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ABSTRACT

Model merging has recently proven effective in enhancing the cross-lingual ca-
pabilities of reasoning models by integrating them with multilingual language
models. However, existing methods typically apply a uniform merging strategy
across languages, leading to a trade-off: while low-resource languages may bene-
fit, high-resource languages such as English often suffer performance degradation.
We attribute this limitation to insufficient coordination between the multilingual
and reasoning models, where suboptimal representation merging impairs general-
ization. To mitigate this, we introduce SteMerger, a preference-driven framework
that dynamically steers the model merger by optimizing the merging coefficients.
Experiments on multilingual reasoning benchmarks show that SteMerger consis-
tently improves performance across a wide range of languages, outperforming
several strong baselines.

1 INTRODUCTION

Large language models (LLMs) have been shown to possess strong foundational reasoning abilities
and have been successfully applied to complex tasks such as mathematical reasoning (Cobbe et al.,
2021)), commonsense reasoning (Patel et al., [2021)), and natural language inference (Conneau et al.,
2018). However, existing open-source reasoning LLMs, such as MetaMath (Yu et al., [2024) and
MathOctopus (Chen et al., [2024b)), still face significant challenges in non-English reasoning due to
the imbalanced nature of multilingual pretraining data. This motivates research into multilingual
reasoning (Shi et al., 2023 |Chen et al.,[2024bj;|She et al.||2024;|Huang et al.,2024;|Yoon et al.,[2024;
Bandarkar et al.| [2025), which aims to extend the reasoning capabilities of LLMs to low-resource
languages with limited supervision. While retraining-based methods may seem like straightforward
solutions, such as translating query-response pairs and fine-tuning LLMs on them (Shi et al., | 2023;
Chen et al., 2024b), they incur high translation costs and often struggle due to insufficient translated
data.

Alternatively, a series of model merging meth-

ods aim to compose the language and math- —
ematical capabilities of multiple LLMs by Hm—*
combining an external multilingual language l
model that produces language-agnostic inter-
mediate hidden states, which are then used
to strengthen reasoning capabilities in low-
resource languages (Yoon et al., 2024; Huang
et al., 2024} Bandarkar et al.| |2025)). In partic- (b) Our Approach
ular, recent efforts have demonstrated that di- -
rectly replacing specific network layers of the
reasoning LLM with those from the multilin-
gual LLM can enhance mathematical perfor-
mance in the target language (Yoon et al.,[2024;
Bandarkar et al., [2025)). During training, both
the original multilingual model and the rea-
soning LLM are kept frozen, while a trainable
mapping layer is introduced to align their rep-
resentations due to inconsistency between the two latent spaces. Furthermore, [Huang et al.| (2024)

(a) Existing Approaches

Response

Figure 1. Conceptual illustration of our ap-
proach. Unlike existing approaches that adopt
uniform representation merging across different
instructions (top), SteMerger (bottom) learns to
steer model behaviors by dynamically adjusting
the merging coefficients.
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introduces a two-stage mapping-augmentation scheme that collaboratively leverages both internal
and external capabilities of LL.Ms, thereby preserving their core reasoning abilities.

However, existing merged models typically concatenate the representations from the multilingual
model and the reasoning LLM, without considering the actual generation behavior. We observe that
the representations extracted from the source models contribute differently to multilingual reasoning:
the multilingual model offers strong text understanding for low-resource non-English languages,
whereas the reasoning LLM provides robust mathematical reasoning for high-resource languages
like English, which dominate pre-training data. This discrepancy suggests that relying solely on
a uniform merged representation may fail to accurately capture the intended generation behavior.
As a result, it often leads to suboptimal performance and occasional failures, particularly when the
alignment between the multilingual and reasoning representations is inadequate.

