
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SIMPLEVLA-RL: SCALING VLA TRAINING VIA RE-
INFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models have emerged as a powerful paradigm
for robotic manipulation. Despite substantial progress enabled by large-scale pre-
training and supervised fine-tuning (SFT), these models face two fundamental
challenges: (i) the scarcity and high cost of large-scale robotic trajectories required
for SFT scaling, and (ii) limited generalization to tasks under distribution shift. To
overcome these limitations, we explore reinforcement learning (RL) as a pathway
to scaling VLA training beyond limited datasets. Inspired by LLM breakthroughs
where RL with outcome rewards enhances step-by-step reasoning, we ask: Can
outcome-driven RL improve long-horizon step-by-step action planning of VLA?
In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored
for VLA models. Building upon veRL, we introduce VLA-specific trajectory
sampling, scalable parallelization, multi-environment rendering, and optimized
loss computation. Applied to OpenVLA-OFT, SimpleVLA-RL achieves 99%
of SoTA performance on LIBERO and 80% relative improvement on RoboTwin
1.0&2.0, outperforming π0 with our proposed exploration-enhancing strategies.
SimpleVLA-RL reduces dependence on large-scale data, enables robust general-
ization, and remarkably surpasses SFT in real-world tasks. Moreover, we identify
a novel phenomenon “pushcut” during RL training, wherein the policy discovers
unseen patterns beyond those seen in previous training process.

Data Scarcity

New Pattern Discovery: Pushcut Phenomenon

Su
cc

es
s

Ra
te

 (
%

)

LIBERO

20

0

40

60

80

RoboTwin2.0

100

48.9

91.0

99.196.9

38.3

68.8

FullOne

94.2

Full

39.8

70.4

Full

RoboTwin1.0

Simulation & Real-World Tasks

52.7

Su
cc
es
s	
Ra
te
	(%

)

Real World Tasks

Task1 Task2 Task3 Task4

SimpleVLA-RL SFT-only 𝝅𝟎 RDT

Avg

70
60

10
4

60

20 14
10

39

24

Generalization

U
ns

ee
n

Ta
sk

 S
R(

%
)

Seen Task SR(%) Seen Task SR(%) Seen Task SR(%)

SFT Model After SimpleVLA-RL

RL enables the policy to acquire novel actions never seen before. RL provides strong, multi-dimensional generalization capabilities!

Full-Trajectory	SFT:	86.5

91.7

SimpleVLA-RL

One-Trajectory	SFT:	17.3

+74.4
(↑430.1%)

Spatial GoalObject

PushGrasp

Figure 1: Overview of SimpleVLA-RL. An efficient RL framework for VLA that improves long-
horizon planning under data scarcity, outperforms SFT in simulation and real-world tasks, reveals a
“pushcut” new-action phenomenon, and strengthens spatial/object/goal generalization.

1 INTRODUCTION

Vision-Language-Action (VLA) models have emerged as a promising approach for general robotic
manipulation by integrating visual perception, language understanding, and action generation in a
unified framework (Firoozi et al., 2025; Kim et al., 2024; Zhong et al., 2025). Current VLA training

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

paradigm consists of two stages: large-scale pretraining on multimodal data (human manipulation
videos (Sapkota et al., 2025), image-text pairs, and heterogeneous robot datasets (O’Neill et al.,
2024)), followed by supervised fine-tuning (SFT) on additional high-quality robot trajectories to
enhance task-specific capabilities.

While imitation learning paradigm has achieved notable progress (Intelligence et al., 2025), its heavy
dependence on large-scale, high-quality data poses a fundamental bottleneck that constrains fur-
ther development of VLA models:the Generalization Bottleneck from Data Scarcity (Schulman
et al., 2017b). 1) Data Scarcity: Scaling VLA training through SFT requires massive amounts of
high-quality robot trajectories, yet such data remains scarce and prohibitively expensive (Gao et al.,
2024). Collecting expert demonstrations demands carefully designed scenarios, diverse manipula-
tion objects, and skilled operators, which severely constrains both data scale and diversity (Bu et al.,
2025a; Team et al., 2025a). 2) Poor Generalization: This data scarcity leads to a fundamental
mismatch between training distributions and open-ended real-world tasks (Liu et al., 2025a). VLA
models trained on limited, scene-specific data tend to memorize patterns rather than learn gener-
alizable skills. Consequently, even minor distribution shifts, unseen objects or environments, can
cause compounding errors that severely limit generalization (Ross & Bagnell, 2010). This problem
becomes especially critical in compositional and long-horizon tasks (Gupta et al., 2019), revealing
that simply scaling SFT data cannot build generalizable VLA models to the open world.

To overcome this generalization bottleneck, VLA models need a learning mechanism capable of
interactive refinement beyond limited static datasets. Reinforcement Learning (RL) offers this ca-
pability through trial-and-error environmental interaction (Xu et al., 2024). However, traditional
robotics RL requires hand-crafted reward functions for each task, limiting scalability and general-
ization to novel scenarios where rewards are undefined (Ibarz et al., 2021; Kroemer et al., 2021;
Ma et al., 2023). This creates a dilemma: SFT is constrained by data, while traditional RL is con-
strained by reward engineering. Recent breakthroughs in Large Reasoning Models (LRMs) provide
a crucial insight: using only sparse outcome rewards, RL can significantly enhance models’ ability
to generate correct step-by-step reasoning chains (Guo et al., 2025a; Yang et al., 2025; Zeng et al.,
2025; Team et al., 2025b). This raises a critical question for VLAs: Can we leverage this outcome-
driven RL paradigm to enhance VLA models’ ability to generate step-by-step correct actions?
However, applying RL to VLA models presents unique technical challenges. First, unlike open-loop
text generation in LLMs, VLAs require closed-loop environment interaction with continuous visual
feedback, creating substantial computational overhead (Wang et al., 2025). Second, manipulation
tasks face inefficient exploration due to high-dimensional action spaces and sparse rewards (Zhou
et al., 2025). Third, existing RL frameworks lack VLA-specific infrastructure for efficient inference
and parallel environment interaction (Luo et al., 2025).

We introduce SimpleVLA-RL, an effective RL framework for VLA models. Building upon Vol-
cano Engine Reinforcement Learning for LLMs (veRL) (Sheng et al., 2024), we enable end-to-end
rule-based online RL for VLA models through VLA-specific interactive trajectory sampling and
loss computation. To support scalable RL training, we extend veRL with parallel multi-environment
rendering and adapt it into a unified training–inference–rendering framework. We also design three
exploration-enhancing strategies. Through SimpleVLA-RL, we significantly improve VLA per-
formance under data-scarce conditions, enhance generalization capabilities, and achieve noticeable
gains in real-world applications. Surprisingly, during RL training, the policy discovers novel pat-
terns beyond those in supervised data, a phenomenon we term “pushcut”. Our contributions include:

• Efficient online RL framework for VLA: We develop an efficient end-to-end VLA online RL
framework based on veRL that enables stable, sample-efficient training, optimized for rendering
parallelization and distributed training & inference.

• SOTA performance: We incorporate exploration-enhancing strategies, yielding consistent per-
formance improvements of 10–15%. Moreover, SimpleVLA-RL surpasses multiple SoTA base-
lines on both LIBERO and RoboTwin 1.0 & 2.0.

• Data efficiency and generalization: With only a single demonstration per task, RL boosts
LIBERO-Long success rates from 17.1% to 91.7%, and significantly outperforms SFT in spa-
tial, object, and task generalization.

• Real-world deployment capability: Simulation-trained policies transfer effectively to real-
world, achieving strong sim-to-real improvements without requiring real robot data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Trajectories

τ1

τ2

τN

…

Policy

Environment

state action
𝑆𝑡 𝐴𝑡

𝑆𝑡+1

𝑟1

𝑟2

𝑟N

…

SFT

SimpleVLA-RL

τ1 τ2 τ𝑁. . .

Limited Offline Trajectories

Policy

Group Advantage Computation

τ3

0

1

0

…

Exploration Enhanced RewardsR

With Higher Clip Range

Higher

ollout

Temperature

Dynamic

Sampling

Figure 2: Overview of SimpleVLA-RL.

2 SIMPLEVLA-RL
DeepSeek-R1 (Guo et al., 2025a) has achieved remarkable performance gains through online RL
with the simple, scalable rule-based reward, highlighting a promising training paradigm. In this sec-
tion, we introduce SimpleVLA-RL, which extends this rule-based online RL framework to VLA
models for embodied manipulation tasks as shown in Figure 2. Specifically, our training framework
proceeds as follows: we begin by generating multiple trajectories for each input via random sam-
pling (§2.1). Each trajectory is then assigned a simple outcome reward (1 for success, 0 for failure)
based on environment feedback (§ 2.2). Leveraging these rewards together with the corresponding
action token probabilities, we compute the GRPO loss to update the policy model (§ 2.4).

