

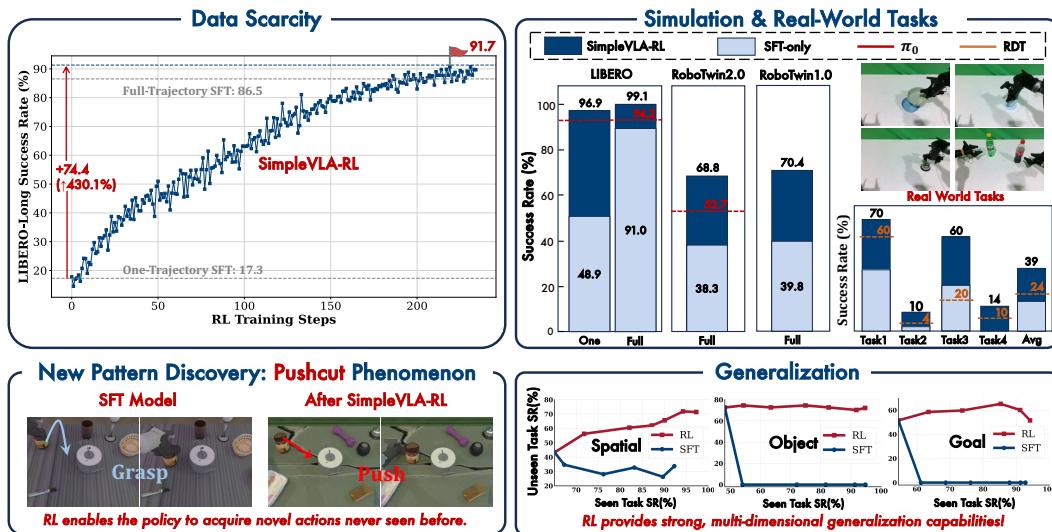
# 000 SIMPLEVLA-RL: SCALING VLA TRAINING VIA RE- 001 002 INFORCEMENT LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

## 007 ABSTRACT 008 009

010 Vision-Language-Action (VLA) models have emerged as a powerful paradigm  
011 for robotic manipulation. Despite substantial progress enabled by large-scale pre-  
012 training and supervised fine-tuning (SFT), these models face two fundamental  
013 challenges: (i) the scarcity and high cost of large-scale robotic trajectories required  
014 for SFT scaling, and (ii) limited generalization to tasks under distribution shift. To  
015 overcome these limitations, we explore reinforcement learning (RL) as a pathway  
016 to scaling VLA training beyond limited datasets. Inspired by LLM breakthroughs  
017 where RL with outcome rewards enhances step-by-step reasoning, we ask: *Can*  
018 *outcome-driven RL improve long-horizon step-by-step action planning of VLA?*  
019 In this work, we introduce **SimpleVLA-RL**, an efficient RL framework tailored  
020 for VLA models. Building upon verL, we introduce VLA-specific trajectory  
021 sampling, scalable parallelization, multi-environment rendering, and optimized  
022 loss computation. Applied to OpenVLA-OFT, **SimpleVLA-RL** achieves 99%  
023 of SoTA performance on LIBERO and 80% relative improvement on RoboTwin  
024 1.0&2.0, outperforming  $\pi_0$  with our proposed exploration-enhancing strategies.  
025 **SimpleVLA-RL** reduces dependence on large-scale data, enables robust general-  
026 ization, and remarkably surpasses SFT in real-world tasks. Moreover, we identify  
027 a novel phenomenon “**pushcut**” during RL training, wherein the policy discovers  
028 unseen patterns beyond those seen in previous training process.



046 Figure 1: Overview of **SimpleVLA-RL**. An efficient RL framework for VLA that improves long-  
047 horizon planning under data scarcity, outperforms SFT in simulation and real-world tasks, reveals a  
048 “**pushcut**” new-action phenomenon, and strengthens spatial/object/goal generalization.  
049

## 050 1 INTRODUCTION 051

052 Vision-Language-Action (VLA) models have emerged as a promising approach for general robotic  
053 manipulation by integrating visual perception, language understanding, and action generation in a  
unified framework (Firoozi et al., 2025; Kim et al., 2024; Zhong et al., 2025). Current VLA training

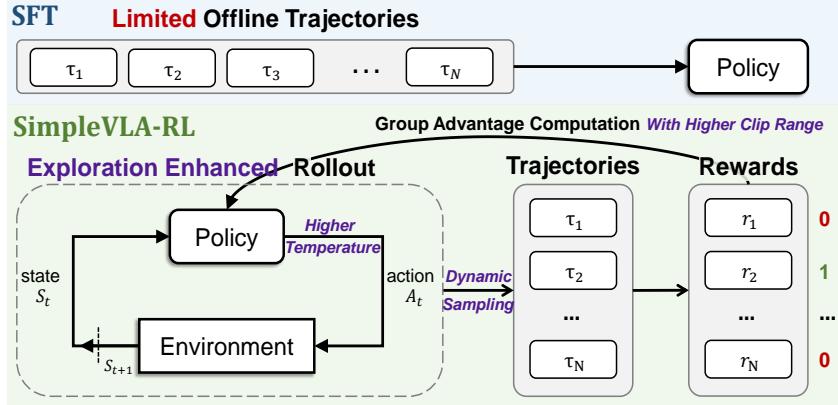
054 paradigm consists of two stages: large-scale pretraining on multimodal data (human manipulation  
 055 videos (Sapkota et al., 2025), image-text pairs, and heterogeneous robot datasets (O’Neill et al.,  
 056 2024)), followed by supervised fine-tuning (SFT) on additional high-quality robot trajectories to  
 057 enhance task-specific capabilities.

058 While imitation learning paradigm has achieved notable progress (Intelligence et al., 2025), its heavy  
 059 dependence on large-scale, high-quality data poses a fundamental bottleneck that constrains fur-  
 060 ther development of VLA models:**the Generalization Bottleneck from Data Scarcity** (Schulman  
 061 et al., 2017b). **1) Data Scarcity:** Scaling VLA training through SFT requires massive amounts of  
 062 high-quality robot trajectories, yet such data remains scarce and prohibitively expensive (Gao et al.,  
 063 2024). Collecting expert demonstrations demands carefully designed scenarios, diverse manipu-  
 064 lation objects, and skilled operators, which severely constrains both data scale and diversity (Bu et al.,  
 065 2025a; Team et al., 2025a). **2) Poor Generalization:** This data scarcity leads to a fundamental  
 066 mismatch between training distributions and open-ended real-world tasks (Liu et al., 2025a). VLA  
 067 models trained on limited, scene-specific data tend to memorize patterns rather than learn gener-  
 068 alizable skills. Consequently, even minor distribution shifts, unseen objects or environments, can  
 069 cause compounding errors that severely limit generalization (Ross & Bagnell, 2010). This problem  
 070 becomes especially critical in compositional and long-horizon tasks (Gupta et al., 2019), revealing  
 071 that simply scaling SFT data cannot build generalizable VLA models to the open world.

072 To overcome this generalization bottleneck, VLA models need a learning mechanism capable of  
 073 interactive refinement beyond limited static datasets. Reinforcement Learning (RL) offers this ca-  
 074 pability through trial-and-error environmental interaction (Xu et al., 2024). However, traditional  
 075 robotics RL requires hand-crafted reward functions for each task, limiting scalability and general-  
 076 ization to novel scenarios where rewards are undefined (Ibarz et al., 2021; Kroemer et al., 2021;  
 077 Ma et al., 2023). This creates a dilemma: SFT is constrained by data, while traditional RL is con-  
 078 strained by reward engineering. Recent breakthroughs in Large Reasoning Models (LRMs) provide  
 079 a crucial insight: using only sparse outcome rewards, RL can significantly enhance models’ ability  
 080 to generate correct step-by-step reasoning chains (Guo et al., 2025a; Yang et al., 2025; Zeng et al.,  
 081 2025; Team et al., 2025b). This raises a critical question for VLAs: **Can we leverage this outcome-  
 082 driven RL paradigm to enhance VLA models’ ability to generate step-by-step correct actions?**  
 083 However, applying RL to VLA models presents unique technical challenges. First, unlike open-loop  
 084 text generation in LLMs, VLAs require closed-loop environment interaction with continuous visual  
 085 feedback, creating substantial computational overhead (Wang et al., 2025). Second, manipulation  
 086 tasks face inefficient exploration due to high-dimensional action spaces and sparse rewards (Zhou  
 087 et al., 2025). Third, existing RL frameworks lack VLA-specific infrastructure for efficient inference  
 088 and parallel environment interaction (Luo et al., 2025).

089 We introduce **SimpleVLA-RL**, an effective RL framework for VLA models. Building upon Vol-  
 090 cano Engine Reinforcement Learning for LLMs (veRL) (Sheng et al., 2024), we enable end-to-end  
 091 rule-based online RL for VLA models through VLA-specific interactive trajectory sampling and  
 092 loss computation. To support scalable RL training, we extend veRL with parallel multi-environment  
 093 rendering and adapt it into a unified training–inference–rendering framework. We also design three  
 094 exploration-enhancing strategies. Through **SimpleVLA-RL**, we significantly improve VLA per-  
 095 formance under data-scarce conditions, enhance generalization capabilities, and achieve noticeable  
 096 gains in real-world applications. Surprisingly, during RL training, the policy discovers novel pat-  
 097 terns beyond those in supervised data, a phenomenon we term “**pushcut**”. Our contributions include:

- 098 • **Efficient online RL framework for VLA:** We develop an efficient end-to-end VLA online RL  
 099 framework based on veRL that enables stable, sample-efficient training, optimized for rendering  
 100 parallelization and distributed training & inference.
- 101 • **SOTA performance:** We incorporate exploration-enhancing strategies, yielding consistent per-  
 102 formance improvements of 10–15%. Moreover, **SimpleVLA-RL** surpasses multiple SoTA base-  
 103 lines on both LIBERO and RoboTwin 1.0 & 2.0.
- 104 • **Data efficiency and generalization:** With only a single demonstration per task, RL boosts  
 105 LIBERO-Long success rates from 17.1% to 91.7%, and significantly outperforms SFT in spa-  
 106 tial, object, and task generalization.
- 107 • **Real-world deployment capability:** Simulation-trained policies transfer effectively to real-  
 108 world, achieving strong sim-to-real improvements without requiring real robot data.

Figure 2: Overview of **SimpleVLA-RL**.

## 2 SIMPLEVLA-RL

DeepSeek-R1 (Guo et al., 2025a) has achieved remarkable performance gains through online RL with the simple, scalable rule-based reward, highlighting a promising training paradigm. In this section, we introduce **SimpleVLA-RL**, which extends this rule-based online RL framework to VLA models for embodied manipulation tasks as shown in Figure 2. Specifically, our training framework proceeds as follows: we begin by generating multiple trajectories for each input via random sampling (§2.1). Each trajectory is then assigned a simple outcome reward (1 for success, 0 for failure) based on environment feedback (§ 2.2). Leveraging these rewards together with the corresponding action token probabilities, we compute the GRPO loss to update the policy model (§ 2.4).