To fill this gap, inspired by recent preference optimization techniques such as Direct Preference
Optimization (DPO) (Rafailov et al., 2023), we propose an approach to steer the merged LLMs
(SteMerger) via coefficient optimization. Instead of relying on a fixed concatenation of representa-
tions, our method enables the model to dynamically modulate the contribution of each source model
(i.e., the multilingual language model and the reasoning LLM), allowing for more flexible and adap-
tive coordination between them. This design facilitates input-aware preference modeling, enabling
the merged model to shift its inductive bias toward the source most aligned with the current input.
As a result, it yields more accurate and targeted reasoning across diverse linguistic contexts. The
optimized source models are not only individually improved but also serve as better generators of
preference pairs, enabling the collection of higher-quality training data. This facilitates a new round
of collaborative training, in which the merged model is guided by increasingly reliable supervision
toward better coordination.

The main contributions of this paper are as follows:

* We introduce a model merging framework, SteMerger, designed to address the challenges
of multilingual reasoning. By optimizing two adapters in different models, SteMerger dy-
namically coordinates the merging process based on the input query.

* We propose a coefficient optimization method, motivated by the observation that the per-
formance of the merged model is sensitive to the variation in merging weights.

» Extensive experiments on multiple multilingual reasoning tasks demonstrate that Ste-
Merger effectively enhances the coordination between the multilingual model and the rea-
soning LLM. It consistently outperforms baselines, achieving superior performance across
diverse tasks.

2 RELATED WORK

2.1 MODEL MERGING

Model merging aims to combine the strengths of multiple models into a unified architecture and
has been widely used to enhance capabilities such as modality integration (Sung et al.,[2023; |Chen
et al.|[2024a) and task generalization (Bandarkar et al.,[2025; |Du et al.,|2025). Existing works can be
broadly categorized into two types: homogeneous merging, which combines models with the same
architecture, and heterogeneous merging, which merges models across architectural or modality
boundaries. Recent studies have explored model merging for cross-lingual transfer learning (Yoon
et al., 2024; [Huang et al.| 2024), but often suffer from limited controllability and alignment issues
in multilingual reasoning settings. In contrast, our work introduces a preference-driven merging
approach that dynamically steers the composition of multilingual representations, enabling better
coordination between source models and improving generalization across both low-resource and
high-resource languages.

2.2  PREFERENCE OPTIMIZATION

Preference optimization aims to adjust model behavior based on comparisons between gener-
ated outputs. A widely adopted paradigm is Reinforcement Learning from Human Feedback
(RLHF), which learns a reward model from pairwise preferences (e.g., using the Bradley-Terry
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model (Bradley & Terry, |1952)) and fine-tunes the base model to maximize expected rewards using
reinforcement learning algorithms such as Proximal Policy Optimization (PPO) (Schulman et al.,
2017). Despite its effectiveness, RLHF introduces additional complexity due to the need for explicit
reward modeling. Recent advances like Direct Preference Optimization (DPO) (Rafailov et al.|
2023) bypass the reward modeling stage by directly fitting the model to preference data. This not
only simplifies the pipeline but also aligns more closely with the true objective of preference learn-
ing. Inspired by this, we adopt a preference-driven optimization strategy to steer the reasoning
behavior of merged LLMs. Instead of updating the full model, we introduce lightweight residual
adapters trained via DPO, enabling fine-grained control over representation merging.

3 ANALYSING CURRENT MERGED MODELS FOR MULTILINGUAL
REASONING

In this section, we investigate how multilin- 70 628

gual rgasqning performance.is inﬂuenced by the 612 e

coordination of representations in the merged 60—y
53.6 ;

model.  Specifically, we focus on the im-
pact of merging two distinct source models,
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e.g. one trained for multilingual understanding 40 — Bengali French
and the other for mathematical reasoning, on —e— Swahili English
the performance across low-resource and high- 30
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resource languages. Weight of Multilingual Model

Although prior work (Yoon et al.,2024; |Huang
et al.| 2024) has demonstrated substantial gains
in low-resource language reasoning via model
merging, a notable performance gap remains.
In particular, merged models may underperform compared to the original reasoning model on high-
resource languages. For instance, LangBridge reports a drop of over 2 accuracy points on En-
glish (Yoon et al.| 2024)).