2.1 INTERACTIVE VLA ROLLOUT

RL on VLA models differs fundamentally from LLMs in trajectory generation. To enable online RL,
policy models need to generate diverse trajectories from an input for effective exploration. While
LLMs naturally achieve this diversity through random sampling on text token distributions (Renze,
2024; De Rosa & Papa, 2021), VLA models face a unique challenge due to their action decoding
strategies. Current VLA models often employ three strategies: (1) generating action token distribu-
tions similar to LLMs (Black et al., 2024; Kim et al., 2024), (2) diffusion-based denoising on latent
states (Liu et al., 2024; Cheang et al., 2025), and (3) deterministic regression via MLPs (Kim et al.,
2025). Among these, the token-based approach is most compatible with PPO-like RL algorithms,
as it naturally provides action distributions necessary for both random sampling and policy gradi-
ent computation. Therefore, we adopt this approach, where the VLA model outputs action token
probability distributions and employs random sampling to generate diverse trajectories.

Furthermore, for a given input query, LLM rollout proceeds by autoregressively generating tokens
until reaching a stop token or max output length. In contrast, VLA rollout requires continuous
interaction with the environment to update the visual observation and robot state dynamically (as
detailed in Appendix B). This closed-loop interaction is necessary because each robotic action alters
the environment, and subsequent actions must be conditioned on real-time sensory feedback. We
present the comparison of the rollout algorithm pseudo-code of LLMs and VLA in Listing 1.

2.2 OUTCOME REWARD MODELING

SimpleVLA-RL employs a straightforward binary reward function for RL training. Unlike tradi-
tional RL approaches that require carefully crafted reward functions (Hadfield-Menell et al., 2017;
Knox et al., 2023; Booth et al., 2023), we follow DeepSeek-R1’s approach by assigning trajectory-
level rewards of either 0 or 1 based solely on task completion. When the VLA model successfully
completes a task, the entire trajectory is assigned a reward of 1; otherwise, it receives a reward of 0.
For gradient computation, these trajectory-level rewards are uniformly propagated to the individual
action tokens. Consequently, all tokens within successful trajectories are assigned a reward of 1,
whereas those in unsuccessful trajectories are assigned a reward of 0. Our reward function is:

R(ai,t | si,t) =
{
1, is successful[traji(ai, si)],
0, otherwise.

(1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This simple outcome-level reward is simple yet effective: scalable, broadly applicable across envi-
ronments, and free from complex process-based design (Wu et al., 2021). By focusing solely on
task completion, it avoids the non-transferability issues typical of task-specific rewards.

2.3 EXPLORATION ENHANCEMENTS

Previous works (Yu et al., 2025; Liu et al., 2025b;d; An et al., 2025) have demonstrated that encour-
aging exploration during RL is critical. We observe that this factor becomes even more crucial in
VLA RL. Manipulation tasks typically allow for a wide range of valid solutions. However, VLA
models tend to converge on a narrow set of solution patterns, largely due to the homogeneity of their
training trajectories, which limits the efficiency of RL. Promoting exploration encourages models to
discover novel strategies and broaden the solution space, a property that is particularly advantageous
in scenarios with low success rates. Building on this insight, we implement three key modifications
to enhance the exploration of RL training: 1) employing dynamic sampling during trajectory rollout,
2) adjusting the clip range in the GRPO training objective, 3) and increasing the sampling tempera-
ture during rollout.

Dynamic Sampling Critic-free RL algorithms suffer from vanishing gradients when trajectories
are assigned the same rewards. For example, GRPO computes advantages using group-relative
normalization, comparing each response’s reward to the mean and standard deviation of rewards
within its group of sampled outputs. When all trajectories share identical rewards, their advantage
estimation becomes zero, resulting in null gradients and causing unstable training dynamics.

We address this challenge through Dynamic Sampling (Yu et al., 2025; Cui et al., 2025a), a method
that has been proven effective in LLM RL (Cui et al., 2025a; Yu et al., 2025; Team et al., 2025b;
Shi et al., 2025). During rollout, we exclude groups in which all trajectories either succeed or fail.
Sampling proceeds until the batch consists solely of groups with mixed outcomes, which can be
formally expressed as:

0 < |{traji(ai, si) | is successful[traji(ai, si)]}| < G. (2)

This ensures non-zero advantage estimates and stable gradient flow throughout training.

Clipping Higher PPO and GRPO employ clipping over the importance sampling ratio to restrict
the trust region (Schulman et al., 2015) and enhance RL stability (Schulman et al., 2017a; Shao et al.,
2024). However, the upper clipping threshold restricts the probability increase of low-probability
tokens, thereby potentially constraining exploration. Following DAPO (Yu et al., 2025), we modify
the clipping range in the GRPO training objective from [0.8, 1.2] to [0.8, 1.28].

Higher Rollout Temperature Recent works on LLM RL adjusting the rollout temperature to
promote exploration have been widely shown to be effective, with sampling at higher temperatures
yielding particularly notable improvements (An et al., 2025; Liu et al., 2025d; Liao et al., 2025). To
encourage the VLA model to generate more diverse trajectories during the rollout phase, we increase
the sampling temperature from 1.0 to 1.6. As shown in Figure 3, these modifications led to notable
improvements.

0 50 100 150 200 250 300
RL Training Steps

20

30

40

50

60

70

80

90

LI
B

ER
O

-L
on

g
SR

 (
%

) 15%

w/ Dynamic-Sampling
w/o Dynamic-Sampling

(a) Dynamic Sampling

0 50 100 150 200 250 300
RL Training Steps

20

30

40

50

60

70

80

90

LI
B

ER
O

-L
on

g
SR

 (
%

) 10%

w/ Clip-Higher
w/o Clip-Higher

(b) Clip Higher

0 50 100 150 200 250 300
RL Training Steps

20

30

40

50

60

70

80

90

LI
B

ER
O

-L
on

g
SR

 (
%

) 15%

w/ Temperature-Higher
w/o Temperature-Higher

(c) Higher Rollout Temperature

Figure 3: The effectiveness of three key enhancements: dynamic sampling, higher rollout tempera-
ture, and clip higher.

2.4 TRAINING OBJECTIVE

We use the adopted GRPO algorithm (Shao et al., 2024) for online RL training on VLA models, with
modifications as introduced in Section 2.3. Moreover, we remove the KL divergence regularization

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

following DAPO (Yu et al., 2025). This eliminates the need for a reference model during training,
reducing memory consumption and accelerating the training. Additionally, the KL penalty con-
strains policy divergence from a fixed reference, potentially limiting exploration of new behaviors.
Therefore, the policy is optimized via the following objective:

J (θ)=Es0∼D,{at}G
i=1∼πθold (·|st)

1

G

G∑
i=1

1

|ai|

|ai|∑
t=1

min
(
ri,t(θ)Âi, clip (ri,t(θ), 1−εL, 1+εH) Âi

)
s.t. 0 < |{traji(ai, si) : success[traji(ai, si)]}| < G,

(3)

where

ri,t(θ) =
πθ(ai,t | si,t)
πθold(ai,t | si,t)

, Âi =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (4)

Table 1: Main results of different VLA models on RoboTwin1.0.

Model RoboTwin1.0
Hammer Beat Block Handover Blocks Stack Shoe Place Avg

DP 0.0 12.0 7.1 4.3 5.9
DP3 64.7 84.3 24.0 59.3 58.1

OpenVLA-OFT 67.2 61.6 7.1 23.4 39.8
w/ ours 92.6 89.6 40.2 59.3 70.4
∆ +25.4 +28.0 +33.1 +35.9 +30.6

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks We evaluate SimpleVLA-RL on three simulation benchmarks—LIBERO (Liu et al.,
2023), RoboTwin1.0 (Mu et al., 2025), and RoboTwin2.0 (Chen et al., 2025a), and conduct real-
world experiments on RoboTwin2.0 tasks. LIBERO is a language-guided manipulation benchmark
with five task suites: LIBERO-Goal, LIBERO-Spatial, LIBERO-Object, LIBERO-Long (10 tasks
each with 50 demonstrations), and LIBERO-90 (90 tasks for large-scale evaluation). Performance
is measured by average Success Rate (SR) across 50 held-out test scenarios per task. RoboTwin1.0
provides 17 bimanual tasks, while RoboTwin2.0 extends to 50 tasks with 731 object instances and
comprehensive domain randomization (clutter, lighting, background, tabletop height, language in-
structions), enhancing task diversity and sim-to-real transfer. For RoboTwin2.0, we use the Agilex
Piper robotic arm and domain-randomized task settings, with each task evaluated on 100 held-out
test scenarios. We select 12 tasks in RoboTwin2.0 and categorize them into 4 horizon levels based
on average step counts, as detailed in Table 7.

