j−1

H̆1:D

)K

+

L−1∑
l=1

η0
12 · 2l+1

(
I1:D −

(
I1:D −

η0
2l−1

H̆1:D

)K) L−1∏
j=l+1

(
I1:D −

η0
2j−1

H̆1:D

)K

(a)
≥η0
24

(
I1:D −

(
I1:D − 2η0H̆1:D

)h)(
I1:D − 2η0H̆1:D

)K
+

L−1∑
l=1

η0
12 · 2l+1

(
I1:D −

(
I1:D −

η0
2l−1

H̆1:D

)K)(
I1:D −

η0
2l−1

H̆1:D

)K
, (80)

where (a) is derived from following inequality

L−1∏
i=l+1

(
I1:D −

η0
2i−1

H̆1:D

)
≥ I1:D −

L−1∑
i=l+1

η0
2i−1

H̆ ≥ I1:D −
η0
2l−1

H̆1:D.

When h > K, we apply an auxiliary function analogous to [Lemma D.1, Wu et al. (2022)]’s:

f(x) :=
x

2

(
1− (1− 2x)

h
)
(1− 2x)K +

L−1∑
l=1

x

2l+1

(
1−

(
1− x

2l−1

)K)(
1− x

2l−1

)K
.

Then, we obtain

f(η0H̆) ⪰ 1

4800K
I1:H1

+
η0
480

H̆H1+1:H2
+
η20h

480
H̆2

H2+1:D, (81)

where H1 := min{D,max{i | λi(v∗
i )

2 ≥ 1
12η0K

}} and H2 := min{D,max{i | λi(v∗
i )

2 ≥
1

12η0h
}}.

For term II, we have〈
H̆, II

〉
≳

{∑M
i=D† λi(v

∗
i )

4, if M ≳ T 1/max{β,(α+β)/2},

0, otherwise,
(82)

where the estimation for ⟨H̆, II⟩ under case M ≳ T 1/max{β,(α+β)/2} is derived from the initial-
ization v̆0

D†:M < 1
4v

∗
D†:M and (1 + ηλi(v

∗
i )

2)2T2 ≤ 2 for any i ∈ [D† :M ].

Therefore, using equation 73-equation 82, we derive

E
[
RM (v̆T2)−RM (v∗)

]
≳σ̄2

〈
H̆,

1

K
H̆−1

1:H1
+ η0IH1+1:H2

+ η20hH̆H2+1:D

〉
+
〈
H̆, II

〉
=σ̄2

(
H1

K
+ η0

H2∑
i=H1+1

λi(v
∗
i )

2 + η20h

D∑
i=H2+1

λ2i (v
∗
i )

4

)
+
〈
H̆, II

〉
.

According to Lemma B.3, we have P(ts ≤ T2) ≤ δ, which implies that

E
[
RM (v̆T2)−RM (v∗) | ts > T2

]
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≥E
[
RM (v̆T2)−RM (v∗)

]
−

T2∑
i=1

P(ts = i)E
[
RM (v̆T2)−RM (v∗) | ts = i

]
(b)
≳σ̄2

(
H1

K
+ η0

H2∑
i=H1+1

λi(v
∗
i )

2 + η20h

D∑
i=H2+1

λ2i (v
∗
i )

4

)
+
〈
H̆, II

〉
. (83)

Since δ is sufficiently small, (b) is drawn from two facts: 1) v̆ts resides in a bounded neighborhood
of b̂ or b; 2) the risk upper bound for SGD established in [Theorem 4.1, Wu et al. (2022)]. The
lower bound established in equation 83 is uniformly valid for all v̆0 ∈ [b, b̂]. Denote event

K
(
vT1
)
:=

{
b ≤ vT1 ≤ b̂

∧{
vT1

D†:M
≤ 1

4
v∗
D†:M , if M ≳ T 1/max{β,(α+β)/2}

}}
.

For ts > T2, the trajectory {v̆t}T2
t=0 aligns with Algorithm 1’s iterations over [T1 : T ], given the

initialization v̆0 = vT1 with K(vT1) occurs. Then, we have

min
vT1

E
[
RM (vT )−RM (v∗) | K(vT1)

]
≥(1− δ)min

vT1

E
[
RM (v̆T2)−RM (v∗) | ts > T2

∧
v̆0 = vT1

∧
K(vT1)

]
≳σ̄2

(
H1

K
+ η0

H2∑
i=H1+1

λi(v
∗
i )

2 + η20h

D∑
i=H2+1

λ2i (v
∗
i )

4

)
+ 1M≳T 1/max{β,(α+β)/2}

M∑
i=D†

λi(v
∗
i )

4.