### 2.1 INTERACTIVE VLA ROLLOUT

RL on VLA models differs fundamentally from LLMs in trajectory generation. To enable online RL, policy models need to generate diverse trajectories from an input for effective exploration. While LLMs naturally achieve this diversity through random sampling on text token distributions (Renze, 2024; De Rosa & Papa, 2021), VLA models face a unique challenge due to their action decoding strategies. Current VLA models often employ three strategies: (1) generating action token distributions similar to LLMs (Black et al., 2024; Kim et al., 2024), (2) diffusion-based denoising on latent states (Liu et al., 2024; Cheang et al., 2025), and (3) deterministic regression via MLPs (Kim et al., 2025). Among these, the token-based approach is most compatible with PPO-like RL algorithms, as it naturally provides action distributions necessary for both random sampling and policy gradient computation. Therefore, we adopt this approach, where the VLA model outputs action token probability distributions and employs random sampling to generate diverse trajectories.

Furthermore, for a given input query, LLM rollout proceeds by autoregressively generating tokens until reaching a stop token or max output length. In contrast, VLA rollout requires continuous interaction with the environment to update the visual observation and robot state dynamically (as detailed in Appendix B). This closed-loop interaction is necessary because each robotic action alters the environment, and subsequent actions must be conditioned on real-time sensory feedback. We present the comparison of the rollout algorithm pseudo-code of LLMs and VLA in Listing 1.

### 2.2 OUTCOME REWARD MODELING

**SimpleVLA-RL** employs a straightforward binary reward function for RL training. Unlike traditional RL approaches that require carefully crafted reward functions (Hadfield-Menell et al., 2017; Knox et al., 2023; Booth et al., 2023), we follow DeepSeek-R1’s approach by assigning trajectory-level rewards of either 0 or 1 based solely on task completion. When the VLA model successfully completes a task, the entire trajectory is assigned a reward of 1; otherwise, it receives a reward of 0. For gradient computation, these trajectory-level rewards are uniformly propagated to the individual action tokens. Consequently, all tokens within successful trajectories are assigned a reward of 1, whereas those in unsuccessful trajectories are assigned a reward of 0. Our reward function is:

$$R(a_{i,t} | s_{i,t}) = \begin{cases} 1, & \text{is\_successful}[\text{traj}_i(a_i, s_i)], \\ 0, & \text{otherwise.} \end{cases} \quad (1)$$

162 This simple outcome-level reward is simple yet effective: scalable, broadly applicable across environments, and free from complex process-based design (Wu et al., 2021). By focusing solely on  
 163 task completion, it avoids the non-transferability issues typical of task-specific rewards.  
 164

### 166 2.3 EXPLORATION ENHANCEMENTS

168 Previous works (Yu et al., 2025; Liu et al., 2025b;d; An et al., 2025) have demonstrated that encouraging  
 169 exploration during RL is critical. We observe that this factor becomes even more crucial in  
 170 VLA RL. Manipulation tasks typically allow for a wide range of valid solutions. However, VLA  
 171 models tend to converge on a narrow set of solution patterns, largely due to the homogeneity of their  
 172 training trajectories, which limits the efficiency of RL. Promoting exploration encourages models to  
 173 discover novel strategies and broaden the solution space, a property that is particularly advantageous  
 174 in scenarios with low success rates. Building on this insight, we implement three key modifications  
 175 to enhance the exploration of RL training: 1) employing dynamic sampling during trajectory rollout,  
 176 2) adjusting the clip range in the GRPO training objective, 3) and increasing the sampling tempera-  
 177 ture during rollout.

178 **Dynamic Sampling** Critic-free RL algorithms suffer from vanishing gradients when trajectories  
 179 are assigned the same rewards. For example, GRPO computes advantages using group-relative  
 180 normalization, comparing each response’s reward to the mean and standard deviation of rewards  
 181 within its group of sampled outputs. When all trajectories share identical rewards, their advantage  
 182 estimation becomes zero, resulting in null gradients and causing unstable training dynamics.

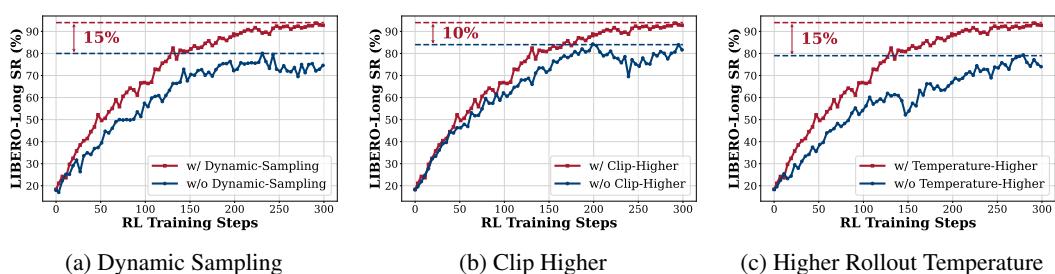
183 We address this challenge through Dynamic Sampling (Yu et al., 2025; Cui et al., 2025a), a method  
 184 that has been proven effective in LLM RL (Cui et al., 2025a; Yu et al., 2025; Team et al., 2025b;  
 185 Shi et al., 2025). During rollout, we exclude groups in which all trajectories either succeed or fail.  
 186 Sampling proceeds until the batch consists solely of groups with mixed outcomes, which can be  
 187 formally expressed as:

$$0 < |\{\text{traj}_i(a_i, s_i) \mid \text{is\_successful}[\text{traj}_i(a_i, s_i)]\}| < G. \quad (2)$$

188 This ensures non-zero advantage estimates and stable gradient flow throughout training.  
 189

190 **Clipping Higher** PPO and GRPO employ clipping over the importance sampling ratio to restrict  
 191 the trust region (Schulman et al., 2015) and enhance RL stability (Schulman et al., 2017a; Shao et al.,  
 192 2024). However, the upper clipping threshold restricts the probability increase of low-probability  
 193 tokens, thereby potentially constraining exploration. Following DAPO (Yu et al., 2025), we modify  
 194 the clipping range in the GRPO training objective from [0.8, 1.2] to [0.8, 1.28].

195 **Higher Rollout Temperature** Recent works on LLM RL adjusting the rollout temperature to  
 196 promote exploration have been widely shown to be effective, with sampling at higher temperatures  
 197 yielding particularly notable improvements (An et al., 2025; Liu et al., 2025d; Liao et al., 2025). To  
 198 encourage the VLA model to generate more diverse trajectories during the rollout phase, we increase  
 199 the sampling temperature from 1.0 to 1.6. As shown in Figure 3, these modifications led to notable  
 200 improvements.



210 Figure 3: The effectiveness of three key enhancements: dynamic sampling, higher rollout tempera-  
 211 ture, and clip higher.  
 212

### 213 2.4 TRAINING OBJECTIVE

214 We use the adopted GRPO algorithm (Shao et al., 2024) for online RL training on VLA models, with  
 215 modifications as introduced in Section 2.3. Moreover, we remove the KL divergence regularization

following DAPO (Yu et al., 2025). This eliminates the need for a reference model during training, reducing memory consumption and accelerating the training. Additionally, the KL penalty constrains policy divergence from a fixed reference, potentially limiting exploration of new behaviors. Therefore, the policy is optimized via the following objective:

$$\mathcal{J}(\theta) = \mathbb{E}_{s_0 \sim \mathcal{D}, \{a_t\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | s_t)} \left[ \frac{1}{G} \sum_{i=1}^G \frac{1}{|a_i|} \sum_{t=1}^{|a_i|} \min \left( r_{i,t}(\theta) \hat{A}_i, \text{clip} (r_{i,t}(\theta), 1-\varepsilon_L, 1+\varepsilon_H) \hat{A}_i \right) \right]$$

s.t.  $0 < |\{\text{traj}_i(a_i, s_i) : \text{success}[\text{traj}_i(a_i, s_i)]\}| < G$ ,

(3)

where

$$r_{i,t}(\theta) = \frac{\pi_\theta(a_{i,t} | s_{i,t})}{\pi_{\theta_{\text{old}}}(a_{i,t} | s_{i,t})}, \quad \hat{A}_i = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}.$$
(4)

Table 1: Main results of different VLA models on RoboTwin1.0.

| Model       | RoboTwin1.0 |                |              |             |             |
|-------------|-------------|----------------|--------------|-------------|-------------|
|             | Hammer Beat | Block Handover | Blocks Stack | Shoe Place  | Avg         |
| DP          | 0.0         | 12.0           | 7.1          | 4.3         | 5.9         |
| DP3         | 64.7        | 84.3           | 24.0         | 59.3        | 58.1        |
| OpenVLA-OFT | 67.2        | 61.6           | 7.1          | 23.4        | 39.8        |
| w/ ours     | <b>92.6</b> | <b>89.6</b>    | <b>40.2</b>  | <b>59.3</b> | <b>70.4</b> |
| $\Delta$    | +25.4       | +28.0          | +33.1        | +35.9       | +30.6       |

### 3 EXPERIMENTS

#### 3.1 EXPERIMENTAL SETUP

**Benchmarks** We evaluate **SimpleVLA-RL** on three simulation benchmarks—LIBERO (Liu et al., 2023), RoboTwin1.0 (Mu et al., 2025), and RoboTwin2.0 (Chen et al., 2025a), and conduct real-world experiments on RoboTwin2.0 tasks. LIBERO is a language-guided manipulation benchmark with five task suites: LIBERO-Goal, LIBERO-Spatial, LIBERO-Object, LIBERO-Long (10 tasks each with 50 demonstrations), and LIBERO-90 (90 tasks for large-scale evaluation). Performance is measured by average Success Rate (SR) across 50 held-out test scenarios per task. RoboTwin1.0 provides 17 bimanual tasks, while RoboTwin2.0 extends to 50 tasks with 731 object instances and comprehensive domain randomization (clutter, lighting, background, tabletop height, language instructions), enhancing task diversity and sim-to-real transfer. For RoboTwin2.0, we use the Agilex Piper robotic arm and domain-randomized task settings, with each task evaluated on 100 held-out test scenarios. We select 12 tasks in RoboTwin2.0 and categorize them into 4 horizon levels based on average step counts, as detailed in Table 7.

**Backbones** We apply **SimpleVLA-RL** to OpenVLA-OFT (Kim et al., 2025), a state-of-the-art auto-regressive VLA model with high performance and inference efficiency. Built on OpenVLA (Kim et al., 2024), it uses vision encoders and LLaMA2-7B (Touvron et al., 2023) as the backbone with action chunk and parallel decoding, making it suitable for online RL’s frequent inference requirements. Our implementation of the OpenVLA-OFT differs from the official version (see Appendix G.2 for modifications and Appendix G.3 for hyperparameters).

**Baselines** We compare with advanced VLA models: UniVLA (Bu et al., 2025b), RDT-1B (Liu et al., 2024),  $\pi_0$  (Black et al., 2024),  $\pi_{\text{fast}}$  (Pertsch et al., 2025), Nora (Hung et al., 2025), OpenVLA (Kim et al., 2024), Octo (Team et al., 2024), DP (Chi et al., 2024) and DP3 (Ze et al., 2024).

#### 3.2 MAIN RESULTS

We evaluate **SimpleVLA-RL** on LIBERO, RoboTwin1.0, and RoboTwin2.0 using a two-stage paradigm: SFT followed by **SimpleVLA-RL** on OpenVLA-OFT, while baselines use SFT only. For LIBERO’s four task suites, we perform SFT with 500 demonstrations per task suite, then RL on 500 simulation scenarios. For RoboTwin1.0, we use 50 demonstrations per task for single-task SFT, then 100 scenarios per task for RL. For RoboTwin2.0, we use 1,000 demonstrations per task for single-task SFT, then 1,000 scenarios per task for RL.