Backbones We apply SimpleVLA-RL to OpenVLA-OFT (Kim et al., 2025), a state-of-the-
art auto-regressive VLA model with high performance and inference efficiency. Built on Open-
VLA (Kim et al., 2024), it uses vision encoders and LLaMA2-7B (Touvron et al., 2023) as the
backbone with action chunk and parallel decoding, making it suitable for online RL’s frequent infer-
ence requirements. Our implementation of the OpenVLA-OFT differs from the official version (see
Appendix G.2 for modifications and Appendix G.3 for hyperparameters).

Baselines We compare with advanced VLA models: UniVLA (Bu et al., 2025b), RDT-1B (Liu
et al., 2024), π0 (Black et al., 2024), πfast (Pertsch et al., 2025), Nora (Hung et al., 2025), Open-
VLA (Kim et al., 2024), Octo (Team et al., 2024), DP (Chi et al., 2024) and DP3 (Ze et al., 2024).

3.2 MAIN RESULTS

We evaluate SimpleVLA-RL on LIBERO, RoboTwin1.0, and RoboTwin2.0 using a two-stage
paradigm: SFT followed by SimpleVLA-RL on OpenVLA-OFT, while baselines use SFT only.
For LIBERO’s four task suites, we perform SFT with 500 demonstrations per task suite, then RL
on 500 simulation scenarios. For RoboTwin1.0, we use 50 demonstrations per task for single-task
SFT, then 100 scenarios per task for RL. For RoboTwin2.0, we use 1,000 demonstrations per task
for single-task SFT, then 1,000 scenarios per task for RL.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Main results of different VLA models on RoboTwin2.0, organized by task horizon.
Short Horizon Tasks (100-130 Steps)

Model Lift Pot Beat Hammer Block Pick Dual Bottles Place Phone Stand Avg
π0 51.0 59.0 50.0 22.0 45.5
RDT 45.0 22.0 18.0 13.0 24.5

OpenVLA-OFT 10.1 28.1 29.7 17.1 21.3
w/ ours 64.1 87.5 68.3 39.6 64.9
∆ +54.0 +59.4 +38.6 +22.5 +43.6

Medium Horizon Tasks (150-230 Steps)
Model Move Can Pot Place A2B Left Place Empty Cup Handover Mic Avg
π0 41.0 38.0 84.0 96.0 64.8
RDT 33.0 21.0 42.0 95.0 47.8

OpenVLA-OFT 28.1 37.5 77.3 45.3 47.1
w/ ours 61.2 45.3 94.2 89.2 72.5
∆ +33.1 +7.8 +16.9 +43.9 +25.4

Long (280-320 Steps) & Extra Long Horizon Tasks (450-650 Steps)
Model Handover Block Stack Bowls Two Blocks Rank Rgb Put Bottles Dustbin Avg
π0 39.0 53.0 45.0 54.0 47.8
RDT 26.0 42.0 17.0 26.0 27.8

OpenVLA-OFT 33.1 40.6 70.2 42.2 46.5
w/ ours 57.8 75.8 81.3 60.9 69.0
∆ +24.7 +35.2 +11.1 +18.7 +22.4

Overall Avg RDT: 33.3 π0: 52.7 OpenVLA-OFT: 38.3 w/ ours: 68.8 +30.5

Table 3: Main results on LIBERO.

Model LIBERO
Spatial Object Goal Long Avg

Octo 78.9 85.7 84.6 51.1 75.1
OpenVLA 84.7 88.4 79.2 53.7 76.5
Nora 92.2 95.4 89.4 74.6 87.9
π0 + FAST 96.4 96.8 88.6 60.2 85.5
π0 96.8 98.8 95.8 85.2 94.2
UniVLA 96.5 96.8 95.6 92.0 95.2

OpenVLA-OFT 91.6 95.3 90.6 86.5 91.0
w/ ours 99.4 99.1 99.2 98.5 99.1
∆ +7.8 +3.8 +8.6 +12.0 +8.1

Tables 1, 2, and 3 present results
on LIBERO, RoboTwin1.0, and
RoboTwin2.0 benchmarks. On LIBERO,
SimpleVLA-RL improves OpenVLA-
OFT from 91% to 99% average success
rate, achieving SoTA performance and
surpassing models like π0 and UniVLA.
For long-horizon tasks in LIBERO-
Long, SimpleVLA-RL reaches 98.5%
success rate, with a 12% improve-
ment over baseline and 13.3% over
π0. On RoboTwin1.0’s dual-arm tasks,
SimpleVLA-RL achieves 30.6% gains
(39.8% to 70.4%). Across RoboTwin2.0’s 12 tasks, SimpleVLA-RL delivers 80% relative
improvement (38.3% to 68.8%), outperforming SoTA methods including π0 (52.7%) and RDT
(33.3%). Even on Extra-Long-Horizon tasks like “Blocks Rank Rgb” and “Put Bottles Dustbin”,
SimpleVLA-RL achieves 11.1% and 18.7% point gains respectively, demonstrating effectiveness
across all horizon levels. These results validate that SimpleVLA-RL consistently improves model
performance across diverse benchmarks without requiring additional demonstration data, proving
the effectiveness of outcome-level rewards even for complex long-horizon tasks.

4 ANALYSIS

In this section, we analyze the role of SimpleVLA-RL in addressing three key challenges that
hinder the further advancement and scaling of the VLA model: data, generalization, and real-
world tasks. Below are several key takeaways:

Takeaways
1. Data: SimpleVLA-RL can significantly reduce reliance on demonstration data, effec-

tively alleviating the data scarcity bottleneck that constrains VLA scaling (§ 4.1).
2. Generalization: Compared to SFT, SimpleVLA-RL demonstrates strong generalization

in spatial configurations, object types, and task settings (§ 4.2).
3. Real-world Task: SimpleVLA-RL exhibits strong sim-to-real transfer, with large-scale

simulation training remarkably improving real-world performance, indicating a promising
path for scaling up real-world policy (§ 4.3).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 OVERCOMING DATA SCARCITY

Developing foundation VLA models for manipulation tasks requires large-scale demonstration data
for training (Liu et al., 2024; Black et al., 2024; Intelligence et al., 2025). This data scaling paradigm
has been proven in the NLP area (Hoffmann et al., 2022; Achiam et al., 2023; Touvron et al., 2023).
However, acquiring high-quality trajectory data for embodied manipulation tasks remains expensive
and difficult, creating a fundamental bottleneck for VLA model development (Bi et al., 2025; Zhong
et al., 2025). Therefore, we investigate whether SimpleVLA-RL can enhance VLA models even
with extremely limited demonstration trajectories to overcome this limitation.

Settings To simulate scenarios with scarce demonstration data, we finetune OpenVLA-OFT using
only one demonstration data per task, denoted as One-Trajectory SFT. Given that each of the four
LIBERO task suites contains 10 distinct tasks, we utilize merely 10 demonstration data per task
suite. For comparison, we also conduct an experiment using all available demonstration data for
each task, 500 per task suite, denoted as Full-Trajectory SFT. Following both One-Trajectory SFT
and Full-Trajectory SFT, we apply SimpleVLA-RL on the SFT model.

Table 4: Comparisons between One-Trajectory and
Full-Trajectory SFT on LIBERO.

Model LIBERO
Spatial Object Goal Long Avg

One-Trajectory SFT

OpenVLA-OFT 63.6 54.9 59.6 17.3 48.9
w/ ours 98.2 98.7 98.8 91.7 96.9
∆ +34.6 +43.8 +39.2 +74.4 +48.0

Full-Trajectory SFT

OpenVLA-OFT 91.6 95.3 90.6 86.5 91.0
w/ ours 99.4 99.1 99.2 98.5 99.1
∆ +7.8 +3.8 +8.6 +12.0 +8.1

Results As shown in Table 4, SFT per-
formance degrades significantly with lim-
ited data. Under One-Trajectory SFT, suc-
cess rates drop below 63.6% for LIBERO-
Spatial/Object/Goal and to only 17.3% for
LIBERO-Long, compared to 91.0% aver-
age under Full-Trajectory SFT. Remarkably,
applying SimpleVLA-RL to One-Trajectory
SFT models increases the average success
rate from 48.9% to 96.9%, surpassing even
Full-Trajectory SFT’s 91.0%. LIBERO-
Long improves dramatically from 17.3% to
91.7%, while the other three task suites all
exceed 98%. The performance gap between One-Trajectory SFT + RL (96.9%) and Full-Trajectory
SFT + RL (99.1%) is merely 2.2%. The results demonstrate that SimpleVLA-RL can substan-
tially improve performance even in data-scarce scenarios, suggesting that online RL enables further
scaling of VLA training through trial-and-error exploration, even with minimal demonstration data.

