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ABSTRACT

Multi-View Representation Learning (MVRL) aims to learn the joint representa-
tion from diverse data sources by discovering complex relationships among them.
In MVRL, since the downstream task information and the view availability are
often unknown a-priori, it is essential for the joint representation to be robust to
the partial availability of views. However, existing methods exhibit various limi-
tations, such as discarding potentially valuable view-specific information, lacking
the ability to extract representation from an arbitrary subset of views, or requiring
considerable computational resources that increase exponentially with the number
of views. To address these challenges, we present a scalable MVRL framework
based on contrastive learning. Our approach employs a set of encoders that is able
to extract representations from arbitrary subset of views, and jointly trains them
with a computation cost that scales linearly with the number of views. We con-
ducted comprehensive evaluations across 7 MVRL benchmark datasets ranging
from 2 to 8 views, demonstrating that our method robustly handles diverse input
view combinations and outperforms strong baseline methods.

1 INTRODUCTION

Multi-View Representation Learning (MVRL) focuses on learning the joint representation of in-
stances from various types of views without relying on label or task information (Hwang et al.
2021). By uncovering the potentially complex relationships among views, the joint representation
must capture important underlying factors from these views, which is essential for downstream tasks
such as data fusion equipped with multiple sensors (Zhang et al., 2011) and medical diagnoses based
on diverse records (Yuan et al., 2018; Zhang et al., 2018).

Providing more views of each instance usually helps eliciting more accurate representations, but it
poses three major challenges. Firstly, it requires more sophisticated cross-view association, which
involves identifying shared and view-specific factors of variation across all views, under the varying
levels of correlations among views. Secondly, increasing the number of views typically increases
the difficulty and cost of collecting the data, necessitating the ability to handle missing views during
learning and inference stages. Lastly, it significantly raises the computational cost of learning the
representation. For example, to address the scenario where an arbitrary set of views is missing, we
could simply learn the representations for every subset of views, but this typically results in compu-
tation costs that grow exponentially with the number of views, rendering the approach unscalable.

Recent MVRL approaches leveraging Contrastive Learning (CL) (Tian et al., [2020; [Poklukar et al.,
2022) or VAEs (Wu & Goodman, 2018; Shi et al., [2019; [Sutter et al., 2021; [Hwang et al.| [2021])
have shown promising results in downstream tasks (e.g., classification) where capturing shared in-
formation across views is critical. However, these approaches typically have at least one of the fol-
lowing limitations: (1) discarding view-specific information that could be relevant to downstream
tasks (Tian et al.l 2020; Poklukar et al., [2022)), (2) lacking a mechanism to learn representations
from any subset of views (Wu & Goodman, [2018; |Shi et al., 2019; [Tian et al., 2020; Poklukar et al.,
2022} Hwang et al.,|2021), or (3) incurring computational cost that grows exponentially (Sutter et al.,
2021)) or quadratically (Tian et al., 2020) with the number of views.
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In this work, we propose a scalable, information-theoretic MVRL framework that effectively ad-
dresses these three challenges. First, we formulate MVRL as the problem of encoding represen-
tations from every subset of views that are informative enough to capture both view-specific and
shared factors of variation. We then introduce an information-theoretic objective that jointly trains
all subset-view representations with a computational cost that scales linearly with the number of
views: by combining the Mahalanobis distance and the InfoNCE (Oord et al., [2018} |Poole et al.,
2019) objective, we derive a variational lower bound that calibrates each representation to general-
ize well in downstream tasks. Through extensive evaluations on 7 MVRL benchmark datasets, we
demonstrate that our method robustly encodes representations from various combinations of input
views and outperforms strong baseline methods. Our contributions are three-fold:

1. Theoretical contribution: Proposition[T]in Section [3.2]formally shows that the single Mu-
tual Information (MI) term between complete views and the joint representation encoded
by Mixture of Experts (Shi et al., 2019)) or its variants lower bounds the weighted average
of various MI terms. This enables efficient representation learning for all subsets of views.

2. Algorithmic contribution: In Section[3.3] we derive a tractable lower bound for our single
MI objective, allowing the MoPoE (Sutter et al.,|2021) joint encoder to learn and calibrate
exponentially many subset-view representations with a computational cost that scales lin-
early with the number of views. Importantly, this represents a significant improvement over
prior work (Sutter et al.| 2021)), which trained the same encoder with a computational cost
that increased exponentially with the number of views.

3. Empirical contribution: By conducting comprehensive evaluations on 7 MVRL bench-
mark datasets spanning 2 to 8 views, we demonstrate the robustness of our method across
diverse input-view combinations, consistently surpassing strong baseline methods.

2 RELATED WORK

Multi-View Fusion MVRL methods can be categorized into early fusion and late fusion ap-
proaches (Liang et al.| 2021)), depending on how they encode multiple views. Early fusion methods
encode all views into a joint representation by feeding a stack of input views to one joint encoder. For
instance, transformer models are trained with learning objectives such as masked reconstruction (He
et al., 2022; |Geng et al., 2022; (Georgescu et al., 2022 |Shi et al., 2022; Mo & Morgado, 2023) or
with autoregressive modeling (Ramesh et al.| 2021 Wang et al., [2022bj 2023} Wu et al. [2024) on
multiple input views. Although these methods benefit from high expressivity in encoding the joint
representation, they commonly suffer from heavy computational costs that scale quadratically with
the number of views. On the other hand, late fusion methods encode each view into a representation
with a dedicated encoder per view and then aggregate these single-view representations into one
joint representation. Contrastive Multi-View Representation Learning methods (Tian et al., 2020;
Poklukar et al.l 2022} [Radford et al.,[2021}; |Cherti et al., 2023)) and Multi-View VAEs (Wu & Good-
man), 2018 |Shi et al., 2019; Sutter et al., [2020; |2021; [Hwang et al., 2021) fall into this category.
These late fusion approaches are closely related to our work and are further reviewed below.

Contrastive Multi-View Representation Learning Contrastive Multi-View Coding (CMC)(Tian
et al |2020) is one of the most representative works in Contrastive MVRL and has been applied to
pretraining multimodal foundation models (Radford et al.| 2021} |Cherti et al.l [2023). It optimizes
the InfoNCE (Oord et al., 2018}; [Poole et al., 2019) objective between every pair of single-view
representations from different views by maximizing their cosine similarity, thereby aligning repre-
sentations from multiple views. However, its single-view representations are encouraged to capture
only the shared factors of variation since its InfoNCE terms are upper-bounded by the mutual infor-
mation (MI) between two views (Cover, [1999; [Wang et al.l [2022a)), which quantifies the amount of
shared information. Furthermore, the computational cost combinatorially increases with the number
of views, making it difficult to apply CMC to a large number of views. In contrast, GMC (Poklukar
et al 2022) employs a complete-view representation to align the single-view representations by
maximizing the cosine similarity between the complete-view representation and each single-view
representation. Although its computational cost scales linearly with the number of views, it also
suffers from discarding view-specific factors due to maximizing the cosine similarities, as observed
in our experiments (Sec [4.I). Additionally, GMC employs two backbone encoders for each view,
doubling the number of encoder parameters.
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Multi-View VAEs Multi-View VAEs (Wu & Goodman, [2018;|Shi et al.,[2019; Sutter et al., 2021},
Hwang et al| [2021) learn the joint representation with multiple single-view VAEs by maximizing
the evidence lower bound (ELBO). MVAE (Wu & Goodman), 2018)) employs the Product of Experts
(PoE) as its joint encoder, which effectively aggregates information from all views using an Inverse-
Variance Weighted (IVW) average of single-view representations. Since PoE struggles with cali-
brating each single-view encoder, MVTCAE (Hwang et al.| |2021)) derives Conditional Variational
Information Bottlenecks (CVIBs) from their Total Correlation objective to calibrate single-view en-
coders toward the PoE joint encoder. In contrast, MMVAE (Shi et al., 2019) employs the Mixture
of Experts (MoE) as its joint encoder, which takes an arithmetic mean of single-view encoders.
Although MoE explicitly optimizes each single-view encoder, it potentially fails to aggregate infor-
mation from multiple views, just taking each view-specific representation as a separate component
in the mixture. To improve MMVAE, MoPoE-VAE (Sutter et al., [2021) introduces a Mixture of
Product of Experts (MoPoE) as its joint encoder, which defines the representation of each subset of
views by the PoE of views in the subset and combines all subset-view representations using MoE.
Although this approach significantly improves MM VAE, it requires computing the density from the
MoPoE, resulting in a computational cost that grows exponentially with the number of views. We
further investigate these encoder structures in Section[3.1]

Since our method is also a late-fusion approach that trains the MoPoE joint encoder with a con-
trastive learning objective, it is closely related to both Contrastive MVRL methods and Multi-View
VAEs. A detailed comparison between these methods and our approach is provided in Section[B]

3 METHOD

Let N be the total number of views under consideration and v; be the ¢-th view, 1 < ¢ < N. In
addition, let v1.y = {v;}}¥, denote a complete-view data instance drawn from an unknown data
distribution pp(v1.n) and vs denote any non-empty subset of vy.y such that v C vq.ny. For ex-
ample, if N = 3, then v; € {v1, va, V3, V12, V13, U23, V123 }, Where v1a = {v1,v2}, v13 = {v1,v3},
va3 = {v2, v3}, and v123 = {v1, V2, v3}. Additionally, let 65 and z; be the parameter of the stochas-
tic encoder and the encoded representation of v, €.8., zag ~ Po,s (- | v23).