270

Table 2: Main results of different VLA models on RoboTwin2.0, organized by task horizon.

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Tables 1, 2, and 3 present results on LIBERO, RoboTwin1.0, and RoboTwin2.0 benchmarks. On LIBERO, SimpleVLA-RL improves OpenVLA-OFT from 91% to 99% average success rate, achieving SoTA performance and surpassing models like  $\pi_0$  and UnivVLA. For long-horizon tasks in LIBERO-Long, SimpleVLA-RL reaches 98.5% success rate, with a 12% improvement over baseline and 13.3% over  $\pi_0$ . On RoboTwin1.0’s dual-arm tasks, SimpleVLA-RL achieves 30.6% gains (39.8% to 70.4%). Across RoboTwin2.0’s 12 tasks, SimpleVLA-RL delivers 80% relative improvement (38.3% to 68.8%), outperforming SoTA methods including  $\pi_0$  (52.7%) and RDT (33.3%). Even on Extra-Long-Horizon tasks like “Blocks Rank Rgb” and “Put Bottles Dustbin”, SimpleVLA-RL achieves 11.1% and 18.7% point gains respectively, demonstrating effectiveness across all horizon levels. These results validate that SimpleVLA-RL consistently improves model performance across diverse benchmarks without requiring additional demonstration data, proving the effectiveness of outcome-level rewards even for complex long-horizon tasks.

## 4 ANALYSIS

In this section, we analyze the role of **SimpleVLA-RL** in addressing three key challenges that hinder the further advancement and scaling of the VLA model: **data, generalization, and real-world tasks**. Below are several key takeaways:

### Takeaways

- Data:** **SimpleVLA-RL** can significantly reduce reliance on demonstration data, effectively alleviating the data scarcity bottleneck that constrains VLA scaling (§ 4.1).
- Generalization:** Compared to SFT, **SimpleVLA-RL** demonstrates strong generalization in spatial configurations, object types, and task settings (§ 4.2).
- Real-world Task:** **SimpleVLA-RL** exhibits strong sim-to-real transfer, with large-scale simulation training remarkably improving real-world performance, indicating a promising path for scaling up real-world policy (§ 4.3).

Table 3: Main results on LIBERO.

| Model          | LIBERO      |             |             |              |             |
|----------------|-------------|-------------|-------------|--------------|-------------|
|                | Spatial     | Object      | Goal        | Long         | Avg         |
| Octo           | 78.9        | 85.7        | 84.6        | 51.1         | 75.1        |
| OpenVLA        | 84.7        | 88.4        | 79.2        | 53.7         | 76.5        |
| Nora           | 92.2        | 95.4        | 89.4        | 74.6         | 87.9        |
| $\pi_0$ + FAST | 96.4        | 96.8        | 88.6        | 60.2         | 85.5        |
| $\pi_0$        | 96.8        | 98.8        | 95.8        | 85.2         | 94.2        |
| UniVLA         | 96.5        | 96.8        | 95.6        | 92.0         | 95.2        |
| OpenVLA-OFT    | 91.6        | 95.3        | 90.6        | 86.5         | 91.0        |
| w/ ours        | <b>99.4</b> | <b>99.1</b> | <b>99.2</b> | <b>98.5</b>  | <b>99.1</b> |
| $\Delta$       | <b>+7.8</b> | <b>+3.8</b> | <b>+8.6</b> | <b>+12.0</b> | <b>+8.1</b> |

324 4.1 OVERCOMING DATA SCARCITY  
325

326 Developing foundation VLA models for manipulation tasks requires large-scale demonstration data  
327 for training (Liu et al., 2024; Black et al., 2024; Intelligence et al., 2025). This data scaling paradigm  
328 has been proven in the NLP area (Hoffmann et al., 2022; Achiam et al., 2023; Touvron et al., 2023).  
329 However, acquiring high-quality trajectory data for embodied manipulation tasks remains expensive  
330 and difficult, creating a fundamental bottleneck for VLA model development (Bi et al., 2025; Zhong  
331 et al., 2025). Therefore, we investigate whether **SimpleVLA-RL** can enhance VLA models even  
332 with extremely limited demonstration trajectories to overcome this limitation.

333 **Settings** To simulate scenarios with scarce demonstration data, we finetune OpenVLA-OFT using  
334 only one demonstration data per task, denoted as *One-Trajectory SFT*. Given that each of the four  
335 LIBERO task suites contains 10 distinct tasks, we utilize merely 10 demonstration data per task  
336 suite. For comparison, we also conduct an experiment using all available demonstration data for  
337 each task, 500 per task suite, denoted as *Full-Trajectory SFT*. Following both *One-Trajectory SFT*  
338 and *Full-Trajectory SFT*, we apply **SimpleVLA-RL** on the SFT model.

339 **Results** As shown in Table 4, SFT performance degrades significantly with lim-  
340 ited data. Under *One-Trajectory SFT*, suc-  
341 ceess rates drop below 63.6% for LIBERO-  
342 Spatial/Object/Goal and to only 17.3% for  
343 LIBERO-Long, compared to 91.0% aver-  
344 age under *Full-Trajectory SFT*. Remarkably,  
345 applying SimpleVLA-RL to *One-Trajectory*  
346 *SFT* models increases the average success  
347 rate from 48.9% to 96.9%, surpassing even  
348 *Full-Trajectory SFT*’s 91.0%. LIBERO-  
349 Long improves dramatically from 17.3% to  
350 91.7%, while the other three task suites all  
351 exceed 98%. The performance gap between *One-Trajectory SFT + RL* (96.9%) and *Full-Trajectory*  
352 *SFT + RL* (99.1%) is merely 2.2%. The results demonstrate that **SimpleVLA-RL** can sub-  
353 stantially improve performance even in data-scarce scenarios, suggesting that online RL enables further  
354 scaling of VLA training through trial-and-error exploration, even with minimal demonstration data.

355 4.2 GENERALIZATION ANALYSIS  
356

357 The generalization ability of VLA models remains a key challenge (Intelligence et al., 2025; Zhong  
358 et al., 2025; Liu et al., 2025a). This subsection evaluates how SFT and online RL methods like  
359 **SimpleVLA-RL** affect VLA generalization across three dimensions: spatial (LIBERO-Spatial), ob-  
360 jects (LIBERO-Object), and tasks (LIBERO-Goal).

361 **Settings** We experiment on three LIBERO task suites (Spatial, Object, Goal), each containing ten  
362 tasks. For each suite, we randomly select nine tasks as seen tasks for RL or SFT training, while  
363 reserving the remaining task as the unseen task for out-of-distribution evaluation. For both methods,  
364 we first fine-tune OpenVLA-OFT under the *One-Trajectory SFT* setting to obtain a base model  
365 with non-zero success rates, since the original model achieves 0% on LIBERO and is incapable of  
366 performing online RL. For SFT, we further fine-tune the *One-Trajectory SFT* base model (§4.1)  
367 using 450 demonstrations from 9 seen tasks on each task suite. For RL, we perform **SimpleVLA-  
368 RL** on the *One-Trajectory SFT* base model using 450 scenarios from 9 seen tasks. We plot how  
369 unseen task performance evolves as training task success rates increase during training.

370 **Results** Figure 4 presents the results. While both SFT and RL achieve over 90% success rates  
371 on training tasks, their performance on unseen tasks diverges significantly. As training progresses,  
372 SimpleVLA-RL shows consistent improvement on unseen tasks across all settings, whereas SFT  
373 suffers from severe overfitting, often experiencing catastrophic forgetting with success rates of un-  
374 seen tasks dropping to 0%. **On LIBERO-Goal**, SFT immediately drops to 0% on all three unseen  
375 tasks at training onset, likely because these tasks involve diverse objects and manipulation stra-  
376 tegies with minimal transferable components. In contrast, SimpleVLA-RL maintains performance  
377 and achieves 5%-15% improvements. **On LIBERO-Object**, SFT improves only on Unseen Task 3  
(57.8% to 74.6%) while failing on the other two. SimpleVLA-RL improves across all three tasks,

357 Table 4: Comparisons between One-Trajectory and  
358 Full-Trajectory SFT on LIBERO.

| Model               | LIBERO      |             |             |             |             |
|---------------------|-------------|-------------|-------------|-------------|-------------|
|                     | Spatial     | Object      | Goal        | Long        | Avg         |
| One-Trajectory SFT  |             |             |             |             |             |
| OpenVLA-OFT         | 63.6        | 54.9        | 59.6        | 17.3        | 48.9        |
| w/ ours             | <b>98.2</b> | <b>98.7</b> | <b>98.8</b> | <b>91.7</b> | <b>96.9</b> |
| Δ                   | +34.6       | +43.8       | +39.2       | +74.4       | +48.0       |
| Full-Trajectory SFT |             |             |             |             |             |
| OpenVLA-OFT         | 91.6        | 95.3        | 90.6        | 86.5        | 91.0        |
| w/ ours             | <b>99.4</b> | <b>99.1</b> | <b>99.2</b> | <b>98.5</b> | <b>99.1</b> |
| Δ                   | +7.8        | +3.8        | +8.6        | +12.0       | +8.1        |

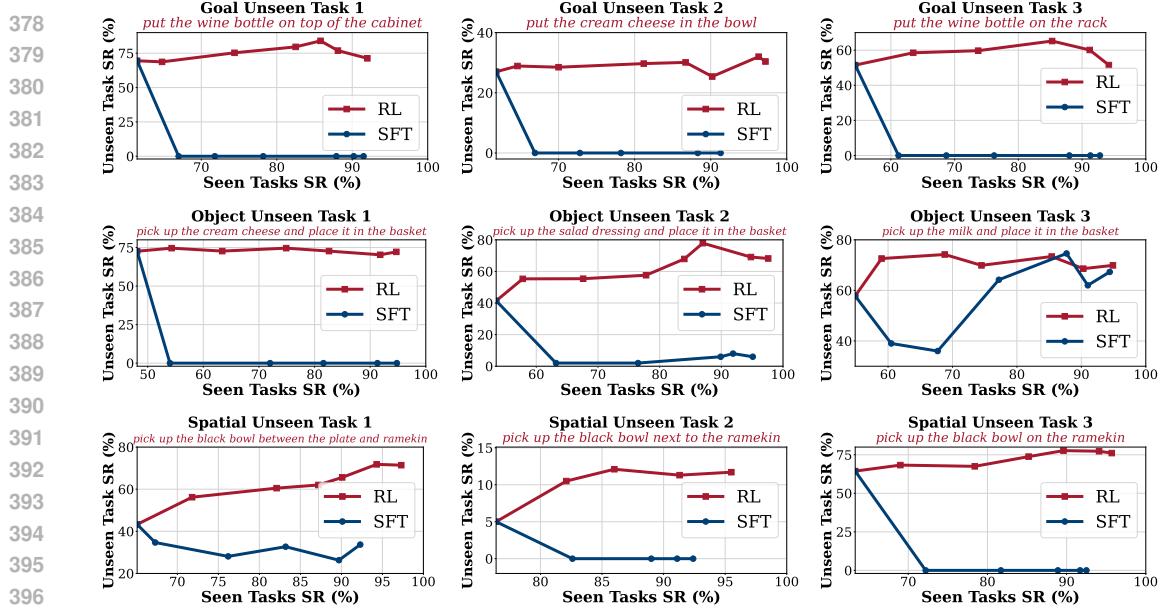


Figure 4: Generalization Analysis on LIBERO: Goal Unseen (Top), Object Unseen (Middle), Spatial Unseen (Bottom).

with notable gains of 36.5% on Task 2 and 16.4% on Task 3. **On LIBERO-Spatial**, SFT degrades by 10% on Unseen Task 1 and completely fails on the remaining tasks, while SimpleVLA-RL improves Task 1 performance from 43.3% to 71.8% and achieves 7.1% and 13.3% gains on the other tasks. These results demonstrate that RL training enables VLA models to retain previously acquired capabilities while learning generalizable skills from diverse tasks.