4.2 GENERALIZATION ANALYSIS

The generalization ability of VLA models remains a key challenge (Intelligence et al., 2025; Zhong
et al., 2025; Liu et al., 2025a). This subsection evaluates how SFT and online RL methods like
SimpleVLA-RL affect VLA generalization across three dimensions: spatial (LIBERO-Spatial), ob-
jects (LIBERO-Object), and tasks (LIBERO-Goal).

Settings We experiment on three LIBERO task suites (Spatial, Object, Goal), each containing ten
tasks. For each suite, we randomly select nine tasks as seen tasks for RL or SFT training, while
reserving the remaining task as the unseen task for out-of-distribution evaluation. For both methods,
we first fine-tune OpenVLA-OFT under the One-Trajectory SFT setting to obtain a base model
with non-zero success rates, since the original model achieves 0% on LIBERO and is incapable of
performing online RL. For SFT, we further fine-tune the One-Trajectory SFT base model (§4.1)
using 450 demonstrations from 9 seen tasks on each task suite. For RL, we perform SimpleVLA-
RL on the One-Trajectory SFT base model using 450 scenarios from 9 seen tasks. We plot how
unseen task performance evolves as training task success rates increase during training.

Results Figure 4 presents the results. While both SFT and RL achieve over 90% success rates
on training tasks, their performance on unseen tasks diverges significantly. As training progresses,
SimpleVLA-RL shows consistent improvement on unseen tasks across all settings, whereas SFT
suffers from severe overfitting, often experiencing catastrophic forgetting with success rates of un-
seen tasks dropping to 0%. On LIBERO-Goal, SFT immediately drops to 0% on all three unseen
tasks at training onset, likely because these tasks involve diverse objects and manipulation strate-
gies with minimal transferable components. In contrast, SimpleVLA-RL maintains performance
and achieves 5%-15% improvements. On LIBERO-Object, SFT improves only on Unseen Task 3
(57.8% to 74.6%) while failing on the other two. SimpleVLA-RL improves across all three tasks,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

70 80 90 100
Seen Tasks SR (%)

0

25

50

75

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Goal Unseen Task 1
put the wine bottle on top of the cabinet

RL
SFT

70 80 90 100
Seen Tasks SR (%)

0

20

40

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Goal Unseen Task 2
put the cream cheese in the bowl

RL
SFT

60 70 80 90 100
Seen Tasks SR (%)

0

20

40

60

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Goal Unseen Task 3
put the wine bottle on the rack

RL
SFT

50 60 70 80 90 100
Seen Tasks SR (%)

0

25

50

75

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Object Unseen Task 1
pick up the cream cheese and place it in the basket

RL
SFT

60 70 80 90 100
Seen Tasks SR (%)

0

20

40

60

80

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Object Unseen Task 2
pick up the salad dressing and place it in the basket

RL
SFT

60 70 80 90 100
Seen Tasks SR (%)

40

60

80

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Object Unseen Task 3
pick up the milk and place it in the basket

RL
SFT

70 75 80 85 90 95 100
Seen Tasks SR (%)

20

40

60

80

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Spatial Unseen Task 1
pick up the black bowl between the plate and ramekin

RL
SFT

80 85 90 95 100
Seen Tasks SR (%)

0

5

10

15
U

ns
ee

n
Ta

sk
 S

R
 (

%
) Spatial Unseen Task 2

pick up the black bowl next to the ramekin

RL
SFT

70 80 90 100
Seen Tasks SR (%)

0

25

50

75

U
ns

ee
n

Ta
sk

 S
R

 (
%

) Spatial Unseen Task 3
pick up the black bowl on the ramekin

RL
SFT

Figure 4: Generalization Analysis on LIBERO: Goal Unseen (Top), Object Unseen (Middle), Spa-
tial Unseen (Bottom).

with notable gains of 36.5% on Task 2 and 16.4% on Task 3. On LIBERO-Spatial, SFT degrades
by 10% on Unseen Task 1 and completely fails on the remaining tasks, while SimpleVLA-RL im-
proves Task 1 performance from 43.3% to 71.8% and achieves 7.1% and 13.3% gains on the other
tasks. These results demonstrate that RL training enables VLA models to retain previously acquired
capabilities while learning generalizable skills from diverse tasks.

4.3 REAL-WORLD EXPERIMENTS

Table 5: Real-world experiment (sim2real) results.
Stack Bowls Place Empty Cup Pick Bottle Click Bell Avg

RDT 60.0 4.0 10.0 20.0 23.5

OpenVLA-OFT 38.0 2.0 0.0 30.0 17.5
w/ ours 70.0 10.0 14.0 60.0 38.5

∆ +32.0 +8.0 +14.0 +30.0 +21.0

To evaluate the real-world effectiveness of SimpleVLA-RL, we conduct sim-to-real experiments on
four RoboTwin2.0 tasks (detailed in Appendix G.1) : Stack Bowls, Handover Block, Pick Bottle, and
Click Bell. We employ OpenVLA-OFT as the policy model, RDT as the baseline model, and execute
on two AgileX Piper robotic arms. For each task, we first use 1000 simulation trajectories for SFT.
Then we apply SimpleVLA-RL on the SFT model using 1000 simulation scenarios to obtain an RL
model. The entire training process uses only simulation data without any real-world demonstrations.
We evaluate both the SFT and RL models on clean tabletops with unseen backgrounds in the real
world. Each task is tested with 50 trials. The RDT baseline model only undergoes the SFT stage.

The sim2real results in Table 5 demonstrate that SimpleVLA-RL significantly improves the real-
world success rates of VLA models, with an average improvement from 17.5% to 38.5%, surpassing
RDT’s 23.5%. For instance, in the Stack Bowls task, SimpleVLA-RL achieves a 84% relative im-
provement, lifting performance from 38% to 70%.On the Pick Bottle task, which demands higher
action precision, as the bottle will fall if the robotic arm is not perfectly aligned on the first at-
tempt, the SFT model fails completely while SimpleVLA-RL achieves a 14% success rate. This
demonstrates RL’s effectiveness in improving action precision. Using SimpleVLA-RL for low-cost,
large-scale, and highly parallel RL training in simulation, we significantly improve the real-world
performance of simulation-trained VLA models. This demonstrates a promising path for scaling

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

real-world policies: using rich simulation assets and high-fidelity simulators for cost-effective RL
training to achieve superior performance in real-world deployment.

5 DISCUSSIONS

5.1 “PUSHCUT”: EMERGENCE OF NEW PATTERNS THROUGH RL

SFT

RL

Grasp

Push

Task: Move Can Pot

(a) “move can pot” task: Model learned to push the
can to the pot (bottom) instead of grasp-move-place
in the demonstration data (top).

SFT

RL Push

Task: Place A2B Right

Grasp

(b) ”place a2b right” task: Model learned to push A
to B’s right (bottom) instead of demonstrated grasp-
move-place (top).

Figure 5: Illustration of “pushcut”. Emergent pushing behaviors through RL in RoboTwin2.0 tasks.

During RL training with SimpleVLA-RL, we observe an emergent behavior we call “pushcut” (a
push-driven shortcut), where the VLA model discovers novel strategies absent from the demonstra-
tion data. In the move can pot task of RoboTwin2.0, all demonstrations follow a grasp–move–place
strategy (Figure 5a, top). However, after RL training, the model autonomously discovers a more
efficient solution: directly pushing the can to the target location instead of grasping it (Figure 5a,
bottom). Similar behaviors emerge in the place a2b left/right task, where the RL-trained model
learns to push Object A into position rather than following the demonstrated grasp-move-place ap-
proach (Figure 5b).

This “pushcut” phenomenon parallels the “Aha Moment” in DeepSeek-R1 (Guo et al., 2025a), as
both emerge through RL-driven exploration. This phenomenon highlights the fundamental distinc-
tion between SFT and RL. While SFT merely replicates patterns from demonstrations, RL enables
the discovery of novel strategies through reward-driven exploration. The outcome-level reward de-
sign is crucial here: since both grasping and pushing receive equal rewards upon task completion,
the sparse reward structure avoids procedural constraints, allowing the agent to explore freely and
discover unexpected yet effective solutions.

5.2 FAILURE MODES OF SIMPLEVLA-RL

We conduct ablation studies to identify failure conditions and key influencing factors of
SimpleVLA-RL (see Appendix C for full results and analysis). Our experiments reveal that model
priors are the critical factor determining RL effectiveness. RL fails completely when the base model
lacks initial task capability (0% success rate). Furthermore, we find a performance threshold: when
initial success rates are too low (< 5%), RL improvements remain negligible, while stronger initial
models achieve substantially better final performance after RL training.

