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Abstract
Despite the popularity of Adam optimizer in practice, most theoretical analyses study SGD as a
proxy, and little is known about how the solutions found by Adam differ. In this paper, we show
that Adam reduces a specific form of sharpness measure shaped by its adaptive updates, leading to
qualitatively different solutions from SGD. When the training loss is small, Adam wanders around
the manifold of minimizers and takes semi-gradients to minimize this sharpness measure in an
adaptive manner, a behavior we rigorously characterize via a continuous-time approximation using
stochastic differential equations. We further illustrate how this behavior differs from that of SGD in
a well-studied setting: When training overparameterized models with label noise, SGD has been
shown to minimize the trace of the Hessian matrix, tr(H), whereas we prove that Adam minimizes
tr(Diag(H)1/2) instead. In solving sparse linear regression with diagonal linear networks, Adam
provably achieves better sparsity and generalization than SGD due to this difference. Finally, we
note that our proof framework applies not only to Adam but also to many other adaptive gradient
methods, including but not limited to RMSProp, Adam-mini, and Adalayer. This provides a unified
perspective for analyzing how adaptive optimizers reduce sharpness and may offer insights for future
optimizer design.

1. Introduction
Due to the non-convexity of the loss landscape, neural networks trained in different ways can perform
very differently on the test set, even if they achieve the same training loss or accuracy [27, 36,
49, 60]. To mathematically understand the generalization of neural networks, especially for over-
parameterized models that admit many global minimizers, a key step is to understand the implicit
bias of optimization methods [45, 53]. That is, beyond just minimizing the training loss, what kinds
of solutions are different optimizers implicitly biased toward?

Many theoretical works on implicit bias focused on (full-batch) gradient descent or its continuous
variant, gradient flow. This includes the works on the implicit bias towards max-margin classifiers [25,
37, 44, 53], implicit bias towards min-norm solutions [39], and equivalence to kernel methods [7, 23].

All these implicit bias characterizations hold, or can be readily extended, to the stochastic
variant of gradient descent, i.e., Stochastic Gradient Descent (SGD). Another line of works [3, 8, 35]
demonstrated that the gradient noise in SGD induces an additional form of implicit bias that reduces
the sharpness of the solutions, a generalization measure that has been long observed to correlate
with generalization [16, 22, 26, 27]. More specifically, these works focus on the dynamics of SGD
when the training loss is already small and the iterates are close to a manifold of minimizers. Li
et al. [35] introduced a general framework to analyze the dynamics of SGD near the minimizer
manifold, showing that SGD will not stop at arbitrary global minimizers, but drift and diffuse around
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the manifold, driving the iterates towards flatter regions of the loss landscape. This behavior is
mathematically characterized by a Stochastic Differential Equation (SDE), termed as slow SDE [19],
which accurately tracks the projected dynamics of SGD near the minimizer manifold over a timescale
of O(η−2). The resulting dynamics reveal that SGD behaves like a gradient method on the manifold
that takes semi-gradients to minimize a specific sharpness measure determined by the Hessian and
gradient noise. See Appendix A for more details.

However, SGD is rarely used directly in modern deep learning. Instead, Adaptive Gradient
Methods (AGMs) have become the de facto standard for training neural networks. Among them,
Adam [28] innovatively combines the moving average of the first and second moments of gradients
to determine an adaptive learning rate for each parameter, and provides faster convergence and better
stability than SGD across various domains [1, 10, 50, 61].

Despite the popularity of Adam, little is known about its implicit bias, especially how it is
different from SGD in terms of reducing sharpness. In the literature, Ma et al. [40] made attempts
to generalize the slow SDE framework from SGD to Adam, but their analysis is specific to a two-
dimensional loss function and involves a quasistatic approximation that lacks full mathematical rigor.
Other works, such as Gu et al. [21], Liu et al. [36], leverage insights from the slow SDE developed
for SGD to interpret empirical observations with Adam, but do not provide a theoretical analysis of
Adam’s own dynamics. A rigorous analysis of Adam’s implicit bias in terms of sharpness remains an
open problem.

Our Contributions. In this paper, we show that Adam implicitly reduces a unique form of
sharpness and biases the iterates towards flatter regions in a way that is different from SGD, and
provide separations between SGD and Adam in concrete theoretical cases.

1. In Section 2, we generalize the slow SDE for SGD to Adam. The slow SDE approximates
the dynamics of Adam near the minimizer manifold, and reveals that Adam behaves like an
adaptive gradient method that minimizes a unique form of sharpness by taking semi-gradients
on the manifold.

2. In Appendix D, we prove theoretically the generalization benefit of Adam under label noise
settings. We show that under label noise setting, the implicit regularizer of Adam will reduce
to tr(Diag(H)1/2) where H is the Hessian matrix. Compared to the tr(H) of SGD, this new
kind of sharpness reduction usually aligns better with sparsity regularization, thus utilizing
data more efficiently when the model is required to fit a sparse ground truth. We verify this
anticipation experimentally through the diagonal net setting [57]. We also demonstrated the
discrepancy of the implicit biases of Adam and SGD through the matrix factorization setting
in Appendix E.

3. Technically, our analysis holds for a general class of adaptive gradient methods (AGMs),
including Adam, RMSProp, Adam-mini, and Adalayer. We develop several new tools that
can be of independent interest, including a manifold projection operator tailored for AGMs,
a high-probability convergence analysis for AGMs under PL conditions that directly gives a
bound on L(θk)− L∗.

2. Theoretical Analysis of Adam
In this section, we generalize the slow SDE for SGD to a general class of adaptive gradient methods
(AGMs), including Adam. We first present our novel slow SDE for a general class of AGMs,
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including Adam, and give an intuitive explanation for our results. Then, we discuss the difficulty
of directly applying the slow-SDE framework to Adam and other AGMs and how we resolve the
problems.

A General Class of Adaptive Gradient Methods. We define a general class of AGMs as follows:

mk+1 := β1mk + (1− β1)∇ℓk(θk)

vk+1 := β2vk + (1− β2)V
(
∇ℓk(θk)∇ℓk(θk)

⊤
)

θk+1 := θk − ηS(vk+1)mk+1.

where S : Rd −→ Rd×d is ρs-smooth, positive definite and satisfies S(v) ⪯ ϵ−1I for some ϵ > 0
and any v ∈ Rd, and V : Rd×d −→ Rd is linear. A number of currently used optimization algorithms,
such as RMSProp, Adam, Adam-mini, Adafactor1, Adalayer and AdaSGD all fit this framework.
Note that we do not consider weight decays or bias corrections in these optimizers. Some examples
of V and S functions are listed in Table 1, including the AdamE-λ optimizer that will be introduced
in Appendix D as a tool to tune the implicit bias of Adam.

2.1. Slow SDE Analysis for AGMs
Our SDE for AGMs characterizes the training dynamics near the manifold Γ. First we rigorously
define the preconditioned projection mapping ΦS and the SDE projection formula as an extension to
the Φ and Pζ mentioned in Appendix A, after which we present the SDE for AGMs we derived.

Definition 2.1 (Preconditioner Flow Projection). Fix a point θnull /∈ Γ. Given a Positive Semi-Definite
matrix S. For x ∈ Rd, consider the preconditionerflow dx(t)

dt = −S∇L(x(t)) with x(0) = x. We
denote the preconditioner flow projection of x as ΦS(x), i.e. ΦS(x) := limt→+∞ x(t) if the limit
exists and belongs to Γ, and ΦS(x) = θnull otherwise.

Definition 2.2. For any ζ ∈ Γ and any differential form AdWt + bdt in Itô calculus, where
A ∈ Rd×d, and b ∈ Rd. We use Pζ,S(AdWt + bdt) as a shorthand for the differential form
∂ΦS(ζ)AdWt +

(
∂ΦS(ζ)b+

1
2∂

2ΦS(ζ)[AAT ]
)
dt.

Definition 2.3 (Slow SDE for AGMs). given learning rate η, 1−β2

η2
= c, v0 ∈ Rd, St := S(v(t)),

and ζ0 ∈ Γ, v0 ∈ Rd, we define ζ(t) as the solution of the following SDE with initial point
(ζ(0),v(0)) = (ζ0,v0):

dζ(t) = Pζ,S(t)

Σ
1/2
∥ (ζ(t);S(t))dWt︸ ︷︷ ︸

diffusion

−1

2
S(t)∇3L(ζ) [Σ⋄(ζ(t);S(t))] dt︸ ︷︷ ︸

drift

 ,

dv(t) = c (V (Σ(ζ))− v) dt︸ ︷︷ ︸
Preconditioner drift

.

(1)

Σ⋄(ζ;S) = SΣ(ζ)S −Σ∥(ζ;S), Σ∥(ζ;S) = ∂ΦS(ζ)SΣ(ζ)S∂ΦS(ζ).

1. We ignore update clipping, i.e. we adopt the Algorithm 2 in Shazeer and Stern [51].
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Note that the drift term in dζ(t) can be interpreted as an adaptive semi-gradient descent process,
in that this term drives the dynamics towards optimizing an adaptive loss function

µ(ζ,v) = ⟨∇2L(ζ),Σ⋄(ζ(t);S(t))⟩

as if Σ⋄(ζ(t);S(t)) has no dependence on ζ; also this gradient flow is preconditioned by a positive
definite matrix S(t). Recall that the drift term in the slow SDE for SGD can be seen as a semi-
gradient descent. In the AGM framework, it takes Θ(η−2) time for the preconditioner S(t) to make
a significant (i.e. Θ(1)) change, which coincides with the moving speed of the slow SDE of ζ.
Therefore, compared to that of SGD, our SDE includes a new formula that tracks the motion of the
preconditioner and injects adaptiveness accordingly in the semi-gradient descent process.

We could prove that ζ(t) always stays on the manifold Γ. And next, we present our main theorem,
and show that the above SDE in Equation (1) track the trajectory of Adam in a weak approximation
sense.

Assumption 2.1. The loss function L(·) and the matrix square root of the noise covariance Σ1/2(·)
are C∞-smooth. Besides, we assume that ∥∇ℓ(θ; ξ)∥2 is bounded by a constant for all θ and ξ.

Assumption 2.2. Γ is a compact manifold.

Theorem 2.1. Under Assumption A.1–2.2. Let T > 0 be a constant and let X(t) = (ζ(t),v(t)) be
the solution to Equation (1) with initial condition:

ζ(0) = Φ
(
θ0
)
∈ Γ, v(0) = v0 ∈ Rd,

and we define that the parameters of Adam as X̄t := (ΦSt(θt),vt). For any C3-smooth function
g(θ),

max
0≤t≤ T

η2

∣∣∣E[g (X̄t

)
]− E

[
g
(
X(tη2)

)
]
∣∣∣ = Õ

(
η0.25

)
,

where Õ(·) hides logarithmic factors and constants that are independent of η but may depend on
g(θ).

Theorem 2.1 shows that, in the small η regime, once Adam approaches the minimizer manifold,
its long-horizon behavior within Õ( 1

η2
) steps can be well approximated by the SDE defined in

Equation (1).
2.2. Interpretation of The Slow SDEs for AGMs

Adaptive Projection Operator. Whereas Equation (2) employs a fixed projection operator Pζ

to constrain the SDE to the manifold, the AGM slow–SDE uses an adaptive projection Pζ,S(t) that
depends on the current preconditioner S(v(t)). In other words, SGD’s projection is static and
state-independent, but AGM’s projection is state-dependent. This adaptive projection alters the way
the stochastic trajectory evolves on the manifold, giving rise to a different implicit bias in AGMs
versus SGD.

Effect of the Preconditioner on the Gradient Noise Covariance. It is well known that, near the
manifold, SGD’s wandering around is noise-driven. For AGMs, the situation is more subtle: First, one
can show that the momentum term does not affect the implicit bias, consistent with prior theory [55].
However, the AGM trajectory is influenced by its preconditioner. Concretely, the gradient-noise
covariance matrix Σ is filtered through the preconditioner S(t) into S(t)ΣS(t) and then contributes
to the SDE. Over a long time horizon, this modified noise term alters the deterministic drift direction,
further distinguishing AGM’s dynamics from those of vanilla SGD.
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2.3. Technical Difficulties and Proof Insights

2.3.1. CONVERGENCE GUARANTEE OF AGMS

The core of our study is to consider the behavior of Adam’s implicit bias around the minimizer
manifold. But before we can study this, in order to make our study meaningful, we first need to
show that Adam can converge to the neighborhood of the minimizer manifold, which itself is already
non-trivial. Unfortunately, Adam can not provably converge to the minimizer manifold without any
constraint. In fact, the convergence issue of Adam has been debated from its birth, Reddi et al. [48]
shows that Adam does not converge to the optimal solution even in some simple convex setting.
Recent work [9] gives Adam’s ODE and shows that this ODE does not necessarily converge to the
immobile point of the gradient flow. So We present a statement of convergence first.