#### 4.3 REAL-WORLD EXPERIMENTS

Table 5: Real-world experiment (sim2real) results.

|             | Stack Bowls | Place Empty Cup | Pick Bottle | Click Bell | Avg   |
|-------------|-------------|-----------------|-------------|------------|-------|
| RDT         | 60.0        | 4.0             | 10.0        | 20.0       | 23.5  |
| OpenVLA-OFT | 38.0        | 2.0             | 0.0         | 30.0       | 17.5  |
| w/ ours     | 70.0        | 10.0            | 14.0        | 60.0       | 38.5  |
| Δ           | +32.0       | +8.0            | +14.0       | +30.0      | +21.0 |

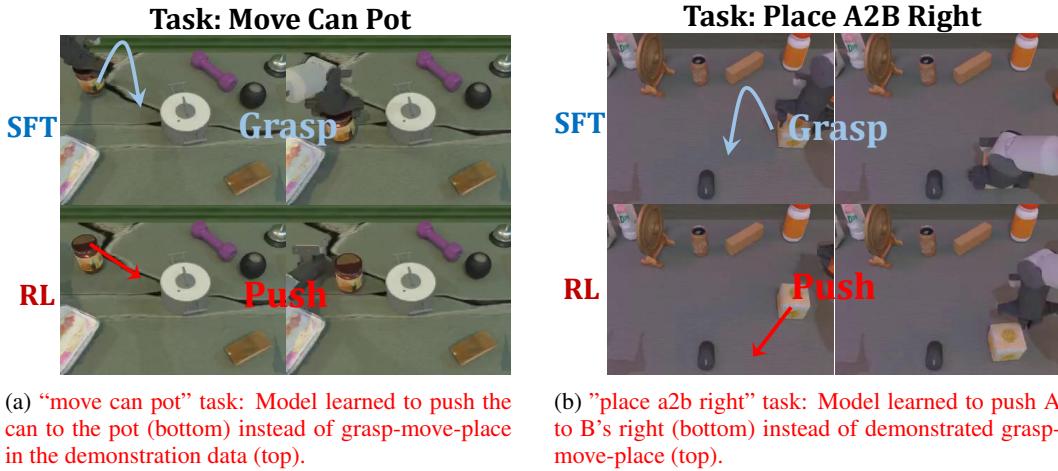
To evaluate the real-world effectiveness of **SimpleVLA-RL**, we conduct sim-to-real experiments on four RoboTwin2.0 tasks (detailed in Appendix G.1): Stack Bowls, Handover Block, Pick Bottle, and Click Bell. We employ OpenVLA-OFT as the policy model, RDT as the baseline model, and execute on two AgileX Piper robotic arms. For each task, we first use 1000 simulation trajectories for SFT. Then we apply **SimpleVLA-RL** on the SFT model using 1000 simulation scenarios to obtain an RL model. The entire training process uses only simulation data without any real-world demonstrations. We evaluate both the SFT and RL models on clean tabletops with unseen backgrounds in the real world. Each task is tested with 50 trials. The RDT baseline model only undergoes the SFT stage.

The sim2real results in Table 5 demonstrate that **SimpleVLA-RL** significantly improves the real-world success rates of VLA models, with an average improvement from 17.5% to 38.5%, surpassing RDT's 23.5%. For instance, in the Stack Bowls task, **SimpleVLA-RL** achieves a 84% relative improvement, lifting performance from 38% to 70%. On the Pick Bottle task, which demands higher action precision, as the bottle will fall if the robotic arm is not perfectly aligned on the first attempt, the SFT model fails completely while **SimpleVLA-RL** achieves a 14% success rate. This demonstrates RL's effectiveness in improving action precision. Using **SimpleVLA-RL** for low-cost, large-scale, and highly parallel RL training in simulation, we significantly improve the real-world performance of simulation-trained VLA models. This demonstrates a promising path for scaling

432 real-world policies: using rich simulation assets and high-fidelity simulators for cost-effective RL  
 433 training to achieve superior performance in real-world deployment.  
 434

## 435 5 DISCUSSIONS

### 437 5.1 “PUSHCUT”: EMERGENCE OF NEW PATTERNS THROUGH RL



451 Figure 5: Illustration of “**pushcut**”. Emergent pushing behaviors through RL in RoboTwin2.0 tasks.  
 452

453 During RL training with **SimpleVLA-RL**, we observe an emergent behavior we call “**pushcut**” (a  
 454 **push**-driven **shortcut**), where the VLA model discovers novel strategies absent from the demon-  
 455 stration data. In the **move can pot** task of RoboTwin2.0, all demonstrations follow a grasp–move–place  
 456 strategy (Figure 5a, top). However, after RL training, the model autonomously discovers a more  
 457 efficient solution: directly pushing the can to the target location instead of grasping it (Figure 5a,  
 458 bottom). Similar behaviors emerge in the **place a2b left/right** task, where the RL-trained model  
 459 learns to push Object A into position rather than following the demonstrated grasp–move–place ap-  
 460 proach (Figure 5b).  
 461

462 This “**pushcut**” phenomenon parallels the “Aha Moment” in DeepSeek-R1 (Guo et al., 2025a), as  
 463 both emerge through RL-driven exploration. This phenomenon highlights the fundamental distinc-  
 464 tion between SFT and RL. While SFT merely replicates patterns from demonstrations, RL enables  
 465 the discovery of novel strategies through reward-driven exploration. The outcome-level reward  
 466 design is crucial here: since both grasping and pushing receive equal rewards upon task comple-  
 467 tion, the sparse reward structure avoids procedural constraints, allowing the agent to explore freely and  
 468 discover unexpected yet effective solutions.  
 469

### 471 5.2 FAILURE MODES OF SIMPLEVLA-RL

472 We conduct ablation studies to identify failure conditions and key influencing factors of  
 473 **SimpleVLA-RL** (see Appendix C for full results and analysis). Our experiments reveal that model  
 474 priors are the critical factor determining RL effectiveness. RL fails completely when the base model  
 475 lacks initial task capability (0% success rate). Furthermore, we find a performance threshold: when  
 476 initial success rates are too low (< 5%), RL improvements remain negligible, while stronger initial  
 477 models achieve substantially better final performance after RL training.  
 478

## 479 6 CONCLUSION

480 In this work, we present **SimpleVLA-RL**, an RL framework tailored for VLA models that extends  
 481 veRL with VLA-specific trajectory sampling and parallelized training–inference–rendering capa-  
 482 bilities. **SimpleVLA-RL** demonstrates significant improvements in data efficiency, generalization,  
 483 and sim-to-real transfer. These results across LIBERO and RoboTwin benchmarks highlight RL’s  
 484 potential to both alleviate data scarcity and substantially enhance VLA generalization, paving the  
 485 way for more autonomous and adaptable robotic models.

486  
487  
ETHICS STATEMENT488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
This work presents **SimpleVLA-RL**, a reinforcement learning framework for improving Vision-  
Language-Action models in robotic manipulation. Our research aims to advance autonomous  
robotics for beneficial applications in manufacturing, healthcare, and assistive technologies. We  
conduct experiments exclusively in simulation environments and controlled laboratory settings with  
standard manipulation tasks, ensuring safe development practices. Our approach reduces reliance on  
large-scale human-operated data collection, minimizing both human labor costs and potential safety  
risks associated with extensive teleoperation. By enabling more sample-efficient training and better  
generalization, **SimpleVLA-RL** promotes environmentally conscious research through reduced  
computational requirements compared to scaling supervised learning alone. All experiments use  
publicly available benchmarks and models to ensure transparent, reproducible research.498  
499  
REPRODUCIBILITY STATEMENT500  
501  
502  
503  
504  
505  
506  
507  
We provide comprehensive details to ensure reproducibility of our work. The complete algorithmic  
formulation of **SimpleVLA-RL** and training procedures are described in Section 2, including  
trajectory sampling, loss computation, and exploration strategies. All experimental configurations,  
model hyperparameters, hardware specifications, and robotic arm setups are detailed in Appendix G.  
We provide implementation specifics built upon the open-source verL framework, evaluation pro-  
tocols for LIBERO and RoboTwin benchmarks, and baseline comparisons. Additionally, we include  
ablation study configurations and real-world deployment settings. All mathematical formulations,  
implementation details, and experimental configurations necessary for reproducing our results are  
included in the paper.508  
509  
510  
REFERENCES511  
512  
513  
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
report. *arXiv preprint arXiv:2303.08774*, 2023.514  
515  
516  
517  
Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,  
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-  
ing from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.518  
519  
520  
521  
Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing  
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scal-  
ing reinforcement learning on advanced reasoning models, 2025. URL <https://hkunlp.github.io/blog/2025/Polaris>.522  
523  
524  
525  
Hongzhe Bi, Lingxuan Wu, Tianwei Lin, Hengkai Tan, Zhizhong Su, Hang Su, and Jun Zhu. H-rdt:  
Human manipulation enhanced bimanual robotic manipulation. *arXiv preprint arXiv:2507.23523*,  
2025.526  
527  
528  
529  
Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo  
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi\_0: A vision-language-action flow  
model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.530  
531  
532  
533  
Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.  
The perils of trial-and-error reward design: misdesign through overfitting and invalid task spec-  
ifications. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.  
5920–5929, 2023.534  
535  
536  
537  
Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong  
He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for  
scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025a.538  
539  
Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, and  
Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. *arXiv preprint  
arXiv:2505.06111*, 2025b.

540 Chilam Cheang, Sijin Chen, Zhongren Cui, Yingdong Hu, Liqun Huang, Tao Kong, Hang Li, Yifeng  
 541 Li, Yuxiao Liu, Xiao Ma, et al. Gr-3 technical report. *arXiv preprint arXiv:2507.15493*, 2025.  
 542

543 Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xi-  
 544 anliang Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and bench-  
 545 mark with strong domain randomization for robust bimanual robotic manipulation. *arXiv preprint*  
 546 *arXiv:2506.18088*, 2025a.

547 William Chen, Suneel Belkhale, Suvir Mirchandani, Oier Mees, Danny Driess, Karl Pertsch,  
 548 and Sergey Levine. Training strategies for efficient embodied reasoning. *arXiv preprint*  
 549 *arXiv:2505.08243*, 2025b.  
 550

551 Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-  
 552 rft: A reinforced fine-tuning method for vla models via consistency policy. *arXiv preprint*  
 553 *arXiv:2502.05450*, 2025c.