Our objective is to learn an informative representation z, for every subset of views by capturing all
factors of variation within the input views vs. To achieve this, we maximize the Mutual Information
(MI) between z, and v, for each subset of views as shown below:

N
N=3
ST 10,2 V) PV 10, (20 V0) + L0y (203 V) + Lo, (23 Vi) (1)
VsCViin

+ 1o, (Z12; Vio) + Io,5(Z13; Vis) + Lo,y (Zas; Vag) + g, (Z1235 Vias)

Maximizing equation [T|requires the representation of each combination of views to be informative
to its input views. This allows each z, to capture not only the shared factors of variations but also
view-specific ones.

It is important to note that equation (1| differs from >, ., -y o, ,0,(Zi; Z;), the sum of MI be-
tween every pair of single-view representations optimized by CMC (Tian et al. 2020); each MI
term Iy, . (Z;; Z;) in CMC encourages learning only the shared factors of variation, since it is
upper-bounded by I(V1;V2). A more detailed comparison between our method and CMC can be
found in Section [B.T]of the supplementary material.

However, direct optimization of equation[I|presents two challenges:

1. Scalability Equation|T]costs a large amount of computation due to the number of (1) en-
coder parameters and (2) objective terms increase exponentially with the number of views.

2. Calibration Each subset-view representation is optimized independently, leading to in-
consistent subset-view representations for subsets derived from the same data instance.

To address these issues, we propose a scalable subset-view representation learning framework based
on Contrastive Learning (CL). We start by reviewing existing encoder structures to reduce the num-
ber of encoder parameters (Sec. [3.1)). Then, we show that a single-term objective function allows us
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to learn every subset-view representation at the computation cost that grows linearly with the number
of views (Sec.[3.2)). Finally, we introduce a tractable lower bound of our objective that effectively
calibrates subset-view representations based on CL (Sec. [3.3).

3.1 PARAMETER SHARING AMONG SUBSET-VIEW ENCODERS

Since it is not scalable to employ independent encoders for every combination of views, we consider
the late fusion approach. Specifically, we encode each single view v; with a Gaussian distribution
such that py, (z;|v;) = N (ps,02) for 1 < i < N and combine any set of views by Product of Experts
(PoE) (Hinton| 2002)) which is also known as Inverse-Variance Weighted (IVW) average (Cochran
& Carroll, |1953; |Cochran, [1954)).

Z’uEv ,LLZ-/J? 2 A 1
po. (2s|vs) 2 N (ps,02I), where pg 2 2S00 gnd 022 —— — ()
( ) Zwévs 1/012 Zvie’us 1/012

Earlier works have shown that single-view encoders must be calibrated to be effectively aggregated
from a set of views by PoE (Hwang et al., 2021} |2023), which we address by calibrating all subset-
view encoders including single-view ones in Section [3.3] Additional discussion on the statistical
properties and optimality of IVW within the context of MVRL can be found in Section

When these exponentially many encoders are all combined using a Weighted Mixture of Experts
(WMoEﬂ), the number of parameters of the joint encoder is linearly proportional to the number of
views. This results in the joint encoder structured as follows:

po(z | vi.n) = Z As * Po, (zs|vs), where 6 = {Gi}ilil and 0 < )\, <1, Z A=1. (3

vsCvi N vsCvi N
(N=3)
=" X1pg, (z1]v1) + A2pe, (22|v2) + Azpe, (23|v3)

+ A2poy, (Z12]v12) + A13Doys (213|V13) + A23Poy, (223|V23) + A123P0; 25 (2123]V123).

Assigning \; = % to single-view encoders and zeros on the rest reduces WMOoE to the typical
MoE (Shietal.,[2019), assigning A; = 1 only on complete-view encoder reduces WMOoE to PoE (Wu
& Goodman, [2018; Hwang et al.,|2021)). In addition, evenly distributing Ay = ﬁ to all encoders
yields MoPoE (Sutter et al., [2021), the mixture of all subset-view encoders. Although assigning
different values of A can encourage WMOoE to focus on some subsets of views during training,
we do not consider any sophisticated assignment scheme in our work as we do not assume prior

knowledge of downstream tasks or their view availabilities.

Although MoPoE-VAE (Sutter et al.,[2021)) jointly learns all subset-view representations using the
MoPoE joint encoder, it requires computing the density of its joint encoder, resulting in exponen-
tially many computations of densities of all subset-view encoders. In contrast, we train the MoPoE
joint encoder only at the computation cost that linearly scales with the number of views, which we
will discuss in the following sections.

3.2 SCALABLE SUBSET-VIEW REPRESENTATION LEARNING WITH A SINGLE TERM

In addition to reducing the number of encoder parameters, we need to reduce the computations as
well. A direct optimization of exponentially many terms in equation [I]is not desirable. Instead, we
derive that any WMOoE encoder that maximizes the single MI term Iy(Z; V}.ny) can jointly train all
its subset-view encoders.

Proposition 1. Given the WMoE joint encoder py defined as equation Igy(Z;Vi.n) <
YovCorn s - Lo.(Zs; Vs), ice. Ig(Z;Vi.n) lower bounds the weighted average version of equa-
tion[ll

Proof. See Section[Alin the supplementary material. O

"We refer to the joint encoder in equation [2|as WMOoE to distinguish it from the equally-weighted sum of
experts, which is commonly referred to as Mixture of Experts (MoE) in existing literature (Shi et al.l [2019;
Sutter et al.|[2021; [Hwang et al., |2021).
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Proposition [1| indicates that maximizing Iy(Z; Vi.n) between the joint representation and the
complete views jointly maximizes multiple Iy_(Z;Vs) terms, each defined between a subset-
view representation and its input views. Consequently, the MoPoE joint encoder can maxi-
mize 55— >,y 16.(Zs; Vi), which aligns with our goal. It is also notable that MoE joint

encoder would maximize = Zf\il Ip,(Z;; Vi), while the PoE joint encoder would maximize
Ip,. v (Z1.8; V1:n). We analyzed the impact of the encoder choice in Section

Although reducing exponentially many MI terms to one MI term is beneficial, direct computation of
Ig(Z:Viin) = Epp(ur.n) [Picr [Po(2 | v1:3)||po(2)]] is intractable because computing the density
of pg(2) = [ pp(vi:n)pe(z | vi.n)dvr.n is involved with the unknown density pp.

To resolve this issue, we can maximize any of the sample-based MI estimators (Belghazi et al.,2018;
Hjelm et al., 2018;|Oord et al., 2018; |Poole et al.,|2019)) that lower bound Iy(Z; V1.n).

3.3 CALIBRATING SUBSET-VIEW REPRESENTATIONS WITH CL

We lower bound and maximize our MI objective I5(Z; V7. ) with InfoNCE (Oord et al.,[2018)) due
to its low-variance MI estimation and numerical stability (Poole et al.,|2019)). Since InfoNCE is also
utilized by CMC (Tian et al., 2020) to maximize } _, ;< 1o,,0,(Zi; Z;), adopting it allows for a
direct comparison between CMC and ours to isolate the effect of optimizing different MI objectives.
Given our joint encoder, Iy(Z; V1.n) can be lower-bounded by the following InfoNCE objective.

L)
12 Vi) 2 TP @ Vi) 2By o Bom o) | K 2228 T (o)
= : : =1 % Zj:l e UIN

4)

where K is the minibatch size and f is a learnable critic function that helps tighten the bound.
To align representations from different views, similarity measures for f, such as Cosine similar-
ity (Tian et al.} 2020; [Poklukar et al., [2022} Radford et al., 2021} |Cherti et al., [2023)) and Euclidean
distance (Wang et al., 2022a)), have been widely applied to the InfoNCE objective to enhance gen-
eralization in downstream tasks with varying view availability. However, these measures are not
well-suited for our multivariate Gaussian representations: Cosine similarity is inapplicable as our
representations are not L2-normalized, and Euclidean distance is less ideal because it assumes uni-
form scaling across all dimensions, which does not align with the properties of our representations.