Figure 2. Multilingual reasoning results with dif-
ferent multilingual model weights.

This raises an important question: What factors govern the trade-off between gains in low-resource
languages and degradation in high-resource ones during merging? We hypothesize that the key lies
in the coordination of the merged representations, which we refer to as the representation merging
coefficients. Specifically, these coefficients control the relative contributions of the multilingual
model (e.g., mT5) and the reasoning model (e.g., MetaMath) during merging.

To verify this hypothesis, we conduct a quantitative analysis using a static gating mechanism (Sung
et al., [2023), which assigns a fixed weight to the multilingual representation during inference. A
higher weight implies greater reliance on the multilingual features within the merged representation.

As shown in Figure[2] we observe that increas-

ing the multilingual weight improves perfor- Taple 1. Pearson correlation coefficient r between

mance on low.-resource languages, while per-  muyltilingual model weight and MGSM accuracy.
formance on high-resource languages often de-

clines. This indicates a trade-off driyen by how Lang. Th Bn Sw De Fr En
the merged model balances cross-lingual gen-
eralization and reasoning ability. Moreover, we v 0.84 0.83 0.85 0.68 -0.69 -0.77

compute the Pearson correlation between the

multilingual model weight and accuracy across languages. The strong correlation (Table [T)) fur-
ther confirms that multilingual reasoning performance is tightly linked to the coordination between
the two source models.

4 STEMERGER: STEERING MERGED MODELS VIA COEFFICIENT
OPTIMIZATION

Based on the aforementioned analysis, we believe that optimizing the representation merging co-
efficients is key to improving multilingual reasoning. In this section, we propose SteMerger, a
preference-driven framework for multilingual reasoning that dynamically coordinates the integra-
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Figure 3. Overview of SteMerger. Our method iteratively merges the capabilities of a multilingual
model and a reasoning model through preference-driven training. Each iteration consists of two
steps: (i) Preference pair generation: For each multilingual query, responses are generated indepen-
dently using both source models. Their outputs are compared to derive preference pairs, reflecting
which model performs better for each query. (ii) Steering models via preference optimization: The
constructed preference pairs are used to steer the merged model via a combined DPO and NLL ob-
jective. The resulting merged model M (consists of M;™* and M}'™) inherits the strengths of both
sources and is used in the next iteration.

tion of a multilingual model and a reasoning LLM. Our method builds upon prior model merging
frameworks (Yoon et al.| 2024; |[Huang et al.,[2024), which integrate a multilingual model M™* and
areasoning LLM M through a trainable mapping layer. For clarity, we denote the merged model
as M to distinguish it from the two individual source models M™* and M "™,

Unlike prior approaches that apply uniform merging strategies, SteMerger aims to adaptively adjust
the merging behavior based on specific instructions, enabling better coordination between multilin-
gual understanding and reasoning precision. To this end, we adopt an iterative training framework,
where each iteration consists of two stages: (i) multilingual preference pair generation and (ii) steer-
ing the merger via preference 0pt1mlzat10n as illustrated in Figure [3] At iteration ¢, we use the
current models M™ and M!™ to generate multilingual preference data, which is then used to
optimize a lightweight steering module via Direct Preference Optimization (DPO). The resulting
merged model My, consisting of tht and Mflm, is then used to initialize the next iteration. This
loop enables the model to continually refine its multilingual alignment through preference-driven
learning.

Initialization of Model Merger Given a query ¢ consisting of [ tokens, a pre-trained multilingual
model first generates a semantic representation X € R'*91, which captures cross-lingual under-
standing. Since the multilingual model and the reasoning LLM reside in different representation
spaces, Ell rgapping layer (e.g., a two-layer MLP) is used to project X into the LLM space, yielding
X f € RE* 42,

To leverage both external and internal knowledge, the merged model also computes the native LLM
embedding 7' € R!*92 of the same input (Huang et al., [2024). These two representations are then
concatenated with special tokens to form a unified input: [<bos>; X ¢; <sep>; T, which is passed
to the LLM for response generation. During training, the encoder and LLM remain frozen, and only
the mapping components and boundary tokens are updated.