554 Zengjue Chen, Runliang Niu, He Kong, and Qi Wang. Tgrpo: Fine-tuning vision-language-action  
 555 model via trajectory-wise group relative policy optimization. *arXiv preprint arXiv:2506.08440*,  
 556 2025d.  
 557

558 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,  
 559 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter-  
 560 national Journal of Robotics Research*, 2024.

561 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu  
 562 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint*  
 563 *arXiv:2502.01456*, 2025a.  
 564

565 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen  
 566 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for  
 567 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025b.

568 Gustavo H De Rosa and Joao P Papa. A survey on text generation using generative adversarial  
 569 networks. *Pattern Recognition*, 119:108098, 2021.  
 570

571 Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke  
 572 Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Ap-  
 573 plications, challenges, and the future. *The International Journal of Robotics Research*, 44(5):  
 574 701–739, 2025.

575 Jensen Gao, Annie Xie, Ted Xiao, Chelsea Finn, and Dorsa Sadigh. Efficient data collection for  
 576 robotic manipulation via compositional generalization. *arXiv preprint arXiv:2403.05110*, 2024.  
 577

578 Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Charlie Tianyue  
 579 Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, et al. Roboverse: Towards a unified plat-  
 580 form, dataset and benchmark for scalable and generalizable robot learning. *arXiv preprint*  
 581 *arXiv:2504.18904*, 2025.

582 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 583 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 584 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.  
 585

586 Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.  
 587 Improving vision-language-action model with online reinforcement learning. *arXiv preprint*  
 588 *arXiv:2501.16664*, 2025b.

589 Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy  
 590 learning: Solving long-horizon tasks via imitation and reinforcement learning. *arXiv preprint*  
 591 *arXiv:1910.11956*, 2019.  
 592

593 Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse  
 reward design. *Advances in neural information processing systems*, 30, 2017.

594 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza  
 595 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training  
 596 compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

597

598 Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil  
 599 Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with  
 600 predictive visual representations. *arXiv preprint arXiv:2412.14803*, 2024.

601

602 Chia-Yu Hung, Qi Sun, Pengfei Hong, Amir Zadeh, Chuan Li, U Tan, Navonil Majumder, Soujanya  
 603 Poria, et al. Nora: A small open-sourced generalist vision language action model for embodied  
 604 tasks. *arXiv preprint arXiv:2504.19854*, 2025.

605

606 Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to  
 607 train your robot with deep reinforcement learning: lessons we have learned. *The International  
 608 Journal of Robotics Research*, 40(4-5):698–721, 2021.

609

610 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,  
 611 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. pi\_{0.5}: a vision-language-  
 612 action model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.

613

614 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec  
 615 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv  
 616 preprint arXiv:2412.16720*, 2024.

617

618 Zhenyu Jiang, Yuqi Xie, Kevin Lin, Zhenjia Xu, Weikang Wan, Ajay Mandlekar, Linxi Fan, and  
 619 Yuke Zhu. Dexmimicgen: Automated data generation for bimanual dexterous manipulation via  
 620 imitation learning. *arXiv preprint arXiv:2410.24185*, 2024.

621

622 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,  
 623 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source  
 624 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

625

626 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-  
 627 mizing speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

628

629 W Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward  
 630 (mis) design for autonomous driving. *Artificial Intelligence*, 316:103829, 2023.

631

632 Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for manipulation:  
 633 Challenges, representations, and algorithms. *Journal of machine learning research*, 22(30):1–82,  
 634 2021.

635

636 Mengqi Liao, Xiangyu Xi, Ruinian Chen, Jia Leng, Yangen Hu, Ke Zeng, Shuai Liu, and Huaiyu  
 637 Wan. Enhancing efficiency and exploration in reinforcement learning for llms. *arXiv preprint  
 638 arXiv:2505.18573*, 2025.

639

640 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:  
 641 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information  
 642 Processing Systems*, 36:44776–44791, 2023.

643

644 Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang.  
 645 What can rl bring to vla generalization? an empirical study. *arXiv preprint arXiv:2505.19789*,  
 646 2025a.

647

648 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.  
 649 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.  
 650 *arXiv preprint arXiv:2505.24864*, 2025b.

651

652 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang  
 653 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint  
 654 arXiv:2410.07864*, 2024.

648 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,  
 649 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*  
 650 *arXiv:2503.20783*, 2025c.

651 Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and  
 652 Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl  
 653 synergy. *arXiv preprint arXiv:2506.13284*, 2025d.

654 Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong  
 655 Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable  
 656 reinforcement learning. *arXiv preprint arXiv:2505.18719*, 2025.

657 Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan, Jacob Berg, Archit Sharma, Stefan Schaal,  
 658 Chelsea Finn, Abhishek Gupta, and Sergey Levine. Serl: A software suite for sample-efficient  
 659 robotic reinforcement learning. *arXiv preprint arXiv:2401.16013*, 2025.

660 Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy  
 661 Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.  
 662 *arXiv preprint arXiv:2210.00030*, 2022.

663 Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-  
 664 man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via  
 665 coding large language models. *arXiv preprint arXiv:2310.12931*, 2023.

666 Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang  
 667 Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early  
 668 version). In *European Conference on Computer Vision*, pp. 264–273. Springer, 2025.

669 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 670 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-  
 671 low instructions with human feedback. *Advances in neural information processing systems*, 35:  
 672 27730–27744, 2022.

673 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham  
 674 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:  
 675 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*  
 676 *International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024.

677 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,  
 678 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action  
 679 models. *arXiv preprint arXiv:2501.09747*, 2025.

680 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea  
 681 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*  
 682 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

683 Matthew Renze. The effect of sampling temperature on problem solving in large language models.  
 684 In *Findings of the association for computational linguistics: EMNLP 2024*, pp. 7346–7356, 2024.

685 Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye  
 686 Teh and Mike Titterington (eds.), *Proceedings of the Thirteenth International Conference on*  
 687 *Artificial Intelligence and Statistics*, volume 9 of *Proceedings of Machine Learning Research*,  
 688 pp. 661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL <https://proceedings.mlr.press/v9/ross10a.html>.

689 Ranjan Sapkota, Yang Cao, Konstantinos I Roumeliotis, and Manoj Karkee. Vision-language-action  
 690 models: Concepts, progress, applications and challenges. *arXiv preprint arXiv:2505.04769*, 2025.

691 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region  
 692 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,  
 693 2015.

694 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 695 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017a.

702 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 703 optimization algorithms. 2017b. URL <https://arxiv.org/abs/1707.06347>.

704

705 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 706 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 707 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

708

709 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,  
 710 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*  
 711 *arXiv: 2409.19256*, 2024.

712

713 Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetun-  
 ing via adaptive curriculum learning. *arXiv preprint arXiv:2504.05520*, 2025.

714

715 Junyang Shu, Zhiwei Lin, and Yongtao Wang. Rftf: Reinforcement fine-tuning for embodied agents  
 716 with temporal feedback. *arXiv preprint arXiv:2505.19767*, 2025.

717

718 Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähenbühl. Interactive post-training for vision-  
 language-action models. *arXiv preprint arXiv:2505.17016*, 2025.

719

720 Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-  
 721 rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,  
 722 Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. *arXiv preprint*  
 723 *arXiv:2503.20020*, 2025a.

724

725 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun  
 726 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with  
 727 llms. *arXiv preprint arXiv:2501.12599*, 2025b.

728

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep  
 729 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot  
 730 policy. *arXiv preprint arXiv:2405.12213*, 2024.

731

RLinf Team. Rlinf: Reinforcement learning infrastructure for agentic ai. <https://github.com/RLinf/RLinf>, 2025. GitHub repository.

732

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 733 lay Bashlykov, Soumya Batra, Prajwala Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-  
 734 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

735

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning  
 736 with reinforced fine-tuning. In *Proceedings of the 62nd Annual Meeting of the Association for*  
*737 Computational Linguistics (Volume 1: Long Papers)*, pp. 7601–7614, 2024.

738

739

Yihao Wang, Pengxiang Ding, Lingxiao Li, Can Cui, Zirui Ge, Xinyang Tong, Wenxuan Song, Han  
 740 Zhao, Wei Zhao, Pengxu Hou, Siteng Huang, Yifan Tang, Wenhui Wang, Ru Zhang, Jianyi Liu,  
 741 and Donglin Wang. Vla-adapter: An effective paradigm for tiny-scale vision-language-action  
 742 model. *arXiv preprint arXiv:2509.09372*, 2025.

743

Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi Tomizuka, and Stefan Schaal. Learning  
 744 dense rewards for contact-rich manipulation tasks. In *2021 IEEE International Conference on*  
*745 Robotics and Automation (ICRA)*, pp. 6214–6221. IEEE, 2021.

746

Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy distillation  
 747 via reinforcement learning, 2024. URL <https://arxiv.org/abs/2412.09858>.

748

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,  
 749 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*  
 750 *arXiv:2505.09388*, 2025.

751

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong  
 752 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at  
 753 scale. *arXiv preprint arXiv:2503.14476*, 2025.

754

755

756 Zhecheng Yuan, Tianming Wei, Shuiqi Cheng, Gu Zhang, Yuanpei Chen, and Huazhe Xu. Learning  
 757 to manipulate anywhere: A visual generalizable framework for reinforcement learning. *arXiv*  
 758 *preprint arXiv:2407.15815*, 2024.

759 Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic  
 760 control via embodied chain-of-thought reasoning. *arXiv preprint arXiv:2407.08693*, 2024.

762 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion  
 763 policy: Generalizable visuomotor policy learning via simple 3d representations. *arXiv preprint*  
 764 *arXiv:2403.03954*, 2024.

765 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-  
 766 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*  
 767 *preprint arXiv:2503.18892*, 2025.

769 Hongyin Zhang, Zifeng Zhuang, Han Zhao, Pengxiang Ding, Hongchao Lu, and Donglin Wang.  
 770 Reinbot: Amplifying robot visual-language manipulation with reinforcement learning. *arXiv*  
 771 *preprint arXiv:2505.07395*, 2025.

772 Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu  
 773 Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.  
 774 *arXiv preprint arXiv:2411.19309*, 2024.

776 Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuanfei  
 777 Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, et al. A survey on vision-language-action  
 778 models: An action tokenization perspective. *arXiv preprint arXiv:2507.01925*, 2025.

779 Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-  
 780 ment learning fine-tuning need not retain offline data. *arXiv preprint arXiv:2412.07762*, 2025.

782 Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen  
 783 Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. *arXiv preprint*  
 784 *arXiv:2504.16084*, 2025.

## 786 A RELATED WORKS

### 788 A.1 REINFORCEMENT LEARNING FOR LARGE LANGUAGE MODELS

790 Reinforcement Learning (RL) for Large Language Models (LLMs) has achieved remarkable suc-  
 791 cess, demonstrating its ability to induce complex reasoning behaviors such as self-verification and  
 792 iterative optimization, thereby significantly enhancing model performance on reasoning tasks (Guo  
 793 et al., 2025a; Jaech et al., 2024; Liu et al., 2025c; Cui et al., 2025a; Zeng et al., 2025; Zuo et al.,  
 794 2025). Recent advancements in Large Reasoning Models (LRMs), such as DeepSeek-R1 (Guo et al.,  
 795 2025a), highlight the effectiveness of RL in boosting reasoning capabilities even with simple rule-  
 796 based rewards, as exemplified by GRPO (Shao et al., 2024). This approach differs substantially from  
 797 Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), which aligns base  
 798 models with human preferences using algorithms like Proximal Policy Optimization (PPO) (Schul-  
 799 man et al., 2017a) and heavily relies on preference modeling.