Instead, we define f as the Mahalanobis distance between the joint representation z and
Por.n (21:8|v1:n) = N(p1:n5, 07,5 I) as shown below.

_ T, ~27(s _
Pz o) = ) GllE — ), (5)

T

where 7 is the temperature. Here, f encodes v1.y into p1.n, a% > Which determine the distribution
of the complete-view representation z1.. These parameters are then used to calibrate z by enforcing
it to infer z1. . As z is sampled from one of subset-view encoders py_ (zs|vs), randomly selected by
the WMOE joint encoder with probability A, this effectively calibrate z;.

Substituting equationinto I NCE(Z;V1.n) encourages the positive pair (2, vﬁv) to be closer in
the representation space, while pushing the negative pair (z(%), vgjj)v) further apart. The optimization
process for I2Y¢F(Z; V1.x) is dipicted in Figure

Finally, we apply a Variational Information Bottleneck (VIB) (Alemi et al.| [2017) to each single-
view encoder to prevent overfitting to the training data, yielding the final objective function:

N
I)9F(Z;Vin) = B Ai - D [po, (2:lvi) |IN(0,T))] ©6)

=1

where [ is a hyperparameter that controls the magnitude of regularization for each view’s encoder.
We call our method as Contrast with Aggregation (CwA), which trains the MoPoE encoder by
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Figure 1: The optimization process of the InfoNCE objective (equation . Each view is encoded
separately into ji;, 02, representing each single-view encoder py, (z;|v;). Subsequently, {u;, o2} |
are aggregated into ;. N,a% N Via IVW, which form complete-view encoder pg,,, (z1:.5|V1:N)
(green arrow). In addition, a subset of {s;,02}Y |, randomly selected by MoPoE, is aggregated
into y,, 02 to sample the joint representation z from the selected subset-view encoder pg_(zs|vs)
(red arrow). Finally, the Mahalanobis distance between z and (i1., af: ) is computed to optimize
the InfoNCE objective, which jointly learns the subset-view and complete-view representations.

maximizing equation [f] CwA explicitly learns to encode from every subset of input views with a
computational cost that scales linearly with the number of views.

Unlike MoPoE-VAE, CwA bypasses the density computation of the joint MoPoE encoder, resulting
in an overall computation complexity of O(N). Specifically, the optimization of equation@requires
the density computations of (1) N single-view encoders, (2) the complete-view encoder, (3) and one
subset-view encoder uniform-randomly chosen by the MoPoE joint encoder. Algorithm [T outlines
each step of training CwA and its associated computation costs in terms of the number of views,
which can be found in Section [

4 EXPERIMENTS

To evaluate the quality of the representation learned by our method, we conducted evaluations in
linear regression and linear classification tasks in three sets of experiments. In all experiments, we
aim to see if our method can robustly perform given any subset of all views.

Baseline methods We compared our method with strong baseline methods including CMC (Tian
et al.||2020), GMC (Poklukar et al.,[2022)), MoPoE-VAE (Sutter et al.,|2021)), and MVTCAE (Hwang
et al., 2021)). Brief reviews of these baseline methods can be found in Section |ZI Since CMC lacks
a joint representation of multiple views, we computed the average of single-view representations
to aggregate multiple views. Similarly, since GMC learns to aggregate only complete views, we
computed the average of single-view representations when subset-view representations are available
in the downstream tasks. In addition to these methods, we included GMCs, a variant of GMC
that has only one backbone encoder per view, similar to other comparing methods. All results are
averaged over 10 independent runs. Detailed information on the hyperparameter settings of each
method can be found in Section

4.1 8 VIEWS FROM SYNTHETIC DATASET

To evaluate whether our method can infer both view-specific and shared factors of variation while
scaling to many views, we generated a synthetic dataset composed of 8 views. For each instance,
we sampled 2 different types of data-generative factors: a view-specific factor g; ~ [0, 2] for each
view (1 < ¢ < 8) and a shared factor g; ~ [—1, 1]. Each view was generated by collecting 100 sam-
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Figure 2: Results of linear regression in Synthetic dataset. Mean squared error between true data-
generative factors and predicted factors is measured with incrementally adding views.

ples from a Gaussian distribution parameterized by N (g, g?). We generated 10,000 instances and
splitted into train(8), valid(1), test(1) sets where the values in the parentheses represent the data split
ratio. Detailed information on the experiment, including network architectures and visualization of
the data generation process, can be found in Section|[D.T]of the supplementary material.

While capturing sample mean and variance in each view helps discover all data-generative factors,
observing many views should improve the identification of g5, the common mean of all views.

Evaluation protocol We trained linear regression models to predict all data-generative factors
using the frozen representation. Specifically, we pretrained each method using the train set for 1,000
epochs, validating every 10 epochs. During validation, we trained a linear regression model with z
of the complete views to predict true data-generative factors [g1; ...; gs; gs] in the train set. We then
evaluated it using z of the complete views in the validation set. We saved the regression model and
each method when their performance was the best in the validation set. After training, we evaluated
the saved models by measuring the mean squared error between true generative factors and those
predicted from z of accumulated input views (e.g. view 1, views 142, ..., views 1:N) in the test set.

Result Figure[2ajcompares the performance of all methods. The x-axis represents the input view(s)
accumulating one by one, and the y-axis represents the mean squared error. While CwA slightly un-
derperforms with a single view, it effectivley improves its performance when multiple views are
available. As a result, CWA significantly outperforms all baseline methods when more than 2 views
are given. The result demonstrates that our method better captures all factors of variation. Con-
versely, the other methods commonly fail to leverage additional views. CL methods are encouraged
by their objective function to discard view-specific information, so additional views help only in
identifying the shared factors. Furthermore, due to the reconstruction of input views, VAE methods
capture noise incurred by sampling views in the data generation process rather than discovering true
underlying factors, leading to poor performance in downstream tasks.

Ablation study To assess the impact of the joint encoder choice in CwA, we conducted an abla-
tion study with different encoder choices. Specifically, we trained MoE and PoE joint encoder by
optimizing our objective equation [6] Figure [2b] shows the results. While the MoE joint encoder
shows competitive performance with a single view, its performance barely improves with the addi-
tional views. This is because MoE combines only the single-view encoders but not the rest of the
subset-view encoders, thus maximizing MIs only between single views and their representations as
discussed in Section [3.2] Consequently, its ability to extract representations from multiple views is
limited. In contrast, the PoE joint encoder exhibits monotonic improvement by leveraging additional
views, though its performance is still limited compared to ours. This is because it learns to extract
information from all views by maximizing MI between the complete views and the complete-view
representation, but does not consider extracting from other subsets of views as discussed in Sec-
tion [3.2] The results indicate that the MoPoE joint encoder, which optimizes all combinations of
views by maximizing MI between every subset of views and its representations, is advantageous.
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Runtime statistics To evaluate the scalability of =

our method, we measured the running time of each 2°4 ___ Gme
representation learning method. Figure [3]shows the GMCs
result. The x-axis represents the total number of ~g2s{  FoFer¥A®
views used for training and the y-axis represents —— CwA (Ours)
the total amount of time for running 10 training

epochs. The result shows that the running time of
both GMCs and CwA inrceases linearly with the
number of views, demonstrating the least amount of
time. This is because they both have computational
costs that grow linearly with the number of views
and use one encoder for each view. While GMC and
MVTCAE also have linear computational costs, 2t
they are relatively slower because GMC addition- o 22 23 >4
ally employs one additional encoder for each view Total number of views

and MVTCAE uses a decoder, doubling the size of Figure 3: Running time of training each
their models. Conversely, CMC shows a significant method for 10 epochs.

increase in running time with the number of views

due to the combinatorial pairwise comparisons required by its contrastive learning objective, making
it less scalable. Lastly, MoPoE-VAE shows a significant increase in computational cost as the num-
ber of input views increases due to the density computation of each expert in MoPoE as discussed
in Section 3.1} Remarkably, CwA can be trained much faster than MoPoE-VAE, despite also using
the MoPoE joint encoder.