Theorem 2.2 (Convergence Bound of the AGM Framework, Stated Informally). Let K = O
(
1
η log

1
η

)
.

Under mild assumptions, for any k < K, δ ∈ (0, 1), it holds with probability at least 1 − δ that
L(θk)− L∗ = Õ(η).

2.3.2. KEY INSIGHTS IN THE DERIVATION OF SLOW SDES FOR AGMS

There are two obstacles preventing us from directly applying the analysis of slow SDEs from SGDs
to AGMs. First, the obtaining of slow SDEs requires an accurate calculation of the variation of
the first-order and second-order moments of the parameters over a relatively large number of steps
(a “giant step” in the notation of Gu et al. [19]), and in the case of SGD, due to the nature of its
rotation equivariance, we can always consider its Hessian matrix as a diagonal array, as well as its
corresponding minimizer manifold as a space extended by some full-space standard bases, which
greatly simplifies the computation. However, it is not the case for AGMs. Due to the effect of
Preconditioners S(vk), the rotation equivariance is not satisfied here.

To resolve this, we generalize the gradient flow projection in Gu et al. [19], Li et al. [35] into a
varying preconditioner flow projection. Utilizing this definition, after doing a reperemeterization to
the original space, we can regain the calculation simplicity in previous works [19, 35].

The second reason is that when β2 is too far from 1, the preconditioner moves too fast, making
it very hard to characterize the change of moments. In contrast, when β2 is too close to 1, then the
change of precondition is almost negligible, which is also not practical. To this end, we consider the
case where 1− β2 = O(η2). And we term it “2-scheme”. The subtlety here is that this proximity
does not make the change in the preconditioner negligible; rather, the change in the preconditioner
affects the form of the SDE, and because the change in the preconditioner is slow enough that we
can track its change.

3. Discussion
We show that Adam implicitly minimizes the sharpness measure tr(Diag(H)1/2), leading to solutions
and generalization behavior distinct from SGD. Our slow-SDE framework rigorously captures Adam’s
adaptive semi-gradient drift near the minimizer manifold and recovers explicit separations in sparse
linear regression and deep matrix factorization. Open directions include extending analysis beyond
the “2-scheme” regime (1−β2 = O(η2)) to intermediate regimes such as 1.5-scheme, characterizing
Adam’s implicit bias once iterates exit the local manifold neighborhood, and incorporating weight-
decay (e.g., AdamW) to understand its effect on the effective sharpness regularizer.
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Table 1: Examples of V, S functions for some optimizers in the AGM Framework.

Optimizer Function V Function S Remarks

Adam V (M) = diag(M) S(v) = Diag
(
1/(

√
v + ϵ)

)
Adam-mini V (M)i =

1
|B(i)|

∑
j∈B(i)Mjj S(v) = Diag

(
1/(

√
v + ϵ)

) Parameters partitioned;
i belongs to block B(i).

Adalayer V (M)i =
1

|L(i)|
∑

j∈L(i)Mjj S(v) = Diag
(
1/(

√
v + ϵ)

) i belongs to layer L(i)
in the model.

AdamE-λ V (M) = diag(M) S(v) = Diag
(
1/(v⊙λ + ϵ)

)
Appendix A. Preliminaries
Notations. Unless otherwise stated, for a square matrix M , diag(M) denotes the vector consist-
ing of its diagonal entries. The notation Diag has two usages: For a vector v, Diag(v) denotes
the diagonal matrix with v on its diagonal; and for a square matrix M , Diag(M) denotes the

diagonal matrix that only keeps M ’s diagonal entries and equals 0 elsewhere, i.e. Diag(M)
def
=

Diag(diag(M)). For two vectors u, v with the same dimension d, u ⊙ v denotes element-wise
multiplication (u1v1, . . . , udvd). For any exponent p, v⊙p denotes element-wise exponentiation, i.e.
v⊙p = (vp1 , . . . , v

p
d), and

√
v means v⊙1/2.

For a mapping F : Rd → Rd, we denote the Jacobian with respect to θ ∈ Rd as ∂F (θ) ∈ Rd×d,
and ∂2F (θ) the second-order derivative at θ, which is a third-order tensor. Given a matrix M ∈
Rd×d, we use the notation ∂2F (θ)[M ] to denote the second-order directional derivative of F at θ
in the direction M , defined as ∂2F (θ)[M ] :=

∑
i∈[d]

〈
∂2Fi
∂θ2 ,M

〉
ei, where Fi represents the i-th

element in F , and ei is the i-th vector of the standard basis. When the context is clear, we write
∂2(∇L)(θ)[M ] as ∇3L(θ)[M ] for brevity.

Loss Functions. Define ℓ(θ; ξ) as the loss function for a data sample ξ for a model with parame-
ters θ. Define L(θ) := Eξ∼S [ℓ(θ; ξ)] as the training loss function, where S is the training dataset
and ξ ∼ S means the data sample ξ is drawn from S uniformly at random. Let L∗ := minθ∈Rd L(θ)
be the minimum of training loss. Let Z(θ) be the distribution of gradient noise ∇ℓ(θ; ξ)−∇L(θ),
which is a random variable that depends on θ. We define Σ(θ) := Ez∼Z(θ)[zz

⊤] as the noise
covariance matrix of gradients at θ.

SGD and Adam. SGD is an iterative method that starts from an initial point θ0 and updates the
parameters as θk+1 := θk − η∇ℓk(θk) for all k ≥ 0, where η is the learning rate, ℓk(θ) is the loss
function for the data sample ξk sampled at step k. Adam [28] is a popular optimizer that updates the
parameters as:

mk+1 := β1mk + (1− β1)∇ℓk(θk)

vk+1 := β2vk + (1− β2)∇ℓk(θk)
⊙2

θk+1,i := θk,i − η
mk+1,i√
vk+1,i + ϵ

for all i ∈ [d].

Note that in practice, it is common to normalize mk+1 and vk+1 by 1 − βk+1
1 and 1 − βk+1

2

respectively before the division. However, this normalization quickly becomes neglectable when k is
large, so we ignore it for simplicity.
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SDE First-Order Approximation For SGD. A stochastic differential equation (SDE) is an
extension of an ordinary differential equation that incorporates random perturbations, and is widely
used to model systems under the influence of noise. An SDE on Rd takes the form dθt = b(θt)dt+
σ(θt)dWt where b : Rd → Rd is the drift vector field, σ : Rd → Rd×m is the diffusion matrix, and
{Wt}t≥0 is an m-dimensional Wiener process. A line of works [24, 30, 31, 33, 34, 52] used the
following SDE to serve as a first-order approximation of SGD, which we refer to as the conventional
SDE:

dθt = −∇L(θt)dt+
√
ηΣ1/2(θt)dWt,

where the stochastic integral is taken in the Itô sense. For an introduction to Itô calculus, see Oksendal
[46]. Later, Malladi et al. [42] extended this type of SDE to Adam. Besides these conventional SDEs,
below we introduce another type of SDE, slow SDE, that can more explicitly capture the implicit
bias of SGD near a manifold of minimizers.

Manifold Assumption. Before going into the slow SDE, we introduce the manifold assumption.
Previous studies [17, 29] have found that low-loss solutions are in fact connected to each other, a
phenomenon known as mode connectivity. Wen et al. [56] provided empirical evidence that the
training dynamics of language model training usually happen in a structure similar to a river valley,
where many low-loss solutions lie in the bottom of the valley. Motivated by these observations, many
previous works [14, 19, 35, 37] assumed that the minimizers of the training loss function are not
isolated points but connected and form a manifold Γ:

Assumption A.1. Γ is C∞-smooth, (d−m)-dimensional submanifold of Rd, where any ζ ∈ Γ is
a local minimizer of L. For all ζ ∈ Γ, rank(∇2L(ζ)) = m. Additionally, there exists an open
neighborhood of Γ, denoted as U , such that Γ = argminθ∈U L(θ).

With this assumption, if an optimization process converges and the learning rate η is sufficiently
small, then the process will be trapped near some minimizer manifold which we denote by Γ.

Slow SDE. A line of works [3, 8, 35] studied the dynamics of SGD near the manifold Γ and showed
that SGD has an implicit bias towards flatter minimizers on Γ. This effect cannot be directly seen
from conventional SDEs, so Li et al. [35] derived a new type of SDE approximation, called slow
SDE, that can explicitly capture this effect. See Appendix C for an illustration of the difference
between conventional SDEs and slow SDEs. Here we introduce the slow SDE for SGD following the
formulation in Gu et al. [21]. For ease of presentation, we define the following projection operators
Φ, Pζ for points and differential forms respectively. Consider the gradient flow dx(t)

dt = −∇L(x(t))
with x(0) = x, and fix some point θnull /∈ Γ, we define the gradient flow projection of any x,
Φ(x), as limt→+∞ x(t) if the limit exists and belongs to Γ, and θnull otherwise. It can be shown
by simple calculus [35] that ∂Φ(ζ) equals the projection matrix onto the tangent space of Γ at ζ.
We decompose the noise covariance Σ(ζ) for ζ ∈ Γ into two parts: the noise in the tangent space
Σ∥(ζ) := ∂Φ(ζ)Σ(ζ)∂Φ(ζ) and the noise in the rest Σ♢(ζ) := Σ(ζ)−Σ∥(ζ).

For any ζ ∈ Γ, matrix A and vector b, we use Pζ(AdWt + bdt) to denote Φ(ζ + AdWt +
bdt)−Φ(ζ), which equals ∂Φ(ζ)AdWt+

(
∂Φ(ζ)b+ 1

2∂
2Φ(ζ)[AA⊤]

)
dt by Itô calculus. Pζ can

be interpreted as projecting an infinitesimal step from ζ, so that ζ after taking the projected step does
not leave the manifold Γ. Now we are ready to state the SDE for Local SGD.
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Definition A.1 (Slow SDE for SGD). Given η > 0 and ζ0 ∈ Γ, define ζ(t) as the solution of the
following SDE with initial condition ζ(0) = ζ0:

dζ(t) = Pζ

(
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸
(a) diffusion

− 1

2
∇3L(ζ)

[
Σ̂♢(ζ)

]
dt︸ ︷︷ ︸

(b) drift

)
. (2)

Here Σ̂♢(ζ) is defined as
∑

i,j:λi ̸=0∨λj ̸=0
1

λi+λj

〈
Σ♢(ζ), viv

⊤
j

〉
viv

⊤
j , where {vi}di=1 is an orthonor-

mal eigenbasis of ∇2L(ζ) with corresponding eigenvalues λ1, . . . , λd.

Interpretation of the Slow SDE for SGD: Semi-gradient Descent This SDE on the minimizer
manifold Γ splits naturally into a diffusion term Pζ

(
Σ

1/2
∥ (ζ) dWt

)
injecting noise in the tangent

space, and a drift term −1
2 Pζ

(
∇3L(ζ)

[
Σ̂♢(ζ)

]
dt
)

that can be seen as the negative semi-gradient of
the following sharpness measure:

µ(ζ) :=
〈
∇2L(ζ), Σ̂♢(ζ)

〉
.

Here we use the word “semi-gradient” [4, 43] because it is not exactly the gradient of µ(ζ) but
only the gradient with respect to the first argument of the inner product. More specifically, define
µ(ζ1, ζ2) :=

〈
∇2L(ζ1), Σ̂♢(ζ2)

〉
, then the drift term is essentially −1

2 ∇ζ1µ(ζ1, ζ2)|ζ1=ζ,ζ2=ζ

after projecting onto the tangent space of Γ at ζ. In other words, SGD near manifold takes semi-
gradients to minimize the implicit regularizer ⟨∇2L(ζ), Σ̂♢(ζ)⟩ but pretend Σ̂♢(ζ) to be fixed, i.e.
ignore the dependency of Σ̂♢(ζ) on ζ.