800 Recent studies have increasingly focused on enhancing exploration in reinforcement learning to en-  
 801 able longer training horizons and improved performance. DAPO (Yu et al., 2025) introduces Clip-  
 802 Higher, a decoupled variant of PPO clipping, which sets a higher upper bound relative to the lower  
 803 one (e.g.,  $\varepsilon_L = 0.2$ ,  $\varepsilon_H = 0.28$ ). This adjustment allows low-likelihood but potentially valuable  
 804 tokens to increase in probability, thereby encouraging exploration. Building on this, POLARIS (An  
 805 et al., 2025) employs a staged curriculum of temperature increases (e.g.,  $0.7 \rightarrow 1.0 \rightarrow 1.1$  for a  
 806 7B model) to gradually expand trajectory diversity and facilitate more robust policy discovery. In  
 807 parallel, Entropy Mechanism (Cui et al., 2025b) addresses entropy collapse, a persistent issue in  
 808 extended training, through methods such as Clip-Cov and KL-Cov, which selectively clip probabili-  
 809 ties or penalize high-covariance tokens to sustain effective exploration. Similarly, ProRL (Liu et al.,  
 810 2025b) combines KL control with reference policy resetting to preserve stability and extend training  
 811 without degrading performance. A complementary line of work regulates entropy via temperature

810 tuning. Acereason-nemotron 1.1 (Liu et al., 2025d) advocates adjusting temperatures to stabilize  
 811 post-scaling entropy around a target (e.g., 0.3), balancing exploration and exploitation. Liao et al.  
 812 (2025) further proposes a dynamic scheduler that adapts temperature over time to maintain stable  
 813 entropy, thereby supporting sustained performance gains.  
 814

## 815 A.2 VISION LANGUAGE ACTION MODELS

816 In the field of robotic manipulation tasks, VLA models (Kim et al., 2024; 2025; Liu et al., 2024;  
 817 Bu et al., 2025b; Hung et al., 2025; Black et al., 2024; Pertsch et al., 2025; Intelligence et al.,  
 818 2025) have shown better performance and task generalization compared to traditional policy-based  
 819 approaches (Ma et al., 2022; Yuan et al., 2024). These models integrate the VLM or LLM back-  
 820 bone with action modules through unified end-to-end training (Zhong et al., 2025). This approach  
 821 enables comprehensive multimodal understanding and fine-grained motor control (Firoozi et al.,  
 822 2025). Currently, many studies are focused on enhancing the effectiveness of VLA models. For ex-  
 823 ample, E-COT (Zawalski et al., 2024; Chen et al., 2025b) introduced Embedded Chain of Thought  
 824 (ECoT) to improve the spatial reasoning ability of VLA models. RDT-1B and VPP (Liu et al., 2024;  
 825 Hu et al., 2024) proposed diffusion-based frameworks for VLA models. Agibot world and Robo-  
 826 verse (Geng et al., 2025; Bu et al., 2025a) aim to build larger-scale simulation environments and tra-  
 827 jectory datasets to improve the sim-to-real transfer and generalization capabilities of VLA models.  
 828 Additionally, Dexmimicgen (Jiang et al., 2024) explores automated methods to generate high-quality  
 829 trajectory data to address the issue of data scarcity in robotics. Despite the rapid advancements in  
 830 the VLA domain, imitation learning remains the dominant training paradigm for VLA models (Sap-  
 831 kota et al., 2025; Kim et al., 2024; 2025; Liu et al., 2024; Bu et al., 2025b; Hung et al., 2025; Black  
 832 et al., 2024; Pertsch et al., 2025; Intelligence et al., 2025). Current VLA models typically follow  
 833 a two-stage paradigm: pretraining on multimodal data (e.g., Open X-Embodiment (O’Neill et al.,  
 834 2024)) followed by SFT on collected robot trajectories. However, imitation learning is limited by its  
 835 dependence on expensive, high-quality trajectory data and poor generalization to unseen scenarios.  
 836

837 **VLA RL Methods** Recently, some efforts have attempted to apply RL to VLA training.  
 838 GRAPE (Zhang et al., 2024) utilized Direct Preference Optimization (DPO) (Rafailov et al., 2023)  
 839 to train VLA models by integrating human preferences. ConRFT (Chen et al., 2025c) introduced  
 840 Reinforced Fine-Tuning (Trung et al., 2024) to train VLA models in real-world environments, it-  
 841 eratively training VLAs through alternating RL and SFT rounds. ReinboT (Zhang et al., 2025) fo-  
 842 cused on dense reward design and optimized VLA models through reward maximization. Guo et al.  
 843 (2025b) proposed an iterative training framework that combines Supervised Fine-Tuning (SFT) and  
 844 RL stages to address training instability and computational overhead. More recent works have fur-  
 845 ther advanced VLA RL methods. Concurrently, RIPT-VLA (Tan et al., 2025) investigates a closely  
 846 related problem, employing RLOO (Ahmadian et al., 2024) for VLA RL training. Moreover, Liu  
 847 et al. (2025a) investigates RL’s impact on VLA generalization capabilities, demonstrating signif-  
 848 icant improvements over SFT in unseen environments, objects, and textures. RLinf (Team, 2025)  
 849 designed a flexible, scalable framework for VLA RL that unifies rendering, inference, and training,  
 850 improving both VLA training efficiency and performance. VLA-RL (Lu et al., 2025) applies the  
 851 PPO algorithm to the VLA model. TGRPO (Chen et al., 2025d) uses Claude3.7 to evaluate trajec-  
 852 tories and optimizes VLA with GRPO. RFTF (Shu et al., 2025) uses value models to generate dense  
 853 rewards in embodied scenarios for VLA online RL. Compared to the above works, our paper further  
 854 explores the effectiveness of VLA RL on real-world robotic tasks. We also conduct comprehensive  
 855 analyses on how VLA RL addresses data scarcity challenges and improves policy generalization.  
 856

## 857 B PRELIMINARIES

858 To provide an intuitive illustration of the existing gap when extending RL methodologies from LLMs  
 859 to the VLA domain, we formalize RL for both LLMs and VLA models, presenting their state repre-  
 860 sentations, action spaces, reward functions, and environments in this section.  
 861

### 862 B.1 RL FORMULATION FOR LLMs

863 **State ( $s_t$ ):** At step  $t$ , the state  $s_t$  comprises the input prompt and previously generated tokens:

$$s_t = (x_{\text{prompt}}, y_1, y_2, \dots, y_{t-1}), \quad (5)$$

864 where  $x_{\text{prompt}}$  denotes the initial prompt and  $y_t$  denotes the  $t$ -th generated token.  
 865  
**Action** ( $a_t$ ): An action corresponds to selecting the next token from the vocabulary  $\mathcal{V}$ . At each step,  
 866 the policy outputs a probability distribution over tokens, and the action token is selected via random  
 867 sampling. Formally, the action is defined as:  
 868

$$869 \quad a_t = y_t \in \mathcal{V}, \quad \text{where} \quad y_t \sim \pi_\theta(\cdot | s_t) = \text{softmax}(f_\theta(s_t)/T), \quad (6)$$

870 where  $f_\theta(s_t) \in \mathbb{R}^{|\mathcal{V}|}$  represents the LLM logit outputs and  $T$  is the temperature parameter controlling  
 871 the randomness of sampling.  
 872

873 **Environment:** The environment provides reward signals upon sequence completion. In rule-based  
 874 settings, binary rewards are assigned based on the correctness. Alternatively, learned reward models  
 875 or human feedback systems provide continuous rewards based on criteria such as helpfulness,  
 876 harmlessness, or task alignment. The reward is computed as follows:  
 877

$$878 \quad r(\tau) = \begin{cases} 1, & \text{if } \tau \text{ satisfies correctness criteria} \\ 0, & \text{otherwise} \end{cases}, \quad \text{or} \quad r(\tau) = R_\phi(\tau) \in [0, 1], \quad (7)$$

879 where  $R_\phi$  is a learned reward model and  $\tau = (x_{\text{prompt}}, y_1, y_2, \dots, y_{T_{\text{seq}}})$  represents the complete  
 880 generated sequence of length  $T_{\text{seq}}$ .  
 881

882 **Rollout:** Given an input prompt  $x_{\text{prompt}}$ , the LLM auto-regressively generates a sequence by sampling tokens from  $\pi_\theta(y_t | s_t)$  until termination, without intermediate environmental feedback. With a non-zero temperature  $T$ , the policy can produce diverse rollouts that explore different solution paths.  
 883

## 884 B.2 RL FORMULATION FOR VLAs

885 **State** ( $s_t$ ): The state consists of multimodal observations including visual input (RGB images, depth  
 886 maps, or point clouds), proprioceptive information (joint angles, end-effector pose), and language  
 887 instructions of the tasks. Formally, the state is defined as:  
 888

$$889 \quad s_t = (o_t^{\text{vis}}, o_t^{\text{prop}}, l_{\text{task}}), \quad (8)$$

890 where  $o_t^{\text{vis}}$  is multimodal observations,  $o_t^{\text{prop}}$  is proprioceptive information, and  $l_{\text{task}}$  is language  
 891 instructions.  
 892

893 **Action** ( $a_t$ ): Actions are control commands in the robot action space, typically end-effector deltas  
 894 or joint angle targets, where  $a_t \in \mathbb{R}^d$  (e.g.,  $d = 7$  for 6-DoF pose plus gripper position). Most VLA  
 895 policies generate actions through either a diffusion-based action expert or a discrete action tokenizer.  
 896 The action is defined as follows:  
 897

$$898 \quad a_t = \text{Decoder}(h_\theta(s_t)), \quad \text{Decoder} \in \{\text{Diffusion Expert, Action Tokenizer}\}, \quad a_t \in \mathbb{R}^d, \quad (9)$$

900 where  $h_\theta(s_t)$  represents the hidden state of  $s_t$  in the VLA model, and *Decoder* is the action decoder.  
 901

902 **Environment:** The environment represents the physical world or simulation where the robot operates. It provides state transitions  $s_{t+1} = \text{Env}(s_t, a_t)$  and reward signals:  
 903

$$904 \quad r_t = \alpha \cdot I_{\text{success}} + (1 - \alpha) \cdot \sum_i w_i \cdot \phi_i(s_t, a_t), \quad \alpha \in [0, 1], \quad I_{\text{success}} = \begin{cases} 1, & \text{if task success} \\ 0, & \text{otherwise} \end{cases}, \quad (10)$$

905 where  $\phi_i(s_t, a_t)$  represents process rewards (e.g. distance to goal),  $w_i$  are weights, and  $\alpha$  balances  
 906 outcome and process rewards.  
 907