(84)

Noticing that K(vT1) occurs with probability at least 1− δ, and combining equation 83 with equa-
tion 84, we obtain

E
[
RM (vT )−RM (v∗)

]
≥(1− δ)min

vT1

E
[
RM (vT )−RM (v∗) | K(vT1)

]
≳σ̄2

(
H1

K
+ η0

H2∑
i=H1+1

λi(v
∗
i )

2 + η20h

D∑
i=H2+1

λ2i (v
∗
i )

4

)

+ 1M≳T 1/max{β,(α+β)/2}

M∑
i=D†

λi(v
∗
i )

4,

where H1 := min{D,max{i | λi(v∗
i )

2 ≥ 1
12η0K

}} and H2 := min{D,max{i | λi(v∗
i )

2 ≥
1

12η0h
}}. Furthermore, as analyzed in Step I, whenM ≥ Õ(T 1/max{β,(α+β)/2}), the last iterate risk

can be bounded below byD1−β with high probability; whereas whenM ≤ Õ(T 1/max{β,(α+β)/2}),
such a lower bound is governed by M1−β with high probability. Therefore, we complete the proof
of the lower bound.

D PROOFS OF THEOREM 4.2

Proof. Without loss of generality, we suppose that the orthogonal matrix

argmin
R∈RM×M ,RR⊤=IM

∥∥∥ŨR−UA

∥∥∥2 ,
is IM . Moreover, let the SVD of ŨŨ⊤ be given by

ŨŨ⊤ = QŨΣ̃Q⊤
Ũ
.

The proof of Theorem 4.2 mirrors that of the upper bound established in Theorem 4.1. It is similarly
divided into two parts: Phase I and Phase II. For simplicity, we denote y −

〈
Q⊤

ASx,v∗⊙2
〉
− ξ as

ξ̃,
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Phase I: According to the update rule of vt at t+ 1-th step, we have

vt+1
j =vt

j − ηt
(〈

Q⊤
Ũ
Sxt+1,

(
vt
)⊙2
〉
−
〈
Q⊤

ASxt+1,v∗⊙2
〉
− ξt+1 − ξ̃t+1

)
·
(
Q⊤

Ũ
Sxt+1

)
j
· vt

j

=vt
j − ηt

(〈
Σ̃1/2zt+1,

(
vt
)⊙2
〉
−
〈
Σ̃1/2zt+1,v∗⊙2

〉
− ξt+1 − ξ̃t+1

+
〈
Q⊤

Ũ

(
UA − Ũ

)
zt+1,

(
vt
)⊙2
〉
+
〈(

Σ̃1/2 −Σ1/2
)
zt+1,v∗⊙2

〉)
·
[(

Σ̃1/2zt+1
)
j
+
(
QŨ

(
UA − Ũ

)
zt+1

)
j

]
· vt

j

=vt
j − ηt

(〈
Σ̃1/2zt+1,

(
vt
)⊙2
〉
−
〈
Σ̃1/2zt+1,v∗⊙2

〉
− ξt+1 − ξ̃t+1

)
·
(
Σ̃1/2zt+1

)
j
· vt

j︸ ︷︷ ︸
I

− ηt
(〈

Q⊤
Ũ

(
UA − Ũ

)
zt+1,

(
vt
)⊙2
〉
+
〈(

Σ̃1/2 −Σ1/2
)
zt+1,v∗⊙2

〉)
·
[(

Σ̃1/2zt+1
)
j
+
(
QŨ

(
UA − Ũ

)
zt+1

)
j

]
· vt

j

− ηt
(〈

Σ̃1/2zt+1,
(
vt
)⊙2
〉
−
〈
Σ̃1/2zt+1,v∗⊙2

〉
− ξt+1 − ξ̃t+1

)
·
(
QŨ

(
UA − Ũ

)
zt+1

)
j
· vt

j ,

for any j ∈ [M ], where z ∼ N (0, IM) is a standard M -dimensional Gaussian vector. Note that
term I in the above expression is identical to the right-hand side of equation 12. Moreover, under
Assumption 4.1, the influence of the remaining terms on the update of vt

j at step t+ 1 is dominated
by term I. Therefore, using techniques similar to those employed in section B.2, we can derive a
result analogous to Theorem B.1.