Example: Noisy Ellipse. We provide a toy example to illustrate the phenomenon described
by the slow SDE for SGD: there are two parameters x, y and an elliptical loss with label noise

L(x, y) = 1
2

(
(x+y)2

2a2
+ (y−x)2

2b2
− 1− δ

)2
. The label noise δ is sampled uniformly from {−0.5, 0.5}

at every step. As depicted in Fig. 4, SGD moves towards flatter minimizers after reaching the manifold.
The same phenomenon can be observed for Adam, but Adam converges to a different minimizer that
is closer to the axis (or, “sparser” in the parameter space). Understanding the difference between
SGD and Adam is the main focus of this paper.

Appendix B. Related Work
Implicit Bias of SGD. Parallel work on implicit gradient regularization (IGR) derives higher-order
terms for full-batch GD [2] and extends to Adam [5, 6]. While Cattaneo et al. [6] argued that
Adam anti-regularizes sharpness when β1 < β2, our O(η−2)-time SDE analysis shows Adam still
regularizes sharpness under these settings, overturning their conclusion.

Implicit Bias of Adam. Despite Adam’s widespread use, its implicit bias remains underexplored.
Qian and Qian [47] and Xie and Li [58] analyzed AdaGrad and AdamW, but these techniques do not
apply directly to Adam. Wang et al. [54] showed Adam’s regularizer matches SGD’s under restrictive
gradient-magnitude assumptions, and Zhang et al. [59] treated only linearly separable data, limiting
practical relevance.

Slow SDE Approximation. To capture long-term behavior, we adopt the slow SDE technique of
Li et al. [35] and Gu et al. [20]. Standard SDE approximations (6, 32, 34, 42) focus on the Õ(η−1)
convergence phase and fail on the manifold. In contrast, slow SDEs peel off convergence to track the
O(η−2) manifold dynamics accurately.
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Appendix C. Illustration of the Difference between Conventional SDE and Slow SDE

In this section, we illustrate the difference between conventional SDE and slow SDE. In Fig. 8,
let Γ denotes a 1D manifold, then the discrete iteration of the optimization process can be seen as
successive steps (orange, Fig. 5) that starts from A, first converge to some point B in Γ and then
move along Γ to C.

The main intuition behind slow SDE is that the whole process A → B → C can actually be
decomposed into two motions: a convergence motion A → H (dashed, Fig. 7) and an implicit
regularization motion H → B → C. The convergence motion is fast and dominates the dymanics
during the convergence phase, but it fades out as soon as convergence phase ends; meanwhile the
slow, implicit regularization motion starts to dominate.

The conventional SDE approximates the convergence phase only, whose one unit time corre-
sponds to Õ(η−1) steps (Fig. 6). In contrast, slow SDE manages to separate the slow implicit
regularization motion from the fast convergence, and approximate the implicit regularization only
(Fig. 7).

Remark. The projection methods (which project A → B → C to H → B → C) vary in the
analysis of different optimizers. Intuitively, the projection should reflect the converging direction
driven by a clean (without noise) and continuous version of the optimizer. In SGD the projection
is gradient flow; but in Adam we need to consider the pre-conditioning effect caused by 1/

√
v + ϵ,

so we add an SDE to track the pre-conditioner, and define a pre-conditioned gradient flow for
projection.

Appendix D. Adam’s Provable Generalization Benefit with Label Noise
In this section, we will prove that under label noise setting, the implicit regularizer of Adam reduces
to a simpler form that aligns better with sparsity regularizations, and then verify experimentally.

D.1. Reduction of Adam’s Implicit Regularizer with Label Noise
On an ℓ2-regression task on dataset {zi, yi}ni=1, adding label noise means adding a noise sampled
i.i.d. from {±δ} to any true label y before feeding forward to the network. A crucial property of
the label noise setting is that when θ ∈ Γ, Σ ≡ α∇2L for some constant α [3], which simplifies
the setting and has been largely used [3, 8, 19, 35] to analyze the implicit bias of SGD and other
optimizers.

Theorem D.1 (Adam’s Implicit Bias with Label Noise, Stated Informally). Adam’s SDE becomes
an ODE under the label noise setting, and when ϵ is small, the fixed point of this ODE must satisfy
∇tr(Diag(H)1/2) = 0.

Proof Sketch. Under label noise setting, SDE Eq. (1) will be greatly simplified. In fact, the
diffusion term of the slow SDE would equal zero, and the drift term could be simplified to{

dv(t) = c (V (Σ(ζ))− v) dt,
dζ(t) = −α

2S(v)∇
3L(ζ) [S(v)] dt, (3)

the proof of which is deferred to Aappendix. With our SDE becoming an ODE, we consider the
fixed point of this ODE, which should satisfy v = V (Σ(ζ)) and ∇3L(ζ) [S(v)] = 0 since S(v)
is invertible. Denote H = ∇2L(ζ) = Σ(ζ)/α. In the case of Adam, v = diag(Σ) = α ·
diag(H), and S(v) = Diag(1/(

√
v + ϵ)). Then we integrate by parts and obtain ∇3L(ζ) [S(v)] =

∇ [⟨H, S(v)⟩]−∇ (S(v)) [H]. A straightforward simplification gives the result.
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The proof of this theorem also inspires us of a simple way to directly adjust the implicit bias of
Adam. Specifically, for any λ ∈ [0, 1), we define AdamE-λ as an optimizer identical with Adam,
except that S(v) = Diag(1/(v⊙λ + ϵ)). Obviously AdamE-12 reduces to Adam and all AdamE-λ’s
belong to the AGM framework. To compute the implicit bias of AdamE-λ with label noise, we can
apply the same method as in Theorem D.1, and the result is stated below.

Theorem D.2 (AdamE-λ’s Implicit Bias with Label Noise, Stated Informally). For λ ∈ [0, 1),
AdamE-λ’s SDE becomes an ODE under the label noise setting, and when ϵ is small, the fixed point
of this ODE must satisfy ∇tr(Diag(H)1−λ) = 0.

Theorem D.2 indicates that tuning the exponent of the second-order moment in adam will exactly
result in tuning the exponent of diag(∇2L(ζ)) in the implicit bias. When λ = 0, the implicit bias
reduces to that of SGD, and AdamE also gets rid of the effect of second-order moments and reduces
to SGD with momentum, which coincides perfectly. Next, we will relate the implicit bias with
sparsity and compare the performance of Adam, AdamE and SGD in a simple experimental setup.

D.2. Problem Setup: the Diagonal Net
In this section, we adopt the diagonal linear network (diagonal net) setting proposed by Woodworth
et al. [57] as an experimental setting, which is also used by Li et al. [35] to study the implicit bias of
SGD.

Setting (Diagonal Net with Label Noise): Let w∗ ∈ Rd be an unknown κ-sparse ground truth
vector. Let {(zi, yi)}i∈[n] be the training dataset where each zi

i.i.d.∼ Unif {±1}d, and each yi is
generated by ⟨zi,w∗⟩. Our parameter is defined as θ =

(
u
v

)
∈ R2d. For any function g defined on

R2d, we write g(θ) and g(u,v) exchangeably. The loss function is defined as:

L(θ) = 1

n

n∑
i=1

Li(θ), where Li(θ) =
1

2

(〈
zi,u

⊙2 − v⊙2
〉
− yi

)2
where a label noise is added to the true label y during training. This setting can be viewed as
using estimation ŵ = u⊙2 − v⊙2 to approximate the ground truth vector w∗ of a linear regression
task. Note that d ≫ n here so the model is highly overparameterized: Theoretically, Li et al. [35]
proved that n = O(κ ln d) is enough for SGD to recover ground truth, and we will later show
experimentally that less than 1000 training pairs is required for both Adam and SGD to achieve a
low test loss when d = 10000. The manifold is defined as wherever zero train loss is achieved, i.e.
Γ =

{
θ|⟨zi,u⊙2 − v⊙2⟩ = yi,∀i ∈ [n]

}
.

This setting allows us to relate the implicit bias directly to the sparsity of the output. It’s straight-
forward to verify that ∇2L(θ) = 4

n

∑n
i=1

(
zi⊙u
−zi⊙v

)(
zi⊙u
−zi⊙v

)⊤ when θ ∈ Γ, so diag(∇2L(θ)) =

4θ⊙2. Then note the following property:

Lemma D.1. Let some optimum θ satisfy that θ ∈ argminθ′∈Γ tr(Diag(H)1/2), then we also have
θ ∈ argminθ′∈Γ

∥∥u⊙2 − v⊙2
∥∥
1/2

. Similarly, for any e0 ∈ (0, 1], if θ ∈ argminθ′∈Γ tr(Diag(H)e0),

then θ ∈ argminθ′∈Γ
∥∥u⊙2 − v⊙2

∥∥
e0

.

This is because only ŵ = u⊙2 − v⊙2 matters in the evaluation of train loss, so if ui ̸= 0 and
vi ̸= 0 for some i, then we can decrease the absolute value of both ui and vi while keeping u2i − v2i
unchanged, and we will get another optimum with smaller tr(Diag(H)e0). Thus ui = 0 or vi = 0
for any i. When this holds, we have tr(Diag(H)e0) = 4e0∥θ⊙2e0∥1 =

(
4 ∥ŵ∥e0

)e0 . Therefore,
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implicitly regularizing tr(Diag(H)e0) can be viewed as regularizing the ℓe0 norm of the output:
Adam regularizes ℓ0.5, SGD regularizes ℓ1, and AdamE-λ regularizes ℓ1−λ norm of the output. Just
as lasso (ℓ1) regression’s advantange over ridge (ℓ2) regression in sparse ground truth recovery, we
argue that Adam and AdamE with large λ’s will recover ground truth more efficiently than SGD, and
AdamE with small λ’s on this task.

D.3. Result: Adam’s Implicit Regularizer Facilitates Sparse Ground-truth Recovery

We plot the results of the experiment in Fig. 11. We gradually increase the number of training points,
and train Adam, SGD and AdamE with different configurations until convergence. We identify a
training configuration as ‘recovered the groundtruth’ when the test loss ends up below 1. As depicted
in Fig. 9, Adam’s test loss plunges towards zero around ntrain = 420, while SGD’s test loss decreases
gradually with the increase of training data. As an attempt to interpolate between different implicit
biases, we also train AdamE with different λ’s. Fig. 10 shows that AdamE-0.001’s performance is
similar to that of SGD, and all AdamE with larger λ’s exhibit the same sudden recovery behavior as
Adam.

Takeaway. In the diagonal net setting, Adam’s unique implicit bias aligns better with the funda-
mental target of reducing the sparsity of the model’s output, which facilitates the recovery of the
sparse ground truth compared to SGD, and this improvement mainly arises from the fact that Adam
takes the second order moment into consideration. Starting from SGD, even if we introduce the
second-order moment in the preconditioner for a little bit, it could result in significant assistance in
sparse ground truth recovery.

Appendix E. Matrix Factorization: Adam Implicitly Regularizes Sharpness
Differently

The diagonal-net experiments in Appendix D showed that Adam’s implicit bias towards sparsity
improves generalization relative to SGD. We now turn to supply the potentially negative impact of
Adam’s implicit bias in another controlled setting: deep matrix factorization with label noise,
where the relevant implicit regularizers are analytically tractable. In this task, Adam is expected to
minimize tr(Diag(H)1/2) rather than tr(H). Leveraging existing theory, we therefore predict that
(i) Adam will converge to a solution with tr(H) larger—but tr(Diag(H)1/2) smaller—than SGD’s
solution, and (ii) once training reaches the interpolation regime, Adam will generalize worse than
vanilla SGD in the presence of label noise. Our experiments confirm both predictions (Figure 12).

E.1. Problem setup

Consider an L-layer linear network with parameters W = (W1, . . . ,WL), where Wi∈Rdi×di−1

and di ≥min{d0, dL} for all i. Let M∗ ∈RdL×d0 be a rank–r ground–truth matrix, and observe
n i.i.d. linear measurements {(Ai, bi)}ni=1 generated by bi = ⟨Ai,M

∗⟩. With label noise and
mini–batch size B the empirical loss at step t is

Lt(W ) =
1

B

∑
i∈Bt

(
⟨Ai,WL· · ·W1⟩ − bi + ξt,i

)2
,

where Bt is a fresh batch of size B, and ξt,i ∼ N (0, σ2) are independent across (t, i).
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Implicit regularization. With small learning rates and additive label noise, SGD asymptotically
minimizes tr(H) once it reaches the zero–loss manifold. In matrix factorization, minimizing tr(H)
is nearly equivalent to minimizing the nuclear norm of the recovered matrix [18], which promotes low
rank and hence better generalization when M∗ is low rank. Adam, however, implicitly minimizes
tr(Diag(H)1/2); it therefore converges to a different point, typically with larger tr(H) and reduced
generalization.

