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ABSTRACT

Quantization is a promising technique for reducing the bit-width of deep models
to improve their runtime performance and storage efficiency, and thus becomes
a fundamental step for deployment. In real-world scenarios, quantized models
are often faced with adversarial attacks which cause the model to make incorrect
inferences by introducing slight perturbations. However, recent studies have paid
less attention to the impact of quantization on the model robustness. More surpris-
ingly, existing studies on this topic even present inconsistent conclusions, which
prompted our in-depth investigation. In this paper, we conduct a first-time analysis
of the impact of the quantization pipeline components that can incorporate robust
optimization under the settings of Post-Training Quantization and Quantization-
Aware Training. Through our detailed analysis, we discovered that this inconsis-
tency arises from the use of different pipelines in different studies, specifically re-
garding whether robust optimization is performed and at which quantization stage
it occurs. Our research findings contribute insights into deploying more secure
and robust quantized networks, assisting practitioners in reference for scenarios
with high-security requirements and limited resources.

1 INTRODUCTION

Deep neural networks have demonstrated outstanding performance in tasks such as computer vi-
sion (Ronneberger et al., 2015; Howard et al., 2017) and natural language processing (Sutskever
et al., 2014; Vaswani et al., 2017). However, the increasing number of model parameters makes it
challenging to deploy them in resource-constrained scenarios. As a model compression technique,
quantization effectively reduces the inference memory and time cost by quantizing model parame-
ters and/or activations from full-precision to low-bit integers (Nagel et al., 2021). Current research
aims to achieve better performance with lower bit-width (Choi et al., 2018; Esser et al., 2019).
Many quantization methods (Yao et al., 2022) have been incorporated into the deep learning libraris
(Rasley et al., 2020). However, many resource-constrained scenarios require not only efficiency but
also high security for model inference, such as in autonomous driving (Liu et al., 2021; Katare et al.,
2023) and medical assistance (Zhang & Chung, 2021). These applications often face the risk of ad-
versarial attacks, where imperceptible perturbations are added to input samples, leading the model
to make incorrect predictions (Madry et al., 2017). This poses a fatal risk in certain scenarios. Due
to adversarial robustness being at odds with accuracy (Hu et al., 2023), it indicates that considering
both quantization and adversarial robustness simultaneously is necessary.
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Figure 1: Quantization Pipeline.

Existing research has focused on improving the adver-
sarial robustness of quantized networks. However, we
find that the conclusions drawn from these studies are
conflicting. For instance, some studies observe that as
the quantization bit-width decreases, adversarial robust-
ness deteriorates (Lin et al., 2021; Sen et al., 2020; Xiao
et al., 2023), while others reach the opposite conclusion
(Fu et al., 2021; Lin et al., 2019). We find the conflicting
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Table 1: The impact of different quantization pipelines on robustness. (+) means reducing bit-width
enhances robustness, while (–) indicates the opposite, and (∼) means moderate bit-width gains the
best robustness. ϵ means the adversarial attack intensity (Madry et al., 2017), and we define ϵ ≤ 2
as the weaker attack, and ϵ ≤ 8 as the normal attack. Additional details regarding attack intensity
and quantization settings will be supplemented in Appendix A.

Quantization Setting Random Parameters Non-Robust Parameters Robust Parameters

PTQ —— Against weaker attack, lower
bit-width leads to higher robustness (+).

Against normal attack, lower
bit-width leads to lower robustness (–).

QAT
(Vanilla Training)

Against weaker attack, lower
bit-width leads to higher robustness (+).

Against weaker attack, lower
bit-width leads to higher robustness (+).

Against weaker attack, lower
bit-width leads to higher robustness (+).

QAT
(Adversarial Training)

Against normal attack, lower
bit-width leads to lower robustness (–).

Accuracy significantly decreases compared to
initialization, against normal attack,

lower bit-width leads to higher robustness (+).

Against normal attack, moderate
bit-width exhibits the best robustness (∼).

QAT
(Adversarial Transfer Learning)

Against normal attack, but less robustness
than robust initialized ways, lower

bit-width leads to lower robustness (–).

Against normal attack, but less robustness
than robust initialized ways, moderate

bit-width exhibits the best robustness (∼).

Against normal attack, lower
bit-width leads to lower robustness (–).

results arise from differences in the pipeline settings during the quantization process and the possible
addition of robustness components at different stages.