Phase II: Following the technique in section B.3, we can construct a truncated coupling {v̂t}T2
t=0

and a truncated sequence {wt}T2
t=0. Similarly, we can derive a result analogous to Theorem B.3,

which shows that with high probability, the trajectory of vt during Phase II (t ∈ [T1 : T ]) will
remain within a neighborhood of v∗. Then we estimate the risk between the last-step function value
and the ground truth as:

E
[
RM (wT2)− E(x,y)∼D

(〈
Q⊤

ASx,v∗⊙2
〉
− y
)2]

(a)
=E

[∣∣∣〈Q⊤
Ũ
Sx,

(
wT2

)⊙2
〉
−
〈
Q⊤

ASx,v∗⊙2
〉∣∣∣2] ‘

(b)
≲E

[〈
Σ̃1/2z,

(
wT2

)⊙2 − v∗⊙2
〉2]

+ E
[〈(

Σ1/2 − Σ̃1/2
)
z,v∗⊙2

〉2]
+ E

[〈
Q⊤

Ũ

(
UA − Ũ

)
z,
(
wT2

)⊙2
〉]

(c)
≲E

[〈
Σ̃1/2z,

(
wT2

)⊙2 − v∗⊙2
〉2]

+
∥∥∥ŨŨ⊤ −A

∥∥∥+ ∥∥∥Ũ−UA

∥∥∥ , (85)

where z ∼ N (0, IM) is a standard M -dimensional Gaussian vector. Here, (a) follows from condi-
tion [A4] in Assumption 3.2, (b) is derived from the Cauchy–Schwarz inequality, and (c) relies on
Assumption 4.1.

Therefore, according to Eq. equation 36 and the analysis in Part II (B.3.2) of section B.3, it suffices
to use the update rule of wt to determine the quantities of both the variance VT2 and bias terms
BT2 . We rewrite the update rule of wt as follows:

wt+1 =wt − ηt
(
Q⊤

Ũ
UAzt+1,

〈(
wt
)⊙2
〉
− yt+1

)
·
(
wt ⊙Q⊤

Ũ
UAzt+1

)
=wt − ηt

(〈
Q⊤

Ũ
UAzt+1,

(
wt
)⊙2
〉
−
〈
Σ1/2zt+1,v∗⊙2

〉
− ξ − ξ̃

)
·
(
wt ⊙Q⊤

Ũ
UAzt+1

)
=wt − ηt

[〈
Σ̃1/2zt+1,

(
wt
)⊙2
〉
−
〈
Σ̃1/2zt+1,v∗⊙2

〉
− ξ − ξ̃
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+
〈
Q⊤

Ũ

(
UA − Ũ

)
zt+1,

(
wt
)⊙2
〉
−
〈(

Σ̃1/2 −Σ1/2
)
zt+1,v∗⊙2

〉]
·
[
wt ⊙ Σ̃1/2zt+1 +wt ⊙Q⊤

Ũ

(
UA − Ũ

)
zt+1

]
=wt − ηt

(〈
Σ̃1/2zt+1,

(
wt
)⊙2
〉
−
〈
Σ̃1/2zt+1,v∗⊙2

〉
− ξ − ξ̃

)
·
(
wt ⊙ Σ̃1/2zt+1

)
︸ ︷︷ ︸

I

− ηt
(〈

Σ̃1/2zt+1,
(
wt
)⊙2
〉
−
〈
Σ̃1/2zt+1,v∗⊙2

〉
− ξ − ξ̃

)
·
[
wt ⊙Q⊤

Ũ

(
UA − Ũ

)
zt+1

]
︸ ︷︷ ︸

II

− ηt
〈
Q⊤

Ũ

(
UA − Ũ

)
zt+1,

(
wt
)⊙2
〉
·
(
wt ⊙ Σ̃1/2zt+1

)
︸ ︷︷ ︸

III

+ ηt

〈(
Σ̃1/2 −Σ1/2

)
zt+1,v∗⊙2

〉
·
(
wt ⊙ Σ̃1/2zt+1

)
︸ ︷︷ ︸

IV

− ηt
〈
Q⊤

Ũ

(
UA − Ũ

)
zt+1,

(
wt
)⊙2
〉
·
(
wt ⊙Q⊤

Ũ

(
UA − Ũ

)
zt+1

)
︸ ︷︷ ︸

V

+ ηt

〈(
Σ̃1/2 −Σ1/2

)
zt+1,v∗⊙2

〉
·
(
wt ⊙Q⊤

Ũ

(
UA − Ũ

)
zt+1

)
︸ ︷︷ ︸

VI

.