6 CONCLUSION

In this work, we present SimpleVLA-RL, an RL framework tailored for VLA models that extends
veRL with VLA-specific trajectory sampling and parallelized training–inference–rendering capa-
bilities. SimpleVLA-RL demonstrates significant improvements in data efficiency, generalization,
and sim-to-real transfer. These results across LIBERO and RoboTwin benchmarks highlight RL’s
potential to both alleviate data scarcity and substantially enhance VLA generalization, paving the
way for more autonomous and adaptable robotic models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work presents SimpleVLA-RL, a reinforcement learning framework for improving Vision-
Language-Action models in robotic manipulation. Our research aims to advance autonomous
robotics for beneficial applications in manufacturing, healthcare, and assistive technologies. We
conduct experiments exclusively in simulation environments and controlled laboratory settings with
standard manipulation tasks, ensuring safe development practices. Our approach reduces reliance on
large-scale human-operated data collection, minimizing both human labor costs and potential safety
risks associated with extensive teleoperation. By enabling more sample-efficient training and bet-
ter generalization, SimpleVLA-RL promotes environmentally conscious research through reduced
computational requirements compared to scaling supervised learning alone. All experiments use
publicly available benchmarks and models to ensure transparent, reproducible research.

REPRODUCIBILITY STATEMENT

We provide comprehensive details to ensure reproducibility of our work. The complete algorith-
mic formulation of SimpleVLA-RL and training procedures are described in Section 2, including
trajectory sampling, loss computation, and exploration strategies. All experimental configurations,
model hyperparameters, hardware specifications, and robotic arm setups are detailed in Appendix G.
We provide implementation specifics built upon the open-source veRL framework, evaluation pro-
tocols for LIBERO and RoboTwin benchmarks, and baseline comparisons. Additionally, we include
ablation study configurations and real-world deployment settings. All mathematical formulations,
implementation details, and experimental configurations necessary for reproducing our results are
included in the paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scal-
ing reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polaris.

Hongzhe Bi, Lingxuan Wu, Tianwei Lin, Hengkai Tan, Zhizhong Su, Hang Su, and Jun Zhu. H-rdt:
Human manipulation enhanced bimanual robotic manipulation. arXiv preprint arXiv:2507.23523,
2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi 0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.
The perils of trial-and-error reward design: misdesign through overfitting and invalid task spec-
ifications. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
5920–5929, 2023.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025a.

Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, and
Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. arXiv preprint
arXiv:2505.06111, 2025b.

10

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chilam Cheang, Sijin Chen, Zhongren Cui, Yingdong Hu, Liqun Huang, Tao Kong, Hang Li, Yifeng
Li, Yuxiao Liu, Xiao Ma, et al. Gr-3 technical report. arXiv preprint arXiv:2507.15493, 2025.

Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xi-
anliang Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and bench-
mark with strong domain randomization for robust bimanual robotic manipulation. arXiv preprint
arXiv:2506.18088, 2025a.

William Chen, Suneel Belkhale, Suvir Mirchandani, Oier Mees, Danny Driess, Karl Pertsch,
and Sergey Levine. Training strategies for efficient embodied reasoning. arXiv preprint
arXiv:2505.08243, 2025b.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025c.

Zengjue Chen, Runliang Niu, He Kong, and Qi Wang. Tgrpo: Fine-tuning vision-language-action
model via trajectory-wise group relative policy optimization. arXiv preprint arXiv:2506.08440,
2025d.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025a.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025b.

Gustavo H De Rosa and Joao P Papa. A survey on text generation using generative adversarial
networks. Pattern Recognition, 119:108098, 2021.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Ap-
plications, challenges, and the future. The International Journal of Robotics Research, 44(5):
701–739, 2025.

Jensen Gao, Annie Xie, Ted Xiao, Chelsea Finn, and Dorsa Sadigh. Efficient data collection for
robotic manipulation via compositional generalization. arXiv preprint arXiv:2403.05110, 2024.

Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Charlie Tianyue
Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, et al. Roboverse: Towards a unified plat-
form, dataset and benchmark for scalable and generalizable robot learning. arXiv preprint
arXiv:2504.18904, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025b.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
predictive visual representations. arXiv preprint arXiv:2412.14803, 2024.

Chia-Yu Hung, Qi Sun, Pengfei Hong, Amir Zadeh, Chuan Li, U Tan, Navonil Majumder, Soujanya
Poria, et al. Nora: A small open-sourced generalist vision language action model for embodied
tasks. arXiv preprint arXiv:2504.19854, 2025.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. pi {0.5}: a vision-language-
action model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Zhenyu Jiang, Yuqi Xie, Kevin Lin, Zhenjia Xu, Weikang Wan, Ajay Mandlekar, Linxi Fan, and
Yuke Zhu. Dexmimicgen: Automated data generation for bimanual dexterous manipulation via
imitation learning. arXiv preprint arXiv:2410.24185, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

W Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(mis) design for autonomous driving. Artificial Intelligence, 316:103829, 2023.

Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. Journal of machine learning research, 22(30):1–82,
2021.

Mengqi Liao, Xiangyu Xi, Ruinian Chen, Jia Leng, Yangen Hu, Ke Zeng, Shuai Liu, and Huaiyu
Wan. Enhancing efficiency and exploration in reinforcement learning for llms. arXiv preprint
arXiv:2505.18573, 2025.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang.
What can rl bring to vla generalization? an empirical study. arXiv preprint arXiv:2505.19789,
2025a.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025b.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025c.

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl
synergy. arXiv preprint arXiv:2506.13284, 2025d.

Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
reinforcement learning. arXiv preprint arXiv:2505.18719, 2025.

Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan, Jacob Berg, Archit Sharma, Stefan Schaal,
Chelsea Finn, Abhishek Gupta, and Sergey Levine. Serl: A software suite for sample-efficient
robotic reinforcement learning. arXiv preprint arXiv:2401.16013, 2025.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang
Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early
version). In European Conference on Computer Vision, pp. 264–273. Springer, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Matthew Renze. The effect of sampling temperature on problem solving in large language models.
In Findings of the association for computational linguistics: EMNLP 2024, pp. 7346–7356, 2024.

Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye
Teh and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pp. 661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https:
//proceedings.mlr.press/v9/ross10a.html.

Ranjan Sapkota, Yang Cao, Konstantinos I Roumeliotis, and Manoj Karkee. Vision-language-action
models: Concepts, progress, applications and challenges. arXiv preprint arXiv:2505.04769, 2025.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017a.

13

https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v9/ross10a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. 2017b. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetun-
ing via adaptive curriculum learning. arXiv preprint arXiv:2504.05520, 2025.

Junyang Shu, Zhiwei Lin, and Yongtao Wang. Rftf: Reinforcement fine-tuning for embodied agents
with temporal feedback. arXiv preprint arXiv:2505.19767, 2025.

Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähenbühl. Interactive post-training for vision-
language-action models. arXiv preprint arXiv:2505.17016, 2025.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025a.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025b.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

RLinf Team. Rlinf: Reinforcement learning infrastructure for agentic ai. https://github.
com/RLinf/RLinf, 2025. GitHub repository.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7601–7614, 2024.

Yihao Wang, Pengxiang Ding, Lingxiao Li, Can Cui, Zirui Ge, Xinyang Tong, Wenxuan Song, Han
Zhao, Wei Zhao, Pengxu Hou, Siteng Huang, Yifan Tang, Wenhui Wang, Ru Zhang, Jianyi Liu,
and Donglin Wang. Vla-adapter: An effective paradigm for tiny-scale vision-language-action
model. arXiv preprint arXiv:2509.09372, 2025.

Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi Tomizuka, and Stefan Schaal. Learning
dense rewards for contact-rich manipulation tasks. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6214–6221. IEEE, 2021.

Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy distillation
via reinforcement learning, 2024. URL https://arxiv.org/abs/2412.09858.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

14

https://arxiv.org/abs/1707.06347
https://github.com/RLinf/RLinf
https://github.com/RLinf/RLinf
https://arxiv.org/abs/2412.09858

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhecheng Yuan, Tianming Wei, Shuiqi Cheng, Gu Zhang, Yuanpei Chen, and Huazhe Xu. Learning
to manipulate anywhere: A visual generalizable framework for reinforcement learning. arXiv
preprint arXiv:2407.15815, 2024.

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Hongyin Zhang, Zifeng Zhuang, Han Zhao, Pengxiang Ding, Hongchao Lu, and Donglin Wang.
Reinbot: Amplifying robot visual-language manipulation with reinforcement learning. arXiv
preprint arXiv:2505.07395, 2025.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
arXiv preprint arXiv:2411.19309, 2024.

Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuanfei
Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, et al. A survey on vision-language-action
models: An action tokenization perspective. arXiv preprint arXiv:2507.01925, 2025.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-
ment learning fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

A RELATED WORKS

A.1 REINFORCEMENT LEARNING FOR LARGE LANGUAGE MODELS

Reinforcement Learning (RL) for Large Language Models (LLMs) has achieved remarkable suc-
cess, demonstrating its ability to induce complex reasoning behaviors such as self-verification and
iterative optimization, thereby significantly enhancing model performance on reasoning tasks (Guo
et al., 2025a; Jaech et al., 2024; Liu et al., 2025c; Cui et al., 2025a; Zeng et al., 2025; Zuo et al.,
2025). Recent advancements in Large Reasoning Models (LRMs), such as DeepSeek-R1 (Guo et al.,
2025a), highlight the effectiveness of RL in boosting reasoning capabilities even with simple rule-
based rewards, as exemplified by GRPO (Shao et al., 2024). This approach differs substantially from
Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), which aligns base
models with human preferences using algorithms like Proximal Policy Optimization (PPO) (Schul-
man et al., 2017a) and heavily relies on preference modeling.

Recent studies have increasingly focused on enhancing exploration in reinforcement learning to en-
able longer training horizons and improved performance. DAPO (Yu et al., 2025) introduces Clip-
Higher, a decoupled variant of PPO clipping, which sets a higher upper bound relative to the lower
one (e.g., εL = 0.2, εH = 0.28). This adjustment allows low-likelihood but potentially valuable
tokens to increase in probability, thereby encouraging exploration. Building on this, POLARIS (An
et al., 2025) employs a staged curriculum of temperature increases (e.g., 0.7 → 1.0 → 1.1 for a
7B model) to gradually expand trajectory diversity and facilitate more robust policy discovery. In
parallel, Entropy Mechanism (Cui et al., 2025b) addresses entropy collapse, a persistent issue in
extended training, through methods such as Clip-Cov and KL-Cov, which selectively clip probabili-
ties or penalize high-covariance tokens to sustain effective exploration. Similarly, ProRL (Liu et al.,
2025b) combines KL control with reference policy resetting to preserve stability and extend training
without degrading performance. A complementary line of work regulates entropy via temperature

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

tuning. Acereason-nemotron 1.1 (Liu et al., 2025d) advocates adjusting temperatures to stabilize
post-scaling entropy around a target (e.g., 0.3), balancing exploration and exploitation. Liao et al.
(2025) further proposes a dynamic scheduler that adapts temperature over time to maintain stable
entropy, thereby supporting sustained performance gains.

A.2 VISION LANGUAGE ACTION MODELS

In the field of robotic manipulation tasks, VLA models (Kim et al., 2024; 2025; Liu et al., 2024;
Bu et al., 2025b; Hung et al., 2025; Black et al., 2024; Pertsch et al., 2025; Intelligence et al.,
2025) have shown better performance and task generalization compared to traditional policy-based
approaches (Ma et al., 2022; Yuan et al., 2024). These models integrate the VLM or LLM back-
bone with action modules through unified end-to-end training (Zhong et al., 2025). This approach
enables comprehensive multimodal understanding and fine-grained motor control (Firoozi et al.,
2025). Currently, many studies are focused on enhancing the effectiveness of VLA models. For ex-
ample, E-COT (Zawalski et al., 2024; Chen et al., 2025b) introduced Embedded Chain of Thought
(ECoT) to improve the spatial reasoning ability of VLA models. RDT-1B and VPP (Liu et al., 2024;
Hu et al., 2024) proposed diffusion-based frameworks for VLA models. Agibot world and Robo-
verse (Geng et al., 2025; Bu et al., 2025a) aim to build larger-scale simulation environments and tra-
jectory datasets to improve the sim-to-real transfer and generalization capabilities of VLA models.
Additionally, Dexmimicgen (Jiang et al., 2024) explores automated methods to generate high-quality
trajectory data to address the issue of data scarcity in robotics. Despite the rapid advancements in
the VLA domain, imitation learning remains the dominant training paradigm for VLA models (Sap-
kota et al., 2025; Kim et al., 2024; 2025; Liu et al., 2024; Bu et al., 2025b; Hung et al., 2025; Black
et al., 2024; Pertsch et al., 2025; Intelligence et al., 2025). Current VLA models typically follow
a two-stage paradigm: pretraining on multimodal data (e.g., Open X-Embodiment (O’Neill et al.,
2024)) followed by SFT on collected robot trajectories. However, imitation learning is limited by its
dependence on expensive, high-quality trajectory data and poor generalization to unseen scenarios.

VLA RL Methods Recently, some efforts have attempted to apply RL to VLA training.
GRAPE (Zhang et al., 2024) utilized Direct Preference Optimization (DPO) (Rafailov et al., 2023)
to train VLA models by integrating human preferences. ConRFT (Chen et al., 2025c) introduced
Reinforced Fine-Tuning (Trung et al., 2024) to train VLA models in real-world environments, it-
eratively training VLAs through alternating RL and SFT rounds. ReinboT (Zhang et al., 2025) fo-
cused on dense reward design and optimized VLA models through reward maximization. Guo et al.
(2025b) proposed an iterative training framework that combines Supervised Fine-Tuning (SFT) and
RL stages to address training instability and computational overhead. More recent works have fur-
ther advanced VLA RL methods. Concurrently, RIPT-VLA (Tan et al., 2025) investigates a closely
related problem, employing RLOO (Ahmadian et al., 2024) for VLA RL training. Moreover, Liu
et al. (2025a) investigates RL’s impact on VLA generalization capabilities, demonstrating signifi-
cant improvements over SFT in unseen environments, objects, and textures. RLinf (Team, 2025)
designed a flexible, scalable framework for VLA RL that unifies rendering, inference, and training,
improving both VLA training efficiency and performance. VLA-RL (Lu et al., 2025) applies the
PPO algorithm to the VLA model. TGRPO (Chen et al., 2025d) uses Claude3.7 to evaluate trajec-
tories and optimizes VLA with GRPO. RFTF (Shu et al., 2025) uses value models to generate dense
rewards in embodied scenarios for VLA online RL. Compared to the above works, our paper further
explores the effectiveness of VLA RL on real-world robotic tasks. We also conduct comprehensive
analyses on how VLA RL addresses data scarcity challenges and improves policy generalization.

B PRELIMINARIES

To provide an intuitive illustration of the existing gap when extending RL methodologies from LLMs
to the VLA domain, we formalize RL for both LLMs and VLA models, presenting their state repre-
sentations, action spaces, reward functions, and environments in this section.

B.1 RL FORMULATION FOR LLMS

State (st): At step t, the state st comprises the input prompt and previously generated tokens:

st = (xprompt, y1, y2, . . . , yt−1), (5)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where xprompt denotes the initial prompt and yt denotes the t-th generated token.

Action (at): An action corresponds to selecting the next token from the vocabulary V . At each step,
the policy outputs a probability distribution over tokens, and the action token is selected via random
sampling. Formally, the action is defined as:

at = yt ∈ V, where yt ∼ πθ(·|st) = softmax (fθ(st)/T) , (6)

where fθ(st) ∈ R|V| represents the LLM logit outputs and T is the temperature parameter control-
ling the randomness of sampling.

Environment: The environment provides reward signals upon sequence completion. In rule-based
settings, binary rewards are assigned based on the correctness. Alternatively, learned reward mod-
els or human feedback systems provide continuous rewards based on criteria such as helpfulness,
harmlessness, or task alignment. The reward is computed as follows:

r(τ) =

{
1, if τ satisfies correctness criteria
0, otherwise

, or r(τ) = Rϕ(τ) ∈ [0, 1], (7)

where Rϕ is a learned reward model and τ = (xprompt, y1, y2, . . . , yTseq) represents the complete
generated sequence of length Tseq.

Rollout: Given an input prompt xprompt, the LLM auto-regressively generates a sequence by sam-
pling tokens from πθ(yt|st) until termination, without intermediate environmental feedback. With a
non-zero temperature T , the policy can produce diverse rollouts that explore different solution paths.

B.2 RL FORMULATION FOR VLAS

State (st): The state consists of multimodal observations including visual input (RGB images, depth
maps, or point clouds), proprioceptive information (joint angles, end-effector pose), and language
instructions of the tasks. Formally, the state is defined as:

st = (ovis
t , oprop

t , ltask), (8)

where ovis
t is multimodal observations, oprop

t is proprioceptive information, and ltask is language in-
structions.

Action (at): Actions are control commands in the robot action space, typically end-effector deltas
or joint angle targets, where at ∈ Rd (e.g., d = 7 for 6-DoF pose plus gripper position). Most VLA
policies generate actions through either a diffusion-based action expert or a discrete action tokenizer.
The action is defined as follows:

at = Decoder(hθ(st)), Decoder ∈ {Diffusion Expert,Action Tokenizer}, at ∈ Rd, (9)

where hθ(st) represents the hidden state of st in the VLA model, and Decoder is the action decoder.

Environment: The environment represents the physical world or simulation where the robot oper-
ates. It provides state transitions st+1 = Env(st, at) and reward signals:

rt = α · Isuccess +(1−α) ·
∑
i

wi ·ϕi(st, at), α ∈ [0, 1], Isuccess =

{
1, if task success
0, otherwise

, (10)

where ϕi(st, at) represents process rewards (e.g. distance to goal), wi are weights, and α balances
outcome and process rewards.