To address this question, we first clarify the pipeline of the quantization process, as shown in Figure
1. This involves the preparation stage and the quantization stage. In the preparation stage, it is
necessary to specify whether a pre-trained full-precision model (FP model) is employed and whether
it undergoes adversarial training, which lead to three options: robust parameters, non-robust param-
eters, and random parameters. Additionally, determining the size of the dataset for calibration or
fine-tuning is essential. In the quantization stage, the choice between Quantization-Aware Train-
ing (QAT) and Post-Training Quantization (PTQ) needs to be made. It is also needed to determine
whether weights and activations need quantization, along with specifying the quantization bit-width.
For QAT, whether adversarial training is incorporated into the process is also needed to ascertain.
Please refer to Appendix A for the details of Quantization-Aware Training Strategy. A variety of
choices make it difficult for researchers to determine the pipeline, and it is uncertain about the impact
of each choice on robustness.

We experiment with different pipelines to observe their robustness. The key conclusions include:
(i) Quantization without any robustness components demonstrates resistance to lower levels of ad-
versarial attacks, and a lower bit-width for quantization leads to improved robustness. (ii) In certain
pipelines, the quantized model can achieve robustness similar to that of the full precision robust
model. In such cases, a lower quantization bit-width may result in decreased robustness. (iii) Adding
adversarial training to quantization can gain robustness, however, using the wildly used PGD-7 ad-
versarial training incurs an additional 7× time overhead. Indeed, we have analyzed all possible
scenarios, and the conclusions are discussed in Table 1.

2 RELATED WORK

As early as 2017, Galloway et al. (2017) reveals that the binarized models exhibit adversarial robust-
ness, but it is later known this comes from obfuscated gradients (Athalye et al., 2018). Subsequently,
Lin et al. (2019) argues that quantized networks suffer from error amplification effects, making them
more vulnerable to adversarial attacks. They address this risk by designing regularization terms. Sen
et al. (2020) claims that there is an accuracy-robustness trade-off during quantization, and assem-
bles full-precision and quantized networks by ensembling methods to better reconcile this trade-off.
Fu et al. (2021) further enhances model robustness by designing a stochastic precision inference
scheme. However, these studies are hard to reveal the real tendency of quantization robustness, as
they are not conducted at a unified pipeline, which even leads to conflicting conclusions.

Another parallel set of works involves evaluating the robustness and reliability of quantized net-
works. Xiao et al. (2023) only assesses the robustness of QAT without any robust components,
while Yuan et al. (2023) discusses aspects such as category performance differences and out-of-
distribution performance instead of adversarial robustness on Post-Training Quantization networks.
In contrast, our paper focuses on the adversarial robustness of PTQ and QAT, discussing the impact
of various choices on the components of the quantization pipeline.
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3 ROBUST QUANTIZATION OVERVIEW

In this section, we first introduce the pipeline for model quantization, extracting components that
may influence the adversarial robustness of the model in the process. These components will be
analyzed in the next section. Furthermore, we highlight the evaluation of quantized models with
adversarial robustness metrics in resource-constrained environments.

3.1 QUANTIZATION PIPELINE

As shown in Figure 1, whether it is PTQ or QAT, we can divide the quantization process into two
key stages: the preparation stage and the quantization stage. First, it is necessary to determine
the initialization parameters of the model and the size of the dataset used for calibration or fine-
tuning. Then, the bit-width for quantization and the training strategy for fine-tuning are determined
to obtain the quantized model. To account for the model’s robustness, We consider making different
choices in various components to assess the robustness of different pipelines. Specifically, it is
crucial to consider whether to use adversarial training full-precision model parameters to initialize
the quantization model, and whether to combine adversarial training with quantization during the
training process. We aim to observe the effects of quantizing to different bit-widths on robustness
under various settings. Additionally, it is important to investigate the impact of choices regarding
dataset size on robustness.

3.2 EVALUATE METHOD

The evaluation methods focus on the performance of the quantization model. It is generally mea-
sured using the accuracy of adversarial examples (Dong et al., 2020). As improving the adversarial
robustness of a model may impact its accuracy, it is necessary to consider both aspects simulta-
neously. Therefore, we propose using adversarial accuracy as a metric for robustness (denoted as
Robustness) while also calculating its accuracy on clean samples (denoted as Accuracy).

We use attack model Aϵ,p with budget ϵ under the Lp norm to generate adversarial sample
xi
adv = Aϵ,p(x

i). For the upcoming evaluation of model M, we can compute the accuracy
using the formula Accuracy(M) = 1

N

∑N
i=1 I(x

i = yi), and compute the robust using the
formula Robustness(M) = 1

N

∑N
i=1 I(Aϵ,p(x

i) = yi), where {xi, yi} is the test set and I(·) is
the indicator function.