244

23 4

Wall-clock time(s) for 10 epochs

4.2 VIDEO, AUDIO, AND TEXT VIEWS

To evaluate the ability of our method to extract meaningful information from realistic multi-view
data, we utilized MultiBench (Liang et al., [2021)), a well-established collection of real-world multi-
modal datasets. Specifically, we selected four datasets from MultiBench: MOSI (Zadeh et al.,|2016),
MUSTARD (Castro et al.l 2019), FUNNY (Hasan et al.,|2019), and MOSEI (Zadeh et al., 2018)).
These datasets were designed to explore human affective states through diverse expressions, includ-
ing spoken language, facial expressions, gestures, and speech tone. Representing human expressions
as multimodal time-series data across text, video, and audio modalities (views), these datasets en-
able tasks such as predicting sentiment (MOSI), emotion (MOSEI), humor (FUNNY), and sarcasm
(MUSTARD). The complementary nature of these views highlights the importance of understanding
their intricate relationships. Additional details about these datasets are provided in Section[D.2}

Evaluation protocol We trained a linear classifier to predict sentiment (MOSI), sarcasm (MUS-
TARD), humor (FUNNY), and emotions (MOSEI) for each dataset. We pretrained each method
using the train set for 1,000 epochs, validating every 10 epochs. During validation, we trained a lin-
ear classifier using z of the complete views in the validation set and evaluated the classifier with z of
the complete views in the validation set. We saved the classifier and representation learning models
when their performance was the best in the validation set. After training, we evaluated the saved
models by measuring the classification accuracy predicted from z of all input view combinations.

Results Table|[I]presents the results. Each column reports the classification accuracy for each input
view combination, except the 6th and 10th columns, which show the average performances for 1 and
2 views, respectively. The best performance is written in bold, while the 2nd best performance is
underlined in each column. Due to space limitations, we present the standard error in Section[D.2}

When a single view is given, although CwA shows the best average performance in MOSI, MUS-
TARD, and FUNNY datasets, it underperforms in several cases compared to the best-performing
method in each dataset, such as GMC and GMCs in MOSEI. However, when 2 views are jointly
given, our method outperforms GMC and GMCs in most cases, resulting in the best average perfor-
mance in all four datasets. This is because GMC and GMCs are limited to optimizing only single-
view and complete-view representations in their formulations, while CwA calibrates all subset-view
representations, allowing better utilization of any subset composed of multiple views.

With all three views combined, our method outperforms all competing methods across all datasets,
demonstrating its ability to effectively aggregate information from multiple views. This observation
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1 view 2 views 3 views
Dataset Method Video Audio  Text Avg. V,A V.T AT Avg. V,A,T
CMC 5411 5276 6241 5642 54.15 6092 5946 58.18 57.76
GMC 52.83 5414 62.67 56.55 5452 6048 60.04 5835 62.78

GMCs 5243 556 6255 56.86 5554 60.09 6147 59.03 62.99
MOSI MoPoE-VAE 543  56.66 60.87 57.28 56.25 59.1 61.63 5899 59.48
MVTCAE 5481 5423 6224 57.09 5531 6299 6382 60.7 62.94

CwA (Ours) 53.85 54.68 67.23 5859 5468 6618 67.52 62.79 65.51

CMC 58.04 57.1 63.7 59.61 5826 6413 6428 6222 6391

GMC 55772 5754 6449 5925 58.12 6283 6391 61.62 60.22

GMCs 57.83 57.54 6225 592 587 6239 61.88 60.99 62.25

MUSTARD MoPoE-VAE 49.71 5145 53.19 5145 5572 51.67 51.67 53.02 57.25
MVTCAE 51.3 492 5449 51.67 47.17 521 50.51 4993 56.74

CwA (Ours) 59.28 57.75 6348 60.17 60.65 6399 64.13 6292 64.28

CMC 55.18 57.33 59.66 5739 5883 5923 618 5995 6257

GMC 5413 5735 609 5746 5854 6131 62.65 60.83 63.23

GMCs 54.67 5845 59.62 57.58 594 60.04 6192 6045 61.89

FUNNY MoPoE-VAE 52.74 57.01 58.13 5596 5893 60.22 6126 60.14 6243
MVTCAE 5591 561 5994 5732 59.14 622 620 61.12 62.68

CwA (Ours) 56.08 57.48 60.26 57.94 60.02 61.67 62.58 61.42 63.36

CMC 66.67 70.39 75776 7094 70.66 7487 75.15 73.56 74.48

GMC 69.1 70.81 76.05 7199 71.08 7543 759 74.14 76.26

GMCs 69.31 70.82 7584 7199 7111 7525 7541 7392 7595

MOSEI MoPoE-VAE 577 5337 56.06 5571 5533 58.88 69.94 6138 70.96
MVTCAE  61.62 5859 64.61 61.61 59.26 69.04 54.0 60.77 70.85

CwA (Ours) 6834 70.75 7395 71.01 7083 76.81 7691 7485 77.53

Table 1: Classification accuracy (%) of the learned representation of subset views in MultiBench.

can be clearly seen in Table [2] which reports the number of times each method performed the best
for each number of views.

Although CM,C shows competitive Method 1 view 2 views 3 views Total
gerforma.lnced n fthe MUE'TAP&D (16 cases) (16 cases) (4 cases) (36 cases)
ataset, it underperforms in the other
three datasets compared to ours, gﬁg 2 8; % EB 88; 42 ((158)
especially in multiple view scenarios. GMCs 4(4) 13) 0(1) 5(8)
This is because CMC does not learn  MoPoE-VAE 1) 1(0) 0(0) 2(2)
to aggregate information from multi- MVTCAE 1(1) 1(4) 0(0) 2(5)
ple views, focusing only on pair-wise A (Ours) 702) 10 (4) 4(0) 21 (6)

optimizations of single-view repre-
sentations. Lastly, compared to CL
methods, VAE methods commonly
underperform in most cases due to
the high dimensionality of video, audio, and text views, which imposes difficulty in discovering
their relationships. As a result, reconstructing views from the representation leads to memorizing
views rather than discovering the underlying factors of variation.

Table 2: The number of performing the best (2nd best) in
each number of input views in MultiBench.

We observe certain cases where adding more views results in decreased performance across all
methods. For example, the text view alone achieves the highest performance for CMC on MOSI
and MOSEI, GMC on MUSTARD, and CwA on MOSI. Similarly, MoPoE and MVTCAE fail to
enhance the performance of the text view when video or audio is added as additional views on
MUSTARD. This phenomenon arises because the informativeness of views is highly unbalanced
for the downstream task. Specifically, the text view is inherently more informative for sentiment
inference, as it often includes keywords that make the task straightforward. This explains why the
text view consistently outperforms other single views across all methods.

In such scenarios, combining representations from multiple views through a (weighted) average may
slightly degrade the representation from the most informative view. This occurs because each view’s
representation contributes to all dimensions of the combined representation, potentially diluting the
signal from the dominant view.
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4.3 6 VIEWS UNDER A COMPLEX CORRELATION

To evaluate if our method can effectively aggregate information across many views under a complex
correlation, we assessed our method on a multi-view dataset generated by |Li et al.| (2015). The
dataset comprises 6 visual features including Histogram of Oriented Gradients (Dalal & Triggs,
20035)), GIST (Oliva & Torralbal, [2001), and Local Binary Pattern (Ojala et al., 2002). These visual
features were extracted from images in the Caltech-101 (Fei-Fei et al 2004) dataset and treated
as independent views. We split the data into train(8), valid(1), test sets(1), where the values in
parentheses represent the split ratio. Detailed information on data preprocessing, visual features,
and network architectures can be found in Section [D.3]of the supplementary material.

Learning the joint representation of these views is complex because they are generated from different
types of lossy compressions, containing complementary information.

Evaluation protocol We trained a linear classifier to predict the label of each instance same as in
Section In addition to all comparing methods, we also evaluated CwA-+recon, which is CwA
that additionally trains decoders that reconstruct views from the joint representation and minimizes
reconstruction losses.

Results  Figure[|summarizes the results. mv———r

The x-axis represents the number of input ., | . guc
views, and the y-axis represents the per- +— GMCs
formance averaged over subsets with the L rean |
same number of views. Unlike earlier ex- 11— cwa
periments, VAE methods (MoPoE-VAE, —+— CwA+recon
MVTCAE, CwA-+recon) generally outper-

form all CL methods including CwA. This
is because the input views are features
that the representation possibly needs to
learn; reconstruction-based methods have
a better chance of memorizing the input
views by reducing reconstruction loss. Re-
markably, CwA+recon that jointly opti- 45 1
mizes reconstruction loss and our objec- T T T : T T
tive function equation @ effectively im- The number of input views

proves MoPoE-VAE, outperforming all
the comparing methods.

w (= [=)]
[ =} o

Classification accuracy (%)

[
o

Figure 4: Classification results in Caltech101 dataset.