4.1 CROSS-MODEL PREFERENCE PAIRS GENERATION

To construct reliable preference data that reflects the comparative strengths of multiple source mod-
els, we adopt a response-level comparison strategy. Given an instruction x;, we first obtain responses
independently from the multilingual language models M™* and reasoning LLM M"™  resulting in
Yyt~ M™ (z;) and yl™ ~ MU"™(z;). During this process, each model uses its own represen-
tation space, allowing it to fully leverage its internal capabilities without being constrained by a
unified embedding space.
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The two responses are then compared based on task label correctness to determine the preference:
the better response is labeled as the winner and the other as the loser. This yields a pairwise prefer-

ence triple (z;, y;’“i“, yi"se), which is used to supervise downstream coefficient optimization.

However, in practice, we observe that many instruction fall into one of two ambiguous categories:
(i) both models provide equally correct responses, or (ii) both fail to generate valid outputs. In-
cluding such instances in preference training can introduce noise or misaligned preference signals.
Therefore, we explicitly discard samples where both responses are of similar quality, as these do not
offer clear preference supervision.

To avoid wasting these filtered examples, we instead utilize them under standard supervised learning:
if both responses are acceptable, we randomly select one and apply a negative log-likelihood (NLL)
loss against the reference answer. This allows the model to still benefit from correct supervision
even in the absence of a preference signal. The final objective for these samples is:

1 *
Lnw = —]E(xﬁy*>~7>mlm log Mo (y™ | z) (D

where Dyeural denotes the filtered examples with no clear win/lose label, and y* is the selected valid
response (or reference label, if available). This hybrid approach ensures full utilization of training
data while maintaining the integrity of preference optimization.

4.2 STEERING MERGER VIA COEFFICIENT OPTIMIZATION

To enable fine-grained control over the behavior of model merger, we introduce a steering merger
process consisting of lightweight, trainable adapters using residual connection. Rather than retrain-
ing the entire model architecture, these adapters are optimized to reflect the preferences embedded
in the source models, offering a flexible and efficient way to align the model outputs with desirable
traits from each constituent source.

We cast merger steering as a preference optimization problem, where pairwise preference data ex-
tracted from the outputs of two source models guides the coefficients optimization process. To this
end, we apply contrastive-based loss functions to iteratively adjust the adapters. This optimization
reinforces behaviors that are favored by the source models while suppressing less desirable ones,
ultimately improving the multilingual generalization of the merged model with various reasoning
tasks.

More concretely, given a multilingual preference triplet {x, ™" y'*¢} € D, we adopt a variant
of direct preference optimization (DPO) to encourage the generation of preferred responses. Our
formulation enhances the standard DPO objective (Rafailov et al. [2023) by incorporating the NLL
loss Equation (), particularly in multilingual settings. The full loss is defined as:

Mo(y*™ | z) Mo (y™ | @)
Lppo = —E(I7ywin’ylu\c)ND log o <ﬁ {log Mref(y“’i“ | l) — log Mref(ylose | :L’) &)
L = Lppo + - LnL @)

Here, My (- | ) denotes the trainable policy model, and M¢(- | x) is the frozen reference model.
The steering parameters ¢ are initialized from the reference and iteratively updated. The sigmoid
function o governs the preference margin, and « balances the DPO loss and NLL loss. During
training, only the adapter parameters are updated, while all parameters of the pretrained backbone
models remain frozen.