In addition, due to the addition of robustness components during the quantization process, there
may be additional time overhead. This could be particularly challenging for resource-constrained
scenarios. Therefore, we compare the relative time overheads of different methods by theoretical
analysis to assess their impact.

4 EXPERIMENTS AND INSIGHTS

In this section, we will discuss in detail the impact of different pipeline configurations on the robust-
ness of quantized models. In Section 4.1, we will explicitly define the various components present
in the pipeline. Furthermore, for each component, we will delve into a detailed discussion of the po-
tential different choices that may exist. In Section 4.2, we will elaborate on the specific experimental
design. Section 4.3 will then present and analyze the experimental results.

4.1 VARIOUS COMPONENTS IN QUANTIZATION PIPELINE

FP Model Parameters. In PTQ, adopting the parameters of the full-precision model is necessary
for initialization (Li et al., 2021). In QAT, the model can be trained from scratch with random
initialization or fine-tuned using parameters initialized from the full-precision model (Tang et al.,
2022; 2023) for fast convergence. We aim to understand the impact of initialization parameters that
have undergone adversarial training on the quantized model.

Quantization Precision. Before starting the quantization process, it is necessary to assess the de-
ployment environment to determine the desired bit-width for quantization. There is a trade-off be-
tween computational resources and accuracy. Generally, lower quantization bit-widths have lower
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requirements for computational resources, but the accuracy will decrease (Esser et al., 2019; Li et al.,
2021). However, the impact of precision on adversarial robustness has not been widely explored yet.
In this part, we focus on the impact of the bit-width of quantized networks on the model’s robustness.

Training Strategy (for QAT). During the QAT process, the quantized network undergoes training or
fine-tuning. We aim to understand the impact on the robustness of the quantized network when using
the incorporating adversarial training method compared to original training. Due to the coupling of
training strategies and initialization parameters, we need to consider all possible scenarios.

Other Adversarial Learning Method. In addition, some robust learning methods are inherently
suitable for quantized models. Approaches like the robust transfer network (Vaishnavi et al., 2022)
can obtain both robustness and accuracy through knowledge distillation from a well-trained robust
model. We aim to determine whether this method is equally applicable to quantized models.

4.2 EXPERIMENTAL SETUP

Dataset and Network Architecture. We aim to investigate the issues of adversarial robustness
of quantization models in widely used computer vision tasks. Therefore, we have chosen the fun-
damental task of image classification for experimentation. The dataset used in the experiments is
CIFAR-10 (Krizhevsky et al., 2009), which is commonly employed for adversarial attack scenar-
ios. The network architecture selected for the experiments is ResNet20 (He et al., 2016), a proven
structure known for its effective application across various tasks.

Quantization Methods. We adopt the PWLQ method (Fang et al., 2020) as the PTQ approach
for our experiments. PWLQ employs a segmented linear quantization technique, providing finer-
grained quantization values for intervals with more data distribution. This allows better accuracy at
lower bit-width. For QAT, we choose PACT (Choi et al., 2018) as the experimental method, which
introduces learnable bounds of activations to filter outliers adaptively. For a fair comparison, we set
the fine-tuning training to 60 epochs, while training from scratch is 200 epochs.

Adversarial Attack and Defense. When discussing the robustness introduced by quantization it-
self, it is essential to measure performance under both white-box and black-box attack scenarios to
avoid the obfuscated gradients (Athalye et al., 2018) in measured robustness. For white-box attacks,
we choose the PGD attack method (Madry et al., 2017), known as the strongest first-order white-
box attack method. For black-box attacks, AutoAttack (Croce & Hein, 2020) is selected, known
for its outstanding performance and widespread use in robustness evaluations. In examining the
impact of robustness components on quantized networks, we opt for the PGD adversarial training
method (Madry et al., 2017) to obtain robustness for the corresponding components. We measure
the accuracy and robustness of the quantized model through PGD attacks.

4.3 RESULTS AND ANALYSIS
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Figure 2: Accuracy and robustness under different attacks
in QAT. The left diagram represents the results of keeping
weights in full precision and quantizing activations, while
the right diagram represents the results of keeping activa-
tions in full precision and quantizing weights.