Here, I corresponds to the term on the right-hand side of equation 25, while the remaining terms
II, III, IV,V and VI only affect VT2 . For simplicity, define matrix H := diag{v∗}Σ̃diag{v∗}
and let K = T1. Combining the Cauchy–Schwarz inequality with the proof technique of Lemmas
B.4 and B.5, we derive the estimation for

〈
H,VT2

〉
in the following form:

〈
H,VT2

〉
≲σ2

N ′
0

K
+ η0

N0∑
i=N ′

0+1

λi(v
∗
i )

2

+ σ2η20(h+K)

M∑
i=N0+1

λ2i (v
∗
i )

4

+
〈
H,VT2

II

〉
+
〈
H,VT2

III

〉
+
〈
H,VT2

IV

〉
+
〈
H,VT2

V

〉
+
〈
H,VT2

VI

〉
(d)
≲σ2

N ′
0

K
+ η0

N0∑
i=N ′

0+1

λi(v
∗
i )

2

+ σ2η20(h+K)

M∑
i=N0+1

λ2i (v
∗
i )

4

+
∥∥∥ŨŨ⊤ −A

∥∥∥+ ∥∥∥Ũ−UA

∥∥∥ , (86)

where the diagonal matrices VT2

II ,V
T2

III ,V
T2

IV ,V
T2

V and VT2

VI are defined as follows:

(
VT2

II

)
i,i

=


∥∥∥Ũ−UA

∥∥∥2 · 1

λ2
i (v∗

i )
2 , if i ≤ D.∥∥∥Ũ−UA

∥∥∥2 · Tη0

λi
, otherwise,

(
VT2

III

)
i,i

=


∥∥∥Ũ−UA

∥∥∥2 · ∥v∗⊙2∥2
λi(v∗

i )
2 , if i ≤ D,∥∥∥Ũ−UA

∥∥∥2 · Tη0 ∥∥v∗⊙2
∥∥2 , otherwise,

(
VT2

IV

)
i,i

=


∥∥∥ŨŨ⊤ −A

∥∥∥2 · ∥v∗⊙2∥2
λMλi(v∗

i )
2 , if i ≤ D,∥∥∥ŨŨ⊤ −A

∥∥∥2 · Tη0∥v∗⊙2∥2
λM

, otherwise,

(
VT2

V

)
i,i

=


∥∥∥Ũ−UA

∥∥∥4 · ∥v∗⊙2∥2
λ2
i (v∗

i )
2 , if i ≤ D,∥∥∥Ũ−UA

∥∥∥4 · Tη0∥v∗⊙2∥2
λi

, otherwise,
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(
VT2

VI

)
i,i

=


∥∥∥Ũ−UA

∥∥∥2 ∥∥∥ŨŨ⊤ −A
∥∥∥2 · ∥v∗⊙2∥2

λMλ2
i (v∗

i )
2 , if i ≤ D,∥∥∥Ũ−UA

∥∥∥2 ∥∥∥ŨŨ⊤ −A
∥∥∥2 · Tη0∥v∗⊙2∥2

λMλi
, otherwise.

Inequality (d) is derived from combining Assumption 4.1 with above definitions. The estimation for〈
H,VT2

〉
has been provided. It therefore remains only to bound

〈
H,BT2

〉
, which can be done by

an analysis analogous to that of Lemma B.6. This completes the proof.

E AUXILIARY LEMMA

Definition E.1 (Sub-Gaussian Random Variable). A random variable x with mean Ex is sub-
Gaussian if there is σ ∈ R+ such that

E
[
eλ(x−Ex)

]
≤ eλ2σ2

2 , ∀λ ∈ R.