E.2. Results

Our SGD setup follows Section 7 of Gatmiry et al. [18]. For Adam, we use the standard hyperparam-
eters β1 = 0.9, β2 = 0.999, and learning rate 10−3; all other settings are identical to SGD.

Figure 12 (top row) shows the evolution of curvature metrics. Adam drives tr(Diag(H)1/2)
sharply downward while tr(H) remains high and even non-monotone, confirming that Adam does
not target overall Hessian trace. Correspondingly, the bottom row shows that Adam attains a higher
test MSE despite identical training error—evidence that its implicit bias is detrimental in this setting.

Takeaway. In deep matrix factorization with label noise, Adam’s preference for minimizing the
diagonal curvature leads it to sharper—and less generalizable—solutions than SGD, reinforcing that
Adam’s implicit regularization differs qualitatively from SGD’s and can hurt performance when
overall curvature matters.

Appendix F. Formal Statements of the Main Results

In this section, we give the formal versions of the main results stated in Section 2, where we presented
the two principal theorems:

1. The AGM iterates converge to a neighborhood of the manifold (Theorem 2.2);

2. Moreover, once the iterates enter this neighborhood, their dynamics over O(η−2) discrete
steps can be accurately tracked by a slow SDE (Theorem 2.1).

Recall that in the AGM framework, the transition from θk to θk+1 is defined as:

mk+1 := β1mk + (1− β1)∇ℓk(θk)

vk+1 := β2vk + (1− β2)V
(
∇ℓk(θk)∇ℓk(θk)

⊤
)

θk+1 := θk − ηS(vk+1)mk+1.

Before formalizing these two results, we introduce some technical assumptions first.

Assumption F.1. L is C5-smooth on Rd and is bounded from below, i.e. L∗ = infθL(θ) > −∞.

Assumption F.2. L is ρ-smooth, i.e. ∀θ1,θ2 ∈ Rd:

∥∇L(θ1)−∇L(θ2)∥2 ≤ ρ∥θ1 − θ2∥2

Assumption F.3. We assume that all ∇L(θ) and ∥zk∥2 are L2-bounded; Specifically, there exists
some constant R s.t. ∀θ and ∀k ∈ N, ∥∇L(θ)∥2 ≤ R and ∥∇ℓk(θ)∥2 ≤ R.
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Since the gradients and gradient noises are assumed to be bounded and S and V both satisfy
Lipschitz-ness, we reasonably assume that all outputs from S, S−1 and V are bounded. Specifically,
denote R0, R1 as constants satisfying S−1(v) ⪯ R0 and v ⪯ R1 (i.e. each entry of v is smaller than
R1) for all v in the iteration. For all algorithms listed in Table 1, setting R1 = R2 is enough. Next,
we add some additional assumptions on functions S and V that are also met by all optimizers in the
AGM framework:

Assumption F.4. For any g ∈ Rd, each entry of V (gg⊤) is non-negative.

Assumption F.5. The function S is C4-smooth on {v : 0 ⪯ v ⪯ R1}.

Note that S is also Lipschitz from this assumption, since {v : 0 ⪯ v ⪯ R1} is a compact set,
and the derivative of S is bounded. Lastly, since η = o(1) but 1− β1 = O(1), we add a reasonable
assumption as follows, which helps bound the convergence rate:

Assumption F.6. Define γ := 1− 2ηµ(1−β1)
R0

. We assume that γ ≥ β1

0.95 .

Note that in real-world applications, β1 is usually set to 0.9 in the area of NLP or 0.95 in CV,
while η is usually smaller than 1e− 2, so our assumption aligns with common practice.

Theorem F.1 (Convergence to a Near–Manifold Neighborhood). Under Assumption F.2, Assump-
tion F.3, and Assumption F.6, let Γ be a local minimizer manifold. There exists a constant ϵ > 0,
such that with learning rate η, for any starting point of AGM θ0 ∈ Γϵ and any δ ∈ (0, 1), it holds for
some K = O( 1η log

1
η ) with probability at least 1− δ that

L(θK)− L∗ = O(η log
1

ηδ
),

∥θK − ΦSK
(θK)∥2 = O(

√
η log

1

ηδ
).

The above theorem guarantees that the AGMs iterate converge to a neighborhood of the manifold.
Building on this result, we now proceed to formally state our main SDE approximation theorem.

Theorem F.2 (Slow SDE tracks AGMs’ trajectory in a weak approximation sense). Under conditions
in Theorem F.1, Assumption A.1–2.2, Assumption F.1, and Assumption F.5, we denote by (θ0,v0) the
state reached by AGMs by Theorem F.1 such that

∥θK − ΦSK
(θK)∥2 = O(

√
η log

1

ηδ
).

Then, let T > 0 be a constant and let X(t) = (ζ(t),v(t)) be the solution to Equation (1) with initial
condition:

ζ(0) = Φ
(
θ0
)
∈ Γ, v(0) = v0 ∈ Rd,

and we define that the parameters of Adam as X̄t := (ΦSt(θt),vt). For any C3-smooth function
g(θ),

max
0≤t≤ T

η2

∣∣∣E[g (X̄t

)
]− E

[
g
(
X(tη2)

)
]
∣∣∣ = Õ

(
η0.25

)
,

where Õ(·) hides logarithmic factors and constants that are independent of η but may depend on
g(θ).
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Appendix G. Constructing the Working Zones

Note that it is generally hard to ensure that a pre-conditioned gradient flow defined by dθ(t)
dt =

−S∇L(θ(t)) will converge to some particular minimizer manifold, but it becomes possible when
we constrain the discussion inside some small neighborhood of a manifold. So in this subsection, we
assume Γ to be some local minimizer manifold, and construct “working zones” that are close enough
to Γ such that iterations inside the working zones will be captured by the manifold and obtain certain
properties that support the analysis of slow SDE.

Definition G.1 (Polyak-Łojasiewicz Condition). For some µ > 0, we say some function L : Rd → d
is µ-Polyak-Łojasiewicz condition (abbreviated as µ-PL), if and only if ∀θ ∈ Rd:

2µ(L(θ)− L∗) ≤ ∥∇L(θ)∥22.

Definition G.2 (Neighborhood of a Manifold). For some manifold Γ, the neighborhood of Γ with
radius ϵ, denoted by Γϵ is the set of points θ such that ∃ζ ∈ Γ

∥θ − ζ∥2 ≤ ϵ.

Lemma G.1. Assume that C1 < C2 are two positive constants, and L be a function that satisfies both
ρ-smoothness and µ-PL. For any matrix S satisfying C1I ⪯ S ⪯ C2I , consider the preconditioned
gradient flow dθ(t)

dt = −S∇L(θ(t)) starting at θ(0) = θ0. For any T > 0, we have ∥θ0−θ(T )∥2 ≤
2C2√
2µC1

√
L(θ0)− L∗.

Proof Since C1I ⪯ S ⪯ C2I , we have ∥S∇L(θ)∥2 ≤ C2∥∇L(θ)∥2 and ⟨∇L(θ),S∇L(θ)⟩ ≥
C1∥∇L(θ)∥22 for any θ, which implies

⟨∇L(θ),S∇L(θ)⟩ ≥ C1

C2
∥∇L(θ)∥2∥S∇L(θ)∥2.

Then for any t < T we have

d

dt

√
L(θ(t))− L∗ =

1

2
(L(θ(t))− L∗)−

1
2 ·
〈
∇L(θ(t)), dθ(t)

dt

〉
≤ − C1

2C2
(L(θ(t))− L∗)−

1
2 · ∥∇L(θ(t))∥2∥

dθ(t)

dt
∥2

≤ − C1

2C2
(L(θ(t))− L∗)−

1
2 ·
√

2µ(L(θ(t))− L∗)∥dθ(t)
dt

∥2

= −
√
2µC1

2C2
∥dθ(t)

dt
∥2.

Integrating both sides gives us

√
L(θ0)− L∗ ≥

√
2µC1

2C2

∫ T

0
∥dθ(t)

dt
∥2

≥
√
2µC1

2C2
∥θ0 − θ(T )∥2.

The above equations complete the proof.
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We construct nested working zones (Γϵ1 ,Γϵ2 ,Γϵ3 ,Γϵ4), where we denote the minimal distance
of the minimizaer manifold Γ and any other local minimizer manifold as ϵ4, i.e. no other minimizer
manifolds exist in Γϵ4 , the ϵ4-neighborhood of Γ. Then we give the following lemma with respect to
Γϵ1 ,Γϵ2 and Γϵ3 .

Lemma G.2 (Working Zone Lemma). There exist positive constants ϵ1, ϵ2, ϵ3 such that ϵ1 < ϵ2 <
ϵ3 < ϵ4 and Γϵ1 ,Γϵ2 ,Γϵ3 satisfy the following properties:

1. L is µ-PL in Γϵ3 for some µ > 0.

2. For any matrix S ∈ Rd×d such that 1
R0

I ⪯ S ⪯ 1
ϵI , any gradient flow preconditioned by S

and starting from Γϵ2 will converge to some point in Γ.

3. If we view ΦS(v)(θ) as a function defined on the support

X ϵ2 := {(v,θ) : 0 ⪯ v ⪯ R1,θ ∈ Γϵ2} ,

then ΦS(v)(θ) is C4 on X ϵ2 .

4. For any θ ∈ Γϵ1 , the ϵ1-neighborhood of θ belongs to Γϵ2 .

Proof By Lemma H.3 in Lyu et al. [38], there exists an ϵ3-neighborhood of Γ where L is µ-PL for
some µ > 0. WLOG we can let ϵ3 < ϵ4. The existence of ϵ1 is trivial once ϵ2 is determined: Simply
set ϵ1 = ϵ2/2. So we focus on the construction of Γϵ2 below.

Let C1 = 1/R0 and C2 = 1/ϵ. Let ϵ̃2 be some constant such that ϵ̃2 +
√

ρ
µ · C2

C1
ϵ̃2 < ϵ3. For any

starting point θ0 ∈ Γϵ̃2 , and any preconditioning matrix S satisfying C1I ⪯ S ⪯ C2I , assume on
the contrary that the preconditioned gradient flow starting from θ(0) = θ0 will leave Γϵ3 at some
finite time. Then let T = inf {t : θ(t) /∈ Γϵ3} < ∞. Using Lemma G.1 and combining the µ-PL

condition, we conclude that ∥θ0 − θ(T )∥2 ≤ 2C2√
2µC1

√
L(θ0)− L∗ ≤ 2C2√

2µC1
·
√

µ
2∥θ0 − θ∗∥2 =√

ρ
µ · C2

C1
∥θ0 − θ∗∥2 for any θ∗ ∈ Γ. Hence θ(T ) ∈ Γϵ3 , a contradition.

Define a function f(v,θ) : R2d → R2d as

f(v,θ) = (v,−S(v)∇L(θ)),

then f is C4 on
{
(v,θ) : 0 ⪯ v ⪯ R1,θ ∈ Γr̃

}
. Let r̃ be a constant such that r̃ > ϵ̃2. Substituting

f0 = f , r =
√
r̃2 + d ·R2

1, x0 = (v0,θ0) such that each entry of v0 is R1/2 and θ0 be arbitrary
point in Γ, and B = {(v,θ) : 0 ⪯ v ⪯ R1, ∥θ − θ0∥2 ≤ r̃} into Lemma B.4 in Duistermaat and
Kolk [12], we conclude that there exists some constant δ such that the mapping γδ(v,θ) defined by:

θ(0) = θ,
dθ(t)

dt
= −S(v)∇L(θ(t)), γδ(v,θ) = θ(δ)

is well-defined and C4 on {(v,θ) : 0 ⪯ v ⪯ R1, ∥θ − θ0∥2 ≤ r̃}. Note that we require a slight
modification of the original proof since B is now a factorization of a hypercube and a ball instead of
a ball, but the convexity of B is preserved, hence the modification is trivial.