Figure 2 shows the accuracy and ro-
bustness under different attacks of
quantized networks obtained through
random initialization in QAT. We
observe that in quantized networks
without any robustness components,
they are unable to resist attacks with
common attack settings (ϵ = 8/255).
However, as the attack intensity de-
creases, both PTQ and QAT quan-
tized networks exhibit an increase
in robustness with the reduction of
quantization bit-width. We also ob-
serve that activation quantization en-
hances robustness more noticeably
compared to weight quantization. For instance, under the PGD-20 attack with ϵ = 1/255, quan-
tizing activations from full precision to 2-bit results in a robustness improvement of 33.47%. In the
same setting, weight quantization only achieves a robustness improvement of 7.31%.
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Table 2: The impact of FP model parameters and training strategies on accuracy and robustness.
“NC” represents non convergence.

Quantization Methods FP Model Parameters A2W2 A4W4 A6W6 A8W8 A32W32

PTQ Non-Robust Parameters NC 87.91 / 0.02 91.84 / 0.00 91.98 / 0.00 92.15 / 0.00
Robust Parameters NC 76.16 / 47.84 76.95 / 47.74 76.95 / 46.58 77.06 / 46.43

QAT
(Vanilla Training)

Random Parameters 86.99 / 0.01 91.18 / 0.00 91.34 / 0.00 91.27 / 0.00 91.71 / 0.00
Non-Robust Parameters NC 91.66 / 0.00 92.18 / 0.00 92.33 / 0.00 92.24 / 0.00

Robust Parameters NC 88.95 / 0.10 90.28 / 0.13 90.48 / 0.03 90.93 / 0.00

QAT
(Adversarial Training)

Random Parameters NC 72.17 / 45.83 74.04 / 46.48 74.41 / 46.79 76.30 / 46.83
Non-Robust Parameters NC 64.95 / 50.29 67.51 / 37.14 67.23 / 36.89 70.65 / 41.25

Robust Parameters NC 76.18 / 48.48 77.62 / 47.57 77.41 / 47.36 77.46 / 46.34

Table 2 displays the accuracy and robustness under ϵ = 8/255 of quantized models obtained us-
ing different FP model parameters and selecting various training strategies. We found that models
obtained through PTQ using robust parameters can still maintain the original robustness. The ro-
bustness and accuracy decrease as the quantization bit-width decreases. This may be because PTQ
does not fine-tune the model but only affects its performance by introducing quantization noise.
Therefore, it does not have an additional impact on robustness. For QAT, despite introducing robust
initialization parameters, after fine-tuning on a dataset with clean samples, the robustness provided
by the initialization diminishes to 0.1%. However, there is a 11.89% increase in accuracy. When ad-
versarial training is added to the training process of QAT, it can maintain the robustness provided by
the initialization. Even if random initialization is provided, QAT can still achieve robustness through
adversarial training. We also observed that when the provided initialization parameters are obtained
without adversarial training, using adversarial training in QAT can lead to a significant decrease in
model accuracy. For instance, in the A4W4 setting, its accuracy drops by 12.11% compared to the
full-precision robust model.

Incorporating adversarial training into the training strategy of QAT introduces a significant amount
of additional time overhead. As each training epoch requires the generation of adversarial samples,
following the classical PGD-7 adversarial training approach (Madry et al., 2017), each training
epoch involves seven backward pass computations for adversarial samples, and a backward pass is
performed to achieve gradient optimization. This results in a sevenfold increase in time overhead
compared to regular training.

Table 3: Accuracy and robustness on robust transfer learn-
ing with various dataset sizes.

Datasets Size A4W4 A6W6 A8W8 A32W32
1% 66.89 / 43.42 76.45 / 47.93 77.85 / 45.65 77.24 / 46.86

10% 73.78 / 44.75 76.69 / 48.21 77.35 / 48.10 77.05 / 47.51
100% 74.40 / 45.10 76.41 / 48.50 76.72 / 48.16 76.71 / 47.87

Table 3 represents the results when
QAT with the robust transfer learning
method proposed by Vaishnavi et al.
(2022) from robust initialization pa-
rameters, and other settings will be
shown in Appendix B. We analyzed
the effect of robust transfer learning
using a partial dataset. It can be observed that this method still performs well when transferred
to quantized models. At higher quantization bit-widths, it can even surpass the robustness of full-
precision models. For example, in the A6W6 quantization setting, its robustness increases by 2.07%
compared to the full-precision adversarially trained model. However, as the quantization bit-width
decreases, both accuracy and robustness experience a slight decline, possibly due to a reduction in
model capacity with decreasing bit-width. Additionally, even when quantizing models using a par-
tial dataset, good accuracy and robustness can still be achieved. It is worth noting that, due to the
absence of the time required to compute adversarial samples, this method is more efficient in terms
of quantizing time compared to the QAT approach combined with adversarial training.

