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ABSTRACT

Zero-shot anomaly detection (ZSAD) often leverages pretrained vision or vision-
language models, but many existing methods use prompt learning or complex
modeling to fit the data distribution, resulting in high training or inference cost
and limited cross-domain stability. To address these limitations, we propose
Memory-Retrieval Anomaly Detection method (MRAD), a unified framework that
replaces parametric fitting with a direct memory retrieval. The train-free base
model, MRAD-TF, freezes the CLIP image encoder and constructs a two-level
memory bank (image-level and pixel-level) from auxiliary data, where feature-
label pairs are explicitly stored as keys and values. During inference, anomaly
scores are obtained directly by similarity retrieval over the memory bank. Based
on the MRAD-TF, we further propose two lightweight variants as enhancements:
(i) MRAD-FT fine-tunes the retrieval metric with two linear layers to enhance
the discriminability between normal and anomaly; (i) MRAD-CLIP injects the
normal and anomalous region priors from the MRAD-FT as dynamic biases into
CLIP’s learnable text prompts, strengthening generalization to unseen categories.
Across 16 industrial and medical datasets, the MRAD framework consistently
demonstrates superior performance in anomaly classification and segmentation,
under both train-free and training-based settings. Our work shows that fully lever-
aging the empirical distribution of raw data, rather than relying only on model
fitting, can achieve stronger anomaly detection performance. The code will be
publicly released at https://github.com/CROVO1026/MRAD.

1 INTRODUCTION

Anomaly detection (AD) seeks to identify regions or samples that deviate substantially from normal
patterns (Pang et al., 2021} Ruff et al.,|2021)), with broad impact in industrial inspection (Bergmann
et al.} 2019;|2020; |Chen et al.,|2024a;|2025a; Qu et al.| [2023)) and medical imaging (Qin et al., 2022;
Fang et al 2025b). Labeled data in the target domain is often scarce or unavailable, motivating
interest in ZSAD (Zhou et al.,[2024} Chen et al.,[2025b). The key challenge is to bridge the semantic
gap between generic pretrained features and domain-specific anomaly patterns in the absence of
target-domain supervision, while preserving both efficiency and accuracy (Fang et al.| [2025a).

Vision-language pretrained models (VLMs), such as CLIP (Radford et al., |2021)), learn power-
ful cross-modal representations via contrastive training on large-scale image-text pairs, enabling
new possibilities for ZSAD. CLIP-based ZSAD approaches fall into two paradigms. Prompt-
ensemble (Guo et al., [2023b; [Li et al., [2022)) methods employ hand-crafted templates (e.g., “nor-
mal object,” “defective object”) to match visual features without training, as in WinCLIP (Jeong
et al.| 2023) and CLIP-AD (Chen et al) 2024b). However, their generalization is constrained by
prompt set size/diversity and domain expertise, and they often struggle in complex scenes. Prompt-
optimization (Guo et al.,|2023a) methods replace or augment text prompts with learnable vectors
for domain adaptation. For instance, AnomalyCLIP (Zhou et al., 2024)) introduces object-agnostic
prompts and a diagonal prominent attention map (DPAM) to strengthen local anomaly detection;
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Figure 1: Most existing ZSAD methods parameterize and fit p(y | x) solely via a trainable model,
which may cause information loss. Our MRAD is to directly access the empirical training distribu-
tion by retrieving from a feature-label memory bank. The dashed line denotes the inference process.

AdaCLIP (Cao et al., 2024) and FAPrompt (Zhu et al.,|2025) combine static and dynamic prompts
to enhance cross-domain generalization.

While recent works make great progress, several important limitations persist: (1) Prompt learning,
feature engineering, and vision-branch fine-tuning increase architectural complexity, which weakens
generalization and raises computation cost. (2) Relying solely on auxiliary learners (e.g., prompt
learners or MLPs) to fit the conditional distribution p(y | x) may result in information loss. (3)
dynamic prompt composition is sensitive to the source of “dynamic” information, which materially
affects pixel-level segmentation and vision-text alignment.

Our recent analysis across datasets shows that similarity to sets of normal and abnormal features re-
liably reflects the degree of normality while preserving subtle intrinsic variations (see section[3.1.T)).
Motivated by this observation, we propose a novel ZSAD framework MRAD, which replaces para-
metric fitting with a direct feature-label retrieval paradigm as shown in Figure [I] Specifically, we
construct a two-level memory bank that explicitly stores feature-label pairs as keys and values. Dur-
ing inference, anomaly scores are obtained via similarity retrieval, thereby reducing training cost,
overfitting, and information loss. Based on this train-free MRAD model (MRAD-TF), we propose
two lightweight enhancements: (i) MRAD-FT, which only adds two linear layers to fine-tune the
retrieval metric, improves both classification and segmentation at low training cost; (ii) MRAD-
CLIP, which injects region priors from MRAD-FT into learnable CLIP text prompts as dynamic
biases, enhances localization and generalization to unseen categories. This variant improves upon
conventional dynamic prompt learning, which shows insufficient effectiveness in unseen categories.

In summary, this paper makes the following main contributions:

* We present MRAD, a simple yet effective framework for ZSAD. Built upon a two-level
memory bank, MRAD-TF achieves competitive detection performance under a training-
free setting via similarity retrieval. Furthermore, with a few trainable parameters, the fine-
tuned MRAD-FT variant can significantly enhance the discriminative ability.

e We further propose the MRAD-CLIP variant, which optimizes traditional CLIP-based
prompt learning methods by injecting normal and anomalous region priors from MRAD-
FT into learnable prompts. This guides the model to focus on anomalous regions, improves
its performance on unseen categories, and enables precise local anomaly detection.

* Trained on a single auxiliary dataset, MRAD variants outperform existing state-of-the-art
methods (e.g., AnomalyCLIP, FAPrompt) on 16 industrial and medical datasets, demon-
strating superior cross-domain generalization and robustness.

2 RELATED WORK

CLIP and Fine-tuning Adaptation. CLIP (Radford et al., |2021) aligns visual and textual rep-
resentations via contrastive learning on large-scale image-text pairs, delivering strong cross-modal
representations and zero-shot transfer, yet performance on downstream tasks still hinges on prompt
design. To improve adaptation, CoOp (Zhou et al.,[2022b) replaces prompt context words with learn-
able vectors to automatically optimize prompts and CoCoOp (Zhou et al., [2022a) adds an image-
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conditioned encoder to generate dynamic prompts for better generalization. Tip-Adapter (Zhang
et al.| [2022)) caches and fuses features to adapt quickly without updating the backbone, improving
few-shot performance. Building on CLIP, many ZSAD methods adopt CoOp-style prompt learn-
ing, which partly reduces reliance on manual prompt engineering. However, challenges persist in
cross-domain generalization and in precisely modeling normal/abnormal semantics, especially at
the pixel level. Our core idea is closer in spirit to Tip-Adapter, caching raw features and making
retrieval-based decisions, but ZSAD is open-set rather than closed-set classification, which makes it
challenging to build and maintain a cache that covers both normal and anomalous distributions.

Zero-shot Anomaly Detection. ZSAD can leverage large vision-language models to enable cross-
category, supervision-free detection, typically aligning image features with normal/abnormal se-
mantics using manual or learnable prompts (Gu et al) 2024; |Qu et al., 2024). Early works such
as WinCLIP (Jeong et al., 2023), APRIL-GAN (Chen et al., 2023), and CLIP-AD (Chen et al.,
2024b) rely on hand-crafted prompt templates, limiting generalization. To enhance anomaly aware-
ness, methods like AnomalyCLIP (Zhou et al. 2024) and AdaCLIP (Cao et al., |2024) introduce
learnable context tokens to mitigate cross-domain semantic bias and improve domain-specific adap-
tation; FAPrompt (Zhu et all [2025) further refines dynamic prompt design while retaining a sim-
ilar training/inference paradigm. More recent methods, such as AA-CLIP (Ma et al., [2025) with
anomaly-aware textual anchors and Bayes-PFL (Qu et al., 2025) with bayesian prompt modeling
plus residual cross-model attention, pursue broader prompt-space coverage and finer feature align-
ment. Despite these advances, most methods still only fit the data-label distribution with a single
newly trained component, which will lead to information loss and reduced generalization.

3 MRAD: MEMORY-RETRIEVAL ANOMALY DETECTION

3.1 OVERVIEW
3.1.1 EXPLANATION OF OUR MOTIVATION

Train-Free: NgNy | AgNy | AgAx | NgAg Fine-Tune: NgNy | AgNi | AgAx | NgAx
\gNi-TF

NoNe-TF A AQATF NeAKTF NoNe-FT ANiFT AACFT NoAFT

Mean similarity score
Mean similarity score

MVTec BTAD MPDD Isic MVTec BTAD MPDD Isic
(a)

Figure 2: Mean similarity scores for different query-key relations (queries from four datasets; keys
and values from VisA). (a) Train-free setting: the consistent ordering NyNj, > A /N and AjAy >
NgyAj shows that similarity to normal/abnormal keys provides stable discriminative signals. (b)
Fine-tune setting: a lightweight fine-tuning further enlarges the margin between A;A; and NjAy,
demonstrating that fine-tuning improves separability while preserving the same ordering.

Based on the similarity distributions of a frozen CLIP image encoder, we conduct a cross-dataset
study by taking patch features from dataset-a as queries and patch features from dataset-b as keys.
Let K be the set of anomalous and normal keys; let V' be a one-hot label matrix aligned with the
keys. For a query feature ¢, we define its retrieval-based anomaly and normal similarity scores as

Sanom(q) = {softmax(qKT/T) V} , (D
Snorm(Q) = [SOftmaX(qKT/T) V:| =1— Sanom (Q) 2

where 7 is the temperature, [-], selects the “anomalous” channel. In words, Sanom(g) is the softmax
similarity score that ¢ assigns to anomalous keys, while s, (g) is assigned to normal keys. Then
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Figure 3: Overall architecture of the proposed MRAD framework. (a) MRAD-TF/FT: query fea-
tures from a frozen CLIP image encoder are matched to a two-level feature-label memory bank;
MRAD-TF uses direct similarity retrieval, while MRAD-FT adds linear layers into cross-atten mod-
ule. (b) MRAD-CLIP: priors from MRAD-FT are injected as dynamic biases into learnable text
prompts, enhancing cross-modal alignment and anomaly localization.

let Q2 4 and 2, denote the index sets of anomalous and normal queries, we aggregate four dataset-
level statistics as follows:

Aqu = ﬁ Z 5anom(Qu)7 Nqu = |971N| Z Sanom(Qu)a 3
u€EN A ueNN

Aqu = ﬁ Z Snorm(Qu) =1- Aqu7 NNy = %m Z Snorm(Qu) =1- Nqu- “4)
u€N A uENN

Here, for example, N,Ay is precisely the mean anomaly similarity score (Sanom(g¢)) of all normal
queries. Across datasets we consistently observe NNy, > A Ny and A;Ap > Ny A, (Figure[Ja)),
indicating that similarity score Sanom(¢) is a stable anomaly discriminative signal. Motivated by this
observation, we replace parametric fitting with similarity retrieval, as adopted in MRAD. Further-
more, as described in section we introduce a lightweight fine-tuning strategy to further enlarge
the A;A,—Ny Ay, gap. (Figure[2[b)). More details see Appendix [C.1]

3.1.2 APPROACH OVERVIEW

As shown in Figure [3] given an auxiliary dataset, MRAD-TF freezes the CLIP image encoder to
extract class and patch tokens from the auxiliary dataset, building a two-level feature-label memory
bank. During inference, a query image retrieves against this memory to produce an image-level
anomaly score and a pixel-level anomaly map. To further improve discriminability with little cost,
MRAD-FT adds two linear layers into cross-atten module to fine-tune the retrieval metric while
keeping the backbone frozen. Based on MRAD-FT, we propose MRAD-CLIP, which injects re-
gion priors into learnable CLIP prompts, improving generalization and anomaly localization beyond
conventional prompt-learning methods. In summary, this retrieval-based access to the original data
distribution highlights the strong potential of such paradigms for robust anomaly detection.