Note that the constant δ can be independent with θ0 since ∥∇L∥2 and ∥∇2L∥2 can be uniformly
bounded. Take ϵ2 = 0.9ϵ̃2, then for any θ ∈ Γϵ2 , a small open neighborbood of θ stays in the
ϵ̃2-neighborhoods of two different points on Γ. Taking union of all θ0 ∈ Γ, we conclude that γδ is C4

on X ϵ2 . Finally, we use Theorem 6.4 in Falconer [13] to conclude that ΦS(v)(θ) is C4 on X ϵ2 .
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Appendix H. Proof of the Convergence of AGMs

In this section, we aim to prove Theorem 2.2. First, we introduce some necessary notations.
Recall that γ = 1− 2ηµ(1−β1)

R0
. In this part, we will prove that the loss value of Adam converges

to Õ(γK + η) within K steps with high probability. If we substitute K = Θ
(
1
η log

1
η

)
, this will

recover Theorem 2.2; However, this convergence analysis works for any K = O(poly(1/η)), and
substituting K = Θ(η−2) will give us a high probability guarantee that the iteration stays near
manifold in the whole scope of our analysis.

Also, we introduce some necessary assumptions used in our proof. To start with, we prove that
the descent direction of each step does not veer off the direction of a preconditioned gradient descent,
and the mismatch term can also be constrained by a list of martingales. After that, we can ensure
a decay in the loss function every step, with some small perturbations that can be dealt with using
Azuma-Hoeffding’s inequality.

Lemma H.1. Define ṽk := β2vk−1+(1−β2)Ek−1[V
(
gk−1g

⊤
k−1

)
]. There exist constants C1a, C1b

such that for any k ≥ 1,

⟨∇L (θk−1) ,Uk⟩ = ∇L (θk−1)
⊤ S(ṽk)∇L (θk−1)− Yk −Xk,

where Yk and Xk are two Fk-measurable random variables such that:

1. |Yk| ≤ C1a∥∇L(θk−1)∥2 · η2 a.s.

2. |Xk| ≤ C1b∥∇L(θk−1)∥2 a.s., and Ek−1[Xk] = 0.

Proof We first peel the S(ṽk) part off the S(vk) term:

⟨∇L (θk−1) ,Uk⟩ = ⟨∇L (θk−1) , S(vk)gk−1⟩
= ⟨∇L (θk−1) , S(ṽk)gk−1⟩+ ⟨∇L (θk−1) , (S(vk)− S(ṽk)) gk−1⟩ .

Define Yk as Yk = −⟨∇L (θk−1) , (S(vk)− S(ṽk)) gk−1⟩, then it holds almost surely that |Yk| ≤
∥∇L(θk−1)∥2∥ (S(vk)− S(ṽk)) gk−1∥2. Since S is Lipscitz, V is linear and

∥ṽk − vk∥2 = (1− β2)∥Ek−1

[
V
(
gk−1g

⊤
k−1

)]
− V

(
gk−1g

⊤
k−1

)
∥2,

we conclude that |Yk| ≤ C1a∥∇L(θk−1)∥2 · η2 a.s. for some constant C1a. The rest term
⟨∇L (θk−1) , S(ṽk)gk−1⟩ can also be decomposed into a deterministic part and a random part
as:

⟨∇L (θk−1) , S(ṽk)gk−1⟩ = ⟨∇L (θk−1) , S(ṽk) (∇L(θk−1) + zk−1)⟩

= ∇L (θk−1)
⊤ S(ṽk)∇L (θk−1) +

〈
zk−1, S(ṽk)

⊤∇L (θk−1)
〉
.

Now we only need to let Xk =
〈
zk−1, S(ṽk)

⊤∇L (θk−1)
〉
. It’s easy to see that Ek−1[Xk] = 0 and

|Xk| ≤ C1b∥∇L(θk−1)∥2 a.s. for some constant C1b, which completes the proof.

Lemma H.2 (Descent Lemma of the AGM Framework). For any k ≥ 1 it holds that

L(θk)− L(θk−1) ≤ C2η
2 − η(1− β1)

k∑
i=1

βk−i
1 ⟨∇L(θi−1),Ui⟩

for some constant C2.
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Proof From the smoothness of L we have

L(θk)− L(θk−1) ≤ −⟨∇L(θk−1), ηuk⟩+
ρη2

2
∥uk∥22.

If k = 1, then mk = (1− β1)gk−1, so uk = (1− β1)Uk, and the statement trivially holds as long as
C2 ≥ ρ

2∥uk∥22. If k > 1, then the −⟨∇L(θk−1),uk⟩ term can be expanded as

−⟨∇L(θk−1),uk⟩ = −⟨∇L(θk−1), S(vk)mk⟩
= −⟨∇L(θk−1), S(vk) (β1mk−1 + (1− β1)gk−1)⟩
= −β1 ⟨∇L(θk−1), S(vk)mk−1⟩ − (1− β1) ⟨∇L(θk−1), S(vk)gk−1⟩
= −β1 ⟨∇L(θk−2), S(vk−1)mk−1⟩ − (1− β1) ⟨∇L(θk−1),Uk⟩
− β1 ⟨∇L(θk−1)−∇L(θk−2), S(vk−1)mk−1⟩
− β1 ⟨∇L(θk−1), (S(vk)− S(vk−1))mk−1⟩

≤ −β1 ⟨∇L(θk−2), S(vk−1)mk−1⟩ − (1− β1) ⟨∇L(θk−1),Uk⟩
+ β1∥∇L(θk−1)−∇L(θk−2)∥2∥S(vk−1)mk−1∥2
+ β1∥∇L(θk−1)∥2∥ (S(vk)− S(vk−1))mk−1∥2.

Note that a single step of update on θ and v is small since

θk − θk−1 = ηuk,

vk − vk−1 = β2vk−1 + (1− β2)V
(
gk−1g

⊤
k−1

)
− vk−1

= (1− β2)
(
V
(
gk−1g

⊤
k−1

)
− vk−1

)
which implies that ∥θk − θk−1∥2 = O(η) and ∥vk − vk−1∥2 = O(η2). We then leverage the
smoothness of ∇L and S to conclude that there exists some constant C̃2 such that

−⟨∇L(θk−1),uk⟩ ≤ −β1 ⟨∇L(θk−2),uk−1⟩ − (1− β1) ⟨∇L(θk−1),Uk⟩+ β1C̃2η.

Giving that u0 = 0, we can expand this formula iteratively as

−⟨∇L(θk−1),uk⟩ ≤ −β1 ⟨∇L(θk−2),uk−1⟩ − (1− β1) ⟨∇L(θk−1),Uk⟩+ β1C̃2η

≤ −β2
1 ⟨∇L(θk−3),uk−2⟩ − β1(1− β1) ⟨∇L(θk−2),Uk−1⟩

− (1− β1) ⟨∇L(θk−1),Uk⟩+ β1C̃2η + β2
1C̃2η

≤ · · ·

≤ −(1− β1)

k∑
i=1

βk−i
1 ⟨∇L(θi−1),Ui⟩+ βk−i+1

1 C̃2η

≤ β1
1− β1

C̃2η − (1− β1)

k∑
i=1

βk−i
1 ⟨∇L(θi−1),Ui⟩ .
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Plugging in, we get

L(θk)− L(θk−1) ≤
β1

1− β1
C̃2η

2 +
ρη2

2
∥uk∥22 − η(1− β1)

k∑
i=1

βk−i
1 ⟨∇L(θi−1),Ui⟩

≤ C2η
2 − η(1− β1)

k∑
i=1

βk−i
1 ⟨∇L(θi−1),Ui⟩ ,

for some constant C2.

Lemma H.3. Recall that γ = 1− 2ηµ(1−β1)
R0

. For any k ≥ 0, we have:

L(θk)− L∗ ≤ γk (L(θ0)− L∗) + η(1− β1)
k∑

i=1

Xi

k∑
j=i

γk−jβj−i
1 + C3η

for some constant C3.

Proof We start from Lemma H.2 and plug in Lemma H.1:

L(θk)− L(θk−1) ≤ C2η
2 − η(1− β1)

k∑
i=1

βk−i
1 ⟨∇L(θi−1),Ui⟩

= C2η
2 − η(1− β1)

k∑
i=1

βk−i
1

(
∇L (θi−1)

⊤ S(ṽi)∇L (θi−1)− Yi −Xi

)
.

Note that S(ṽi) ⪰ 1
R0

, so ∇L (θi−1)
⊤ S(ṽi)∇L (θi−1) ≥ 1

R0
∥L (θi−1) ∥22 for any i. Combining

with the µ-PL property ∥L (θi−1) ∥22 ≥ 2µ (L(θi−1)− L∗), we have

L(θk)−L(θk−1) ≤ C2η
2− 2ηµ(1− β1)

R0

k∑
i=1

βk−i
1 (L(θi−1)− L∗)+η(1−β1)

k∑
i=1

βk−i
1 (Yi+Xi).

Since |Yi| ≤ C1a∥∇L(θi−1)∥2 · η2 for every i, the effect of Y is negligible:∣∣∣∣∣η(1− β1)
k∑

i=1

βk−i
1 Yi

∣∣∣∣∣ ≤ C1aη
3 · k

max
i=0

{∥∇L(θi−1)∥2} = o(η2),

and we can absorb it into the C2η
2 term to write out that

L(θk)− L∗ ≤ C̃3η
2 + L(θk−1)− L∗ − 2ηµ(1− β1)

R0

k∑
i=1

βk−i
1 (L(θi−1)− L∗) + η(1− β1)

k∑
i=1

βk−i
1 Xi

≤ C̃3η
2 +

(
1− 2ηµ(1− β1)

R0

)
(L(θk−1)− L∗) + η(1− β1)

k∑
i=1

βk−i
1 Xi

= C̃3η
2 + γ (L(θk−1)− L∗) + η(1− β1)

k∑
i=1

βk−i
1 Xi
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for some constant C̃3. Note that we can expand the L(θk−1)−L∗ term iteratively to obtain a generic
formula for L(θk)− L∗:

L(θk)− L∗ ≤ γ (L(θk−1)− L∗) + η(1− β1)
k∑

i=1

βk−i
1 Xi + C̃3η

2

≤ γk (L(θ0)− L∗) + η(1− β1)
k∑

j=1

γk−j
j∑

i=1

βj−i
1 Xi +

k∑
j=1

γk−jC̃3η
2

≤ γk (L(θ0)− L∗) + η(1− β1)
k∑

i=1

Xi

k∑
j=i

γk−jβj−i
1 + C3η,

where C3 = C̃3 · R0
2µ(1−β1)

.

Lemma H.4. Let k ≤ K = O(poly(1/η)) and f : ({0, 1, · · · , k − 1} × (0, 1)) −→ R+ be a
function. Let {Xi}ki=1 be any martingale difference sequence such that:

1. Xi is Fi-measurable and Ei−1[Xi] = 0;

2. |Xi| ≤ C1b∥∇L(θi−1)∥2 a.s.

for any i ∈ [k]. If for any i ∈ [k] and δ ∈ (0, 1), it holds with probability 1− δ that

L(θi−1)− L∗ ≤ f(i, δ),

then ∀δ ∈ (0, 1), with probability 1− δ, we have L(θi−1)− L∗ ≤ f
(
i, δ

2k

)
for all i ∈ [k], and that∣∣∣∣∣

k∑
i=1

γk−iXi

∣∣∣∣∣ ≤ C4

√√√√ k∑
i=1

γ2k−2if

(
i,

δ

2k

)
log

4

δ

for some constant C4.

Remark. The {Xi} here may not necessarily equal the {Xi} defined in Lemma H.1; we just
make it general to benefit future steps. In fact, when we leverage this lemma later, we will multiply
that of Lemma H.1 by some scalar ∈ (0, 1).
Proof Note that

∑k
i=1 γ

k−iXi is a sum of martingale differences. Moreover, since L is ρ-smooth
and ∃C1b s.t. every |Xi| is bounded by C1b∥∇L(θi−1)∥2 (Lemma H.1), we have

|Xi| ≤ C1b∥∇L(θi−1)∥2
≤ C1b

√
2ρ (L(θi−1)− L∗)

≤ C1b

√
2ρf(i, δ′) if L(θi−1)− L∗ ≤ f(i, δ′).