Iterative Optimization We propose an iterative training framework that progressively refines a
base instruction-following model through multilingual preference optimization. Starting from an
initial merged model M, we generate a sequence of models M1, Mo, ..., My, where each itera-
tion incorporates newly generated preference data to enhance performance.
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Table 2. Accuracy (%) results on MGSM. Lrl., Hrl., and Avg. represent the average accuracy
across low-resource languages, high-resource languages, and all languages, respectively. We regard
Bn, Th, and Sw as low-resourse languages, and regard the remaining languages as high-resource
languages. The best performance is in bold (same for Table|3[and Table EI)

MGSM |Bn Th Sw | Ja Zh De Fr Ru Es En |Lrl. Hrl. Avg
Original PLMs
MetaMath [2024] [ 68 72 6.8 [364 384 552 544 520 572 68.8] 69 518 383
Baselines
MultiReason [2024] | 33.2 40.0 42.0 | 42.0 42.0 452 44.8 452 48.0 52.0 (384 456 434
QAlign [2024] 324 39.6 404|440 484 548 568 524 59.6 68.0|37.5 549 49.6

LangBridge [2024] |42.8 504 43.2|40.0 452 564 50.8 524 58.0 632|455 523 502
Translate-En [2023] | 48.4 37.6 37.6 |49.2 468 604 564 47.6 59.6 655|412 551 506
MindMerger [2024]] | 50.4 52.8 57.2|544 536 612 57.6 60.8 584 66.8|53.5 59.0 573

Our Method
Merger* 50.5 529 57.6|52.8 54.8 59.1 56.8 60.7 61.7 66.7 537 589 574
SteMerger 52.0 545 563|535 559 60.0 60.5 61.3 62.8 68.0 | 54.3 60.3 58.5

Table 3. Accuracy (%) on X-CSQA. Avg. represents the average accuracy across all languages.

X-CSQA |Sw Ur Hi Ar Vi Ja Pl Zh Nl Ru It De Pt Fr Es En |Avg
Original PLMs
MetaMath [2024] [24.2 25.1 32.9 32.3 50.9 49.1 50.6 56.5 57.5 56.0 56.0 61.2 61.7 63.5 64.0 76.3[51.3
Baselines
MultiReason [2024]](27.6 29.2 32.0 28.7 38.8 38.7 45.5 43.8 45.9 46.5 50.2 49.1 51.2 52.1 54.3 67.2|43.8
QAlign [2024] 35.1 32.6 37.8 36.3 50.5 49.2 51.3 54.8 56.3 56.3 58.3 58.8 59.8 60.3 63.1 75.7|52.3

LangBridge [2024] |31.8 30.5 30.6 30.6 33.3 33.9 39.8 39.8 38.4 35.1 39.1 37.4 36.3 38.2 38.4 44.4|36.1
Translate-En [2023](36.5 41.3 48.4 44.6 51.8 47.1 53.3 51.5 55.0 54.4 56.3 57.3 54.7 57.2 55.5 71.3|52.3
MindMerger [2024]] [45.5 46.2 48.4 51.4 60.6 53.9 63.3 62.9 63.8 63.7 66.8 67.0 67.1 68.1 69.1 78.1/61.0

Our Method
Merger* 46.9 52.0 50.4 55.7 59.5 56.5 64.2 62.8 63.5 62.4 65.1 64.4 65.9 65.2 66.6 76.3|61.1
SteMerger 48.1 52.9 50.6 55.4 60.9 56.4 64.8 63.2 63.9 62.1 65.3 64.2 66.0 64.9 67.0 75.3|61.3

5 EXPERIMENTS

This section first introduces the multilingual reasoning benchmark, followed by a brief description
of the experimental configurations and baseline models. Finally, we present the main results of both
the baselines and SteMerger across three datasets.