Proposition E.1. [(Wainwright, 2019)] For a random variable x which satisfies the sub-Gaussian
condition E.1 with parameter σ, we have

P (|x− Ex| > c) ≤ 2e−
c2

2σ2 , ∀c > 0. (87)

Lemma E.1. Let X1, · · · , Xn be independent and symmetric stochastic variables with zero mean.
Denote Y =

∑n
i=1 viXi 1|Xi|≤R for any unit vector v ∈ Rn and positive scalar R. Then, we have

Y X11|X1|≤R is sub-Gaussian with parameter at most σ = O
(
R2∥v∥2

)
.

Proof. For simplicity, we denote X̂i := Xi1|Xi|≤R for any i ∈ [1 : n], and Y−1 =
∑n

i=2 viX̂i.
One can notice the following holds

E
[
eλ(Y X̂1−E[Y X̂1])

]
= E

[
eλvi(X̂2

1−E[X̂2
1 ])E

[
eλ(Y−1X̂1−E[Y−1X̂1]) | X̂1

]]
, (88)

for any λ ∈ R. Letting X̂ ′
i be an independent copy of X̂i for any i ∈ [1 : n], then we have

E
[
eλ(Y−1X̂1−E[Y−1X̂1]) | X̂1

] (a)
≤E

{
E
[
e
∑n

i=2 λvi(X̂iX̂1−E[X̂i]X̂
′
1) | X̂1, X̂

′
1

]}
(b)
≤E

{
E
[
e
∑n

i=2 λvi(X̂iX̂1−X̂′
iX̂

′
1) | X̂1, X̂

′
1

]}
, (89)

where (a) and (b) are derived from the convexity of the exponential, and Jensen’s inequality. Letting
ξ be an independent Rademacher variable, since the distribution of X̂i − X̂ ′

i is the same as that of
ξ(X̂i − X̂ ′

i) for any i ∈ [1 : n], we obtain

E
[
e
∑n

i=2 λvi(X̂iX̂1−X̂′
iX̂

′
1) | X̂1, X̂

′
1

]
=

n∏
i=2

E
[
eλvi[X̂1(X̂i−X̂′

i)+X̂′
i(X̂1−X̂′

1)]
]

(c)
≤

n∏
i=2

(
E
[
e2λ

2v2
i X̂

2
1 (X̂i−X̂′

i)
2

| X̂1, X̂
′
1

]
E
[
e2λviX̂

′
i(X̂1−X̂′

1) | X̂1, X̂
′
1

])1/2
. (90)

Noticing that |X̂i − X̂ ′
i| ≤ 2R and |X̂i| ≤ R, and applying the Hoeffding bound to X̂i for any

i ∈ [1 : n], we are guarantee that
n∏

i=2

(
E
[
e2λ

2v2
i X̂

2
1 (X̂i−X̂′

i)
2

| X̂1, X̂
′
1

]
E
[
e2λviX̂

′
i(X̂1−X̂′

1) | X̂1, X̂
′
1

])1/2
≤ eO(λ

2R4 ∑n
i=2 v2

i ).

(91)

Combining Eq. equation 88-Eq. equation 91 and applying similar technique, we have

E
[
eλ(Y X̂1−E[Y X̂1])

]
≤eO(λ

2R4 ∑n
i=2 v2

i )E
[
eλvi(X̂2

1−E[X̂2
1 ])
]
≤ eO(λ

2R4∥v∥2
2).
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Lemma E.2. Consider a stochastic variable X which is zero-mean and sub-Gaussian with param-
eter σ for some σ > 0. Then, there exists R > 0 which depends on σ such that

E
[
X21|X|≤R

]
≥ 1

2
E
[
X2
]
. (92)

Proof. According to Eq. equation 87, we have P(|X| ≥ r) ≤ 2e−
r2

2σ2 for any r > 0. Therefore, we
obtain

E
[
X21|X|>R

] (a)
=2

∫ ∞

0

rP(|X|1|X|>R > r)dr

=2

∫ ∞

R

rP(|X| > r)dr +R2P(|X| > R)

≤4
∫ ∞

R

re−
r2

2σ2 dr + 2R2e−
R2

2σ2 = 4σ2e−
R2

σ2 + 2R2e−
R2

2σ2 , (93)

where (a) is derived from [Lemma 2.2.13, Wainwright (2019)].