3.2 MRAD: FROM TRAIN-FREE TO FINE-TUNE
3.2.1 FEATURE-LABEL MEMORY BANK

Observing that retrieval against normal/abnormal features is strongly discriminative, we replace
trainable explicit classifiers with a two-level feature—label memory bank. We split the frozen CLIP
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image encoder into a global branch ¢.js (emitting the class token) and a local branch ¢y, (V-V
attention, emitting patch tokens), which share the same pretrained weights. For the i-th image I;,
the global feature and the u-th patch feature are

kS = Gas(li) €RY, fi = ¢{W(I;) € RY, )

where features are {2-normalized for stable retrieval. Given a binary mask label, we downsample it
to the patch grid of ¢, and use M; ,, to denote the label at the u-th patch.

For an anomalous image, we obtain two region prototypes by averaging patch features inside and
outside the annotated abnormal region, respectively. We denote these patch-level prototypes as
pEe™ (only patches with Mi,u = 1) and p;"°"™ (only patches with Mi,u = 0). For a normal-labeled
image, we only compute the normal prototype u;°™™ (equivalently, M; = 0). Let enorm = [1,0]"
and eanom = [0, 1]T denote one-hot labels. The memory bank thus has two levels:

(1) an image-level memory that stores each global feature kfls with its normal/abnormal label e,,o;m
and €anom;

(ii) a patch-level memory that stores the region prototypes p;*°™ and p2"°™ together with their
corresponding labels e,,0:m and eanom-

Finally, stacking keys and values yields the matrix form

Kas € RYX9 0 Vg € RM"2, - Kpoy € RV XY Vo € RN, 6)
where N, is the number of image-level entries and N, > N, is the number of patch-level entries.
3.2.2 MRAD-TF: TRAIN-FREE BASE MODEL

For a query image I, we obtain global and patch queries Qcis, Qpat = ¢(I) € RY R“*<. The
retrieval-based detection process in cross-atten module is defined as:

Yc?s/a — [SoftmaX(chch—ll—s/T) Vcls} Ja’ Yos € ]R1><2’ )
}/;Zéa = [softmaX(QpatK;at/T> Vpat] n/a, }/;eg S RUXQ- (8)

where [-],,/, selects the normal/anomaly channel. Here Y. represents segmentation logits and

denotes the per-patch normal/anomalous score. Note that Y ¢, corresponds to the anomaly similarity

SCOre Sanom(¢) introduced in section For pixel-level segmentation, Y, is upsampled to form
the anomaly map M. For image-level classification, the final anomaly score is computed as:
S(I) = Y%, + TopKMean(M), 9)

We define TopKMean (M) as the average of the top-k largest values in the upsampled anomaly map
M, which emphasizes high-confidence anomalous regions while suppressing background noise.

3.2.3 MRAD-FT: LIGHTWEIGHT FINE-TUNING

As shown in Figure 2] under the train-free setting, the discriminative margins between normal and
abnormal similarities are limited. We therefore apply a lightweight fine-tuning that calibrates the re-
trieval metric to better align normal and abnormal semantics. As a result, the dataset-level statistics
(e.g., AgA; — NgyAy) exhibit larger separations, leading to more reliable anomaly decisions. Specif-
ically, for query-key pairs, we insert two linear mappings W,, W, € R4*<, replacing the QK ' in
section with (QW,)(KW},) . The fine-tuned retrieval process is defined as:

n/a CSW cls KCSW CS—r
il = [softmax((@1 = )(T W) +Mp<st,de>) Vas| (10)
n/a
a W se K a’ W se, T
Y;Zg/a = [softmax((Qp A g)(r pat Wi seg) +MP(Qpat,Kpat)) Vpat (11
n/a
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To stabilize training, we apply a similarity dropout operator M, (-, -) that masks the top-p% highest
similarities in the QK T matrix for each query, setting their logits to —oo during training (retain-
ing all matches during inference). This prevents trivial self-matching in single-dataset settings and
encourages robust discrimination on less similar features. Given the classification label y and seg-
mentation mask M, the objective function combines classification and segmentation losses:

L= »Ccls + ‘Cseg = BCE(Y::lsa y) + Dice(}/;ega M) + FOC&l(Yseg» M)7 (12)

where BCE(+, -) denotes a binary cross-entropy loss, Dice(+, -) denotes a dice loss (Li et al.,[2019),
and Focal(-, -) denotes a focal loss (Lin et al.| [2017).

3.3 MRAD-CLIP: DYNAMIC PROMPT-LEARNING EXTENSION

To leverage language priors while keeping the vision branch frozen, we augment the CLIP prompt
with learnable context tokens and inject image-specific priors from MRAD-FT.

Static, object-agnostic prompts. We prepend E learnable context tokens to the textual templates
“good object” and “damaged object” to form the class-agnostic prompts:

P" = [V"][V3'] - - - [V&][good object],
P = [V*[V4'] - - - [V§][damaged object].
Prior-guided dynamic bias. Given a query image, we threshold the anomaly map from MRAD-FT

to separate anomalous and normal regions, and average the patch features in each region to obtain
prototypes. These prototypes are projected through lightweight linear layers into bias vectors b™/¢,

13)

which are then added to the E context tokens to form the image-specific dynamic prompts ng/r? .
Py = V" 0" V5 +0"] - -+ [Vg +b"][good object],

14
Piy, = [V 0] [Va' +b] - - - [V +b][damaged object], (14)

Prompt-conditioned cosine classifier. Given the CLIP text encoder T'(-) (following the same set-
ting as AnomalyCLIP) and ¢5 normalization Norm(-), we obtain the normalized text embeddings
thorm = Norm(T(ngn)) and tanom = Norm(T(Pc‘fyn)) from the CLIP text encoder. Then we use
the prompt-conditioned cosine classifier to predict:

1
Y;Zéa = SOftmaX(T [ Cos(tnorm; Qpat)» Cos(tanom7 Qpat) }) € RuX27 (15)

where cos(t, Qpat) returns the vector of cosine similarities between ¢ and all patch features. The
refined anomaly map is then obtained by upsampling Y, to the original image resolution and the
image-level anomaly score follows Equation [0 Only the text-side parameters are trained while the
vision encoder and the MRAD memories remain frozen. We use the same losses as in Equation
for classification and segmentation, resulting in a prompt-conditioned refinement that improves local
alignment and reduces background false positives with negligible extra parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the ZSAD performance on 16 public datasets, covering both industrial
and medical domains. In the industrial domain, we adopt eight widely used datasets: MVTec-
AD (Bergmann et al., 2019), VisA (Zou et al., 2022), BTAD (Mishra et al.| [2021)), MPDD (Jezek:
et al.|, 2021), SDD (Jezek et all [2021), KSDD2 (Bozi¢ et all [2021), DAGM (Wieler & Hahn,
2007), and DTD-Synthetic (Aota et al.| [2023). In the medical domain, we include eight datasets:
HeadCT (Salehi et al.l 2021), BrainMRI (Kanade & Gumastel, |2015), Br35H (Hamada., 2020),
CVC-ColonDB (Tajbakhsh et al., 2015)), CVC-ClinicDB (Bernal et al., |2015), Endo (Hicks et al.,
2021)), Kvasir (Jha et al.}[2019), and ISIC (Codella et al., 2018)). Following the ZSAD setting, we use
a single industrial dataset as the auxiliary training source and directly test on the remaining industrial
and all medical datasets. By default, VisA is adopted as the auxiliary dataset to build the memory
bank, since its categories are disjoint from the others; when evaluating VisA itself, we instead use
MVTec-AD as the auxiliary dataset. More details see Appendix B}
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Table 1: ZSAD results on 16 datasets. Top: pixel-level (P-AUROC% / PRO%). Bottom: image-level
(I-AUROC% / 1-AP%). Higher is better. Red and Blue denote the best and second-best training-
based results per dataset/metric; highlights better results under train-free setting.

(a) Pixel-level ZSAD (P-AUROC% / PRO%).