5.1 EVALUATION DATASETS

We categorize our experiments into the following three task types: (1) Mathematical reasoning.
We evaluate on two multilingual math word problem datasets in this category. MGSM (Shi et al.,
2023) consists of grade-school level math questions translated by humans into 11 typologically di-
verse languages. The original English prompts are sampled from GSM8K (Cobbe et al.| [2021), a
benchmark designed to test step-by-step arithmetic reasoning. (2) Commonsense reasoning. We use
X-CSQA (Lin et al., 2021}, a multilingual extension of the CommonsenseQA dataset. The origi-
nal CSQA task is a multiple-choice question-answering benchmark targeting general commonsense
knowledge, but it is available only in English. X-CSQA provides translated versions of CSQA across
multiple languages, along with a new data split to support cross-lingual evaluation. The dataset in-
cludes 8,888 English training examples, 1,000 development examples per language, and 1,074 test
examples per language. (3) Natural language inference. We evaluate natural language inference
using XNLI (Conneau et al., [2018), a widely used multilingual benchmark spanning 15 languages.
The task involves determining whether a given hypothesis logically follows from a premise, catego-
rized as entailment, contradiction, or neutral. The dataset covers languages both typologically close
to English (e.g., French, German, Spanish) and more distant (e.g., Arabic, Thai, Swahili), making it
well-suited for evaluating cross-lingual generalization.
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Table 4. Accuracy (%) on XNLI. Avg. represents the average accuracy across all languages.

XNLI |Sw Ur Hi Th Ar Tr El Vi Zh Ru Bg De Fr Es En |Avg
Original PLMs
MetaMath [2024]  [45.9 49.2 55.7 55.4 60.9 61.9 63.7 73.7 74.7 77.6 76.7 80.6 82.2 82.8 90.0[68.7
Baselines
MultiReason [2024]{56.3 57.5 61.7 60.1 61.7 65.6 67.0 73.7 79.1 79.7 78.7 82.3 82.9 83.9 88.8|71.9
QAlign [2024] 65.2 62.2 63.3 65.2 67.0 67.9 66.5 73.7 76.6 79.2 79.4 80.9 83.1 83.8 89.1|73.5

LangBridge [2024]] |71.7 66.9 71.1 72.4 75.2 74.8 79.1 78.5 77.4 77.4 79.6 78.8 79.9 80.5 83.4|76.5
Translate-En [2023](65.3 61.6 68.7 69.5 68.9 74.5 79.3 76.7 74.8 76.0 80.8 80.6 80.4 81.4 87.4|75.1
MindMerger [2024]] |66.6 69.4 74.7 71.8 76.2 75.7 78.5 80.3 80.0 80.7 82.4 83.5 83.9 84.4 88.7|78.4

Our Method
Merger* 72.2 68.8 72.7 72.8 75.8 76.6 77.7 79.2 80.4 80.8 82.4 82.6 84.0 83.9 88.6|78.6
SteMerger 72.7 71.8 75.1 74.2 77.6 77.2 80.0 80.1 81.0 82.2 83.3 83.5 84.7 84.7 88.9|79.8

5.2 BASELINES

To evaluate the generality and effectiveness of our approach, we conduct experiments using the
strong reasoning LLM MetaMath (Yu et al. [2024)), which serves as the backbone architectures
for all baseline methods except QAlign. We compare our method against several state-of-the-
art baselines for multilingual reasoning: (1) MultiReason (Zhu et al. 2024): A method that en-
hances reasoning consistency across languages via question alignment and rationale generation. (2)
QAlign (Zhu et al., [2024): A framework that aligns questions across languages through fine-tuned
translation-based contrastive learning. (3) LangBridge (Yoon et al.,[2024): A cross-lingual transfer
technique that bridges non-English inputs to an English-centric reasoning space. (4) Translate-
En (Shi et al., |2023): A simple but effective approach that translates non-English inputs to English
and uses an English reasoning model. (5) MindMerger (Huang et al.|2024): A multilingual method
that merges task representations across languages to promote cross-lingual reasoning alignment.

5.3 IMPLEMENTATION DETAILS

During the initialization stage of model merging, we follow the MindMerger approach and make
use of the translation training data released by the authors. In the preference optimization stage,
no additional data are introduced; instead, the preference training samples are constructed from the
available training data as described in the methodology section. For a fair comparison with prior
work (Yoon et al., [2024; |[Huang et al., 2024), we adopt the encoder of mT5-xI (Xue et al.| [2021)
as the multilingual backbone in our methods, and employ LLaMA 2-7B (Touvron et al.| [2023)) as
the large language model across all experiments. The final model is selected based on the averaged
performance of all languages on the dev set. We perform grid search over the balance training
parameter o and learning rate from [0.1, 0.2] and [1e-3, le-4, 2e-5]. We conduct each experiment 3
times with different random seeds and report the average results of 3 run experiments |’} Given the
availability of translated training data, we choose a mid-resource source language (e.g., Chinese) for
coefficient optimization to balance generalization.