908 **Rollout:** VLA models generate trajectories through iterative interaction with the environment.  
 909 At each timestep, the policy  $\pi_\theta$  takes the current state  $s_t$  as input and outputs an action chunk  
 910 ( $a_t, a_{t+1}, \dots, a_{t+k-1}$ ) of length  $k$ . The robot executes these actions sequentially and the environment  
 911 produces updated states based on physical dynamics. After execution, the model takes the new  
 912 state  $s_{t+k}$  as input and generates the next action chunk. This process continues until task completion  
 913 or maximum episode length, producing a complete trajectory  $\tau = ((s_0, a_0), (s_1, a_1), \dots, (s_T, a_T))$   
 914 through interactive sampling.  
 915

918 B.3 GROUP RELATIVE POLICY OPTIMIZATION  
919

920 Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is an RL method that eliminates  
921 the value function by computing advantages through group-relative normalization. Given an initial  
922 state  $s_0$ , the behavior policy  $\pi_{\theta_{\text{old}}}$  generates  $G$  trajectories  $\{\tau_i\}_{i=1}^G$ . The GRPO objective employs  
923 PPO-style clipping with KL regularization to constrain policy updates:

$$924 \quad J_{\text{GRPO}}(\theta) = \mathbb{E}_{s_0 \sim \mathcal{D}, \{\tau_i\} \sim \pi_{\theta_{\text{old}}}} \left[ \frac{1}{G} \sum_{i=1}^G \frac{1}{|\tau_i|} \sum_{t=1}^{|\tau_i|} \min \left( r_{i,t}(\theta) \hat{A}_i, \text{clip}(r_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right) \right. \\ 925 \quad \left. - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right], \quad (11)$$

930 where the importance sampling ratio  $r_{i,t}(\theta)$  and the normalized advantage  $\hat{A}_i$  are defined as:  
931

$$932 \quad r_{i,t}(\theta) = \frac{\pi_{\theta}(a_{i,t} | s_{i,t})}{\pi_{\theta_{\text{old}}}(a_{i,t} | s_{i,t})}, \quad \hat{A}_i = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (12)$$

935 Here  $R_i$  denotes the total reward of the  $i$ -th trajectory,  $\epsilon > 0$  is the PPO clipping parameter that  
936 limits the policy ratio, and  $\beta > 0$  is the coefficient controlling the strength of KL regularization with  
937 respect to the reference policy  $\pi_{\text{ref}}$ .

938 C FAILURE MODES OF SIMPLEVLA-RL  
939940 Table 6: Impact of initial model capability on **SimpleVLA-RL** performance.  
941

| 943 RoboTwin2.0    |              |                |                 |                   |                   |       |
|--------------------|--------------|----------------|-----------------|-------------------|-------------------|-------|
|                    | Move Can Pot | Place A2B Left | Place A2B Right | Place Phone Stand | Pick Dual Bottles | Avg   |
| 945 0 trajs SFT    | 0            | 0              | 0               | 0                 | 0                 | 0     |
| 946 +RL            | 0            | 0              | 0               | 0                 | 0                 | 0     |
| 947 100 trajs SFT  | 9.4          | 7.8            | 7.8             | 10.1              | 1.2               | 7.3   |
| 948 +RL            | 51.6         | 25.0           | 27.2            | 18.8              | 4.3               | 25.4  |
| 949 $\Delta$       | +42.2        | +17.2          | +19.4           | +8.7              | +3.1              | +18.1 |
| 950 1000 trajs SFT | 28.1         | 37.5           | 28.7            | 17.1              | 29.7              | 28.2  |
| 951 +RL            | 61.2         | 45.3           | 37.5            | 39.6              | 68.3              | 50.4  |
| 952 $\Delta$       | +33.1        | +7.8           | +8.8            | +22.5             | +38.6             | +22.2 |

952 This subsection investigates the failure conditions of **SimpleVLA-RL** and key influencing factors.  
953 Through experiments on five RoboTwin2.0 tasks, we find that the model priors are the critical factor  
954 determining RL effectiveness.  
955

956 **Settings** Each task is trained under domain randomization with a single-task setting. We compare  
957 three model variants: (1) the OpenVLA-OFT base model without trajectory fine-tuning (0 trajec-  
958 tories SFT); (2) the model fine-tuned with 100 demonstration trajectories per task (100 trajectories  
959 SFT); and (3) the model fine-tuned with 1000 demonstration trajectories per task (1000 trajectories  
960 SFT). All models undergo **SimpleVLA-RL** training on 1000 training scenarios and are evaluated  
961 on 100 held-out test scenarios.  
962

963 **RL fails completely when the base model has no initial task ability.** Table 6 reports the results.  
964 The base model (0-trajectory SFT) achieves a 0% success rate across all tasks, exhibiting no task-  
965 relevant behaviors. Despite extensive pretraining, OpenVLA shows extremely limited zero-shot  
966 generalization, consistent with findings in Kim et al. (2025). Because no successful trajectories  
967 are generated during sampling and only outcome rewards (without process rewards) are employed,  
968 every trajectory receives zero reward. As a result, RL is unable to improve performance, which  
969 remains at 0%.

970 **The model prior has a significant impact on the effectiveness of RL.** Initial capability is strongly  
971 correlated with post-RL performance. The 100-trajectory SFT model improves from 7.3% to 25.4%  
972 (an 18.1% gain), while the 1000-trajectory SFT model improves from 28.2% to 50.4% (a 22.2%  
973 gain) in average success rate. This trend is consistent across tasks. For instance, in the *move can*

972  
 973  
 974  
 975  
 976  
 977  
 978  
 979  
 980  
 981  
 982  
 983  
 984  
 985  
 986  
 987  
 988  
 989  
 990  
 991  
 992  
 993  
 994  
 995  
 996  
 997  
 998  
 999  
 1000  
 1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025  
 pot task, the 100-trajectory SFT model improves from 9.4% to 51.6%, whereas the 1000-trajectory SFT model improves from 28.1% to 61.2%. These results highlight that stronger initial capabilities provide more effective starting points for exploration, thereby facilitating greater performance improvements.

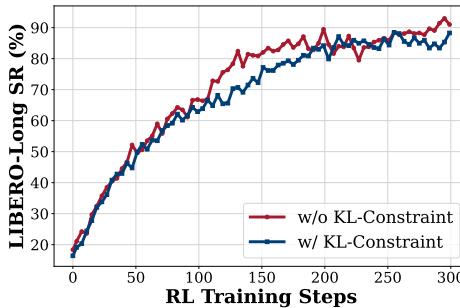
976  
**RL effectiveness has a threshold: when initial ability is too low, improvements remain negligible.** Our findings further reveal that the effectiveness of RL is subject to a performance threshold. When initial success rates are very low, online RL with outcome rewards yields only marginal improvements. For example, in the *pick dual bottles* task, the 100-trajectory SFT model improves from 1.2% to 4.3%, while the 1000-trajectory SFT model improves from 29.7% to 68.3%. Similarly, in the *place phone* task, the 100-trajectory SFT model gains 8.7%, compared to a 22.5% gain for the 1000-trajectory SFT model. The results indicate that a minimal level of task competence is essential for effective RL. Below this threshold, exploration is ineffective and RL fails to produce meaningful gains.

## D ADDITIONAL ABLATION AND ANALYSIS EXPERIMENTS

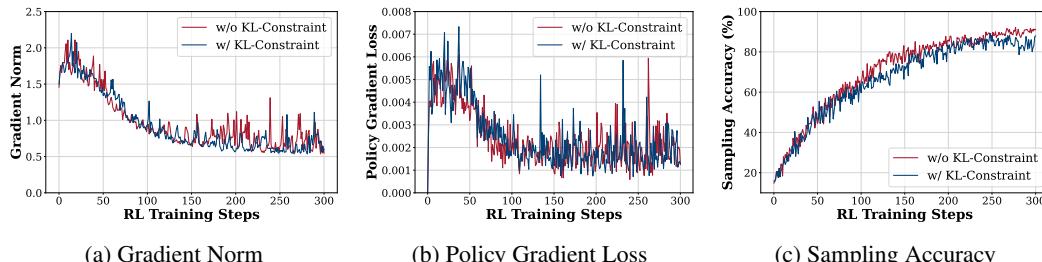
### D.1 ABLATION STUDY ON KL REGULARIZATION

990  
 991  
 992  
 993  
 994  
 995  
 996  
 997  
 998  
 999  
 1000  
 1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025  
 In this section, we present the ablation study on KL regularization and analyze the training stability after removing the KL constraint. The experimental settings are consistent with Figure 3. We apply SimpleVLA-RL with OpenVLA-OFT on LIBERO-Long under the one-trajectory setting, comparing two configurations: with and without the KL constraint. The results are shown in Figure 6. To further verify the stability of model updates, we visualize the gradient norm, policy gradient loss, and sampling accuracy curves throughout training with and without the KL constraint in Figure 7.

996  
 997  
 998  
 999  
 1000  
 1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025  
 The experimental results demonstrate that removing the KL regularization leads to a slight improvement in model performance while maintaining comparable training stability. The loss curves, gradient norms, and sampling accuracy all exhibit smooth convergence patterns. Furthermore, removing the KL constraint simplifies the training framework by eliminating the need to compute reference model sampling probabilities and load additional reference models, resulting in approximately 10% reduction in training time.



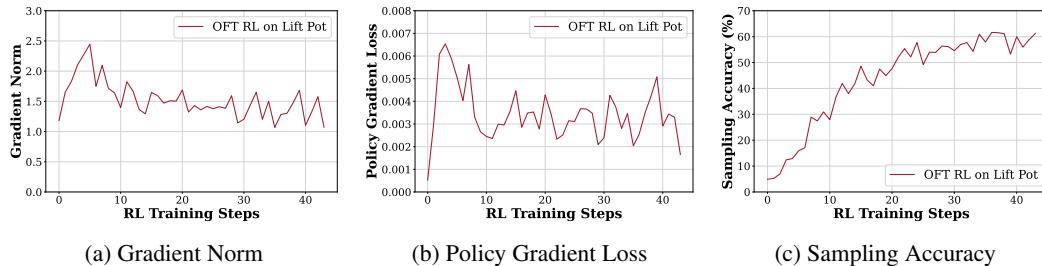
1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025  
 Figure 6: Ablation study on KL constraint on LIBERO-Long. Removing the KL constraint achieves comparable performance.



1024  
 1025  
 Figure 7: Training stability analysis with and without KL constraint on LIBERO-Long. Training without KL constraint remains equally stable.

1026 D.2 TRAINING STABILITY  
1027

1028 We provide training curves for OpenVLA-OFT and Pi0.5 on the RoboTwin2.0 benchmark without  
1029 KL regularization, including policy gradient loss, gradient norm, and sampling accuracy throughout  
1030 training. Specifically, OpenVLA-OFT is trained on the Lift Pot task from RoboTwin2.0, as shown in  
1031 Figure 8. Pi0.5 is trained on a mixture of 8 tasks from RoboTwin2.0: Lift Pot, Beat Hammer Block,  
1032 Pick Dual Bottles, Place Phone Stand, Move Can Pot, Place A2B Left, Place Empty Cup, and Han-  
1033 dover Mic, as shown in Figure 9. The results demonstrate stable training dynamics throughout the  
1034 optimization process, with no significant fluctuations or instabilities observed in any of the metrics.



1044 Figure 8: Training stability of OpenVLA-OFT on RoboTwin2.0 Lift Pot task. The gradient norm  
1045 and policy gradient loss remain stable throughout training.