Since L(θi−1)−L∗ ≤ f(i, δ′) holds with probability 1− δ′ instead of probability 1, we create a new
martingale difference sequence that masks out all the positions that exceed the bound. Specifically,
we define X ′

i,δ′ as:

X ′
i,δ′ =

{
Xi if L(θi−1)− L∗ ≤ f(i, δ′),

0 else.
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This ensures that
∣∣∣X ′

i,δ′

∣∣∣ ≤ C1b

√
2ρf(i, δ′) a.s. Then Azuma-Hoeffding’s inequality gives us that

for any ϵ′,

P

[∣∣∣∣∣
k∑

i=1

γk−iX ′
i,δ′

∣∣∣∣∣ ≥ ϵ′

]
≤ 2 exp

(
−ϵ′2

4
∑k

i=1C
2
1bγ

2k−2iρf(i, δ′)

)
,

denoting the right hand side as δ
2 gives that for any δ, with probability 1− δ

2 ,∣∣∣∣∣
k∑

i=1

γk−iX ′
i,δ′

∣∣∣∣∣ ≤
√√√√4

k∑
i=1

C2
1bγ

2k−2iρf(i, δ′) log
4

δ
.

Let δ′ = δ
2k , by union bound, L(θi−1)−L∗ ≤ f

(
i, δ

2k

)
for all i ∈ [k] with probability 1− δ

2 , which
also implies X ′

i,δ′ = Xi for all i ∈ [k] . So with probabilty 1− δ, the following two statements hold
simultaneously for all i ∈ [k]:

L(θi−1)− L∗ ≤ f

(
i,

δ

2k

)
and ∣∣∣∣∣

k∑
i=1

γk−iXi

∣∣∣∣∣ ≤
√√√√4

k∑
i=1

C2
1bγ

2k−2iρf(i, δ′) log
4

δ

= C4

√√√√ k∑
i=1

γ2k−2if

(
i,

δ

2k

)
log

4

δ
,

where C4 = 2C1b
√
ρ.

Lemma H.5 (Convergence Bound of the AGM Framework). Recall that β1

γ ≤ 0.95. Let K =
O(poly(1/η)). Under mild restrictions on K, for any k ≤ K, δ ∈ (0, 1), it holds with probability at
least 1− δ that

L(θk)− L∗ ≤
(
C5aγ

k + C5bη
)
log

K

δ

for some constants C5a and C5b.

Proof We denote the bound with 1− δ probability as f(k, δ) :=
(
C5aγ

k + C5bη
)
log K

δ , where the
constants C5a, C5b will be specified by us later. We prove by induction. When k = 0, we need

(C5a + C5bη)

(
logK + log

1

δ

)
≥ L(θ0)− L∗,

where setting C5a ≥ L(θ0)−L∗

logK suffices. Now assume that the statement holds for 0, 1, · · · , k − 1.
From Lemma H.3, we have

L(θk)− L∗ ≤ γk (L(θ0)− L∗) + η(1− β1)

k∑
i=1

Xi

k∑
j=i

γk−jβj−i
1 + C3η.
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We can bound the coefficients by

k∑
j=i

γk−jβj−i
1 = γk−i

k−i∑
j=0

(
β1
γ

)j

≤ γk−i · 1

1− β1

γ

≤ 20γk−i,

where the last inequality is due to our assumption β1

γ ≤ 0.95. Let X̃i :=
∑k

j=i γ
k−jβj−i

1

20γk−i Xi,

then
{
X̃i

}k

i=1
is also a martingale difference sequence and

∣∣∣X̃i

∣∣∣ ≤ |Xi| ≤ C1b∥∇L(θi)∥2 a.s.

From Lemma H.4, with probability 1 − δ, L(θi−1) − L∗ ≤ f
(
i, δ

2k

)
holds for all i ∈ [k] and∣∣∣∑k

i=1 γ
k−iX̃i

∣∣∣ ≤ C4

√∑k
i=1 γ

2k−2if
(
i, δ

2k

)
log 4

δ holds. If this happens, we have

η(1− β1)
k∑

i=1

Xi

k∑
j=i

γk−jβj−i
1

≤ 20C4η(1− β1)

√√√√ k∑
i=1

γ2k−2if

(
i,

δ

2k

)
log

4

δ

≤ 20C4η(1− β1)

√√√√ k∑
i=1

γ2k−2i (C5aγi + C5bη) log
2kK

δ
log

4

δ

≤ 20C4η(1− β1)

√√√√ k∑
i=1

γ2k−2iC5aγi +

k∑
i=1

γ2k−2iC5bη ·
√
log

2K2

δ
log

4

δ

≤ 20C4η(1− β1)

√
C5aγk

1− γ
+

C5bη

1− γ2
·
√

log
2K2

δ
log

4

δ

≤ 20C4η(1− β1)

√C5aγk

1− γ
+

√
C5bη

1− γ

 ·
√
log

2K2

δ
log

4

δ
.
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As long as K ≥ max{2δ2, 4} (which is a mild restriction on K), we have
√

log 2K2

δ log 4
δ ≤√

3 log2 K
δ . Plugging in 1

1−γ = R0
2µ(1−β1)

· 1
η , we have

η(1− β1)

k∑
i=1

Xi

k∑
j=i

γk−jβj−i
1

≤ 20C4(1− β1)

(√
C5aR0

2µ(1− β1)
·
√
ηγk +

√
C5bR0

2µ(1− β1)
· η

)
·
√
3 log

K

δ

≤ 10C4

√
6C5aR0(1− β1)

µ
·
√
ηγk log

K

δ
+ 10C4

√
6C5bR0(1− β1)

µ
· η log K

δ

≤
(
C5cγ

k + C5dη
)
log

K

δ
,

where C5c = 5C4

√
6C5aR0(1− β1)/µ and C5d = 5C4

√
6C5aR0(1− β1)/µ+10C4

√
6C5bR0(1− β1)/µ.

Now as long as K ≥ eδ (so that log K
δ ≥ 1), we have

L(θk)− L∗ ≤ γk (L(θ0)− L∗) + η(1− β1)
k∑

i=1

Xi

k∑
j=i

γk−jβj−i
1 + C3η

≤ γk (L(θ0)− L∗) +
(
C5cγ

k + C5dη
)
log

K

δ
+ C3η

≤ (C5c + L(θ0)− L∗) γk log
K

δ
+ (C5d + C3) η log

K

δ
.

To complete the induction, we need C5a, C5b satisfy C5a ≥ C5c + L(θ0)− L∗ = 5C4

√
6C5aR0(1−β1)

µ + L(θ0)− L∗

C5b ≥ C5d + C3 = 5C4

√
6C5aR0(1−β1)

µ + 10C4

√
6C5bR0(1−β1)

µ + C3.

Notice that the right-hand side grows at the rate of the square root of C5a and C5b, so there must exist
some feasible constants C5a and C5b. Summarizing, under mild restrictions K ≥ max

{
2δ2, eδ, 4

}
,

the statement L(θk)− L∗ ≤
(
C5aγ

k + C5bη
)
log K

δ holds with probability 1− δ, completing the
induction.
Proof [Proof of Theorem F.1] By Lemma G.2, there exists some constant ϵ3 such that L is µ-PL in
Γϵ3 . Letting γK = O(η) gives K = O( 1η log

1
η ), completing the proof.

Appendix I. Proof of the SDE Approximation of AGMs

In this section, we present a detailed derivation of our slow SDE approximation of the AGM
framework as shown in Theorem 2.1. First, we formalize our settings and introduce some additional
notations that will be used in our proof. In the AGM framework, the transition from θk to θk+1 is
defined as:

mk+1 := β1mk + (1− β1)∇ℓk(θk)

vk+1 := β2vk + (1− β2)V
(
∇ℓk(θk)∇ℓk(θk)

⊤
)

θk+1 := θk − ηS(vk+1)mk+1,
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where S : Rd −→ Rd×d is ρs-smooth, positive definite (p.d) and satisfies S(v) ⪯ ϵ−1I for some
ϵ > 0 and any v ∈ Rd, and V : Rd×d −→ Rd is linear. The algorithm starts from the initial state θ0,
and we set m0 = v0 = 0. For every k ≥ 0, we use step k + 1 to refer to the process of obtaining
the noisy gradient ∇ℓk(θk) and performing the above three updates. For any k ≥ 0, to simplify the
notation, we denote that

gk := ∇ℓk(θk), zk := ℓk(θk)− L(θk) ∼ Z(θk), Sk := S(vk),

Uk+1 := S(vk)gk, uk+1 := S(vk)mk+1, ϕk := ΦSk
(θk)

Time k refers to the time right before step k + 1 happens, i.e. the time right after we get θk. We
also define {Fk} as the natural filteration generated by the history of optimization, where each
Fk = σ (θ0, z0, · · · , zk−1) can be interpreted as “all the information available up to time k”. We
use the notation Ek to denote the expectation conditioned on Fk.

Remark I.1. Without causing confusion, we reword the definition of θ0 and v0 here. In the following
calculation in Appendix I, θ0 and v0 do not represent the parameters that are initialized at the real
beginning of training. According to Theorem F.1, we define θ0 as the parameter near the minimizer
manifold such that ∥θ0 − ϕ0∥2 = O(

√
η log 1

η ), and v0 is the velocity vector as the corresponding
time step as θ0. Our SDE approximation then describes AGMs’ dynamics after reaching such a state
(θ0,v0).

I.1. Lemmas for Adaptive Manifold Projection

Before we characterize the projections, we introduce some properties of the preconditioned projection
function in this part.

Lemma I.1 (Adaption of Lemma C.2 in Li et al. [35]). For any x ∈ Rd, and any p.d matrix
S ∈ Rd×d, it holds that ∂ΦS(x)S∇L(x) = 0, and

∂2ΦS(x)[S∇L(x),S∇L(x)] = −∂ΦS(x)S∇2L(x)S∇L(x).

Proof We consider a trajectory starting from x(0) = x, with an ODE dx(t)
dt = −S∇L(x(t)), thus

by the definition of ΦS , we have ΦS(x) = ΦS(x(t)), then we have

dΦS(x(t))

dt
= −∂ΦS(x)S∇L(x) = 0.

Further, we take the second derivative of ΦS(x(t)) with repsect to t

d2ΦS(x(t))

dt2
= ∂2ΦS(x)[S∇L(x),S∇L(x)] + ∂ΦS(x)S∇2L(x)S∇L(x) = 0.

Taking t = 0 completes the proof.

Lemma I.2. For any x ∈ Γ, and a p.d matrix S, it holds that ∂ΦS(x)∇2L(x) = 0.

Proof From Lemma C.1 in Li et al. [35], we have for u ∈ Tx(Γ), ∇2L(x)u = 0, and for u ∈ T⊥
x (Γ),

it is direct corollary of Lemma 4.3 in Gu et al. [20] that

∂ΦS(x)Su = 0.

The above identity completes the proof.
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Lemma I.3. For any x ∈ Γ, u, v ∈ Rd, p.d matrix S, and v ∈ Tx(Γ), it holds that

∂2ΦS(x)[uv
T ] = −∂ΦS(x)S∂

2(∇L)(x)[∇2L(x)†S−1uvT ]− S−1∇2L(x)†∂2(∇L)(x)[S∂Φ(x)uvT ].

Proof We define P := S1/2. And we do a reparameterization as x′ := P−1x, L′(x) := L(Px),
then we have

∂Φ′(x′) = P ∂ΦS(Px)P

∇2L′(x′) = P∇2L(Px)P

∂2(∇L′)(x′)[M ] = P ∂2(∇L)(Px)[PMP ]

∂2Φ′(x′)[M ] = P ∂2Φ(x)[PMP ].

Notice that in the space of x′, the adaptive projection mapping ΦS turns into a fixed gradient flow
projection. And this allows us to directly apply Lemma C.4 in Li et al. [35], which gives

∂2Φ′(x′)[v, u] = −∂Φ′(x′)∂2(∇L′)(x′)[v,∇2L′(x′)†u]−∇2L′(x′)†∂2(∇L′)(x′)[v, ∂Φ′(x′)u].

A slight modification using the above transformations gives

∂2ΦS(x)[P v,Pu] = −∂ΦS(x)S∂
2(∇L)(x)[P v,∇2L(x)†S−1Pu]

− S−1∇2L(x)†∂2(∇L)(x)[P v,S∂Φ(x)Pu].

We now redefine u = Pu, v = P v, and we organize the above equation

∂2ΦS(x)[uv
T ] = −∂ΦS(x)S∂

2(∇L)(x)[∇2L(x)†S−1uvT ]− S−1∇2L(x)†∂2(∇L)(x)[S∂Φ(x)uvT ].

We completes the proof.