Showing the performance competitive to MoPoE-VAE, CwA considerably outperforms all CL meth-
ods, improving its performance with additional views. The result implies that CwA effectively opti-
mizes each subset-view representation without discarding any meaningful information. On the other
hand, GMC, GMCs, and CMC barely improve their performance with additional views. This is be-
cause they commonly align single-view representations using cosine similarity, encouraging them to
be equal. As a result, although views are containing complementary information, the representation
from each view tends to lose any view-specific factors potentially important to the task.

Due to space limitations, additional results including hyperparameter sensitivity analysis, visualiza-
tion of learned representations, training on missing-view data, and evaluation on ImageNet (Deng
et al.| 2009) are provided in Section@

5 CONCLUSION

In this work, we introduced Contrast with Aggregation (CwA), a scalable MVRL framework that ef-
fectively aggregates information from any subset of views. By formulating an information-theoretic
objective applicable to existing encoder models, we enabled the optimization of every subset-view
representation with a computational cost that increases linearly with the number of views. Ad-
ditionally, by integrating the Mahalanobis distance into the InfoNCE objective, we reformulated
our method as a CL approach that calibrates each subset-view representation. Extensive evalua-
tions on synthetic and real-world datasets demonstrated CwA’s superior robustness, significantly
outperforming existing methods in leveraging additional views and aggregating information across
different views.

10
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ETHICS STATEMENT

Our method can be applied in situations where multiple sensors in a multi-sensor system malfunc-
tion, potentially posing security risks. For example, in self-driving vehicles with multiple camera
inputs, adverse weather conditions like rain can corrupt the sensors. Additionally, this method could
decrease the number of views needed for the system to function, which might help reduce the overall
carbon footprint. However, there is a potential misuse case where the reduction in the number of
views could be exploited to compromise the system’s security. For instance, if the system relies on
fewer sensor inputs, it might become more vulnerable to targeted attacks that spoof or manipulate
the limited data available. Such vulnerabilities could lead to scenarios where the self-driving vehicle
misinterprets its surroundings, potentially causing accidents or unauthorized access to the vehicle’s
control systems. Therefore, while the method offers significant benefits, it is crucial to implement
robust safeguards to prevent and mitigate any potential security threats arising from reduced sensor
inputs.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed evaluation protocol for all three sets of experi-
ments, including the processes for training, validation, and testing, as described in Section 4 We
also present comprehensive information on hyperparameters, network architectures, and data pre-
processing in Section

Additionally, we have included an anonymized link to our code below, which contains three reposi-
tories: Syn (Sec . 1), Multi (Sec[d.2)), and Cal (Sec[4.3)). Each repository includes a README file
with instructions for reproducing the results presented in the paper.
https://anonymous.4open.science/r/CwA_codes/

We kindly request that reviewers download the code before everything including reviews are made
public. We will reactive the link and make the code public when the paper is published.
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A  PROOF

Proof of Proposition[l] Given the WMOoE joint encoder py defined as equation 3| Iy(Z; Vi.n) <
AsTo, (Zs; Vi), ie. Ig(Z; Vi) lower bounds the weighted average version of equation

vsCvi:N
Io(Z;Vi:n) = Epp(orn) [PiL [Po(2 | v1:8)||po(2)]] (7
—_———
*
= EpD(vLN) DKL Z )\s * Do, (Zs | Us) || Z >\s * Do, (Zs) (8)
L vsCvy.N vs Cui:N
<Eppwin) | D As-Dicrlpo, (25 | 05) |Ipa. (25)] ©)
| vsCv1:N
= > AcEppp Drrlpe, (26 [0 lIpa, ()l = D As- I, (Zs Vi)
vsCvi N vsCviN

*k
Equation (8| holds because the latter term in KL in equation [/| can be decomposed as py(z) =

> v.Coy.n AsPo, (25), which we show in Proposition [2} The inequality in equation EI holds due
to the convexity of KL divergence. [

Proposition 2. Given the WMoE joint encoder py defined as Eq. equation[3] the marginal distribu-
tion of the joint representation py(z) is the weighted mixture of pg, (vs), the marginal distributions
of subset-view representations.

Proof.

po(2) = [ pp(vi.n)pe(2z | vi:n)dvr.n

——

pD(vlzN) Z )‘s Do, (Zs | vs) dvl:N

vsCv1:N

= Z )\s /pD(vs)pGS (zs | vs) d'Us
Cuy
= )\s - Do, (Zs) . (10)

Although the direct computation of Eq. equation[I0]is intractable due to the unknown density pp, we
can still observe that the marginal distribution py(z) is also WMOoE whose experts are the marginal
distributions of subset-view representations. O
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B DETAILED COMPARISON TO RELATED WORKS

Learning Learning Learning
Methods Computation Single-View Subset-View Complete-View Decoder
Cost Representations  Representations ~ Representation Free

CMC O(N?) 0 X X 0
GMC(s) O(N) (¢} X (0] (0]
MVAE O(N) X X o X
MMVAE O(N) (0] X X X
MoPoE-VAE o) 0 0 0 X
MVTCAE O(N) (0] X o X
CwA (ours) O(N) (0] (0] (0] (0]

Table 3: Quick comparison of various multi-view (multimodal) representation learning methods.

B.1 CMC (TIAN ET AL.,|2020]

By pairwise comparison between single-view representations of views, CMC trains single-view
encoders. Specifically, it optimizes the following objective.

N=3
> Iy, 0,(Zi: 2;) "= Io,0,(Z0; Z2) + Tos0, (20 Z3) + oy, (Z: Za), (11
1<i<j<N

where z1 ~ pg, (- | v1), 22 ~ po, (- | v2), 23 ~ po, (- | v3). Although each MI term is maximized by
InfoNCE objective which is also adopted by our method, CMC differs from ours in the following
aspects:

1. Each MI term Iy,¢, (Z;; Z;) in equation|1 I|encourages its input single-view representations
to capture the shared factors of variation but not the view-specific factors. This is because
Iy,0,(Z;; Z;) is upper-bounded by I(V;; V;) which quantifies the amount of shared infor-
mation. On the other hand, each MI term Iy_ (Vs; Z,) in our objective (equation encour-
ages the subset-view representation z to capture both shared and view-specific factors of
variation in the subset of views v, which results in its optimal solution.

2. CMC lacks any mechanism to aggregate any subset of views other than naive approaches
(e.g. concatenating or averaging single-view representations). In contrast, our method
explicitly learns to aggregate any subset of views via IVW average of single-view repre-
sentations based on their precision.

3. Due to its pairwise optimization, the computation cost of CMC grows quadratically with
the number of views (O(N?)), while our method scales linearly with the number of views

(O(N)).
B.2 GMC (POKLUKAR ET AL.,[2022))

To learn the single-view representations and the complete-view representation at the same time,
GMC optimizes the following contrastive objective function.

- JCERS] R )
Z Z ~log =200 EOEOI tog i =) NS
iz Zn 02 N2 Zn 20 ) 21Nt 7 SL:NTLNT
=1 i=1 Y T A e T e T e 7

12)

where (-, -) denotes the inner product of its two input vectors. Although GMC aligns single-view
representations {z;}1¥., with the complete-view representation z;.x at the computation cost that
grows linearly with the number of views (O(NV)), it differs from our method in the following aspects:
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1. Similar to CMC, GMC also lacks any mechanism to aggregate any subset of views except
the complete views. On the contrary, our method explicitly learns to aggregate any subset
of views via IVW average.

2. GMC uses Cosine similarity (inner product in equation[I2)) which induces strong alignment
of representations and thus discards view-specific information, while Mahalanobis distance
is used in our method which helps capturing view-specific information as we observed in
Section

3. GMC requires twice more neural network parameters compared to ours, since z1.y of GMC
is encoded by separate encoders which are independent of the encoders of {z; } ;.

B.3 MULTI-VIEW VAES AND MOPOE-VAE (SUTTER ET AL.,2021)

Multi-View VAEs including MVAE (Wu & Goodman, 2018), MMVAE (Shi et al.| 2019), and
MoPoE-VAE (Sutter et al.,2021)) commonly optimizes ELBO of the multi-view data below.

pD('UlN Z po(z|v1:N) 1nq¢> (U1| )H — Dkp, [pg(z ‘ v12N>||N(0’I)] ; (13)

where qé (vi]2) is a decoder dedicated to i-th view.

While MVAE learns to aggregate complete views with its PoE (IVW) encoder, it struggles with
calibrating each single-view encoder. In contrast, MMVAE explicitly optimizes each single-view
encoder with its MoE joint encoder, although it fails to aggregate information from multiple views.