Method — | TRAIN-FREE METHODS TRAINING-BASED METHODS
Dataset |, WinCLIP MRAD-TF | AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP
(CVPR’23) (Ours) (ECCV’24) (ICLR’24) (ICCV’25) (Ours) (Ours)
Industrial
MVTec-AD (85.1,64.6) ( ,63.5) | (86.8,33.8) (91.1,81.4) (90.6,83.3) (92.2,85.4) (93.0,86.8)
VisA (79.6,56.8) ( s )| (95.1,71.3)  (95.5,87.0) (95.9,87.5) (95.9,89.1) (95.9,88.0)
BTAD (71.4,32.8) ( s )| (87.7,17.1)  (93.3,69.3) (91.7,69.0) (94.7,74.3) (95.4,72.8)
MPDD (71.2,48.9) ( s ) | (95.2,10.8) (96.2,79.7)  (96.7,75.9) (97.4,90.6) (97.9,90.6)
DTD-Synthetic | (78.4,51.0) ( s ) | (94.1,249) (97.6,88.3) (97.7,89.4) (97.2,90.8) (98.1,89.8)
SDD (55.9,14.7) ( s ) | (79.5,4.9) (90.1,62.9)  (89.3,63.9) (91.0,71.2) (93.0,72.0)
KSDD2 (75.4,69.2) ( s ) | (85.8,72.9) (97.9,949) (97.4,93.2) (98.8,89.8) (98.9,95.6)
DAGM (75.5,44.4) ( s ) | (76.2,56.3)  (96.5,88.4) (95.6,89.1) (96.1,74.9) (97.4,90.3)
Medical
ISIC (83.5,55.1) ( s ) | (85.4,5.3) (88.4,78.1)  (88.9,81.2) (90.9,83.6) (91.3,83.4)
CVC-ColonDB | (64.8,28.4) ( s ) | (79.3,6.5) (81.9,71.4) (82.5,70.7) (82.8,72.9) (84.7,73.9)
CVC-ClinicDB | (70.7,32.5) ( R ) | (84.3,14.6) (85.9,69.6) (84.7,68.1) (85.9,72.2) (87.3,73.9)
Kvasir (69.8,31.0) ( s ) | (79.4,12.3)  (81.9,45.7) (82.0,43.9) (83.9,52.7) (84.3,52.7)
Endo (68.2,28.3) ( s ) | (84.0,10.5) (86.3,67.3) (86.5,67.2) (87.3,70.0) (88.3,71.6)
Average | (73.0,42.9) ( s ) | (85.6,26.2)  (91.0,75.7)  (90.7,75.6) (91.9,78.3) (92.7,80.1)
(b) Image-level ZSAD (I-AUROC% / 1-AP%).
Method — | TRAIN-FREE METHODS TRAINING-BASED METHODS
Dataset |, WinCLIP MRAD-TF | AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP
(CVPR’23) (Ours) (ECCV’24) (ICLR’24) (ICCV’25) (Ours) (Ours)
Industrial
MVTec-AD (91.8,95.1) (79.0,90.0) | (92.0,96.4)  (91.5,96.2) (91.9,95.7) (92.3,96.6) (94.0,97.4)
VisA (78.1,77.5) (75.0, ) | (83.0,84.9) (82.1,85.4) (84.5,86.8) (85.5,87.8) (85.7,88.3)
BTAD (83.3,84.1) ( s )| (91.6,92.4) (89.1,91.1) (91.2,89.1) (94.5,97.7) (92.8,94.2)
MPDD (61.5,69.2) ( s ) | (76.4,80.4)  (73.7,76.5) (76.9,85.9) (79.9,80.6) (81.8,83.4)
DTD-Synthetic | (63.8,83.5) ( s ) | (92.8,97.0) (94.5,97.7) (95.4,97.8) (94.1,97.8) (96.0,98.4)
SDD (54.8,37.7) ( X ) | (77.5,65.7)  (82.7,73.8) (83.4,75.3) (83.8,75.8) (83.9,76.2)
KSDD2 (77.5,43.9) ( s ) | (90.5,77.7)  (90.8,76.5) (94.4,86.9) (92.9,86.6) (95.1,88.9)
DAGM (58.5,59.1) ( s ) | (77.6,72.7)  (98.0,97.7) (98.0,98.1) (98.0,98.1) (98.4,98.6)
Medical
HeadCT (83.7,81.6) (69.3,73.6) | (93.4,92.2) (95.3,95.2) (96.0,96.4) (96.2,96.9) (97.1,97.6)
BrainMRI (92.0,90.7) ( s ) 1(94.9,94.2) (96.1,92.3) (95.7,95.6) (96.9,97.0) (97.0,97.4)
Br35H (80.5,82.2) ( X ) | (95.7,95.7) (97.3,96.1) (97.0,95.4) (97.7,96.5) (97.9,97.6)
Average | (75.1,73.2) ( s ) | (87.8,86.3)  (90.1,88.9) (91.3,91.2) (92.0,91.9) (92.7,92.5)

Evaluation metrics. For image-level classification tasks, we report Area Under the Receiver Oper-
ating Characteristic Curve (AUROC) and Average Precision (AP). For segmentation tasks, we adopt
pixel-level AUROC and the Per-Region Overlap (PRO) metric to assess localization performance.

Implementation details. We follow prior work and use the publicly available CLIP (ViT-L/14-336)
pretrained weights, with input resolution unified to 518 x 518. We extract both class token and patch
tokens from the last layer of the image encoder to construct the memory bank: when using MVTec-
AD as the auxiliary dataset, the memory bank contains 1725/2976 (class/patch) entries; when using
VisA, it contains 2162/3093 entries. For MRAD-CLIP, we set the learnable prompt length to 12.
We train with the Adam (Kingma & Bal 2014) optimizer, using a learning rate of 5 x 104 and
batch size of 8. MRAD-FT is trained for only 1 epoch, followed by MRAD-CLIP for 5 epochs.
During training, the vision backbone is frozen and only our lightweight modules are updated. All
experiments are conducted on a single NVIDIA RTX 3090 (24GB). We report the averaged results
across all categories of each target dataset. More details see Appendix [A.}
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Figure 4: Comparison of anomaly segmentation results between MRAD-CLIP and other methods.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative Comparison. As shown in Table[I] we report results on 16 datasets spanning indus-
trial and medical domains. MRAD-TF already surpasses prior train-free baselines (e.g., WinCLIP),
indicating that direct access to the empirical feature-label distribution is highly effective. Building on
this train-free model, the MRAD-FT further outperforms training-based methods (e.g., FAPrompt,
AnomalyCLIP) on both pixel-level and image-level metrics. Further, MRAD-CLIP attains state-
of-the-art results for ZSAD with consistent margins over the strongest prior work (including our
MRAD-FT), indicating that dynamic prompts conditioned on region priors strengthen cross-domain
generalization and sharpen localization. Taken together, these results demonstrate that our MRAD
is a strong ZSAD method, and can be easily extended in a principled manner to achieve state-of-
the-art performance, underscoring the effectiveness and flexibility of the framework. We provide
more detailed analyses of the mechanism behind MRAD’s cross-class retrieval generalization in the

Appendix [A2]and [C2]

Qualitative Comparison. In industrial datasets (diverse materials, textures, and imaging condi-
tions), MRAD-FT and MRAD-CLIP consistently rank among the top on both image-level and pixel-
level metrics. They also exhibit low across-dataset variance and minimal rank fluctuations, indicat-
ing robustness to background clutter and fine-grained defects. In medical datasets (large morpholog-
ical variability and strong domain shift), the same pattern holds: the lightweight metric calibration
and prior-guided prompting preserve decision margins and localization quality under cross-domain
transfer. Figure [ visualizes anomaly maps from both industrial and medical datasets. Qualita-
tively, the resulting heatmaps show fewer background false positives, tighter anomaly boundaries,
and smoother localization of large defective regions across domains. These observations mirror the
quantitative gains and further support the method’s stability and generalization. A comparison of
parameter counts and inference time with other methods is provided in the Appendix [C.3] More
visualization results are provided in Appendix D}

4.3 ABLATION STUDY

We conduct extensive ablation studies to examine the contributions of different components in the
MRAD framework. All results are reported on representative industrial or medical datasets. The
main findings are summarized below, while additional ablations and more details are provided in
Appendix [C.4] for completeness.

Ablation on TF/FT/CLIP. Across six industrial datasets, as shown in Figure [5] the radar plots
reveal a clear monotonic trend. MRAD-TF establishes competitive performance, while adding two
linear layers in MRAD-FT yields consistent gains on both image-level (I-AUROC/I-AP) and pixel-
level (P-AUROC/PRO) metrics. This indicates that lightweight fine-tuning effectively enhances the
discriminability of classification and segmentation. Based on this, MRAD-CLIP further improves
especially the pixel-level metrics by dynamic prompt learning with region priors, while also yielding
small but consistent gains on image-level scores. The outward expansion of the curves across all axes
confirms that each component contributes complementary benefits, delivering stable improvements
rather than dataset-specific spikes.
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Figure 5: Ablation results of different MRAD variants. Radar charts on six industrial datasets
compare image-level (I-AUROC/I-AP) and pixel-level (P-AUROC/PRO) metrics.

Table 2: Ablation on dynamic prompt biases. Results are reported as Pixel-level (AUROC, PRO)
and Image-level (AUROC, AP). The best performance in each column is highlighted in bold.

MVTec-AD VisA Kvasir HeadCT
Pixel Image Pixel Image Pixel Image

static (baseline)  (91.5,82.9) (92.0,96.3) (95.6,87.3) (854,87.9) (83.5,49.5) (96.1,97.0)
+ class token (86.2,54.9) (89.6,95.1) (95.1,86.8) (84.9,87.7) (79.0,45.2) (90.4,90.8)
+ cross-patch (92.5,85.7)  (93.0,96.9) (95.3,88.6) (85.2,88.4) (83.0,50.0) (97.4,97.6)
+ anomaly prior  (92.8,85.2) (93.6,97.3) (95.6,88.1) (85.6,88.2) (83.7,51.8) (96.5,96.7)
+ dual prior (93.0,86.8) (94.0,97.4) (95.9,88.0) (85.7,88.3) (84.3,52.7) (97.1,97.6)

bias (6™ %)

Ablation on dynamic prompt biases. We change only the source of the additive bias in MRAD-
CLIP’s dynamic prompts and keep all other components fixed. Table [2| reports pixel-level (AU-
ROC/PRO) and image-level (AUROC/AP) results on four datasets. The static variant (no bias;
equivalent to AnomalyCLIP) serves as the baseline. Bias from the class token (similar to CoCoOp)
degrades segmentation and cross-domain robustness, indicating that global features alone are insuffi-
cient. Introducing cross-patch attention (two learnable queries attending to patch features) improves
ZSAD performance, suggesting that conditioning prompts on region-level context helps general-
ization to unseen categories. Guided by this observation, conditioning on the MRAD-FT anomaly
prior yields consistent image-level and pixel-level gains. Furthermore, injecting both normal and
anomalous priors (dual prior) achieves nearly the best and most robust performance across datasets.
These results indicate that local region-aware biases with explicit priors are crucial for ZSAD, while
global-only features tend to weaken performance. More details see Appendix [C.4]

Memory size ablation. We ablate the patch- 435 Ablation: Effect of Memory Size on Pixel AUROC (MVTec AD)
level memory by random subsampling to n € |
{Full, 2000, 1000, 500, 100}. For each n, we av- 5]
erage across multiple random subsamplings and & s ’\‘\\
report pixel AUROC on MVTec-AD for MRAD- g =5/

FT and MRAD-CLIP (Figure @ As n decreases, = oo
both methods show a smooth but minor decline, Z o5
due to the reduced prototype coverage in the mem- o MRAD-FT (Fixel AURGD)
ory bank. However, the drop is only within a few ~] —=— MRAD-CLIP (Pixel AUROC)
tenths, demonstrating the strong robustness of the Fall 2000
MRAD framework. Relatively, MRAD-CLIP is

more robust even under small memory sizes, ex- Figure 6: Metrics about the ablation of Mem-
hibiting smaller drops and lower variance, primar- ory size.

ily because it does not rely on precise dynamic bi-

ases from prompts and can already benefit from

coarse regional priors. In practice, we believe the diversity-aware memory even with a small-size
memory (n > 100) can track near-full performance under typical budgets.