I.2. Iteration Stays Near Manifold

Now we begin the final preparations before deriving the slow SDE near the manifold. Denote
K := ⌊Tη−2⌋ be the total number of steps in our analysis. Let β be some constant in (0, 0.5), whose
exact value will be specified later. First, we bound the movement of projected steps by showing that
ϕ shifts no more than Õ(η0.5−0.5β) within ∆K := η−1−β steps, demonstrating the “slowness” of
the dynamics of AGMs after the projection.

Lemma I.4. If ϕk stays inside Γϵ2 for any k ∈ [0,K], then for any δ = O(poly(η)), with probability
1− δ, for any k ∈ [0,K −∆K], ∆k ∈ [∆K],

∥ϕk+∆k − ϕk∥2 ≤ C6η
0.5−0.5β

√
log

1

ηδ

for some constant C6.

Proof Recall that ΦS(v)(θ) is C4 on X ϵ2 := {(v,θ) : 0 ⪯ v ⪯ R1,θ ∈ Γϵ2}, since X ϵ2 is compact,
ΦS(v)(θ) is then bounded and Lipschitz on X ϵ2 . Similarly, ∂ΦS(v)(θ) is bounded and Lipschitz on
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X ϵ2 . For any k ∈ [0,K), let k̄ = k − 2 logβ1
η, we have:

ϕk+1 − ϕk = ΦS(vk+1)(θk+1)− ΦS(vk)(θk)

= ΦS(vk̄)
(θk+1)− ΦS(vk̄)

(θk) +O
(
η2 log

1

η

)
= ∂ΦS(vk̄)

(θk)(θk+1 − θk) +O
(
η2 log

1

η

)
= ∂ΦS(vk̄)

(θk)(ηS(vk)mk) +O
(
η2 log

1

η

)
= ∂ΦS(vk̄)

(θk̄)(ηS(vk̄)mk) +O
(
η2 log

1

η

)
,

where the second equality comes from the fact that one step of update on v is of O(η2) and the
Lipschitzness of S and Φ, the third equality comes from ∥θk+1 − θk∥2 = O(η), and the last equality
follows from the boundedness and Lipschitzness of ∂Φ. We can decompose mk as:

mk = (1− β1)

k∑
i=k̄

βk−i
1 (∇L(θi) + zi) +O(η2)

= (1− β1)
k∑

i=k̄

βk−i
1

(
∇L(θk̄) +O

(
η log

1

η

))
+ (1− β1)

k∑
i=k̄

βk−i
1 zi +O(η2).

A key observation is that ∂ΦS(vk̄)
(θk̄)S(vk̄)∇L(θk̄) = 0 from Lemma I.2, which allows us to view

ϕk+1 − ϕk as
∑k

i=k̄ z̃k,i +O(η2 log 1
η ) where z̃k,i = ∂ΦS(vk̄)

(θk̄)(η(1− β1)β
k−i
1 S(vk̄)zi). Note

that z̃k,i is Fi+1-measurable and its mean is 0, since z̃k,i just applies a linear tensor transformation
to zi. If we define a constant C6a := sup

{
∥∂ΦS(v)(θ)∥2 | (v,θ) ∈ X ϵ2

}
· (1 − β1) · ϵ−1 that is

independent of k and i, then ∥z̃k,i∥2 is almost surely bounded by ηβk−i
1 C6a∥zi∥2.

For any k ∈ [0,K −∆K] and ∆k ∈ [∆K], we have

ϕk+∆k − ϕk =

k+∆k−1∑
j=k

(ϕj+1 − ϕj)

=

k+∆k−1∑
j=k

 j∑
i=j−2 logβ1 η

z̃j,i +O

(
η2 log

1

η

)
=

k+∆k−1∑
i=k−2 logβ1 η

min{k+∆k−1,j+2 logβ1 η}∑
j=i

z̃j,i + Õ(η1−β)

Denote Zi :=
∑min{k+∆k−1,j+2 logβ1 η}

j=i z̃j,i, then each Zi is a linear transformation of zi so it is
with zero mean, and also ∥Zi∥2 ≤ η · C6a

1−β1
∥zi∥2 ≤ η · C6aR

1−β1
a.s. Azuma-Hoeffding’s inequality then
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gives that for any δ = O(poly(η)), with probability 1− δ,

ϕk+∆k − ϕk ≤

√
2η2

(
C6aR

1− β1

)2

·
(
RgrpH + 2 logβ1

η
)
· log 2

δ

≤ C6b

√
η1−β log

2

δ

for some constant C6b. Finally, plugging in δ′ = δ
K·∆K and taking union bound over all k ∈

[0,K −∆K] and ∆k ∈ [∆K] gives the theorem.
With the concentration bounds so far, we can show that the dynamics behaves ‘well’ during the

whole iteration, and we formalize this idea below.

Definition I.1 (δ-good). For any δ = O(poly(η)) and any step K̂ ∈ [K], we define step K̂ to be
δ-good if and only if the simultaneous establishment of the following statements:

1. For any k ∈ [0, K̂], ϕk ∈ Γ and ∥θk − ϕk∥2 ≤ C8a

√
η log 1

ηδ .

2. For any k ∈ [0, K̂ −∆K], ∆k ∈ [∆K], ∥ϕk+∆k − ϕk∥2 ≤ C8bη
0.5−0.5β

√
log 1

ηδ .

Here C8a = 4C2√
2µC1

·
√

(C5a + C5b) and C8b = C6

√
2 are two constants.

Lemma I.5. When η is sufficiently small, with probability 1− η2025, the event η2025-good holds for
any step K̂ in [K].

Proof Denote δ := η2025. From Lemma H.5, with probability 1 − δ/2, all k ∈ [0,K] sat-
isfy L(θk) − L∗ ≤ (C5a + C5b)η log

2K
δ . Combining Lemma G.1, this implies ∥θk − ϕk∥2 ≤

2C2√
2µC1

·
√
(C5a + C5b)η log

2K
δ for any k ∈ [0,K]. When η is small enough such that 2C2√

2µC1
·√

(C5a + C5b)η log
2K
δ + ηR/ϵ < ϵ2, any ϕk ∈ Γ with k ≥ 0 will imply ϕk+1 ∈ Γ, since θk+1

cannot escape Γϵ2 . Giving ϕ0 ∈ Γ and using induction, we conclude that all ϕk ∈ Γ for k ≥ 0.
When the above holds, the requirement of Lemma I.4 is met. Then with probability 1− δ/2, for

any k ∈ [0,K −∆K], ∆k ∈ [∆K], we have ∥ϕk+∆k − ϕk∥2 ≤ C6η
0.5−0.5β

√
log 2

ηδ .

Finally, we just take the union of Lemma H.5 and Lemma I.4. With log 2K
δ ≤ 4 log 1

ηδ and
log 2

ηδ ≤ 2 log 1
ηδ (which are mild restrictions since η is small), we have the theorem.

We have proved that our iteration will behave well with high probability, but chances still exist
that the iteration is driven out of working zones and becomes intractable. We define a well-behaved
sequence that manually redirects the iteration when extreme cases happen.

Definition I.2 (Well-behaved Sequence). Denote the event of step k being η2025-good as Ek. Let
ϕnull be a fixed point on Γ. Starting from θ̂0 = θ0 and v̂0 = v0, we define a sequence of (θ̂k, v̂k, m̂k)
as follows:

m̂k+1 := β1m̂k + (1− β1)(∇L(θ̂k) + zk)

v̂k+1 := β2v̂k + (1− β2)V((∇L(θ̂k) + zk)(∇L(θ̂k) + zk)
⊤)

θ̂k+1 := 1Ekθk+1 + 1Ēkϕnull,

where 1 is the indicator function and 1E = 1 if event E happens or 1E = 0 otherwise.
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Note that the update of θ̂k can be written as

θ̂k+1 := θ̂k − ηS(v̂k+1)m̂k+1

−1Ēk(θ̂k − ηS(v̂k+1)m̂k+1) + 1Ēkϕnull︸ ︷︷ ︸
:=ek

.

I.3. Moment Calculation of AGMs Near Manifold

Additional Notations. To utilize the analysis framework in Gu et al. [20], we first introduce some
notations needed. Consistent with Gu et al. [20], we pretend that AGMs proceed with H = 1

η local
steps, as a single worker (without multiple workers). We denote every H steps as one round. Next,
we define a “giant step”, which encompasses Rgrp = 1

ηβ
rounds, corresponding to Rgrp ·H steps.

We consider a total timescope of T
η2

steps, which corresponds to T
η1−β giant steps.

For any 0 ≤ s < Rgrp and 0 ≤ t ≤ H , we use θ̂t
(s)

and θ̂k (where k = sH + t) exchangeably
to denote the parameter we get on the t-th local step of round s, which is also the k-th global step.
Also note that for any 0 ≤ s < Rgrp, θ̂(s)

H and θ̂
(s+1)
0 refer to the same thing. We define the notation

v̂
(s)
t , m̂(s)

t and E(s)
t in the same way as we did for θ.

We further introduce a list of notations:

ĝ
(s)
t := ∇ℓ

(s)
t (θ̂

(s)
t ), Ŝk = S(v̂k), Ŝ

(s)
t := S(v̂

(s)
t ), Ŝ(s) := Ŝ

(s)
0 , ϕ̂(s) := ΦŜ(s)(θ̂

(s)
0 ),

x̂
(s)
t := θ̂

(s)
t − ϕ̂(s), ∆ϕ̂(s) := ϕ̂(s) − ϕ̂(0), Σ0 := Σ(ϕ̂(0)), P∥ := ∂ΦŜ(0)(ϕ̂

(0)), P⊥ := I − P∥,

q̂
(s)
t := E[x̂(s)

t ], Â
(s)
t := E[x̂(s)

t x̂
(s)⊤
t ], B̂

(s)
t := E[x̂(s)

t ∆ϕ̂(s)⊤].

Corollary I.1. There exist constants C9a, C9b, C9c such that for all 0 ≤ s < Rgrp, 0 ≤ t ≤ H ,

∥x̂(s)
t ∥2 ≤ C9a

√
η log

1

η
,

∥θ̂(s)
t − θ̂

(s)
0 ∥2 ≤ C9b

√
η log

1

η
,

∥ϕ̂(s) − ϕ̂(0)∥2 ≤ C9cη
0.5−0.5β

√
log

1

η
.

Proof Substituting δ = η2025. When E holds, this follows directly from the definition of δ-goodness;
Otherwise, all θ̂ and ϕ̂ are equal, and these quantities are equal to 0.

Impact of Momentum. Our conclusion regrading to the impact of Momentum on the implicit
bias is similar to the conclusion in Wang et al. [55]: It does not impact the implicit bias. Further,
our analysis is based on moment methods and can give exact error bounds. First, we state some
technical lemmas in order to show that introducing momentum will not cause the gradient to deviate
too much from itself, i.e. E[ ˆ̂mt] is close to E[ĝt]. Once this guarantee is established, we can replace
m̂t with ĝt in the moment calculation to simplify it. The general idea of the proof is to show that if i
is close to t, then E[∇L(θ̂i−1)] will become close to E[∇L(θ̂t−1)], and if i is far from t, then the
contribution of E[∇L(θ̂i−1)] would be negligible in E[m̂t].
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Lemma I.6. For any k ≥ 0, we have

∥E[∇L(θ̂k+1)−∇L(θ̂k)]∥2 ≤ C10η
1.5

for some constant C10.

Proof We have

∇L(θ̂k+1)−∇L(θ̂k) = ∇2L(θ̂k)(θ̂k+1 − θ̂k) +O
(
∥θ̂k+1 − θ̂k∥22

)
= ∇2L(θ̂k)(θ̂k+1 − θ̂k) +O(η2) +O(∥ek∥2),

since ∥θ̂k+1 − θ̂k∥2 = ∥ηS (v̂k) m̂k − e3k∥2 = O(η) + O(∥e3k∥2). Let k̄ = k − logβ1
(η) be a

threshold that is logarithmically close to k, then we have

∇2L(θ̂k)(θ̂k+1 − θ̂k) =
(
∇2L(θ̂k̄) +O

(
∥θ̂k − θ̂k̄∥2

))
(θ̂k+1 − θ̂k)

= ∇2L(θ̂k̄)(θ̂k+1 − θ̂k) +O(η · logβ1
(η) · η) +O(∥ek∥2)

= η∇2L(θ̂k̄)S (v̂k+1) m̂k+1 +O
(
η2 log

1

η

)
+O(∥ek∥2).