To overcome disadvantages of MVAE and MM VAE, MoPoE-VAE introduces the MoPoE joint en-
coder which combines MoE and PoE (further details regarding the structures of MoE, PoE, and
MoPoE can be found in Section[3.1))). While MoPoE-VAE learns to aggregate any subset of views,
which is similar to ours, it differs from our method in following aspects:

1. MoPoE-VAE implicitly calibrates all subset-view representations z, in the raw view space
by making them infer the complete views. On the other hand, our method explicitly cali-
brates all z, in the representation space by making them infer the complete-view represen-
tation.

2. Optimization of equation [I3]|requires Multi-View VAEs to compute the density of its joint
encoder, resulting in the computation cost of MoPoE-VAE that exponentially scales with
the number of views O(2"). However, the optimization of our objective (equation@) does
not require the density computation of the joint encoder, resulting in the computation cost
of ours that linearly scales with the number of views O(N).

3. MoPoE-VAE relies on training decoders, while our method can be trained without de-
coders.

B.4 MVTCAE (HWANG ET AL.,|2021)

Borrowing the same encoder and decoder structures of MVAE, MVTCAE explicitly calibrates each
single-view encoder in the representation space using its PoE joint encoder. Specifically, it optimizes
the convex combination of the ELBO (equation and the following objective.

N
1 v
Epp (un.v) [N > (V- DEy,, , eunton) 065 (wlz10)] = Dice [pmmwvl:N>||pei<zi|vi>ﬂ :
=1
(14

Although MVTCAE is trainable only at the computation cost that scales linearly with the number of
views O(N), it can be easily distinguished from ours by the following aspects:

1. MVTCAE does not learn any subset-view representations except single-view and complete-
view representations during training, while our method explicitly learns all subset-view
representations.

2. MVTCAE relies on training decoders, while our method can be trained without decoders.
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C COMPUTATION RESOURCES

10 systems equipped with following devices were used in all our experiments.
CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz

Memory: 32 Gb.

GPU: TITAN V

D DETAILS IN EXPERIMENTS
We report the details in our experiment including the hyperparameters and the network structures.

Hyperparameter search In all 3 sets of experiments, we trained each method using
Adam (Kingma & Bal |2015) optimizer with learning rate le~* and batch size 256, which ensures
that all methods converge. For each method, we carefully searched for any method-specific hyper-
parameters as below.

For CMC (Tian et al.,|2020), GMC (Poklukar et al.,[2022), and GMCs, we searched for their optimal
temperature 7 in {0.01,0.02,0.05,0.1,0.2,0.3,0.5} in each dataset, which completely includes all
the values suggested by GMC (Poklukar et al., 2022) and densely covers the range suggested by
CMC (Tian et al.| [2020).

For MoPoE-VAE (Sutter et al.,|2021) and MVTCAE (Hwang et al., [2021)), we searched for their
optimal 3, the coefficient of their KL terms, in {0.1,0.3,0.5,0.7,1.0, 3.0, 5.0} in synthetic dataset
and 4 datasets from MultiBench (Liang et al.|[2021). In Caltech-101, we applied the optimal hyper-
parameter settings found by [Hwang et al.[(2021).

For CwA and CwA+recon, we searched for the optimal temperature 7 in {4.0, 8.0, 12.0, 16.0, 20.0}
and 3 in {0.1,0.3,0.5,0.7,1.0,3.0,5.0} in each dataset.

D.1 SYNTHETIC DATASET

Dataset We generated a synthetic dataset composed of 10,000 instances of 8 views. For each
instance, we sampled 2 different types of data-generative factors: a view-specific factor g; ~ [0, 2]
for each view (1 < ¢ < 8) and a shared factor g5 ~ [—1, 1]. Each view was generated by collecting
100 samples from a Gaussian distribution parameterized by N (gs, g?). We splitted the dataset into
train(8,000), valid(1,000), test(1,000) sets where each of values in the parentheses represents the
number of samples. The data generation process is described in Figure 3}

(N(gs,97)| [N(gs 63| N(g,,92)| [N(gs,93)]

Figure 5: Data generation process in the synthetic dataset.

Implementation detail Considering that there are 9 true data generative factors (8 view-specific
factors + 1 shared factors), we set the size of the representation of each method to be 9. The network
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structures and sizes of each method can be found in Table E] and Table E} Enc, Dec, Det, and Proj

stand for encoder, decoder, deterministic, and projection respectively. Further details can be found
in the submitted code (please find the directory named Syn).

Method CMC CwA (Ours) MoPoE-VAE, MVTCAE
Network | Det.Enc. 0, Enc. po,, (z]v,) Enc. po,, (z]v,)
Input Up, Up, Up,

Layer 1 | FC.256. ReLU | FC.256. ReLU FC. 256. ReLU
Layer 2 | FC.256. ReLU | FC.256. ReLU FC.256. ReLU
Layer 3 FC.9 2x FC.9 2x FC.9
Output Zn fn,log 02 fn,log o2
Network Dec. g4 (v, |2)

Input z ~ pp(z|v1.8)
Layer 1 FC. 256. ReLU
Layer 2 FC. 256. ReLU
Layer 3 FC. 100.
Output Uy,

Table 4: Network structures of CMC, CwA(Ours), MoPoE-VAE, and MVTCAE in synthetic dataset.

Method GMCs GMC
Network Det.Enc. 6, Det.Enc. 9%1) Det.Enc. 922 )
Input Un, Un Un
Layer 1 FC. 256. ReLU FC. 256. ReLU FC. 256. ReLU
Layer 2 FC. 256. ReLU FC. 256. ReLU FC.256. ReLU
Output hy, h%l) hg)
Network | Linear projection v | Shared Enc. ¢ Linear Proj. ¢ Shared Enc. ¢
Input [h1, ..., hs) hivohssorhys | (B, h0) | 2P m, or h{1)
Layer 1 FC. 256 FC.9 FC. 256 FC.9
Output his 21400528, OF 21.8 h§1§ 21500528, OF 21.8

Table 5: Network structures of GMC and GMCs in synthetic dataset.
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D.2 MULTIBENCH

Datasets

MOSI (Zadeh et al., 2016), MUSTARD (Castro et al., [2019), FUNNY (Hasan et al.,
2019), and MOSEI (Zadeh et al., 2018)) are realistic datasets commonly composed of 3 views,
video(V), audio(A), and text(T). These datasets are preprocessed and released in public by Multi-
Bench (Liang et al.||2021). We summarize the statistics of the datasets below.

1. MOSI
2,199 samples of the triplets (V: 45x20 dim., A: 45x5 dim., T: 45x300 dim.).

2. MUSTARD
690 samples of the triplets (V: 50x371 dim., A: 50x81 dim., T: 50x300 dim.).

3. FUNNY
16,514 samples of the triplets (V: 20x371 dim., A: 20x 81 dim., T: 20x300 dim.).

4. MOSEI
22,777 samples of the triplets (V: 50x35 dim, A: 50x74 dim., T: 50300 dim.).

Implementation detail

For all methods, we used Transformer encoder for each view with hidden

size 200 and representation size 128. Following the implementation of MVAE (Wu & Goodman,
2018) provided by MultiBench (Liang et al., 2021)), we used Timeseries decoder for each view in
MoPoE-VAE and MVTCAE. Detailed information on the size and structure of networks is summa-
rized in Table E] and Table Enc, Dec, Det, Proj, TSDec. stand for encoder, decoder, deterministic,
projection, and Timeseries decoder respectively. Further details can be found in the submitted code
(please see the directory named Multi).

Method CMC CwA (Ours) MoPoE-VAE, MVTCAE
Network Det.Enc. 0, Enc. po, (z|v,) Enc. po, (z]v,)
Input Un Un Un,
Layer 1 | Transformer. 200 | Transformer. 200 Transformer. 200
Layer 2 FC. 128 2x FC. 128 2x FC. 128
Output Zn Y, log 02 U, log 02
Network Dec. g4 (vy]2)
Input z ~ po(2]vi:3)
Layer 1 TSDecoder, dim.(v,,)
Layer 2 FC. dim.(v,,)
Output Un
Table 6: Network structures of CMC, CwA, MoPoE-VAE, and MVTCAE in 4 MultiBench datasets.
Method GMCs GMC
Network Det.Enc. 6,, Det.Enc. 97(}) Det.Enc. 0,82 )
Input Un Un, Un
Layer 1 Transformer. 200 Transformer. 200 Transformer. 200
Output hn, R{D g
Network | Linear projection 1 Shared Enc. ¢ Linear Proj. ¢ Shared Enc. ¢
b (D), 3 (M, (1D 2 @) 12 €]
Input [hl, hg, h3] hl, hg, hg, or h123 [hl X h2 s h3 ] hl . h2 . h3 , Or h123
Layer 1 FC. 200 FC. 128 FC. 200 FC. 128
Output hi23 21, 22, 23, OF 2123 i 21, 22, 23, OF 2123