Lemma E.3. Let c > 0, γ < 1 and at > 0 for any t ∈ [0 : T − 1]. Consider a sequence of random
variables {vi}T−1

i=0 ⊂ [0, c], which satisfies either vt = vt+1 = · · · = vT , or E
[
vt+1 | F t

]
≤

(1 − ηt)vt with stepsize ηt ≥ 0, given E[eλ(vt+1−E[vt+1|Ft]) | F t] ≤ e
λ2a2

t
2 almost surely for any

λ ∈ R. Then, there is

P
(
vT > c

∧
v0 ≤ γc

)
≤ max

t∈[1:T ]
exp

{
− (1− γ)2c2

2
∑t−1

j=0 a
2
j

∏t−1
i=j+1(1− ηi)2

}
.

Proof. Similarly, we begin with constructing a sequence of couplings {ṽi}Ti=0 as follows: ṽ0 = v0;
if vt = vt+1 = · · · = vT , let ṽt+1 = (1− ηt)ṽt; otherwise, let ṽt+1 = vt+1. Notice that

∏t−1
i=0(1−

ηi)
−1ṽt is a supermartingale. We define Dt+1 :=

∏t
i=0(1 − ηi)−1ṽt+1 −

∏t−1
i=0(1 − ηi)−1ṽt for

any t ∈ [0 : T − 1]. Therefore, applying iterated expectation yields

E
[
eλ(

∑t
i=1 Di)

]
=E

[
eλ(

∑t−1
i=1 Di)E

[
eλDt | F t−1

]]
=E

[
eλ(

∑t−1
i=1 Di)E

[
e

λ∏t−1
i=0

(1−ηi)
(vt−(1−ηt−1)v

t−1)
| F t−1

]]
(a)
≤E

[
eλ(

∑t−1
i=1 Di)E

[
e

λ∏t−1
i=0

(1−ηi)
(vt−E[vt|Ft−1])

| F t−1

]]
(b)
≤e

λ2a2
t−1

2
∏t−1

i=0
(1−ηi)

2 E
[
eλ(

∑t−1
i=1 Di)

]
≤e

λ2 ∑t−1
j=0

a2
j

∏j
i=0

(1−ηi)
−2

2 , (94)

for any λ ∈ R+ and t ∈ [1 : T ], where (a) is derived from that λ(E[vt | F t−1]−(1−ηt−1)v
t−1) ≤ 0

and (b) follows from the condition that E[eλ(vt+1−(1−ηt)v
t) | F t] ≤ e

λ2a2

2 almost surely for any
λ ∈ R. Then we obtain

P
(
vT > c

∧
v0 ≤ γc

)
≤ max

t∈[1:T ]
P

(
t−1∏
i=0

(1− ηi)−1ṽt >

t−1∏
i=0

(1− ηi)−1c
∧
ṽ0 ≤ γc

)

≤ max
t∈[1:T ]

min
λ>0

E
[
eλ(

∑t
i=1 Di)

]
eλ(

∏t−1
i=0(1−ηi)−1c−γc)

(b)
≤ max

t∈[1:T ]
exp

−
(∏t−1

i=0(1− ηi)−1c− γc
)2

2
∑t−1

j=0 a
2
j

∏j
i=0(1− ηi)−2


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≤ max
t∈[1:T ]

exp

−
(1− γ)2

(∏t−1
i=0(1− ηi)−1c

)2
2
∑t−1

j=0 a
2
j

∏j
i=0(1− ηi)−2


= max

t∈[1:T ]
exp

{
− (1− γ)2c2

2
∑t−1

j=0 a
2
j

∏t−1
i=j+1(1− ηi)2

}
, (95)

where (b) is derived from Eq. equation 94.

Corollary E.1. Let c > 0, γ < 1 and at > 0 for any t ∈ [0 : T−1]. Consider a sequence of random
variables {vi}T−1

i=0 ⊂ [0, c], which satisfies
∏T−1

i=0 (1 + ηt)
−1c − v0 ≥ γc and E

[
vt+1 | F t

]
≤

(1 + ηt)v
t with stepsize ηt ≥ 0, given E[eλ(vt+1−E[vt+1|Ft]) | F t] ≤ e

λ2a2
t

2 almost surely for any
λ ∈ R. Then, there is

P
(
vT > c

)
≤ max

t∈[1:T ]
exp

{
− γ2c2

2
∑t−1

j=0 a
2
j

∏j
i=0(1 + ηi)−2

}
.