1000 500 100
Patch-Memory Size (n)

5 CONCLUSION

In this paper, we explore an alternative to mainstream parametric fitting for anomaly detection by
directly exploiting the empirical distribution of auxiliary data. Building on this idea, we propose
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MRAD as a unified memory-driven retrieval framework. The base model, MRAD-TF, constructs
a two-level memory bank on top of a frozen vision backbone and solves both classification and
segmentation via similarity retrieval. Further, we develop two lightweight variants, MRAD-FT and
MRAD-CLIP. Experiments across diverse industrial and medical benchmarks show that all variants
exhibit strong zero-shot capability and robust performance under cross-domain evaluation. We be-
lieve this paradigm provides a simple and robust baseline for ZSAD, and it lays the foundation for
scaling to larger datasets and online or incremental settings.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility and completeness, we include an Appendix composed of five sections.
In Appendix [A] we provide implementation details of MRAD, including model components, train-
ing/inference recipes, full hyperparameter settings, with additional mechanism explanations and
retrieval visualizations. Appendix [B]describes the key statistics of datasets used in our experiments
and evaluation protocols under the ZSAD setting. Appendix [C]reports additional experimental re-
sults, including motivation studies, ablation analyses, as well as evaluations under a broader range
of experimental settings. Appendix [D] presents extended qualitative analyses and visualizations of
our method. In addition, the usage details of LLMs are provided in Appendix [E]

REFERENCES

Toshimichi Aota, Lloyd Teh Tzer Tong, and Takayuki Okatani. Zero-shot versus many-shot: Un-
supervised texture anomaly detection. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 5564-5572, 2023.

Jinan Bao, Hanshi Sun, Hanqgiu Deng, Yinsheng He, Zhaoxiang Zhang, and Xingyu Li. Bmad:
Benchmarks for medical anomaly detection, 2024. URL https://arxiv.org/abs/2306.
11876.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad—a comprehen-
sive real-world dataset for unsupervised anomaly detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9592-9600, 2019.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students:
Student-teacher anomaly detection with discriminative latent embeddings. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4183—4192, 2020.

Jorge Bernal, F Javier Sdnchez, Gloria Ferndndez-Esparrach, Debora Gil, Cristina Rodriguez, and
Fernando Vilarifio. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation
vs. saliency maps from physicians. Computerized medical imaging and graphics, 43:99-111,
2015.

Jakob Bozi¢, Domen Tabernik, and Danijel Skocaj. Mixed supervision for surface-defect detection:
From weakly to fully supervised learning. Computers in Industry, 129:103459, 2021.

Yunkang Cao, Jiangning Zhang, Luca Frittoli, Yuqi Cheng, Weiming Shen, and Giacomo Borac-
chi. Adaclip: Adapting clip with hybrid learnable prompts for zero-shot anomaly detection. In
European Conference on Computer Vision, pp. 55-72. Springer, 2024.

Qiyu Chen, Huiyuan Luo, Chengkan Lv, and Zhengtao Zhang. A unified anomaly synthesis strategy

with gradient ascent for industrial anomaly detection and localization. In European Conference
on Computer Vision, pp. 37-54. Springer, 2024a.

10


https://arxiv.org/abs/2306.11876
https://arxiv.org/abs/2306.11876

Published as a conference paper at ICLR 2026

Qiyu Chen, Huiyuan Luo, Haiming Yao, Wei Luo, Zhen Qu, Chengkan Lv, and Zhengtao Zhang.
Center-aware residual anomaly synthesis for multiclass industrial anomaly detection. IEEE Trans-
actions on Industrial Informatics, 21(9):7276-7286, 2025a.

Qiyu Chen, Zhen Qu, Wei Luo, Haiming Yao, Yunkang Cao, Yuxin Jiang, Yinan Duan, Huiyuan
Luo, Chengkan Lv, and Zhengtao Zhang. Cops: Conditional prompt synthesis for zero-shot
anomaly detection. arXiv preprint arXiv:2508.03447, 2025b.

Xuhai Chen, Yue Han, and Jiangning Zhang. A zero-/few-shot anomaly classification and segmen-
tation method for cvpr 2023 (vand) workshop challenge tracks 1 &2. Ist Place on Zero-shot AD
and 4th Place on Few-shot AD, 2305:17382, 2023.

Xuhai Chen, Jiangning Zhang, Guanzhong Tian, Haoyang He, Wuhao Zhang, Yabiao Wang,
Chengjie Wang, and Yong Liu. Clip-ad: A language-guided staged dual-path model for zero-
shot anomaly detection. In International Joint Conference on Artificial Intelligence, pp. 17-33.
Springer, 2024b.

Noel CF Codella, David Gutman, M Emre Celebi, Brian Helba, Michael A Marchetti, Stephen W
Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, et al. Skin lesion anal-
ysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical
imaging (isbi), hosted by the international skin imaging collaboration (isic). In 2018 IEEE 15th
international symposium on biomedical imaging (ISBI 2018), pp. 168—172. IEEE, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Qingqing Fang, Wenxi Lv, and Qinliang Su. Af-clip: Zero-shot anomaly detection via anomaly-
focused clip adaptation. arXiv preprint arXiv:2507.19949, 2025a.

Qingqing Fang, Qinliang Su, Wenxi Lv, Wenchao Xu, and Jianxing Yu. Boosting fine-grained visual
anomaly detection with coarse-knowledge-aware adversarial learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 16532-16540, 2025b.

Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Hao Li, Ming Tang, and Jingiao Wang.
Filo: Zero-shot anomaly detection by fine-grained description and high-quality localization. In
Proceedings of the 32nd ACM International Conference on Multimedia, pp. 2041-2049, 2024.

Zixian Guo, Bowen Dong, Zhilong Ji, Jinfeng Bai, Yiwen Guo, and Wangmeng Zuo. Texts as
images in prompt tuning for multi-label image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2808-2817, 2023a.

Ziyu Guo, Renrui Zhang, Longtian Qiu, Xianzheng Ma, Xupeng Miao, Xuming He, and Bin Cui.
Calip: Zero-shot enhancement of clip with parameter-free attention. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 746-754, 2023b.

A. Hamada. Br35h: Brain tumor detection 2020. Online.  Available:
https://www.kaggle.com/datasets/ahmedhamadaO/brain-tumor-detection, 2020.

Steven A Hicks, Debesh Jha, Vajira Thambawita, Pal Halvorsen, Hugo L. Hammer, and Michael A
Riegler. The endotect 2020 challenge: evaluation and comparison of classification, segmentation
and inference time for endoscopy. In International Conference on Pattern Recognition, pp. 263—
274. Springer, 2021.

Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash Ravichandran, and Onkar
Dabeer. Winclip: Zero-/few-shot anomaly classification and segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19606—-19616, 2023.

Stepan Jezek, Martin Jonak, Radim Burget, Pavel Dvorak, and Milos Skotak. Deep learning-based
defect detection of metal parts: evaluating current methods in complex conditions. In 2021 13th

International congress on ultra modern telecommunications and control systems and workshops
(ICUMT), pp. 66-71. IEEE, 2021.

11



Published as a conference paper at ICLR 2026

Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pal Halvorsen, Thomas De Lange, Dag Johansen,
and Héavard D Johansen. Kvasir-seg: A segmented polyp dataset. In International conference on
multimedia modeling, pp. 451-462. Springer, 2019.

Pranita Balaji Kanade and PP Gumaste. Brain tumor detection using mri images. Brain, 3(2):
146-150, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-driven
semantic segmentation. arXiv preprint arXiv:2201.03546, 2022.

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang, Fei Wu, and Jiwei Li. Dice loss for data-
imbalanced nlp tasks. arXiv preprint arXiv:1911.02855, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dolldr. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980-2988, 2017.

Wenxin Ma, Xu Zhang, Qingsong Yao, Fenghe Tang, Chenxu Wu, Yingtai Li, Rui Yan, Zihang
Jiang, and S Kevin Zhou. Aa-clip: Enhancing zero-shot anomaly detection via anomaly-aware
clip. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 4744-4754,
2025.

Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio Piciarelli, and Gian Luca Foresti. Vt-adl:
A vision transformer network for image anomaly detection and localization. In 2021 IEEE 30th
International Symposium on Industrial Electronics (ISIE), pp. 01-06. IEEE, 2021.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1-38, 2021.

Ziyuan Qin, Huahui Yi, Qicheng Lao, and Kang Li. Medical image understanding with pretrained
vision language models: A comprehensive study. arXiv preprint arXiv:2209.15517, 2022.

Zhen Qu, Xian Tao, Fei Shen, Zhengtao Zhang, and Tao Li. Investigating shift equivalence of convo-
lutional neural networks in industrial defect segmentation. IEEE Transactions on Instrumentation
and Measurement, 72:1-17, 2023.

Zhen Qu, Xian Tao, Mukesh Prasad, Fei Shen, Zhengtao Zhang, Xinyi Gong, and Guiguang Ding.
Vep-clip: A visual context prompting model for zero-shot anomaly segmentation. In European
Conference on Computer Vision, pp. 301-317. Springer, 2024.

Zhen Qu, Xian Tao, Xinyi Gong, Shichen Qu, Qiyu Chen, Zhengtao Zhang, Xingang Wang, and
Guiguang Ding. Bayesian prompt flow learning for zero-shot anomaly detection. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 30398-30408, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek,
Marius Kloft, Thomas G Dietterich, and Klaus-Robert Miiller. A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE, 109(5):756-795, 2021.

Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad H Rohban, and
Hamid R Rabiee. Multiresolution knowledge distillation for anomaly detection. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14902-14912,
2021.

Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming Liang. Automated polyp detection in
colonoscopy videos using shape and context information. IEEE transactions on medical imaging,
35(2):630-644, 2015.

12



Published as a conference paper at ICLR 2026

Matthias Wieler and Tobias Hahn. Weakly supervised learning for industrial optical inspection. In
DAGM symposium in, volume 6, pp. 11, 2007.

Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Draem-a discriminatively trained reconstruc-
tion embedding for surface anomaly detection. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8330-8339, 2021.

Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In European
conference on computer vision, pp. 493-510. Springer, 2022.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16816-16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337-2348, 2022b.

Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen. Anomalyclip: Object-agnostic
prompt learning for zero-shot anomaly detection. In International Conference on Learning Rep-
resentations, 2024.

Jiawen Zhu, Yew-Soon Ong, Chunhua Shen, and Guansong Pang. Fine-grained abnormality prompt
learning for zero-shot anomaly detection. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2025.

Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-difference
self-supervised pre-training for anomaly detection and segmentation. In European conference on
computer vision, pp. 392-408. Springer, 2022.

13



Published as a conference paper at ICLR 2026

APPENDIX

A IMPLEMENTATION DETAILS AND BASELINES

A.1 IMPLEMENTATION DETAILS

We follow prior work and use the publicly available CLIP (ViT-L/14-336) pretrained weights, with
input resolution unified to 518 x 518. We extract both class token and patch tokens from the last
layer of the image encoder to construct the memory bank: when using MVTec-AD as the auxiliary
dataset, the memory bank contains 1725/2976 (class/patch) entries; when using VisA, it contains
2162/3093 entries.