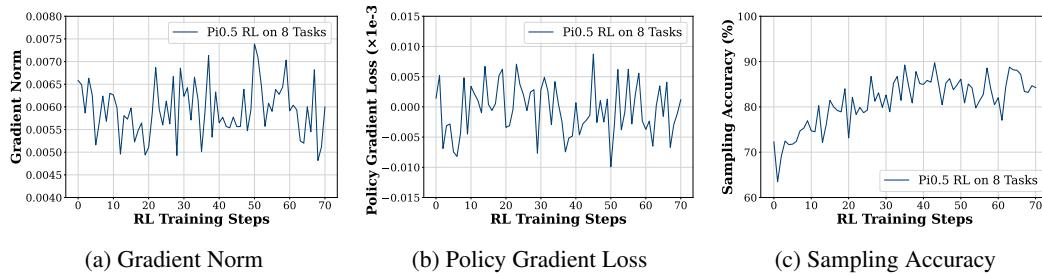


Figure 9: Training stability of Pi0.5 on RoboTwin2.0 with 8 tasks. The training metrics show stable optimization.

## E MULTI-TASK RL TRAINING ON LIBERO-90

To evaluate the effectiveness of **SimpleVLA-RL** in multi-task mixed training settings, we conduct RL training on the LIBERO-90 task suite, which contains 90 different tasks. Each task consists of 50 scenarios, resulting in a total of 4,500 scenarios across all 90 tasks that serve as the training set for **SimpleVLA-RL**. Figure 10 shows the results of different models on LIBERO-90, as well as the performance of OpenVLA-OFT SFT and OpenVLA-OFT RL on LIBERO-90 under the one-trajectory SFT setting.

## F COMPARISON OF LLM AND VLA ROLLOUT ALGORITHMS

To better illustrate the concrete rollout process in **SimpleVLA-RL** and highlight the key differences between VLA rollout in **SimpleVLA-RL** and LLM rollout in the veRL framework, we present a comparative pseudo-code implementation in Listing 1.

## G EXPERIMENTAL CONFIGURATION AND IMPLEMENTATION

## G.1 ROBOTWIN2.0 TASK CLASSIFICATION AND DETAILS

We classified the 12 tasks in RoboTwin2.0 based on their average number of steps, categorizing them into Short Horizon Tasks, Medium Horizon Tasks, Long Horizon Tasks, and Extra Long Horizon Tasks. The Table7 shows the specific number of steps and classification for each task.

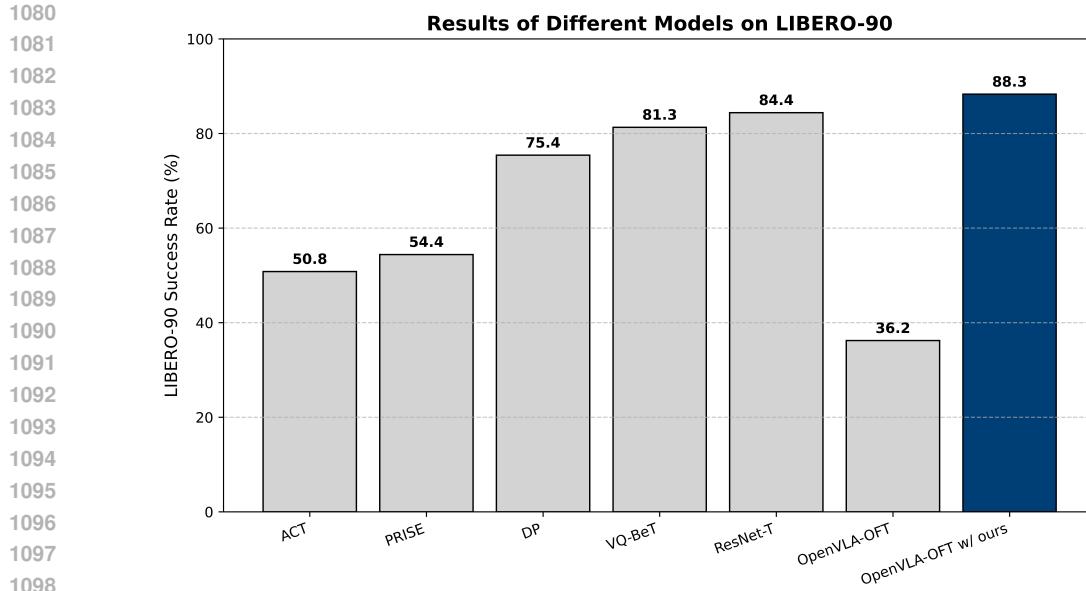


Figure 10: Results of different models on LIBERO-90.

```

1104 def rollout(policy, dataset, number_sample=8, max_steps=None):
1105     rollout_dataset = []
1106     for batch in dataset:
1107         batch = batch.repeat(number_sample)
1108         # LLM generates diverse outputs using random sampling
1109         outputs = policy.generate(batch, temperature=1.0)
1110         rollout_dataset.append((batch, outputs))
1111         # Parallel env initialization and interaction
1112         envs = env_process_pool.submit(batch.initialize)
1113         states = env_process_pool.submit(envs.setup)
1114         for t in range(max_steps):
1115             # VLA generates diverse trajectories using temperature
1116             # sampling on action tokens
1117             actions = policy.generate(states, temperature=1.0)
1118             rollout_dataset.append({f"{e.name}_step_{t}": (s,a) for e,s,a
1119             in zip(envs,states,actions)})
1120             states, dones = env_process_pool.submit(envs.step, actions)
1121             # Remove completed tasks
1122             active = [(e,s) for e,s,d in zip(envs,states,dones) if not d]
1123             if not active:
1124                 break
1125             envs, states = zip(*active)
1126     return rollout_dataset

```

Listing 1: Pseudo-code for the adopted veRL rollout function: from LLM-based generation to interactive VLA sampling with synchronous environment parallelism.

Detailed descriptions of the 4 real-world tasks (Stack Bowls, Handover Block, Pick Bottle, and Click Bell) and 12 RoboTwin2.0 tasks can be found at <https://robotwin-platform.github.io/doc/tasks/index.html>.

Table 7: RoboTwin 2.0 task classification based on planning horizon and required steps.

| Task Name                                       | Steps | Horizon                                    | Horizon Group      |
|-------------------------------------------------|-------|--------------------------------------------|--------------------|
| <b>Short Horizon Tasks (112-130 steps)</b>      |       |                                            |                    |
| lift_pot                                        | 112   | Short                                      |                    |
| beat_block_hammer                               | 113   | Short                                      | Average: 121 steps |
| pick_dual_bottles                               | 127   | Short                                      | Count: 4 tasks     |
| place_phone_stand                               | 130   | Short                                      |                    |
| <b>Medium Horizon Tasks (151-223 steps)</b>     |       |                                            |                    |
| move_can_pot                                    | 151   | Medium                                     |                    |
| place_a2b_left                                  | 155   | Medium                                     | Average: 176 steps |
| place_empty_cup                                 | 174   | Medium                                     | Count: 4 tasks     |
| handover_mic                                    | 223   | Medium                                     |                    |
| <b>Long Horizon Tasks (283-313 steps)</b>       |       |                                            |                    |
| handover_block                                  | 283   | Long                                       | Average: 298 steps |
| stack_bowls_two                                 | 313   | Long                                       | Count: 2 tasks     |
| <b>Extra Long Horizon Tasks (466-637 steps)</b> |       |                                            |                    |
| blocks_rank_rgb                                 | 466   | Extra-Long                                 | Average: 552 steps |
| put_bottles_dustbin                             | 637   | Extra-Long                                 | Count: 2 tasks     |
| <b>Overall Statistics</b>                       |       | <b>Total: 12 tasks, Average: 256 steps</b> |                    |

## G.2 BACKBONE MODIFICATION DETAILS

Our implementation of the OpenVLA-OFT model differs from the official version. To achieve improved training and inference efficiency, we utilize only single-view images, language instructions, and robot proprioceptive states as model inputs, whereas the official model additionally incorporates wrist camera images. Additionally, in the LIBERO, we don't use robot proprioceptive states in model inputs. Regarding the model architecture, we employ only parallel decoding and action chunking designs. We use the LLaMA2 output head to generate action tokens and the cross-entropy loss, whereas the official model uses an MLP to generate continuous actions and L1 regression. Due to the differences in model inputs and architecture, we cannot use the official checkpoints. We modify the official codebase and performed SFT from scratch using the same datasets and hyperparameters as the official implementation.

## G.3 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

For training infrastructure, we employ  $8 \times$ NVIDIA A800 80GB for full-parameter training. The training hyperparameters are configured as follows: learning rate  $lr = 5 \times 10^{-6}$ , training batch size of 64, sampling count of 8, mini-batch size of 128, clip ratio  $\varepsilon_L = 0.2$ ,  $\varepsilon_H = 0.28$ , and temperature  $T = 1.6$ . The number of action chunks is 8 in the LIBERO and 25 in the RoboTwin1.0&2.0. The model is configured with a total of 256 action tokens. The maximum interaction step is set to 512 in the LIBERO and 200, 400, or 800 in the RoboTwin1.0&2.0, depending on different tasks.

Regarding training time, the wall-clock training time varies by benchmark:

- **RoboTwin benchmark:** Using 8 A800-80GB GPUs, the wall-clock training time for single-task RL using OpenVLA-OFT is approximately 12-24 hours, depending on the initial success rate and maximum episode length. Training time increases when the initial success rate is lower and tasks require more steps.
- **LIBERO benchmark:** Under the *One-Trajectory SFT* setting, RL training takes approximately 1 or 2 days; under the *Full-Trajectory SFT* setting, training time is shorter, around 1 day. Tasks with lower initial success rates require longer training time.

RoboTwin benchmark: Using 8 A800 GPUs, the wall-clock training time for OpenVLA-OFT single-task RL is approximately 12-24 hours, depending on the task's initial success rate and maximum episode length. Training time increases when the initial success rate is lower or when tasks require more steps.

1188 LIBERO benchmark: Under the one-traj setting, RL training takes longer, approximately 1-2 days;  
1189 under the traj-all setting, training time is relatively shorter, around 1 day. Training time increases  
1190 correspondingly when the initial success rate is lower.

1191 During the rollout phase of RL training, we employ random sampling. For evaluation, we utilize  
1192 greedy sampling, with each benchmark tested three times for reproducibility.  
1193

1194 **G.4 ROBOT HARDWARE DETAILS**  
1195

1196 For real-world experiments, we employ an AgileX Cobot Magic, which is a mobile platform with an  
1197 Aloha configuration consisting of four robotic arms. Each arm is an AgileX Piper with six degrees of  
1198 freedom, equipped with a one-DoF parallel gripper. A RealSense D435 RGB-D camera is mounted  
1199 on the platform, capturing RGB images in real time at a resolution of  $640 \times 480$  with a frame rate of  
1200 approximately 30 Hz.  
1201

1202 **H THE USE OF LARGE LANGUAGE MODELS**  
1203

1204 We utilized LLMs for grammatical refinement and clarity improvements in our manuscript. Specif-  
1205 ically, we used ChatGPT (GPT-5-Thinking) to help polish the language and correct grammatical  
1206 errors in our draft. The assistance was limited to improving readability and ensuring adherence  
1207 to academic writing conventions, while all technical content, experimental design, and scientific  
1208 contributions remain entirely our own work.  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241