5.4 MAIN RESULTS

(1) SteMerger consistently outperforms all baselines across diverse reasoning tasks. We evalu-
ate our proposed SteMerger model on three reasoning benchmarks spanning arithmetic (MGSM),
commonsense (X-CSQA), and natural language inference (XNLI). As shown in Table@, TableE], and
Table 4 SteMerger achieves consistent performance gains across all tasks, demonstrating strong
generalization. The performance gains on the X-CSQA are relatively limited. We guess that the
limited gains stem from their discrete choice-format outputs, which provide weak preference sig-
nals and hinder effective preference optimization.

(2) SteMerger surpasses strong baselines under identical training and decoding conditions.
Compared to existing strong multilingual reasoning baselines such as MultiReason and Mind-

"We used the checkpoints given by MindMerger (Huang et al.,[2024) as the initial Model Merger.
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Merger, our method achieves superior performance under identical conditions (same prompts and
training data). Our approach can be used as a plug-in on top of standard decoding strategies, yielding
average gains of +1.3%, +0.2%, and +1.5% over the best baseline on the three tasks, respectively.

(3) SteMerger generalizes effectively to both low-resource and high-resource languages. No-
tably, our method consistently improves performance across all languages. As shown in Table [2]
compared to the initial merger model, SteMerger achieves an average gain of +0.6% on low-
resource languages and +1.4% on high-resource ones. In particular, we observe substantial im-
provements on Thai (+1.6%) and French (+1.7%), demonstrating the model to preserve and enhance
task-specific reasoning across languages with varying resource levels.

6 ANALYSIS AND DISCUSSION

To better understand SteMerger and explore how SteMerger influences the multilingual reasoning,
we conduct analyses on several questions. Results show SteMerger achieves performance improve-
ments across different languages and improves the representation merging coefficients.

(Q1) How SteMerger influences merging representation consistency?

We compute the cosine similarity between the target
language and English in the merged representation
space. As shown in Figure ] compared to the ini-
tial merger, SteMerger consistently improves cross-
lingual alignment in both low-resource and high-
resource languages. To further assess the impact
of representation consistency on reasoning perfor-

18. 189 oy Merger
17.5 SteMerger

15.0 137243

Cos Similarity

mance, we calculate the Pearson correlation between 5o 50 =2
cosine similarity and task accuracy on MGSM. The i_’
correlation coefficient is » = 0.8045 with p = LRL HRL ALL

0.0050, indicating a statistically significant positive
relationship between representation consistency and Figure 4. Comparing the representation sim-
reasoning accuracy. The results demonstrate the ef- ilarity between English and target languages.
fectiveness of SteMerger for multilingual reasoning.

(Q2) How SteMerger influences multilingual prediction answer consistency?

Another advantage of SteMerger is the
improvement it brings in the consistency Vanilla Merger
of predicted answers across multilingual
queries. This refers to a higher degree
of agreement in responses to the same
question posed in different languages. As
shown in Figure[5} SteMerger outperforms

SteMerger (Ours)

the vanilla merger in terms of cross-lingual H
answer consistency, demonstrating greater E s
stability across languages. This effect is s [ sen 300

S & & g P A o & o @

particularly pronounced in typologically
distant languages such as Bengali, Thai, 2 w0 o % 100
and Swahili, where inconsistent reasoning

is more common. These results highlight Figure 5. Comparing the prediction consistency of dif-
the effectiveness of SteMerger in transfer- ferent models. Darker blue denotes higher level of pre-

ring reasoning capabilities from English to ~diction consistency.
other languages, and strengthen the model
to handle multilingual queries in a consistent and reliable manner.

(Q3) What is the essential component of SteMerger?