For MRAD-CLIP, we set the length of the learnable prompt to 12 and set the replacing token number
to 4 in text encoder. Training is performed with the Adam optimizer (Kingma & Ba, 2014)), using
a learning rate of 5 x 10~* and a batch size of 8. MRAD-FT is trained for 1 epoch, followed by
MRAD-CLIP for 5 epochs.

For cross-dataset evaluation, when testing on MVTec-AD, training and memory bank construction
are performed on VisA, and vice versa. Unless otherwise specified, the batch size is set to 8, and
the retrieval temperature coefficient 7 is fixed to 1. For computing image-level anomaly scores, we
use the top-k mean aggregation in Equation[9] where £ is set to 1% of the total number of pixels in
the anomaly map. In MRAD-FT, we set similarity-masking threshold pse; = 20% for segmentation
and p.1s = 5% for classification. In MRAD-CLIP, the threshold for generating anomaly priors is set
to 0.5 by default. All experiments are conducted on a single NVIDIA RTX 3090 GPU (24GB). We
report averaged results across all categories of each target dataset.

A.2 MECHANISM BEHIND CROSS-CLASS RETRIEVAL GENERALIZATION IN MRAD

We reformulate zero-shot anomaly detection (ZSAD) as a retrieval problem over a feature—label
memory, instead of compressing the entire auxiliary set (e.g., VisA) into a parametric classifier
head. All features and labels from the auxiliary dataset are preserved verbatim in the memory bank,
allowing query samples from other datasets to fully retrieve and compare against these prototypes.
Because every stored prototype participates in the final similarity computation, this design avoids
the information-loss issues inherent to collapsing a rich empirical distribution into a small set of
classifier weights.

During training, each sample is required to retrieve not only its own category but also prototype
clusters from all other categories in the memory. In other words, the query representation is always
matched against a global, multi-class memory bank. This training procedure effectively simulates
the deployment scenario where the model must perform cross-class, cross-scenario retrieval, forcing
it to learn category-agnostic anomaly patterns rather than depending on category-specific textures or
contextual correlations.

At inference time, new unseen categories simply act as new query samples. They are evaluated
against the same fixed memory, using exactly the same retrieval mechanism as during training.
Consequently, the retrieved prototypes remain aligned with the learned, category-agnostic anomaly
representation. This yields stronger robustness and more reliable generalization both across classes
and across datasets.

A.3 MORE DETAILS ABOUT MRAD MODULES

A.3.1 DETAILS ABOUT IMAGE ENCODER

In our framework, the memory bank is constructed directly from the frozen CLIP image encoder.
Specifically, we adopt the frozen Vision Transformer (ViT) (Dosovitskiy et al., [2020) backbone of
CLIP, which encodes each input image into a sequence of patch embeddings along with a class
token. Standard Q-K attention in the ViT encoder often focuses heavily on a few dominant to-
kens, which benefits global object recognition but may suppress fine-grained local semantics. For
anomaly segmentation, however, local context is critical. To mitigate this bias, we adopt a V-V at-
tention mechanism to all ViT layers inspired by prior work. By default, we employ V-V attention to
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obtain patch features for memory-bank construction, training, and inference, while the original Q-K
attention is retained to generate global features.

Concretely, unlike standard self-attention where both () and K are projected from the same input
features, V-V attention replaces them entirely with the value embeddings V. The attention thus takes
the form

_ vv’

Output = Softmax(—\/a ) V, (16)
which enforces interactions purely among value tokens and encourages each token to attend pri-
marily to its local context. This design mitigates the dominance of a single strong embedding and
suppresses bias from global object tokens. As a result, the attention map exhibits a more diagonal
structure, encouraging each token to focus primarily on its corresponding local context rather than
being distracted by distant high-activation regions.

In practice, this modification preserves local visual semantics in the feature representation, leading to
tighter anomaly boundaries and fewer background false positives. We provide only a brief overview
here and refer readers to|Zhou et al.|(2024) for the complete derivation.

A.3.2 DETAILS ABOUT TEXT ENCODER

To refine the textual space in MRAD-CLIP, we follow prior CLIP-based ZSAD works (Zhou et al.}
2024; |Cao et al. 2024} |Qu et al.| [2024) and introduce a lightweight prompt tuning strategy. The
CLIP text encoder remains frozen, and we insert a small set of randomly initialized learnable prompt
tokens starting from a lower layer and moving upward. At each Transformer block, these tokens are
concatenated with the original token sequence so that self-attention can mix them with the textual
features. After the block, the used prompts are discarded and a fresh set is initialized for the next
layer. This step-by-step design provides gradual calibration and prevents prompt drift. Throughout
training, only the prompts are updated, while the backbone weights remain fixed. This progressively
refines the textual space to better encode normal and abnormal semantics with very few trainable
parameters. The specific parameter settings follow AnomalyCLIP (Zhou et al., 2024).

A.4 BASELINES AND EXPERIMENTAL PROTOCOL

To ensure fairness, we follow a unified experimental protocol: VisA is used as the auxiliary dataset
for training by default, and evaluation is conducted on all other datasets. Baselines and reproduction
details are given as follows.

WinCLIP (Jeong et al., 2023) is the first work to employ frozen CLIP for ZSAD. The training-
free approach employs window/patch sampling and computes text-image similarity at the region
level to localize anomalies. Anomaly scores are aggregated from the dissimilarity between visual
patches and a textual description of normality. As the official implementation of WinCLIP is un-
available, we adopt the reproduced code for re-implementation under our unified protocol.

AdaCLIP (Cao et al.,2024) introduces learnable prompts for CLIP and optimizes them on auxil-
iary anomaly-detection data. It proposes static prompts (shared across images) and dynamic prompts
(generated per test image), as well as their hybrid, to adapt CLIP to ZSAD. We follow the authors’
settings where applicable, while using the official code to retrain it with our protocol.

AnomalyCLIP (Zhou et al.,[2024) learns object-agnostic text prompts that capture generic nor-
mality and abnormality, encouraging the model to focus on abnormal regions instead of category
semantics. This design improves cross-domain generalization for ZSAD. We follow the authors’
settings where applicable, while using the official code to retrain it with our protocol.

FAPrompt (Zhu et al.,|2025) targets fine-grained ZSAD by learning abnormality prompts formed
by a compound of shared normal tokens and a few learnable abnormal tokens. It further introduces
a data-dependent abnormality prior to produce dynamic learning prompts on each test image. We
follow the authors’ settings where applicable, while using the official code to retrain it with our
protocol.
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Table 3: Key statistics of the 16 industrial and medical datasets used in our study.

Domain Dataset Classes Normal Samples Anomaly Samples Data type Mask Labels
MVTec-AD 15 467 1258 object & texture v
VisA 12 962 1200 object v
BTAD 3 451 290 object & texture v

Industrial MPDD 6 176 282 object v
DTD-Synthetic 12 357 947 texture v
SDD 1 181 74 object v
KSDD2 1 894 110 object v
DAGM 10 2000 2000 texture v
HeadCT 1 100 100 brain X
BrainMRI 1 98 155 brain X
Br35H 1 1500 1500 brain X

Medical ISIC 1 0 379 skin v
CVC-ColonDB 1 0 380 colon v
CVC-ClinicDB 1 0 612 colon v
Kvasir 1 0 1000 colon v
Endo 1 0 200 colon v

B MORE DETAILS ABOUT DATASETS

B.1 DATASETS

We evaluate the ZSAD performance on 16 public datasets, covering both industrial and med-
ical domains. In the industrial domain, we adopt eight widely used benchmarks: MVTec-
AD (Bergmann et al., 2019), VisA (Zou et al., 2022), BTAD (Mishra et al., 2021), MPDD (Jezek
et al.l 2021), SDD (Jezek et al., 2021), KSDD2 (Bozic et al., 2021), DAGM (Wieler & Hahn,
2007), and DTD-Synthetic (Aota et al., 2023). In the medical domain, we include eight datasets:
HeadCT (Salehi et al., [2021)), BrainMRI (Kanade & Gumastel 2015)), Br35H (Hamada., 2020),
CVC-ColonDB (Tajbakhsh et al.l [2015]), CVC-ClinicDB (Bernal et al., |[2015), Endo (Hicks et al.,
2021), Kvasir (Jha et al., 2019), and ISIC (Codella et al., |2018). We resize all images and their
corresponding segmentation masks to 518 x 518 for consistency across datasets. For datasets that
do not provide segmentation labels or classification labels, we restrict the evaluation to pixel-level or
image-level metrics accordingly. As shown in Table|[3| it summarizes the datasets used in our study,
including 8 industrial and 8 medical benchmarks. For each dataset, we list the number of categories,
normal and anomaly samples, data type, and whether segmentation labels are provided. These
benchmarks cover diverse domains, ensuring that our evaluation spans a wide range of anomaly
detection scenarios.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXTENDED CROSS-DATASET SIMILARITY ANALYSIS

To complement Figure [2]in the main text, we extend the query-key similarity analysis from the four
datasets in the main text to all benchmarks. Following section [3.1.1] we report the four statistics
AgAy, AgNy, NgAyg, and NyNj, under the same protocol. We conduct the cross-dataset study by
taking patch features-labels from VisA as keys-values and patch features from other datasets as
queries. By definition, N, Ay, is the average anomaly-similarity Sanom(q) over all normal queries,
Ay Ay is the average anomaly-similarity over anomalous queries, and N,N/A, N}, are the corre-

sponding averages of the normal-similarity syorm(q) for normal/anomalous queries.

Figs. extend the query-key similarity study to another eight datasets. In the train-free setting
(Figure , the per-dataset means of the four relations Ny Ny, AgNj, AgAk, and NyA;, follow a
consistent ordering NgN > A Ny and AjA;, > NjAy across datasets, showing that similarity to
normal/abnormal keys provides stable discriminative signals without training. This observation is
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Figure 7: Train-Free per-dataset mean similarity scores across eight datasets.

Fine-Tune: NgNy | ANy | AgAk I NgAk

10 . NGN-FT  mmm AGN-FT  mmm AA-FT  mmm NAGFT
O o8
o
o
7]
%‘ 06
8
£
D o4
c
©
Q
=

02

0.0

KSDDZ DAGM ClinicDB ColonDB Kvasir Endo

Figure 8: Fine-Tuned per-dataset mean similarity scores across eight datasets.

consistent with the conclusions reported in the main text. After lightweight fine-tuning (MRAD-
FT; Figure[§), the same ordering is preserved while holding stronger separability. Figure [0] summa-
rizes this effect via the margins A(A) = AjAp — NyAg and A(N) = NyNj, — A, Nj;: both margins
grow substantially on every dataset, confirming that fine-tuning enlarges the gap between positive
and negative relations. The central insight of our method is to leverage the discriminative margin as
the basis for anomaly detection.
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Figure 9: Per-dataset similarity margins under Train-Free and Fine-Tuned settings.
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Figure 10: t-SNE visualization of normal and anomalous prototypes from VisA and MVTec.