5 CONCLUSION

In this paper, we first introduce the evaluation metrics for adversarial robustness in quantized net-
works. By studying the impact of quantization itself on robustness and the effects of adding ro-
bustness components, we aim to provide valuable insights for the design and evaluation of robust
quantization pipelines. We hope that this work can serve as a useful step in improving robustness in
quantized networks.
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A ATTACK STRENGTH AND QUANTIZATION SETTINGS

Adversarial Attack Intensity. The adversarial sample construction in adversarial attacks can be
denoted as xadv = x + argminδ{||δ|| : f(x + δ) ̸= f(x), δ ≤ ϵ}, where ϵ is a small quantity
representing the magnitude of a slight perturbation applied to the input sample. In PGD attacks
conducted on the CIFAR-10 dataset, it is common to set ϵ ≤ 8/255, so we define it as a “normal
attack”. When ϵ ≤ 2/255, full-precision model without adversarial training may exhibit a certain
level of robustness which is referred to as a “weaker attack”.

Quantization Settings. Quantization settings include PTQ and QAT. For the QAT method, it re-
quires either Fine-Tuning or Training. Specifically, the training strategy using the original QAT is
referred to as QAT (Vanilla Training). When generating adversarial samples in the quantized model
and employing Adversarial Training (Madry et al., 2017), the training strategy is termed QAT (Ad-
versarial Training). The approach of using the quantized model as a student model for adversarial
transfer learning (Vaishnavi et al., 2022) is referred to as QAT (Adversarial Transfer Learning).

B MORE DETAILS ABOUT TRANSFER ADVERSARIAL LEARNING

Table 4: Accuracy of Transfer Adversarial Learning under Dif-
ferent Initialization. The Accuracy of the Teacher Model (Full-
Precision Model) is 77.06%.

Initializing Parameters A3W3 A4W4 A6W6 A8W8 A32W32
Random Parameters 72.93 74.21 74.62 74.26 72.18

Non-Robust Parameters 67.83 69.98 69.90 70.23 71.55
Robust Parameters NC 74.40 76.41 76.72 76.71

Table 5: Robustness of Transfer Adversarial Learning under Dif-
ferent Initialization. The Robustness of the Teacher Model (Full-
Precision Model) is 46.43%.

Initializing Parameters A3W3 A4W4 A6W6 A8W8 A32W32
Random Parameters 29.93 34.58 35.66 34.75 40.66

Non-Robust Parameters 16.97 19.40 18.71 18.52 31.64
Robust Parameters NC 45.10 48.50 48.16 47.87

For Transfer Adversarial Learn-
ing, the first step involves train-
ing a robust full-precision model
as the teacher model. Subse-
quently, based on the chosen
quantization bit-width, a quan-
tized model will serve as the stu-
dent model, employing the loss
function proposed by Vaishnavi
et al. (2022) for knowledge dis-
tillation, allowing simultaneous
learning of both accuracy and
robustness.

In this method, the initialization
parameters of the student model
can also be chosen. We set them
to be initialized from an ad-
versarial trained full-precision
model (robust initializing pa-
rameters), a vanilla trained full-precision model (non-robust initializing parameters), and a scratch-
trained model. Simultaneously, we specify the teacher model to be an adversarial trained full-
precision model for experimentation.

Table 4 presents the accuracy obtained under different initialization parameters and quantization
bit-widths, while Table 5 displays the robustness. In robust and non-robust initialization methods,
accuracy consistently demonstrates a decrease with the reduction of quantization bit-widths. For
robustness, it can be observed that initializing the student model with a robust full-precision model
yields the best robustness. In fact, in certain quantization bit-width, it even surpasses the robustness
of the teacher model. For instance, the A8W8 configuration exhibits a 1.73% improvement in ro-
bustness compared to the full-precision robust model. However, in this setup, robustness experiences
a slight decline with decreasing quantization bit-width.

The method of initializing with non-robust parameters or training from scratch exhibits a significant
decline in robustness performance on the quantized network compared to the full-precision network.
For instance, in the case of non-robust initialization, using an A3W3 quantized network results in
a 14.67% decrease in robustness compared to the full-precision network. This indicates the crucial
role of model initialization in robustness within the context of Transfer Adversarial Learning.
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