Rollout: VLA models generate trajectories through iterative interaction with the environment.
At each timestep, the policy πθ takes the current state st as input and outputs an action chunk
(at, at+1, . . . , at+k−1) of length k. The robot executes these actions sequentially and the environ-
ment produces updated states based on physical dynamics. After execution, the model takes the new
state st+k as input and generates the next action chunk. This process continues until task completion
or maximum episode length, producing a complete trajectory τ = ((s0, a0), (s1, a1), . . . , (sT , aT))
through interactive sampling.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is an RL method that eliminates
the value function by computing advantages through group-relative normalization. Given an initial
state s0, the behavior policy πθold generates G trajectories {τi}Gi=1. The GRPO objective employs
PPO-style clipping with KL regularization to constrain policy updates:

JGRPO(θ) = Es0∼D,{τi}∼πθold

[
1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

min
(
ri,t(θ)Âi, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi

)
− βDKL(πθ||πref)

]
,

(11)

where the importance sampling ratio ri,t(θ) and the normalized advantage Âi are defined as:

ri,t(θ) =
πθ(ai,t|si,t)
πθold(ai,t|si,t)

, Âi =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (12)

Here Ri denotes the total reward of the i-th trajectory, ϵ > 0 is the PPO clipping parameter that
limits the policy ratio, and β > 0 is the coefficient controlling the strength of KL regularization with
respect to the reference policy πref.

C FAILURE MODES OF SIMPLEVLA-RL

Table 6: Impact of initial model capability on SimpleVLA-RL performance.

RoboTwin2.0
Move Can Pot Place A2B Left Place A2B Right Place Phone Stand Pick Dual Bottles Avg

0 trajs SFT 0 0 0 0 0 0
+RL 0 0 0 0 0 0

100 trajs SFT 9.4 7.8 7.8 10.1 1.2 7.3
+RL 51.6 25.0 27.2 18.8 4.3 25.4
∆ +42.2 +17.2 +19.4 +8.7 +3.1 +18.1

1000 trajs SFT 28.1 37.5 28.7 17.1 29.7 28.2
+RL 61.2 45.3 37.5 39.6 68.3 50.4
∆ +33.1 +7.8 +8.8 +22.5 +38.6 +22.2

This subsection investigates the failure conditions of SimpleVLA-RL and key influencing factors.
Through experiments on five RoboTwin2.0 tasks, we find that the model priors are the critical factor
determining RL effectiveness.

Settings Each task is trained under domain randomization with a single-task setting. We compare
three model variants: (1) the OpenVLA-OFT base model without trajectory fine-tuning (0 trajec-
tories SFT); (2) the model fine-tuned with 100 demonstration trajectories per task (100 trajectories
SFT); and (3) the model fine-tuned with 1000 demonstration trajectories per task(1000 trajectories
SFT). All models undergo SimpleVLA-RL training on 1000 training scenarios and are evaluated
on 100 held-out test scenarios.

RL fails completely when the base model has no initial task ability. Table 6 reports the results.
The base model (0-trajectory SFT) achieves a 0% success rate across all tasks, exhibiting no task-
relevant behaviors. Despite extensive pretraining, OpenVLA shows extremely limited zero-shot
generalization, consistent with findings in Kim et al. (2025). Because no successful trajectories
are generated during sampling and only outcome rewards (without process rewards) are employed,
every trajectory receives zero reward. As a result, RL is unable to improve performance, which
remains at 0%.

The model prior has a significant impact on the effectiveness of RL. Initial capability is strongly
correlated with post-RL performance. The 100-trajectory SFT model improves from 7.3% to 25.4%
(an 18.1% gain), while the 1000-trajectory SFT model improves from 28.2% to 50.4% (a 22.2%
gain) in average success rate. This trend is consistent across tasks. For instance, in the move can

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

pot task, the 100-trajectory SFT model improves from 9.4% to 51.6%, whereas the 1000-trajectory
SFT model improves from 28.1% to 61.2%. These results highlight that stronger initial capabili-
ties provide more effective starting points for exploration, thereby facilitating greater performance
improvements.

RL effectiveness has a threshold: when initial ability is too low, improvements remain negligi-
ble. Our findings further reveal that the effectiveness of RL is subject to a performance threshold.
When initial success rates are very low, online RL with outcome rewards yields only marginal im-
provements. For example, in the pick dual bottles task, the 100-trajectory SFT model improves from
1.2% to 4.3%, while the 1000-trajectory SFT model improves from 29.7% to 68.3%. Similarly, in
the place phone task, the 100-trajectory SFT model gains 8.7%, compared to a 22.5% gain for the
1000-trajectory SFT model. The results indicate that a minimal level of task competence is essential
for effective RL. Below this threshold, exploration is ineffective and RL fails to produce meaningful
gains.

D ADDITIONAL ABLATION AND ANALYSIS EXPERIMENTS

D.1 ABLATION STUDY ON KL REGULARIZATION

In this section, we present the ablation study on KL regularization and analyze the training stability
after removing the KL constraint. The experimental settings are consistent with Figure 3. We apply
SimpleVLA-RL with OpenVLA-OFT on LIBERO-Long under the one-trajectory setting, compar-
ing two configurations: with and without the KL constraint. The results are shown in Figure 6.To
further verify the stability of model updates, we visualize the gradient norm, policy gradient loss,
and sampling accuracy curves throughout training with and without the KL constraint in Figure 7.

The experimental results demonstrate that removing the KL regularization leads to a slight improve-
ment in model performance while maintaining comparable training stability. The loss curves, gradi-
ent norms, and sampling accuracy all exhibit smooth convergence patterns. Furthermore, removing
the KL constraint simplifies the training framework by eliminating the need to compute reference
model sampling probabilities and load additional reference models, resulting in approximately 10%
reduction in training time.

0 50 100 150 200 250 300
RL Training Steps

20

30

40

50

60

70

80

90

LI
B

ER
O

-L
on

g
SR

 (
%

)

w/o KL-Constraint
w/ KL-Constraint

Figure 6: Ablation study on KL constraint on LIBERO-Long. Removing the KL constraint achieves
comparable performance.

0 50 100 150 200 250 300
RL Training Steps

0.0

0.5

1.0

1.5

2.0

2.5

G
ra

di
en

t
N

or
m

w/o KL-Constraint
w/ KL-Constraint

(a) Gradient Norm

0 50 100 150 200 250 300
RL Training Steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Po
lic

y
G

ra
di

en
t

Lo
ss w/o KL-Constraint

w/ KL-Constraint

(b) Policy Gradient Loss

0 50 100 150 200 250 300
RL Training Steps

20

40

60

80

100

Sa
m

pl
in

g
A

cc
ur

ac
y

(%
)

w/o KL-Constraint
w/ KL-Constraint

(c) Sampling Accuracy

Figure 7: Training stability analysis with and without KL constraint on LIBERO-Long. Training
without KL constraint remains equally stable.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.2 TRAINING STABILITY

We provide training curves for OpenVLA-OFT and Pi0.5 on the RoboTwin2.0 benchmark without
KL regularization, including policy gradient loss, gradient norm, and sampling accuracy throughout
training. Specifically, OpenVLA-OFT is trained on the Lift Pot task from RoboTwin2.0, as shown in
Figure 8. Pi0.5 is trained on a mixture of 8 tasks from RoboTwin2.0: Lift Pot, Beat Hammer Block,
Pick Dual Bottles, Place Phone Stand, Move Can Pot, Place A2B Left, Place Empty Cup, and Han-
dover Mic, as shown in Figure 9. The results demonstrate stable training dynamics throughout the
optimization process, with no significant fluctuations or instabilities observed in any of the metrics.

0 10 20 30 40
RL Training Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
ra

di
en

t
N

or
m

OFT RL on Lift Pot

(a) Gradient Norm

0 10 20 30 40
RL Training Steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Po
lic

y
G

ra
di

en
t

Lo
ss OFT RL on Lift Pot

(b) Policy Gradient Loss

0 10 20 30 40
RL Training Steps

0

10

20

30

40

50

60

70

Sa
m

pl
in

g
A

cc
ur

ac
y

(%
)

OFT RL on Lift Pot

(c) Sampling Accuracy

Figure 8: Training stability of OpenVLA-OFT on RoboTwin2.0 Lift Pot task. The gradient norm
and policy gradient loss remain stable throughout training.