C.2 T-SNE VISUALIZATION

To further illustrate the underlying mechanism of our approach, we visualize the feature space of
MRAD-TF and MRAD-FT using t-SNE on VisA and MVTec. Fig. [[0[a,b) show four types of
prototypes: VisA-Normal, VisA-Anomaly, MVTec-Normal, and MVTec-Anomaly.

In the MRAD-TF setting (Fig. [I0a), the pretrained CLIP visual encoder induces a feature space
in which normal and abnormal prototypes from different categories and datasets tend to separate
along a common direction within local mixed-class neighborhoods, even though the global struc-
ture is still strongly class-clustered and far from linearly separable by a single hyperplane. This
indicates that CLIP not only aligns multiple categories, but also encodes a weak yet consistent
“anomaly direction”: abnormal prototypes are systematically shifted relative to normal ones in the
high-dimensional space. MRAD-TF directly exploits this structure. Instead of learning an addi-
tional classifier head on the source domain, it stores normal/abnormal prototypes of all classes into
a memory bank and decides whether a query feature has moved along this anomaly direction by
cross-class similarity retrieval. Since similarities to all stored prototypes jointly contribute to the fi-
nal decision, the shared anomaly direction can be reused by target-domain anomalies: their relation
to source-domain anomaly prototypes becomes the main decision signal. As a result, even without
any fine-tuning, MRAD-TF maintains competitive ZSAD performance on MVTec.

In the MRAD-FT setting (Fig. [I0b), we further amplify this implicit anomaly direction and remove
its dependence on specific classes. During training, samples from one class are forced to retrieve
and learn against memory prototypes from all other classes, effectively simulating “class-shifted”
or “dataset-shifted” deployment inside the source domain. In parallel, a lightweight metric cali-
bration via linear Q/K projections aligns queries and memory into a shared subspace, in which the
anomaly direction becomes more coherent and salient. The t-SNE visualization shows that, after
fine-tuning, abnormal prototypes from different datasets form a tighter, nearly class-agnostic clus-
ter, while normal prototypes are pushed further away and retain only a weak class-cluster structure.
In other words, fine-tuning reconstructs the weak anomaly signal that originally lived near class-
boundary fringes into an explicit, class-agnostic “universal anomaly pattern.” Consequently, when
new categories from the target domain are introduced, one can still perform global retrieval over the
same source-domain memory and reliably align samples to this universal anomaly pattern via their
relative distances, yielding stronger cross-class and cross-domain generalization and more discrim-
inative similarity scores. Fig.2]in Sec. B-I.1] further demonstrates cross-domain positive anomaly
similarities and contrasts the separability before and after fine-tuning.
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Table 4: Comparison with recent SOTA methods. We report [-AUROC, P-AUROC, inference time
per image (ms), and training cost measured on a single RTX 3090 (trainable parameters, per-epoch
time, model size, and peak GPU memory). Red = best, blue = second best.

Accuracy & inference Training cost (RTX 3090)

Method I-AUROC P-AUROC Inf. (ms/img)  Params  Time/epo (s) Model-size (MB) Mem (GB)
WinCLIP 75.1 73.0 840.3 - - - -
MRAD-TF (ours) 81.0 85.5 198.3 - - - -
AdaCLIP 87.8 85.6 226.2 10,665,472 753 41 12.0
AnomalyCLIP 90.1 91.6 177.6 5,555,200 341 22 7.9
FAPrompt 91.3 90.7 233.1 9,612,256 449 39 11.0
MRAD-FT (ours) 92.0 91.9 198.8 2,755,584 334 10 7.8
MRAD-CLIP (ours) 92.7 92.7 203.0 9,491,968 353 54 9.4

C.3 MORE COMPARISON WITH STATE-OF-THE-ART METHODS

All statistics in Table d]are obtained under a unified protocol. The number of trainable parameters is
taken directly from the official implementations of each method. Performance metrics (I-AUROC /
P-AUROC) are reported as the average results across all 16 datasets used in our benchmark. Infer-
ence time is measured on the MVTec-AD dataset, averaged per image, with the GPU kept in an idle
state to ensure fair comparison. Training-time and memory statistics on the right are measured on a
single RTX 3090, and the reported values correspond to per-epoch wall-clock time, checkpoint size
on disk, and peak GPU memory usage during training.

From Table[d, MRAD-CLIP attains the highest overall detection accuracy, while MRAD-FT delivers
the second-best performance with far fewer trainable parameters than other learnable baselines. In
addition to accuracy, our models are economical to train: MRAD-FT uses a much smaller checkpoint
and lower peak GPU memory, and converges within a single epoch; MRAD-CLIP also converges
in only a few epochs while keeping training overhead moderate. By contrast, existing prompt-
tuning methods such as AdaCLIP, AnomalyCLIP, and FAPrompt rely on larger parameter budgets,
higher memory usage, and longer training schedules. Overall, these results indicate that the MRAD
framework is both lightweight and training-friendly, achieving state-of-the-art performance under
substantially reduced computational and resource costs.

C.4 EXTENDED ABLATIONS

Ablation on dynamic prompt biases. In the main paper we ablated the source of additive bias
for MRAD-CLIP’s dynamic prompts while keeping all other components fixed. We observed that
conditioning prompts on region-level context improves ZSAD. Motivated by these findings, we fur-
ther provide a comprehensive comparison of three bias sources on all datasets in our benchmark:
(1) cross-patch context, implemented by two learnable queries attending to patch tokens via a cross-
attention mechanism, (ii) anomaly prior distilled from MRAD-FT, and (iii) dual prior that injects
both normal and anomalous priors from MRAD-FT. The implementation strictly follows the main
protocol with the same backbone, only the bias source is varied, while prompt length and all other
hyperparameters are kept fixed. Tables [5] and [6] report the pixel-level (AUROC/PRO) and image-
level (AUROC/AP) results of different bias sources across all datasets. It can be observed that our
dual prior design in MRAD-CLIP consistently achieves the best overall performance, outperform-
ing both the cross-patch and anomaly prior variants. It is also noteworthy that all three variants
surpass AnomalyCLIP (Zhou et al., 2024)), the representative ZSAD method with static prompts,
highlighting the effectiveness of introducing learnable dynamic priors into the textual space.

Ablation on mask threshold. We conduct ablation experiments on the similarity-masking thresh-
old p in MRAD-FT by varying it as a hyperparameter, while keeping all other components fixed. For
rigor, image-level evaluation is performed solely with Y5, whereas pixel-level evaluation directly
uses Yyeq. As shown in Figure|l I} moderate masking not only prevents overfitting caused by trivial
self-matching in single-dataset settings, but also encourages the model to search for consistent ab-
normal cues across less similar features. Based on these results, we set pseg = 20% for segmentation
and p.s = 5% for classification in all subsequent experiments.
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Table 5: Pixel-level results (AUROC / PRO) for three bias sources across datasets.

Dataset Cross-patch  Anomaly prior Dual prior
Industrial

MVTec-AD 92.5/85.7 92.8/85.2 93.0/86.8
VisA 95.3/88.6 95.6/88.1 95.9/88.0
BTAD 94.4/68.2 95.1/71.1 95.4/72.8
MPDD 97.8/90.3 97.7/88.8 97.9/90.6
DTD-Synthetic ~ 97.5/90.7 98.4/90.3 98.1/89.8
SDD 90.2/72.0 87.3/67.8 93.0/72.0
KSDD2 97.8/93.3 97.9/93.8 98.9/95.6
DAGM 95.4/88.2 96.6/90.1 97.4/90.3
Medical

ISIC 90.7/82.5 91.7/83.9 91.3/83.4

CVC-ColonDB  84.6/72.0 84.7/74.0 84.7/73.9
CVC-ClinicDB  85.3/70.7 86.8/73.0 87.3/73.9

Kvasir 83.0/50.0 83.7/51.8 84.3/52.7
Endo 87.5/68.9 88.2/71.1 88.3/71.6
Average 91.7/78.6 92.0/79.2 92.7/80.1

Table 6: Image-level results (AUROC / AP) for three bias sources across datasets.

Dataset Cross-patch  Anomaly prior Dual prior
Industrial

MVTec-AD 93.0/96.9 93.6/97.3 94.0/97.4
VisA 85.2/88.4 85.6/88.2 85.7/88.3
BTAD 93.1/97.8 92.0/94.7 92.8/94.2
MPDD 83.4/86.2 81.7/83.6 81.8/83.4
DTD-Synthetic  94.2/97.7 95.9/98.4 96.0/98.4
SDD 82.6/73.1 81.8/69.6 83.9/76.2
KSDD2 92.4/86.0 92.9/85.8 95.1/88.9
DAGM 97.8/98.6 97.9/98.1 98.4/98.6
Medical

HeadCT 97.4/97.6 96.5/96.7 97.1/97.6
BrainMRI 96.9/97.4 96.7/97.2 97.0/97.4
Br35H 97.7/97.1 97.4/97.1 97.9/97.6
Average 92.1/92.4 92.0/91.5 92.7/92.5

Ablation on the two-level memory bank. To understand the role of each branch, we perform
ablations by selectively removing one level of memory at a time. First, when we discard the image-
level memory and retain only the pixel-level memory, the image-level anomaly score is obtained
by aggregating pixel-wise scores via top-K pooling. Compared with the full dual-level memory,
this variant consistently yields lower - AUROC on most datasets (Fig. [I2)), sometimes with a no-
ticeable margin, indicating that the image-level memory provides complementary and more stable
global evidence on top of pixel-level anomalies. Conversely, when we remove the pixel-level mem-
ory and only keep the image-level branch, the model loses meaningful localization ability and the
image-level performance also degrades, since it no longer benefits from the compensating top-K
aggregation from the segmentation branch. Together, these ablations show that strong and robust
image-level detection relies on the complementary contribution of both image-level and pixel-level
memories.

C.5 EFFECT OF CHANGING THE AUXILIARY DATASET

Beyond the default setting where VisA is used as the auxiliary dataset, we also study how MRAD
behaves when the memory bank is built from other sources. For each candidate auxiliary dataset in
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Figure 11: Metrics about the ablation on mask threshold.
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Table[7} we train MRAD-FT and MRAD-CLIP using this dataset alone to construct the memory and
then evaluate zero-shot anomaly detection on MVTec-AD.

The key factor here is not whether the auxiliary dataset is “larger” or “stronger” in an absolute
sense, but whether it allows MRAD to learn a cross-class anomaly pattern that can be reused at
test time. MRAD’s training objective requires each query to retrieve and compare across prototypes
from multiple classes, so the auxiliary source must contain sufficiently diverse normal and anoma-
lous samples for a class-agnostic anomaly pattern to emerge in the source-domain feature space.
This explains why industrial datasets with reasonable category or defect-shape diversity (e.g., VisA,
BTAD, MPDD, DTD-Synthetic) all support relatively stable zero-shot performance in Table[7} their
prototypes cover multiple modes of industrial appearance, allowing the model to repeatedly “use
anomalies from class A to retrieve against classes B/C” during training and thus form a transferable
anomaly pattern.