We conduct an ablation study, as shown in Table@ First, we assess the impact of iterative preference
optimization. The variant w/o Iteration applies preference learning only once to the initial Merger.
The performance gap between SteMerger and w/o Iteration highlights the benefits of incorporating
additional preference signals across multiple rounds, confirming the advantage of iterative refine-
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Table 5. Ablation results on MGSM, where w/o iteration denotes remove the multiple rounds and
inference and w/ MultiSource denotes using multiple source training data.

MGSM | Bn Th Sw | Ja Zh De Fr Ru Es En |Lrl Hrl. Avg

SteMerger 520 545 563|535 559 60.0 60.5 613 62.8 68.0|543 60.3 585
w/o Iteration 524 523 55.6|532 53.6 60.8 60.0 62.0 63.1 66.8 |53.4 599 58.0
w/o NLL Loss | 50.4 52.8 56.8 |50.8 54.0 588 59.2 62.8 62.0 656|533 59.1 573
w/ MultiSource | 544 532 59.2 1520 53.6 59.6 61.6 628 62.8 66.8 556 599 58.6

ment. Second, w/o NLL Loss demonstrates greater effectiveness than relying solely on preference
optimization loss, as it enables the model to learn from non-preferred examples through likelihood-
based supervision. Finally, the w/ MultiSource variant incorporates preference data from multiple
source languages (e.g., Chinese, German, Japanese) during training. Compared to SteMerger trained
on a single source language (e.g., Chinese), this configuration improves performance on some tar-
get languages while degrading it on others. We hypothesize that although incorporating diverse
sources enhances generalization, it may also introduce increased parameter interference, which can
negatively affect model consistency and stability.

(Q4) Which languages are most effective for SteMerger in multilingual reasoning?

We evaluate the performance of SteMerger using different source languages on MGSM, testing
across ten languages that include both low-resource and high-resource cases. In the left and middle
subplots of Figure [] Bengali (bn) and English (en) achieve the highest average accuracy on low-
resource and high-resource languages, respectively. This suggests that while SteMerger enhances
the coordination between the multilingual model and the reasoning LLM, its effectiveness is still
influenced by inherent biases present in the training data. Nonetheless, as shown in the right subplot
of Figure[6] all variants outperform the initial merger baseline (57.4%) reported in Table[2} regardless
of the training language. This demonstrates that the proposed coefficient optimization provides
robust improvements, even when supervision is derived from a single language.

LRL HRL ALL

58.75

58.50

58.25

58.00

Accuracy

57.75

: N TE

R AR N RN A R R A R A N

Figure 6. Results of SteMerger trained on data in different languages.

7 CONCLUSION

This work addresses a fundamental challenge in multilingual reasoning, how to effectively coordi-
nate the strengths of multilingual and reasoning models through model merging. Our analysis re-
veals that static, uniform merging strategies can introduce a trade-off: while improving performance
on low-resource languages, they often degrade reasoning in high-resource languages due to subopti-
mal representation coordination. To address this, we propose SteMerger, a lightweight, preference-
driven framework that iteratively steers the merged model toward balanced multilingual reasoning
via dynamic adjustment of representation merging coefficients. Experiments on three multilingual
reasoning benchmarks demonstrate consistent gains across both high-resource and low-resource lan-
guages. Beyond performance, we further uncover a strong correlation between answer consistency
and representation alignment, providing empirical insight into the mechanisms underlying multilin-
gual generalization. Additionally, our findings suggest that dynamic input-aware merging strategies
can serve as a promising direction for unifying multiple capabilities in large models.
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A APPENDIX

THE USE OF LLMS

In this work, large language models (LLMs) were used solely during the final stages of the writ-
ing process, specifically for tasks such as proofreading and improving linguistic clarity. Their use
was limited to enhancing the readability, fluency, and grammatical correctness of the manuscript,
ensuring the effective communication of our ideas. Crucially, LLMs were not involved in any core
aspects of the research itself, including the formulation of methodology, experimental design, or
result interpretation. We take full responsibility for the content presented in this paper.
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