0 10 20 30 40 50 60 70
RL Training Steps

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080

G
ra

di
en

t
N

or
m

Pi0.5 RL on 8 Tasks

(a) Gradient Norm

0 10 20 30 40 50 60 70
RL Training Steps

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Po
lic

y
G

ra
di

en
t

Lo
ss

 (
×

1e
-3

)

Pi0.5 RL on 8 Tasks

(b) Policy Gradient Loss

0 10 20 30 40 50 60 70
RL Training Steps

60

70

80

90

100

Sa
m

pl
in

g
A

cc
ur

ac
y

(%
)

Pi0.5 RL on 8 Tasks

(c) Sampling Accuracy

Figure 9: Training stability of Pi0.5 on RoboTwin2.0 with 8 tasks. The training metrics show stable
optimization.

E MULTI-TASK RL TRAINING ON LIBERO-90

To evaluate the effectiveness of SimpleVLA-RL in multi-task mixed training settings, we conduct
RL training on the LIBERO-90 task suite, which contains 90 different tasks. Each task consists
of 50 scenarios, resulting in a total of 4,500 scenarios across all 90 tasks that serve as the training
set for SimpleVLA-RL. Figure 10 shows the results of different models on LIBERO-90, as well
as the performance of OpenVLA-OFT SFT and OpenVLA-OFT RL on LIBERO-90 under the one-
trajectory SFT setting.

F COMPARISON OF LLM AND VLA ROLLOUT ALGORITHMS

To better illustrate the concrete rollout process in SimpleVLA-RL and highlight the key differences
between VLA rollout in SimpleVLA-RL and LLM rollout in the veRL framework, we present a
comparative pseudo-code implementation in Listing 1.

G EXPERIMENTAL CONFIGURATION AND IMPLEMENTATION

G.1 ROBOTWIN2.0 TASK CLASSIFICATION AND DETAILS

We classified the 12 tasks in RoboTwin2.0 based on their average number of steps, categorizing them
into Short Horizon Tasks, Medium Horizon Tasks, Long Horizon Tasks, and Extra Long Horizon
Tasks. The Table7 shows the specific number of steps and classification for each task.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 10: Results of different models on LIBERO-90.

def rollout(policy, dataset, number_sample=8, max_steps=None):
rollout_dataset = []
for batch in dataset:

batch = batch.repeat(number_sample)

- # LLM generates diverse outputs using random sampling
- outputs = policy.generate(batch, temperature=1.0)
- rollout_dataset.append((batch, outputs))

+ # Parallel env initialization and interaction
+ envs = env_process_pool.submit(batch.initialize)
+ states = env_process_pool.submit(envs.setup)
+ for t in range(max_steps):
+ # VLA generates diverse trajectories using temperature

sampling on action tokens
+ actions = policy.generate(states, temperature=1.0)
+ rollout_dataset.append({f"{e.name}_step_{t}": (s,a) for e,s,a

in zip(envs,states,actions)})
+ states, dones = env_process_pool.submit(envs.step, actions)
+ # Remove completed tasks
+ active = [(e,s) for e,s,d in zip(envs,states,dones) if not d]
+ if not active:
+ break
+ envs, states = zip(*active)
return rollout_dataset

Listing 1: Pseudo-code for the adopted veRL rollout function: from LLM-based generation to inter-
active VLA sampling with synchronous environment parallelism.

Detailed descriptions of the 4 real-world tasks (Stack Bowls, Handover Block, Pick Bottle, and Click
Bell) and 12 RoboTwin2.0 tasks can be found at https://robotwin-platform.github.
io/doc/tasks/index.html.

21

https://robotwin-platform.github.io/doc/tasks/index.html
https://robotwin-platform.github.io/doc/tasks/index.html

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: RoboTwin 2.0 task classification based on planning horizon and required steps.

Task Name Steps Horizon Horizon Group
Short Horizon Tasks (112-130 steps)

lift pot 112 Short
Average: 121 steps

Count: 4 tasks
beat block hammer 113 Short
pick dual bottles 127 Short
place phone stand 130 Short

Medium Horizon Tasks (151-223 steps)
move can pot 151 Medium

Average: 176 steps
Count: 4 tasks

place a2b left 155 Medium
place empty cup 174 Medium
handover mic 223 Medium

Long Horizon Tasks (283-313 steps)
handover block 283 Long Average: 298 steps

Count: 2 tasksstack bowls two 313 Long

Extra Long Horizon Tasks (466-637 steps)
blocks rank rgb 466 Extra-Long Average: 552 steps

Count: 2 tasksput bottles dustbin 637 Extra-Long

Overall Statistics Total: 12 tasks, Average: 256 steps

G.2 BACKBONE MODIFICATION DETAILS

Our implementation of the OpenVLA-OFT model differs from the official version. To achieve im-
proved training and inference efficiency, we utilize only single-view images, language instructions,
and robot proprioceptive states as model inputs, whereas the official model additionally incorpo-
rates wrist camera images. Additionally, in the LIBERO, we don’t use robot proprioceptive states
in model inputs. Regarding the model architecture, we employ only parallel decoding and action
chunking designs. We use the LLaMA2 output head to generate action tokens and the cross-entropy
loss, whereas the official model uses an MLP to generate continuous actions and L1 regression.
Due to the differences in model inputs and architecture, we cannot use the official checkpoints. We
modify the official codebase and performed SFT from scratch using the same datasets and hyperpa-
rameters as the official implementation.

G.3 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

For training infrastructure, we employ 8×NVIDIA A800 80GB for full-parameter training. The
training hyperparameters are configured as follows: learning rate lr = 5× 10−6, training batch size
of 64, sampling count of 8, mini-batch size of 128, clip ratio εL = 0.2, εH = 0.28, and temperature
T = 1.6. The number of action chunks is 8 in the LIBERO and 25 in the RoboTwin1.0&2.0. The
model is configured with a total of 256 action tokens. The maximum interaction step is set to 512 in
the LIBERO and 200, 400, or 800 in the RoboTwin1.0&2.0, depending on different tasks.

Regarding training time, the wall-clock training time varies by benchmark:

• RoboTwin benchmark: Using 8 A800-80GB GPUs, the wall-clock training time for
single-task RL using OpenVLA-OFT is approximately 12-24 hours, depending on the ini-
tial success rate and maximum episode length. Training time increases when the initial
success rate is lower and tasks require more steps.

• LIBERO benchmark: Under the One-Trajectory SFT setting, RL training takes approxi-
mately 1 or 2 days; under the Full-Trajectory SFT setting, training time is shorter, around
1 day. Tasks with lower initial success rates require longer training time.

RoboTwin benchmark: Using 8 A800 GPUs, the wall-clock training time for OpenVLA-OFT single-
task RL is approximately 12-24 hours, depending on the task’s initial success rate and maximum
episode length. Training time increases when the initial success rate is lower or when tasks require
more steps.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

LIBERO benchmark: Under the one-traj setting, RL training takes longer, approximately 1-2 days;
under the traj-all setting, training time is relatively shorter, around 1 day. Training time increases
correspondingly when the initial success rate is lower.

During the rollout phase of RL training, we employ random sampling. For evaluation, we utilize
greedy sampling, with each benchmark tested three times for reproducibility.

G.4 ROBOT HARDWARE DETAILS

For real-world experiments, we employ an AgileX Cobot Magic, which is a mobile platform with an
Aloha configuration consisting of four robotic arms. Each arm is an AgileX Piper with six degrees of
freedom, equipped with a one-DoF parallel gripper. A RealSense D435 RGB-D camera is mounted
on the platform, capturing RGB images in real time at a resolution of 640 × 480 with a frame rate of
approximately 30 Hz.

H THE USE OF LARGE LANGUAGE MODELS

We utilized LLMs for grammatical refinement and clarity improvements in our manuscript. Specif-
ically, we used ChatGPT (GPT-5-Thinking) to help polish the language and correct grammatical
errors in our draft. The assistance was limited to improving readability and ensuring adherence
to academic writing conventions, while all technical content, experimental design, and scientific
contributions remain entirely our own work.

23

	Introduction
	SimpleVLA-RL
	Interactive VLA Rollout
	Outcome Reward Modeling
	Exploration Enhancements
	Training Objective

	Experiments
	Experimental Setup
	Main Results

	Analysis
	Overcoming Data Scarcity
	Generalization Analysis
	Real-World Experiments

	Discussions
	``Pushcut'': Emergence of New Patterns through RL
	Failure Modes of SimpleVLA-RL

	Conclusion
	Related Works
	Reinforcement Learning for Large Language Models
	Vision Language Action Models

	Preliminaries
	RL Formulation for LLMs
	RL Formulation for VLAs
	Group Relative Policy Optimization

	Failure Modes of SimpleVLA-RL
	Additional Ablation and Analysis Experiments
	Ablation Study on KL regularization
	Training Stability

	Multi-Task RL Training on LIBERO-90
	Comparison of LLM and VLA Rollout Algorithms
	Experimental Configuration and Implementation
	RoboTwin2.0 Task Classification and Details
	Backbone Modification Details
	Implementation Details and Hyperparameters
	Robot Hardware Details

	The Use of Large Language Models