Under these auxiliary sources, pixel-level performance remains consistently strong and generally
surpasses AnomalyCLIP, whereas image-level performance exhibits larger variation. This variation
mainly arises from the class token being more sensitive to global image statistics: for example,
DTD-Synthetic is a texture-style dataset with 12 nominal classes but highly similar backgrounds
and appearances, so its class tokens provide limited semantic diversity and the resulting image-level
memory tends to encode repetitive texture patterns rather than discriminative semantics, thereby
weakening image-level classification.
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Table 7: Effect of changing the auxiliary dataset used to build the memory bank. Each auxiliary
dataset is used alone for training, and we report zero-shot performance on MVTec-AD (P-AUROC
/ I-AUROC). For reference, AnomalyCLIP trained on VisA achieves 91.1/91.5.

Domain  Aux. dataset Classes Normal Anomaly MRAD-FT MRAD-CLIP

VisA 12 962 1200 92.2/923  93.0/94.0
BTAD 3 451 290 92.0/925 91.0/922
Industrial MPDD ' 6 176 282 91.1/87.3 91.2/89.2
DTD-Synthetic 12 357 947 91.3/88.7 91.5/89.8
SDD 1 181 74 88.1/82.5 88.9/87.8
KSDD2 1 894 110 90.2/86.3 92.1/92.8
Medical CVC.—ClinicDB 1 0 612 87.5/750 88.1/79.7
Kvasir 1 0 1000  86.0/70.6 84.6/73.1

In contrast, when the auxiliary dataset collapses to essentially a single industrial category (e.g.,
SDD, KSDD2), the model has almost no opportunity to practice genuine cross-class retrieval dur-
ing training. The anomaly prototypes then only capture one specific defect morphology and fail to
induce a transferable anomaly pattern; consequently, MRAD-FT shows more noticeable degrada-
tion on MVTec-AD. The situation becomes even more extreme when the auxiliary source is both
single-category and strongly out-of-domain, as with medical datasets such as CVC-ClinicDB and
Kvasir: their prototype distributions differ substantially from industrial imagery, so the memory
bank lacks both cross-class contrast and appearance statistics aligned with the target domain. In this
regime, cross-domain retrieval becomes intrinsically difficult and the performance drop is the most
pronounced.

Overall, Table [/| indicates that MRAD is not tied to VisA or any particular auxiliary dataset. As
long as the auxiliary source lies within a related domain and provides sufficient category and ap-
pearance diversity, MRAD-FT and MRAD-CLIP can learn a class-agnostic anomaly pattern in the
source domain and maintain relatively stable performance under cross-dataset evaluation. Signifi-
cant degradation mainly occurs when the auxiliary dataset offers very limited semantic coverage or
exhibits a large domain shift relative to the target, but even in these extreme cases the model does not
collapse, which is consistent with our design intuition that MRAD relies on learning a transferable
anomaly pattern from a sufficiently diverse prototype space rather than on a specific dataset choice.

C.6 ADDITIONAL DATASET EXPERIMENTS

Table 8: Image-level performance on the Liver CT ZSAD benchmark (I-AUROC / I-AP).

Method I-AUROC I-AP
WinCLIP 63.7 52.7
MRAD-TF 66.3 62.1
AdaCLIP 61.6 52.5
AnomalyCLIP 63.6 60.7
FAPrompt 65.0 60.1
MRAD-FT 67.0 60.2

MRAD-CLIP 67.5 60.9

To further examine the applicability of MRAD in medical imaging scenarios, we additionally include
a Liver CT dataset from BMAD [Bao et al.|(2024), which contains 1,493 CT slices with image-level
anomaly annotations. Following the same ZSAD protocol as in the main paper, we evaluate several
representative baselines together with our MRAD variants. Table[§|reports image-level AUROC and
AP.
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Across all methods, MRAD-FT and MRAD-CLIP achieve the strongest AUROC and competitive
AP, indicating that the proposed retrieval-based memory framework can generalize beyond industrial
imaging and remain effective under medical CT imagery with different appearance statistics.

C.7 STABILITY AND ROBUSTNESS ANALYSIS

Table 9: Stability across random seeds on MVTec-AD. We report mean P-AUROC and I-AUROC
over multiple runs and the maximum deviation from the mean (in percentage points).

Method P-AUROC (mean) I-AUROC (mean) Max deviation
MRAD-FT 92.2 91.9 <0.5
MRAD-CLIP 92.7 93.6 <04

Table 10: Robustness to test-time perturbations on MVTec-AD. We report image-level and pixel-
level performance on the original test set and on a perturbed version with additive noise and bright-
ness adjustment.

Original Test Set Noisy + Brightness
Method P-AUROC I-AUROC P-AUROC I-AUROC
MRAD-FT 92.2 92.3 91.6 91.1
MRAD-CLIP 93.0 94.0 92.6 92.8

We further examine the stability of MRAD with respect to random initialization and its robustness
under simple distribution shifts.

Variance across random seeds. To quantify the effect of randomness, we run MRAD-FT and
MRAD-CLIP on MVTec-AD with multiple random seeds and report the mean performance across
runs. As shown in Table 0] both P-AUROC and I-AUROC exhibit very small fluctuations (within
+0.5 percentage points), and the means closely match the single-run numbers reported in the main

paper.

Robustness to simple distribution shifts. We then evaluate robustness to common test-time per-
turbations by applying a random brightness increase or decrease of 15% and additive Gaussian noise
with a standard deviation of 5 to the MVTec-AD test images, and re-evaluating the models on the
perturbed set. Table [10[summarizes the results. Both MRAD-FT and MRAD-CLIP show only mild
degradation, with drops in P-AUROC and I-AUROC below 1 percentage point. MRAD-CLIP is
slightly more robust overall, and its performance under these perturbations remains higher than that
of prior prompt-based baselines on the clean MVTec-AD set. These findings suggest that MRAD
maintains reasonable robustness to typical illumination and low-level noise shifts and does not col-
lapse under moderate degradation of image quality.

C.8 INSTANTIATING ANOMALY PROTOTYPES FROM SYNTHETIC PATCHES

Table 11: Effect of replacing real anomalies with synthetic patches when constructing anomaly
prototypes.

Method Anomaly source P-AUROC [-AUROC

MRAD-FT Real anomalies 92.2 92.3
Synthetic patches 89.2 79.7

MRAD-CLIP  Real anomalies 93.0 94.0
Synthetic patches 83.1 76.1
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A natural question is whether MRAD-TF/FT can be instantiated without real anomalies, using only
normal images (without masks) with synthetic anomaly patches. This setting probes how far MRAD
can reduce its dependence on real defect samples.

Concretely, we use VisA as the auxiliary dataset to construct normal prototypes, and follow a
DRAEM-style Zavrtanik et al.| (2021) local perturbation scheme (Cut&Paste) to synthesize anoma-
lous regions on normal images. These synthetic regions are then used to build the anomaly memory,
while all other training and evaluation settings are kept unchanged. We finally evaluate zero-shot
anomaly detection on MVTec-AD. Table [1 I| compares the performance when anomaly prototypes
are constructed from real anomalies (the default setting in the main paper) versus from synthetic
patches.

As shown in Table replacing real anomalies with synthetic patches leads to a noticeable degra-
dation, especially for MRAD-CLIP at the image level. This is consistent with our intuition: the
retrieval mechanism in MRAD relies on the anomaly prototypes in the memory bank to cover real
defect patterns, while synthetic anomalies mainly mimic local texture perturbations and lack the
semantic diversity of real industrial defects, making cross-category retrieval less reliable.

Overall, operating in the “normal data + synthetic anomalies” regime leads to a clear degradation
in performance under our current configuration, yet the setting remains informative from a weak-
supervision standpoint. Even when anomaly prototypes are derived solely from synthetic patches,
MRAD-FT still yields segmentation performance at a practically usable level, indicating that a
memory-based retrieval framework can, in principle, function in the absence of real anomalies and
constitutes a promising basis for extending ZSAD to purely synthetic-supervision scenarios.

C.9 FINE-GRAINED ZSAD PERFORMANCE

In this section, we report fine-grained subset-level ZSAD performance on the representative MV Tec-
AD and VisA datasets, with per-category results summarized in Tables [T3H20] Compared to the
aggregated metrics in the main text, these detailed breakdowns offer a clearer view of category-level
performance, highlighting the robustness of MRAD-CLIP and its variants across diverse anomaly

types.

C.10 COMPARISON WITH ADDITIONAL BASELINE

To further evaluate the contribution of the proposed memory-retrieval design, an additional baseline
was constructed by equipping AnomalyCLIP with a simple “vanilla” memory bank. This vari-
ant follows the general idea of reference-based matching used in prior few-shot anomaly detection
methods, but adapted to the zero-shot setting. The goal is to isolate the effect of incorporating a
memory mechanism while preserving AnomalyCLIP’s original prompt—patch inference pipeline.

The implementation keeps AnomalyCLIP’s original zero-shot prediction (based on prompt—patch
cosine similarity). In addition, a patch-level memory bank is built using all samples from the aux-
iliary dataset (VisA), following the setting used in our retrieval-based methods. For each query
patch, a nearest-neighbor discrepancy score is computed against this reference patch set. The final
anomaly score is obtained by combining this discrepancy with AnomalyCLIP’s zero-shot output.
This design represents the simplest and most direct form of a vanilla memory mechanism integrated
into AnomalyCLIP, without modifying its architecture or training strategy.

Table[I2]reports the pixel-level AUROC on seven datasets. We find that adding this vanilla memory
bank to AnomalyCLIP does not bring meaningful improvement. On some datasets (e.g., BTAD,
ClinicDB), the performance even drops. We believe this mainly happens because nearest-neighbor
patch retrieval works in FSAD, where reference and query images usually share the same object
or background, but it does not transfer to ZSAD, where categories differ and cross-dataset patch
matching becomes unreliable.

In contrast, both MRAD-FT and MRAD-CLIP achieve consistently stronger performance. This
advantage stems from the fact that MRAD explicitly stores discriminative feature—label prototypes
and supports cross-category, cross-domain retrieval, which is crucial for generalizable zero-shot
anomaly detection. These results further validate the effectiveness of the proposed memory-retrieval
design as a key component of the MRAD framework.
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Table 12: Pixel-level AUROC comparison between AnomalyCLIP, AnomalyCLIP with a vanilla
memory bank, and the MRAD variants.