Table 7: Network structures of GMC and GMCs in 4 MultiBench datasets.
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Standard error of the performance in MultiBench

1 view 2 views 3 views
Dataset Model Video Audio Text Avg. VA VvV, T AT Avg. V,A,T

CMC +0.55 +048 +£04 +£021 £0.68 =+0.56 +031 =£0.31 +0.3

GMC +098 +045 =+£1.05 =£0.62 =£0.72 +1.14 £091 £0.83 +0.64

GMCs +0.77 +£0.53 +0.62 +023 £032 =+£0.66 +0.63 =£0.45 +0.8

MOSI MoPoE +0.62 +£0.58 +0.81 =£038 +£0.61 +0.86 =+039 £042 +0.49
MVTCAE +0.6 +0.84 +£0.82 042 £051 =£065 09 057 0.7

CwA (Ours) £0.6 +046 +£0.52 =+0.19 £059 =£048 +£0.66 +031 £0.47

CMC +0.7 £09 +£144 057 £07 =£133 <£I1.1 +£078 +£0.79

GMC +0.53 +£1.16 +0.64 =+£034 =£0.65 =+0.83 =+0.66 =£0.53 +0.76

GMCs +1.63 +£0.88 +0.67 +£0.8 £1.21 095 =£058 £0.82 +0.74

MUSTARD MoPoE +2.0 £1.93 +£2.11 +098 £1.01 £2.18 +£2.13 £1.0 £0.58
MVTCAE  +£2.12 +222 +£1.52 +£1.14 £2.14 £2.02 +£2.23 +093 £1.27

CwA (Ours) +1.17 +0.88 +£0.62 =+0.64 +0.78 =£0.73 +£0.53 +0.54 £0.88

CMC +043 +£038 +0.53 £024 =+£0.19 025 £027 =£0.12 +0.39

GMC +0.41 +£0.53 +026 +£023 =£034 025 =£036 =£027 +0.29

GMCs +038 +£038 +047 £027 +03 +041 £039 03 +0.5

FUNNY MoPoE +08 +£0.66 +£033 +022 £031 +05 +028 £022 +£0.32
MVTCAE  +£0.38 +0.56 £0.28 +£0.24 +024 £0.27 +£022 +0.13 =£0.18

CwA (Ours) +0.36 +£0.83 +£0.38 032 +045 =£037 +024 +024 +£0.26

CMC +05 £02 +£034 +0.15 =£0.12 £026 026 =£0.16 =£0.16

GMC +0.17 +£0.14 +0.13 £0.09 =+£0.06 +0.08 =+0.08 £0.05 +0.12

GMCs +0.24 +0.17 +0.15 =£0.09 +0.1 +0.12 £0.13 £0.06 =+0.16

MOSEI MoPoE +526 +£556 592 £299 +£509 +£47 055 =£1.79 +0.16
MVTCAE  +4.72 +448 £385 +£2.53 +4.68 =£1.26 +£533 +233 £0.12

CwA (Ours) +0.67 =£0.15 05 +0.15 =£0.09 =£025 +£02 +0.14 +£0.19

Table 8: Standard error (%) of the learned representation from subset views in 4 MultiBench
datasets.
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D.3 CALTECH-101

Dataset Caltech-101 (Fei-Fei et al., 2004) is a collection of 101 classes of images designed for
learning object recognition tasks. [Li et al.| (2015)) extracted 6 visual features from 9,144 images in
Caltech-101 to compile a multi-view dataset and released them in public. Those 6 visual features
are listed along with their dimensions below.

. Gabor feature (Oliva & Torralba, 2001)): 48 dimensions.

. Wavelet moments (Oliva & Torralba, 2001): 40 dimensions.

. CENTRIST (Wu & Rehg|, 2010): 254 dimensions.

. Histogram of Oriented Gradients (Dalal & Triggs||2005): 1,984 dimensions.

. GIST (Oliva & Torralba, 2001)): 512 dimensions.

. Local Binary Pattern (Ojala et al.}2002)): 928 dimensions.

AN L A WD =

Following MVTCAE (Hwang et al.l 2021), we standardized each feature using Scikit learn (Pe-
dregosa et al., 2011).

Implementation detail We used the network architecture same as MVTCAE except the size of
the output feature h of FC layer and the size of the representation. We increased the feature size
from 200 to 512 and the representation size from 100 to 256, since this setting was commonly
beneficial for all comparing methods. Detailed information on the size and structure of networks is
summarized in Table[9]and Table[I0] Further details can be found in the submitted code (please find
the directory named Cal).

Method CMC CwA (Ours) MoPoE-VAE, MVTCAE, CwA+recon (Ours)
Network | Det.Enc. 0, Enc. pg, (z|v,) Enc. py, (z|vy,)
Input Un, Un, Up,
Layer 1 | FC.512. ReLU | FC. 512. ReLU FC. 512. ReLU
Layer 2 FC. 256 2x FC. 256 2x FC. 256
Output Zn [in,10g 02 [in,10g 02
Network Dec. g4 (vy|2)
Input z ~ pp(z]v1.6)
Layer 1 FC. 512. ReLU
Layer 2 FC. dim.(v,,)
Output Un,

Table 9: Network structures of CMC, CwA(Ours), MoPoE-VAE, and MVTCAE in Caltech-101
dataset.

Method GMCs GMC

Network Det.Enc. 6, Det.Enc. 9&1) Det.Enc. 97(12)
Il’lpllt Un Un Un,

Layer 1 FC. 512. ReLU FC. 512. ReLU FC. 512. ReLU
Output hny, hSP hg)

Network | Linear projection ¢ | Shared Enc. ¢ Linear Proj. ¢ Shared Enc. ¢
Input [h1;...; g hivshg ot hyg | (B h80) | 2P m(, or b

Layer 1 FC. 512 FC. 256 FC. 512 FC. 256
Output hi. 21400026, OF 21:6 hglf)i 215000326, OF 21.6

Table 10: Network structures of GMC and GMCs in Caltech-101 dataset.
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E ADDITIONAL EXPERIMENT RESULTS

E.1 HYPERPARAMETER SENSITIVITY
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Figure 6: Sensitivity of CwA to hyperparameters 7 (left) and /3 (right).

To investigate the sensitivity of our method to hyperparameters, we report the performance of CwA
on the Caltech-101 dataset with varying /3 (the coefficient of the Variational Information Bottleneck
(VIB)) and 7 (the temperature of the InfoNCE objective) in Figure[6] Specifically, we varied T from
1 to 16 with fixed 5 = 1.0 (left) and varied 8 from 0.1 to 10.0 with fixed 7 = 4.0 (right). We
observe that CwA is not sensitive to the choice of 7, while increasing 3 to high values, such as 10,
can be critical. This is expected as [ controls the strength of the VIB, which penalizes the amount
of information encoded in each single-view representation. Consequently, each single-view encoder
is forced to discard important information when excessively high values of are used.

E.2 VISUALIZATION OF THE LEARNED REPRESENTATIONS
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Figure 7: T-SNE visualization of the representations. From the top left corner to the bottom right
corner, results are from CMC, GMC, GMCs, MoPoE, MVTCAE, and CwA.

Figure[7]shows the t-SNE feature visualization of our method and compared them with other meth-
ods on Caltech-101. Among the 101 classes in the Caltech101 dataset, we collected samples from
the first 10 classes and extracted representations using each model. Figure[7]summarizes the results.
We observed that all methods struggle to separate samples from classes 8 (gold), 9 (grey), and 10
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(sky blue). Additionally, MVTCAE, MoPoE, GMC, and GMCs commonly fail to differentiate sam-
ples from classes 2 (orange) and 3 (green). Similarly, CMC fails to separate samples from classes 4
(red) and 7 (pink). On the other hand, our method successfully separates samples from classes 2, 3,
4, and 7, demonstrating its effectiveness.

E.3 TRAINING FROM MISSING VIEWS

Although our primary focus is learning representations from complete-view training data (MVRL),
our method can also learn from training data with missing views (Partial MVRL (Hwang et al.,
2021)). This is due to its encoder structure, which can encode any available views via IVW average,
similar to MVTCAE and MoPoE-VAE. We investigated the effectiveness of this simple idea for Par-
tial MVRL scenario on Caltech-101, using the same evaluation protocol in Section 4.3 but dropping
each view in training and validation on Caltech-101 data with probability 0.5.

70
—e— CMC
MoPoE-VAE
654 —* MVTCAE
—e— CwA

+— CwA+recon
60 A

551

50 1

Classification accuracy (%)

45 1

40 1

T T

1 2 3 4 5 6
The number of input views

Figure 8: Results of training with missing views (Partial MVRL) on Caltech-101.