Lemma E.4. For L,K ∈ N+, consider T ∈ N+ such that LK ≤ T < (L+ 1)K. Then we have

T∑
t=0

(
T∏
i=t

(1− cηt)

)
η2t ≤

2η0
c
, (96)

where ηt = η0

2l
if lK ≤ t ≤ min{(l + 1)K − 1, T} for any l ∈ [0 : L] and c > 0 is a constant.

Proof. For any l ∈ [0 : L], we have

(l+1)K−1∑
t=lK

(
T∏
i=t

(1− cηt)

)
η2t =η2lK

 T∏
i=(l+1)K

(1− cηt)

 (l+1)K−1∑
t=lK

(1− cηlK)(l+1)K−1−t

≤ηlK
c

 T∏
i=(l+1)K

(1− cηt)

 . (97)

Therefore, we obtain the following estimation

T∑
t=0

(
T∏
i=t

(1− cηt)

)
η2t ≤

LK−1∑
t=0

(
T∏
i=t

(1− cηt)

)
η2t +

T∑
t=LK

(1− cηLK)T−tη2LK

(a)
≤
∑L

l=0 ηlK
c

≤ 2η0
c
. (98)

Lemma E.5. Under Assumption 3.3 and the setting of Theorem B.2, we have

η(I− ηĤ)2tH ⪯ 25

t+ 1
I,

for any t ∈ [0 : T − 1].

Proof. For index i ∈ [1 : D], we have

η(I1:D − ηĤ1:D)2tH1:D = 25η(I1:D − ηĤ1:D)2tĤ1:D ⪯
25

t+ 1
I1:D,

since (1− x)t ≤ 1
(t+1)x for any x ∈ (0, 1). For index i ∈ [D + 1 :M ], we obtain

ηHi,i ≤
1

T
≤ 1

t+ 1
, (99)

according to the parameter setting in Theorem B.2 for any t ∈ [1 : T − 1].

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Lemma E.6. Suppose Assumption 3.1 hold and let z = ΠMx ∈ RM . Then there exists a constant
γ > 0 such that

E
[
Az∥z∥2A⊤BAz⊤A⊤] ⪯ γ 〈AE

[
zz⊤

]
A⊤,B

〉
AE

[
zz⊤

]
A⊤, (100)

for any diagonal PSD matrix A ∈ RM×M and PSD matrix B ∈ RM×M .

Proof. We denote D := E[Az∥z∥2A⊤BAz⊤A⊤]. For any i, j ∈ [1 : M ] and i ̸= j, we have
Di,j = 2λiλjAi,iAj,j(A

⊤BA)i,j . In addition, we also have

Di,i = E
[
∥z∥2A⊤BA

]
A2

i,iλi + (A⊤BA)i,iA
2
i,i Var

[
z2i
]
≤ (C + 1)E

[
∥z∥2A⊤BA

]
A2

i,iλi.

Therefore, we obtain that

D ⪯(C + 1)E
[
∥z∥2A⊤BA

]
AE[zz⊤]A⊤ + 2AE[zz⊤]A⊤BAE[zz⊤]A⊤

⪯(C + 1)E
[
∥z∥2A⊤BA

]
AE[zz⊤]A⊤

+ 2
∥∥∥(AE[zz⊤]A⊤)1/2 B (AE[zz⊤]A⊤)1/2∥∥∥2

2
AE[zz⊤]A⊤

(a)
⪯(C + 2)

〈
AE

[
zz⊤

]
A⊤,B

〉
AE[zz⊤]A⊤,

where (a) is derived from that ⟨AE[zz⊤]A⊤,B⟩ = E[∥z∥2A⊤BA] and ∥H1/2BH1/2∥22 ≤ ⟨H,B⟩
for any PSD matrix B,D ∈ RM×M since

a⊤H1/2BH1/2a =
〈
H1/2aa⊤H1/2,B

〉
≤
〈
H1/2aa⊤H1/2,B

〉
+
〈
H1/2a⊥a

⊤
⊥H

1/2,B
〉

= ⟨H,B⟩ .
Therefore, by choosing γ = (C + 2), we obtain Eq. equation 100.

Lemma E.7. Under the setting of Theorem B.2, suppose following inequality holds

Bt+1
diag ⪯

(
I − ηĜ

)t+1

◦B0
diag + τη

t∑
i=0

〈
H,Bi

〉
t+ 1− i

· I,

for any t ∈ [0 : T − 1] and some constant τ > 0. Then, we have
t∑

i=0

⟨H,Bi⟩
t+ 1− i

≤

〈
t∑

i=0

(I− ηĤ)2iH

t+ 1− i
,B0

〉
+ 2τη log(t) tr(H)

t∑
i=0

⟨H,Bi⟩
t+ 1− i

,

for any t ∈ [1 : T ].