Dataset AnomalyCLIP  AnomalyCLIP + VanillaMB MRAD-FT MRAD-CLIP

MVTec 91.1 91.0 922 93.0
BTAD 93.3 89.2 94.7 954
MPDD 96.2 96.5 97.4 97.9
SDD 90.1 90.3 91.0 93.0
KSDD2 97.9 98.2 98.8 98.9
Kvasir 81.9 82.0 83.9 84.3
ClinicDB 85.9 85.3 85.9 87.3

Table 13: Fine-grained pixel-level AUROC (%) on MVTec-AD. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP

bottle 89.5 81.9 83.8 90.4 90.3 90.6 92.2
cable 77.0 70.1 85.6 78.9 79.5 78.7 78.4
capsule 86.9 90.1 86.2 95.8 95.2 97.0 97.8
carpet 95.4 97.0 94.8 98.8 99.0 99.5 99.4
grid 82.2 93.0 90.6 97.3 96.9 98.1 98.4
hazelnut 94.3 90.1 98.7 97.2 97.5 97.1 97.5
leather 96.7 99.0 97.8 98.6 98.5 99.0 99.1
metal_nut 61.0 75.6 55.4 74.6 71.4 74.3 79.4
pill 80.0 81.0 71.5 91.8 90.5 92.8 91.3
screw 89.6 91.3 99.2 97.5 97.4 97.5 97.6
tile 77.6 93.7 83.9 94.7 95.7 96.8 97.0
toothbrush 86.9 87.7 93.4 91.9 89.7 96.5 96.1
transistor 74.7 67.0 71.4 70.8 69.8 71.2 75.0
wood 934 96.4 91.2 96.4 96.4 98.1 98.0
zipper 91.6 86.9 91.8 91.2 91.8 95.2 96.7
mean 85.1 86.7 86.8 91.1 90.6 92.2 93.0

D VISUALIZATION

In this section, we report the anomaly map visualizations obtained from MRAD-CLIP across all
datasets used in our experiments (Figure [I3}-Figure [37). These examples cover representative cat-
egories from each dataset, providing a more detailed view of the model’s anomaly segmentation
capability. The results highlight the robustness of our method in capturing fine-grained defects and
domain-specific anomalies across both industrial and medical scenarios.

E USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we made limited use of large language models (LLMs), specifically
for translation, grammar correction, and minor language polishing. The LLMs were not involved in
research ideation, experimental design, data analysis, or substantive writing of the scientific content.
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Table 14: Fine-grained pixel-level PRO (%) on MVTec-AD. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP

bottle 76.4 62.5 26.9 80.8 81.0 82.0 84.7
cable 429 24.7 152 64.0 68.2 65.3 69.8
capsule 62.1 57.8 65.7 87.6 83.9 92.4 94.7
carpet 84.1 89.9 19.6 90.0 94.1 98.0 96.5
grid 57.0 78.5 46.2 75.4 81.6 92.7 84.8
hazelnut 81.6 67.5 423 92.5 93.3 922 92.9
leather 91.1 97.3 55.9 92.2 95.7 97.1 97.8
metal_nut 31.8 389 20.7 71.1 70.9 68.0 75.7
pill 65.0 48.3 37.0 88.1 87.6 91.2 92.6
screw 68.5 68.9 75.3 88.0 89.7 89.4 90.4
tile 51.2 88.5 7.7 87.4 89.3 93.1 91.3
toothbrush 67.7 42.0 25.6 88.5 87.3 87.0 89.5
transistor 43.4 439 6.7 582 59.0 55.1 58.7
wood 74.1 91.1 58.3 91.5 92.3 95.0 94.3
zipper 71.7 52.6 3.4 65.4 75.1 82.4 88.2
mean 64.6 63.5 33.8 81.4 83.3 85.4 86.8

Table 15: Fine-grained image-level AUROC (%) on MVTec-AD. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP

bottle 99.2 81.5 95.6 88.7 89.8 91.9 92.7
cable 86.5 68.2 79.0 70.3 74.7 81.8 92.0
capsule 72.9 78.6 89.3 89.5 92.4 92.3 96.4
carpet 100.0 96.3 100.0 99.9 100.0 100.0 100.0
grid 98.8 92.1 99.2 97.8 97.9 99.1 98.9
hazelnut 93.9 65.6 95.5 97.2 96.5 93.9 93.0
leather 100.0 100.0 100.0 99.8 99.9 100.0 100.0
metal_nut 97.1 339 79.9 92.4 89.7 71.3 78.8
pill 79.1 69.1 92.6 81.1 89.6 86.4 85.8
screw 83.3 64.5 83.9 82.1 85.0 87.5 86.7
tile 100.0 99.6 99.7 100.0 99.7 99.7 99.7
toothbrush 87.5 79.4 95.2 85.3 85.6 95.6 97.2
transistor 88.0 712 82.0 93.9 81.7 86.8 89.1
wood 99.4 99.3 98.5 96.9 98.0 98.9 99.0
zipper 91.5 85.6 89.4 98.4 98.4 99.6 99.9
mean 91.8 79.0 92.0 91.5 91.9 92.3 94.0

Table 16: Fine-grained image-level AP (%) on MVTec-AD. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP

bottle 98.3 94.1 98.6 96.8 96.7 97.7 97.9
cable 86.2 80.4 87.3 81.7 82.9 89.5 954
capsule 93.4 94.0 97.8 97.8 98.4 98.4 99.2
carpet 99.9 98.9 100.0 99.9 100.0 100.0 100.0
grid 99.8 97.3 99.7 99.3 99.3 99.7 99.6
hazelnut 96.3 77.5 97.5 98.5 98.1 97.0 96.6
leather 100.0 100.0 100.0 99.9 100.0 100.0 100.0
metal_nut 97.9 76.0 95.6 98.1 97.5 93.3 95.2
pill 96.5 89.5 98.6 95.3 97.9 97.1 97.0
screw 88.4 84.5 93.0 92.9 93.6 954 94.5
tile 99.9 99.8 99.9 100.0 99.9 99.9 99.9
toothbrush 96.7 91.8 97.9 93.9 93.8 98.3 98.9
transistor 74.9 70.6 83.8 92.1 78.9 83.6 86.4
wood 98.8 99.8 99.5 99.2 99.4 99.7 99.7
zipper 98.9 95.8 97.1 99.5 99.5 99.9 100.0
mean 95.1 90.0 96.4 96.2 95.7 96.6 97.4
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Table 17: Fine-grained pixel-level AUROC (%) on VisA. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP

candle 88.9 95.0 98.6 98.8 98.9 98.9 98.9
capsules 81.6 84.7 96.1 94.9 96.3 96.5 95.4
cashew 84.7 92.0 97.2 93.7 95.2 95.1 97.9
chewinggum 93.3 98.1 99.2 99.2 99.3 99.5 99.5
fryum 88.5 92.5 93.6 94.6 94.4 95.2 94.3
macaronil 70.9 91.9 98.8 98.3 98.2 99.0 98.8
macaroni2 59.3 93.7 98.2 97.6 96.8 97.7 97.6
pebl 61.2 81.9 90.7 94.0 96.0 92.5 92.3
peb2 71.6 86.8 91.3 92.4 92.7 92.9 91.4
pcb3 85.3 86.9 87.7 88.3 88.2 88.9 88.7
pcb4 94.4 92.8 94.6 95.7 97.1 96.8 96.8
pipe_fryum 75.4 95.6 95.7 98.2 98.1 97.4 98.2
mean 79.6 91.0 95.1 95.5 95.9 95.9 95.9

Table 18: Fine-grained pixel-level PRO (%) on VisA. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP
candle 83.5 91.2 71.6 96.5 95.8 95.9 94.6
capsules 353 473 80.3 78.9 84.9 85.5 79.4
cashew 76.4 72.5 45.6 91.9 90.0 92.1 93.8
chewinggum 70.4 82.4 53.9 90.9 90.1 93.9 91.8
fryum 77.4 69.1 55.6 86.8 87.1 89.1 88.5
macaroni | 343 73.9 86.6 89.7 89.9 93.0 93.3
macaroni2 21.4 77.0 84.8 83.9 80.3 85.1 85.1
pebl 26.3 43.8 52.3 80.7 87.3 88.1 84.3
pcb2 37.2 63.0 71.5 78.2 77.8 80.4 76.0
pcb3 56.1 67.8 76.2 76.8 77.8 79.3 82.1
pcb4 80.4 80.6 84.3 89.4 91.7 91.7 90.3
pipe_fryum 82.3 83.3 86.3 96.1 97.2 95.2 96.4
mean 56.8 71.0 71.3 87.0 87.5 89.1 88.0

Table 19: Fine-grained image-level AUROC (%) on VisA. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP

candle 95.4 73.9 95.9 80.9 87.2 82.0 82.8
capsules 85.0 73.4 81.1 82.7 91.6 93.0 91.5
cashew 92.1 79.7 89.6 76.0 90.5 89.3 90.6
chewinggum 96.5 98.1 98.5 97.2 97.6 97.7 97.6
fryum 80.3 86.5 89.5 92.7 96.5 93.2 93.5
macaronil 76.2 70.1 86.3 86.7 83.1 85.6 85.6
macaroni2 63.7 62.2 56.7 72.2 71.4 79.4 78.4
pebl 73.6 55.1 74.0 85.2 68.2 83.3 83.4
pcb2 51.2 62.9 71.1 62.0 66.4 66.3 64.8
pceb3 73.4 65.6 75.2 61.7 68.6 64.7 68.9
peb4 79.6 95.1 89.6 93.9 95.4 97.1 97.1
pipe_fryum 69.7 76.9 88.8 92.3 97.4 94.1 94.3
mean 78.1 75.0 83.0 82.1 84.5 85.5 85.7

MVTec - bottle

GT

MRAD

Figure 13: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Table 20: Fine-grained image-level AP (%) on VisA. Best per row in bold.

Category WinCLIP MRAD-TF AdaCLIP AnomalyCLIP FAPrompt MRAD-FT MRAD-CLIP

candle 95.6 76.0 96.4 82.6 89.7 84.4 86.2
capsules 80.9 83.5 86.7 89.4 96.2 95.8 95.0
cashew 95.2 90.6 95.4 89.3 95.9 95.4 96.1
chewinggum 98.8 99.2 99.4 98.8 99.1 99.1 99.1
fryum 92.5 93.6 95.1 96.6 98.4 96.7 97.0
macaronil 64.5 68.4 85.0 85.5 82.5 84.7 85.7
macaroni2 65.2 60.2 54.3 70.8 68.5 79.0 78.0
pebl 74.6 58.5 73.5 86.7 72.5 84.8 84.9
peb2 44.2 65.1 71.6 64.4 68.2 68.8 67.9
pcb3 66.2 72.9 77.9 69.4 76.5 71.1 74.9
pcb4 70.1 95.8 89.8 94.3 95.6 96.7 96.8
pipe_fryum 82.1 85.7 93.9 96.3 98.6 97.0 97.1
mean 71.5 79.1 84.9 854 86.8 87.8 88.3

MVTec - capsule MVTec - carpet

Figure 14: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 15: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 16: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 17: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 18: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 19: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 20: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 21: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 22: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 23: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 24: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 25: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 26: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 27: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 28: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 29: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 30: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 31: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 32: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 33: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 34: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 35: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 36: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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Figure 37: Anomaly maps of MRAD-CLIP across various categories. The first row shows the
ground-truth annotations, and the second row shows the predicted anomaly maps.
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