Figure [§] summarizes the result. GMC and GMCs are not included in the set of baseline methods
since their complete-view representations strictly require the presence of all views. We observed that
CwA significantly outperforms CMC when at least two views are given, demonstrating its effective-
ness to Partial MVRL. Furthermore, when combined with Auto-Encoders, our method (CwA+recon)
shows strong results, performing similarly to MVTCAE and outperforms MoPoE-VAE.

We intend to further improve CwA for Partial MVRL, which we leave as future work.
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E.4 COMPARISON TO MULTI-VIEW CLUSTERING METHODS

We additionally evaluated DCP (Lin et al., |2022)) and InfoDDC (Trosten et al., [2023), which are
mutli-view clustering methods that support more than two views. Specifically, DCP can learn single-
view representations without labels by applying the three components to every pair of views: (1)
within-view reconstruction, (2) cross-view contrastive learning, and (3) cross-view latent prediction.
InfoDDC also learns single-view representations through cross-view contrastive learning between
every pair of views. Furthermore, it learns the weight of each single-view representation using its
unsupervised clustering objective, resulting in the weighted average of single-view representations
as its complete-view representation.

Based on the official implementations of DCP and InfoDDC, we carefully tuned their hyperparam-
eters, including coefficients of loss terms, temperature values related to their contrastive learning,
and the number of clusters (to be equal the number of labels).
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Figure 9: Results on Caltech-101 with additional baseline methods (DCP, InfoDDC)

Figure [0 summarizes the evaluation of DCP and InfoDDC on the Caltech-101 dataset. DCP shows
poor performance when only a few views are given because it relies on predicting the representation
of missing views from that of available views. Considering that the amount of information in each
view varies significantly in Caltech-101, it might be difficult to reconstruct the representations of
HOG (1984 dim), GIST (512 dim), or LBP (928 dim) views given the representations of Gabor (48
dim) and WM (40 dim) views. On the other hand, InfoDDC fails to show competitive performance
with any number of views. We hypothesize that this is because (1) learning clusters without labels
in their formulation is complicated when there are many classes of labels and (2) the contrastive loss
between every pair of views tends to discard view-specific information.

While DCP and InfoDDC show different trends, they significantly underperform in common com-
pared to other methods.
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E.5 EVALUATION ON HANDWRITTEN

We conducted an additional evaluation on the Handwritten (Li et al., dataset with six hand-
crafted feature views, as it has the most views among the suggested datasets. In addition to MVT-
CAE, MoPoE-VAE, GMC, GMCs, and CMC, we included additional baseline methods such as DCP
and InfoDDC.
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Figure 10: Results on Handwritten with additional baseline methods (DCP, InfoDDC)

Figure @ summarizes the results. Unlike the results on Caltech-101, we observed that most of the
baseline methods show competitive performance. This is because the Handwritten dataset has much
lower-dimensional views (at most 240 in Handwritten versus 1984 in Caltech-101) and fewer classes
(10 in Handwritten versus 101 in Caltech-101).

Although the performance gain is less significant compared to the results on Caltech-101,
CwA-+recon still shows the best performance among all compared methods when at least two views
are given. Similarly, CwA outperforms all contrastive learning methods that lack decoders such as
CMC, GMC, GMCs, and InfoDDC, given at least two views.
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E.6 EVALUATION ON IMAGENET-100

We conducted additional experiments on the ImageNet-100 dataset, which consists of 100 subsam-
pled classes selected by CMC from the full ImageNet dataset. Following the experimental setup in
CMC, we transformed RGB images into two views in different color spaces (L and ab).

To accommodate our limited computational resources, we used pretrained ResNet34 [4] to extract
512-dimensional deep features from each view. We then trained each representation learning method
with MLP encoders to learn 128-dimensional representations from these features. For evaluation, we
followed the same linear classification protocol as in Sections 4.2 and 4.3, training a linear classifier
to predict image labels from the frozen representations.

Table E] below summarizes the results. The results demonstrate that all methods, including ours,
benefit from the addition of views. Notably, our method achieves superior performance compared
to all baseline methods for both single-view inputs (L, ab) and two-view inputs (Lab). These find-
ings indicate that our method can effectively learn representations from realistic datasets, providing
further validation of its generalizability and effectiveness.

Method L ab Lab

CMC 81.50£0.05 71.12+0.04  83.8+0.04
GMC 81.59£0.07 71.05+0.11 83.20+0.13
GMCs 80.10£0.05 69.62+0.13  82.55+0.09
MoPoE 80.30£0.04 68.69+0.09 81.66+0.14
MVTCAE 81.32+0.12 70.12+0.18 83.13£0.17

CwA 82.1+0.07 71.75+£0.06 84.75+0.06

Table 11: Classification accuracy (%) of the learned representation from all combination of views
on ImageNet-100.

F PSEUDOCODE

Algorithm 1 CwA. Each step is specified with its computation cost w.r.t. the number of views.

1: Input: K: batch size, N: # of views, D: dataset {UYN}‘ZQ‘I, {Ency, }IL,: encoders for N views.

2: for sampled minibatch {vgk}\, K ~D do
3: for k=1to K do

4: {,u(g:), a((,f)}fvzl = {Ency, (vl(k))}fvzl /I encode each view v; (O(N))

5: wif oth = IVW({ué’:), aéf)}ﬁil) /l enc. v1.n viaIVW of all 1-view representations (O(N))

6: pt ok = IVW(uniform,subsample({u(gf), aé}:)}f\le)) // enc. random subset vs via IVW (O(N))

7: 29~ N(ul® (08)2.1)) / sample z from pg, (2s|vs) (O(1))

8:  end for -

9:  define f(z,u,0) := —M /I define f to measure Mahalanobis distance

10:  for £k =1to K do

11: L&f}B =N, DKL[N(ué’:), (aéf))Q -I)||N(0,1)] // compute VIB loss of each view (O(N))
(k) f(zw)‘“gljl)\l‘ggc])\l)

12: L&) o = —log —=¢ f(z(k) 0 ) // compute InfoNCE loss (O(1))

j(:l e P1I:NCT1:N

13:  end for

14:  Update {6;}", to minimize L = + K 1% 4 S~ L

15: end for
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G DISCUSSION ON INVERSE-VARIANCE WEIGHTED AVERAGE

Inverse-Variance Weighted (IVW) average (Cochran & Carroll,|1953};|Cochran,|1954; |Hinton, [2002))
is a classical (late) fusion method widely used in statistical sensor fusion. When observations are
generated from the underlying state with independent Gaussian random noise, the IVW average
serves as the Maximum Likelihood Estimation (MLE) of the state. To assess its optimality within
the context of MVRL, let i represent the ground-truth state that encapsulates all factors of variation
for a given instance.

Assuming that the mean of each single-view representation p; from the i-th view is an observation

Zq 1:“'1/0' is the

of ;1 with Gaussian noise o7 s.t. p(u;|p) = N(p, 021), the IVW average p1.n = SRRV

MLE of p, which we show below:

Proof. Since log of a probability function is monotonically increasing, the MLE of x is obtained by
maximizing the log-likelihood of {y;}¥ ;, given by:

N N 2
tomp( (s} 1) = log (prm) = 3 logp(uli) = Z (—log (2n?) - (“20_“)>

i=1

Since log p({i };|12) is a concave function of p, it reaches its maximum when its derivative is

Zero:
N 2
dlogp({pi}italn) _ d 1 oy (i —p)
=10 - —Zlog (2m02) — 2| = 0.
du du ; 2 og (2m07) 207
Since the first term inside of the summation is constant w.r.t. 1, we have:

N
;Mofﬂz_ Z? M.

1= 1

w\

Finally, rearranging gives:

N i
HUMLE = Ni’ = M1:N-
Zz 1 L?
Thus, y1.x, the IVW average of {y1;}Y, is the MLE of p. O

The assumption s.t. p(u;|u) = N(u,o21) aligns naturally with our method, as all y; are derived
from the same instance but exhibit different precisions based on the characteristics of each view.
These precisions are captured by the learned variance o2 of each single-view representation. Con-
sequently, IVW allows each single-view representation to contribute to the complete-view represen-
tation in proportion to its precision Ui?, making it an optimal choice for MVRL.

Beyond its statistical foundation, IVW offers computational scalability, with costs that scale lin-
early with the number of input views. This aligns with our goal of retaining scalability in MVRL.
While alternatives like cross-view attention-based fusion could be considered, they incur a quadratic
computational cost relative to the number of input views, making them less practical for scenarios
involving many views. Moreover, such approaches have been empirically shown to perform less
effectively when handling subset views, as observed in Hwang et al.| (2023)).
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