Proof. According to the condition of this lemma, we have

〈
H,Bt

〉
≤
〈
(I− ηĤ)2tH,B0

〉
+ τη tr(H)

t−1∑
i=0

〈
H,Bi

〉
t− i

. (101)

Applying Eq. equation 101 to each ⟨H,Bt⟩, we obtain

t∑
i=0

⟨H,Bi⟩
t+ 1− i

≤

〈
t∑

i=0

(I− ηĤ)2iH

t+ 1− i
,B0

〉
+ τη tr(H)

t∑
i=0

i−1∑
k=0

⟨H,Bi⟩
(t+ 1− i)(i− k)

≤

〈
t∑

i=0

(I− ηĤ)2iH

t+ 1− i
,B0

〉
+ τη tr(H)

t−1∑
k=0

⟨H,Bk⟩
t+ 1− k

t∑
i=k+1

(
1

t+ 1− i
+

1

i− k

)

≤

〈
t∑

i=0

(I− ηĤ)2iH

t+ 1− i
,B0

〉
+ 2τη log(t) tr(H)

t∑
k=0

⟨H,Bk⟩
t+ 1− k

.
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F SIMULATIONS

In this paper, we present simulations in a finite but large dimension (d = 10, 000). We artificially
generate samples from the model y =

〈
x, (v∗)

⊙2
〉
+ ξ, where x ∼ N (0,H), H = diag {i−α},

w∗
i = i−

β−α
4 , and ξ ∼ N (0, 1) is independent of x. In our simulations, given a total of T iteration,

we assume that Algorithm 1 can access T independent samples {(xi, yi)}Ti=1 generated by the above
model. h in Algorithm 1 is set to T

log2(T ) . We numerically approximate the expected error by
averaging the results of 100 independent repetitions of the experiment. In the following, we detail
the specific experimental settings and present the results obtained for each scenario.

• Figure F (a): We compare the curve of mean error of SGD against the number of iteration
steps for both linear and quadratic models, under the setting α = 3, β = 2 and T = 500.
The results show that the quadratic model exhibits a phase of diminishing error, while the
linear model demonstrates a continuous, steady decrease in error.

• Figure F (b): We compare the curve of mean error of SGD against the number of iteration
steps for both linear and quadratic models, under the setting α = 2.5, β = 1.5 and T =
500. The results show that the quadratic model exhibits a phase of diminishing error, while
the linear model demonstrates a continuous, steady decrease in error.

• Figure F (c): We compare the curve of mean error of SGD against the number of sample
size for both linear and quadratic models, under the setting α = 3, β = 2 and T ranging
from 1000 to 5000. The results indicate that the quadratic model outperforms the linear
model and exhibits convergence behavior that is closer to the theoretical algorithm rate.

• Figure F (d): We compare the curve of mean error of SGD against the number of sample
size for both linear and quadratic models, under the setting α = 2.5, β = 1.5 and T
ranging from 1000 to 5000. The results indicate that the quadratic model outperforms the
linear model and exhibits convergence behavior that is closer to the theoretical algorithm
rate.

• Figure F (e): We compare the curve of mean error of SGD against the number of sample
size for quadratic models with model size M = 10, 30, 50, 100, 200, under the setting
α = 3, β = 2 and T ranging from 1 to 10000. The results show that for a fixed M , when
T is small, the convergence rate approaches the rate observed as M →∞. As T increases
sufficiently, the convergence rate stabilizes. IncreasingM results in an increase in the value
of at which this stabilization occurs, which is consistent with the scaling law.

• Figure F (f): We compare the curve of mean error of SGD against the number of sample
size for quadratic models with model size M = 10, 30, 50, 100, 200, under the setting
α = 2.5, β = 1.5 and T ranging from 1 to 10000. The results exhibit similar patterns to
those observed in the previous figure.
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(a) Quadratic v.s. Linear Model (b) Quadratic v.s. Linear Model (c) Empirical v.s. Theoretical Results

(d) Empirical v.s. Theoretical Results (e) Scaling Law (f) Scaling Law

Figure 2: Numerical simulation results.
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