Recentering the Hessian term to θ̂k̄ allows us to take Ek̄ on S (v̂k+1) m̂k+1:

E
[
∇2L(θ̂k̄)S (v̂k+1) m̂k+1

]
= E

[
∇2L(θ̂k̄)Ek̄ [S (v̂k+1) m̂k+1]

]
.

After that, notice that

∥Ek̄ [S (v̂k+1) m̂k+1] ∥2 = ∥Ek̄ [S (Ek̄ [v̂k+1]) m̂k+1] ∥2 +O(∥v̂k+1 − Ek̄ [v̂k+1] ∥2)
= ∥S (Ek̄ [v̂k+1])Ek̄[m̂k+1]∥2 +O(∥v̂k+1 − Ek̄ [v̂k+1] ∥2)
= O(∥Ek̄[m̂k+1∥2︸ ︷︷ ︸

D1

) +O(∥v̂k+1 − Ek̄ [v̂k+1] ∥2︸ ︷︷ ︸
D2

)

since S and m̂ are both bounded by constant scale. We figure out the orders of these two terms
respectively:

D1 = ∥Ek̄

βk−k̄+1
1 m̂k̄ + (1− β1)

k∑
i=k̄

βk−i
1 ĝi

 ∥2

= O
(
β
logβ1 (η)

1

)
+ ∥Ek̄

(1− β1)

k∑
i=k̄

βk−i
1 ĝi

 ∥2

= O(η) + ∥Ek̄

(1− β1)
k∑

i=k̄

βk−i
1 ∇L(θ̂i)

 ∥2

= O(η) +O(η0.5) = O(η0.5)
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since ∇L is uniformly bounded by O(η0.5) after convergence (see Lemma H.5); And

D2 = (1− β2)
k∑

i=k̄

βk−i
2

(
V (ĝiĝ

⊤
i )− Ek̄

[
V (ĝiĝ

⊤
i )
])

= O
(
b2 · (k − k̄)

)
= O

(
η2 log

1

η

)
,

since V is bounded by a constant scale. Now combining the above together, we have

∥E[∇L(θ̂k+1)−∇L(θ̂k)]∥2 = ηE
[
∇2L(θ̂k̄)Ek̄ [S (v̂k+1) m̂k+1]

]
+O

(
η2 log

1

η

)
+O(E[∥ek∥2])

= η · O(D1 +D2) +O
(
η2 log

1

η

)
+O(η2025)

= O(η1.5),

which concludes the proof.
With Lemma I.6, we are ready to deduce the closeness between E[m̂k] and E[ĝk].

Lemma I.7. For any k ≥ 2 logβ1
(η), let k̄ = k − 2 logβ1

(η), we have

∥Ek̄[m̂k+1 − ĝk+1]∥2 ≤ C11η
1.5 log

1

η
, a.s.

Note that this also implies that ∥E[m̂k+1 − ĝk+1]∥2 ≤ C11η
1.5 log 1

η .

Proof Expanding Ek̄[m̂k+1], we have

Ek̄[m̂k+1] = Ek̄

[
(1− β1)

k∑
i=1

βk−i
1 ĝi

]

= (1− β1)
k̄−1∑
i=1

βk−i
1 ĝi + (1− β1)

k∑
i=k̄

βk−i
1 Ek̄[ĝi]

= (1− β1)
k̄−1∑
i=1

βk−i
1 ĝi︸ ︷︷ ︸

:=E1

+(1− β1)
k∑

i=k̄

βk−i
1 ∇L(θ̂i)︸ ︷︷ ︸

:=E2
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Note that E1 is neglegible:

∥E1∥2 = ∥(1− β1)

k̄−1∑
i=1

βk−i
1 ĝi∥2

= (1− β1)
k̄−1∑
i=1

βk−i
1 · O(1)

≤ (1− β1)
∞∑

i=2 logβ1 (η)

βi
1 · O(1)

= O
(
β
2 logβ1 (η)

1

)
= O

(
η2
)
,

and that E2 is close to ∇L(θ̂k):

∥E2 − E[∇L(θ̂k)]∥2 = ∥(1− β1)

k∑
i=k̄

βk−i
1 E[∇L(θ̂i)]− E[∇L(θ̂k)]∥2

= ∥(1− β1)
k∑

i=k̄

βk−i
1 E

[
∇L(θ̂i)−∇L(θ̂k)

]
∥2 +O(η2)

≤ (1− β1) ·
(
k − k̄

)
· C10η

1.5 +O(η2). (by Lemma I.6)

Combining the results of E1 and E2 gives

∥Ek̄[m̂k − ĝk]∥2 ≤ ∥E1∥2 + ∥E2 − E[∇L(θ̂k)]∥2
≤ (1− β1) · 2 logβ1

(η) · C10η
1.5 +O(η2)

≤ C11η
1.5 log

1

η

for some constant C11, which completes the proof.

I.3.1. MOMENT CALCULATION WITHIN A GIANT STEP

In this part, we aim to give the change of first and second moments of ϕ and v̂, which is the basis of
deriving the SDE for AGMs.

Now there are only a few preparations left before we get into the direct part of the moment calcu-
lation. For all 0 ≤ s < Rgrp, 0 ≤ t ≤ H . Note that ∥v̂k+1 − v̂k∥2 = (1− β2)∥V

(
ĝkĝ

⊤
k

)
− v̂k∥2 =

O(b2) = O(η2), so combining with the Lipschitzness of S gives ∥Ŝk2 − Ŝk1∥2 = O
(
(k2 − k1)η

2
)

for any k2 > k1 and k2 − k1 = o
(
η−2
)
. Next, we begin our moment calculation analysis starting

from the update in one step.

Lemma I.8. For all 2 logβ(η) ≤ k ≤ RgrpH , we have

E
[
θ̂k+1

]
= E

[
θ̂k − ηŜ0ĝk

]
+O

(
η2.5−β

)
.

36



ADAM REDUCES A UNIQUE FORM OF SHARPNESS: THEORETICAL INSIGHTS NEAR THE MINIMIZER MANIFOLD

Proof We write the update rule:

θ̂k+1 = θ̂k − ηŜkm̂k+1 − ek

= θ̂k − η
[
Ŝkĝk + Ŝk (m̂k+1 − ĝk)

]
− ek

= θ̂k − η

Ŝ0ĝk +
(
Ŝk − Ŝ0

)
ĝk︸ ︷︷ ︸

∆θ̂1

+ Ŝk (m̂k+1 − ĝk)︸ ︷︷ ︸
∆θ̂2

− ek.

We can prove that ∆θ̂1 and ∆θ̂2 are small in expectation. If k = 0 then ∆θ̂1 = 0; and if k > 0, we
can decompose E

[
∆θ̂1

]
as:

E
[
∆θ̂1

]
= E

[(
Ŝk−1 − Ŝ0

)
ĝk +

(
Ŝk − Ŝk−1

)
ĝk

]
= E

[(
Ŝk−1 − Ŝ0

)
∇L

(
θ̂k

)]
+ E

[(
Ŝk − Ŝk−1

)
ĝk

]
= O((k − 1)η2 · η0.5) +O(η2)

= O(H ·Rgrp · η2.5 + η2)

= O(η1.5−β).

Here, the second equality holds because zk is conditioned on time k, when Ŝk−1 has already been
determined. For ∆θ̂2, let k̄ = k − 2 logβ1

(η), we have

E
[
∆θ̂2

]
= E

[
Ŝk̄−1 (m̂k+1 − ĝk) +O

(
η2 log

1

η

)]
= E

[
Ŝk̄−1Ek̄ [(m̂k+1 − ĝk)]

]
+O

(
η2 log

1

η

)
= O

(
η1.5 log

1

η

)
+O

(
η2 log

1

η

)
= O

(
η1.5 log

1

η

)
,

where the second-to-last equality follows from Lemma I.7. Finally, we have

E
[
θ̂k+1

]
= E

[
θ̂k − ηŜ0ĝk

]
+O

(
η2.5−β

)
+O

(
η2.5 log

1

η

)
+O(η2025)

= E
[
θ̂k − ηŜ0ĝk

]
+O

(
η2.5−β

)
,

which concludes the proof.
After getting the update rule of θ̂k, we then derive the moment during the single round with H

steps. To this end, we recap our modification of manifold projection from a “Gradient Flow” manner
to “Preconditioner Flow” manner in Definition 2.1.
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Definition I.3 (Pre-conditioner Flow Projection). Fix a point θnull /∈ Γ. Given a Positive Semi-Definite
matrix Ŝ. For x ∈ Rd, consider the pre-conditioner flow dx(t)

dt = −Ŝ∇L(x(t)) with x(0) = x. We
denote the pre-conditioner flow projection of x as ΦŜ(x), i.e. ΦŜ(x) := limt→+∞ x(t) if the limit
exists and belongs to Γ, and ΦŜ(x) = θnull otherwise.

We decompose the preconditioner matrix in the very begining of the giant step as Ŝ0 = Ŝ(v̂0) =
PP , where P = Ŝ1/2. Then we give the first moment calculation of ϕ̂ in the following lemma.

Lemma I.9. The expectation of the change of the manifold projection every round is

E
[
ϕ̂(s+1) − ϕ̂(s)

]
=

{
−Hη2

2 Ŝ0∂
2∇L(ϕ(0))[PV∇2L′(ϕ′

(0)
)(PΣ0P )P ] + Õ(η1.5−β), R0 < s < Rgrp

Õ(η), s ≤ R0

where R0 := max
{⌈

10
λmaxα

log 1
η

⌉
,
⌈
2 log1/β

1
η

⌉}
.

Proof First we consider the scenario when R0 < s < Rgrp. By Lemma I.8, the update rule holds.
And we consider an auxiliary process {θ̂′

t}. Let L′(x) := L(Px), then

∇L′(x) = P∇L(Px)

∇2L′(x) = P∇2L(Px)P

Σ′(x) = PΣ(Px)P

∂2(∇L′)(x)[M ] = P ∂2(∇L)(Px)[PMP ].

For an one-step GD update, we have that

θ̂′
t+1 = θ̂′

t − η∇L′(θ̂′
t)

= θ̂′
t − ηP∇L(P θ̂′

t).

Similarly, we define A
′(s)
t := E[x

′(s)
t x

′(s)⊤
t ], q

′(s)
t := E[x

′(s)
t ], and B

′(s)
t := E[x

′(s)
t ∆ϕ

′(s)⊤], where
ϕ(x) is the gradient flow projection of point x.

Now we are interested in the update of P θ̂′, which is

P θ̂′
t+1 = P θ̂′

t − ηŜ0∇L(P θ̂′
t). (4)

We now define θ̂′
t := P−1θ̂t, then combining Equation (4) and Lemma I.8 gives

q
′(s)
t+1 = q

′(s)
t+1 − η∇L′(θ̂

′(s)
t ) +O

(
η2.5−β

)
.

Now we can apply the results in Lemma I.36 from Gu et al. [20] for the update of θ̂′, with loss
function L′(θ̂), number of workers k = 1 and manifold projection Φ′(θ̂), which gives

PE
[
ϕ

′(s+1) − ϕ
′(s)
]
= E

[
ϕ(s+1) − ϕ(s)

]
= −Hη2

2
PP ∂2∇L(ϕ(0))[PV∇2L′(ϕ′

(0)
)(PΣ0P )P ] + Õ(η1.5−β),

where the first equation uses the fact that Pϕ′(θ̂′) = ϕ(θ̂), and it can be verified with the definitions
of ϕ, ϕ′, and θ̂′.

The proof when s ≤ R0 is a direct conclusion of Lemma I.36 in Gu et al. [20] since the
R0 ∝ log 1

η in our case.
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Corollary I.2. The expectation of the change of manifold projection every round is:

E
[
ϕ(s+1) − ϕ(s)

]
=

{
Hη2

2 Ŝ0∂
2ΦŜ0

(ϕ(0))[Ŝ0Σ0Ŝ0] + Õ(η1.5−β), R0 < s < Rgrp

Õ(η), s ≤ R0

Proof Notice that for the preconditioner projection, we also have the corresponding transformation

∂Φ′(x′) = P ∂ΦŜ(Px)P

∂2Φ′(x′)[M ] = P ∂2Φ(x)[PMP ].

The above two equations and Lemma I.36 in Gu et al. [20] complete the proof.

Lemma I.10. The second moment of the change of manifold projection every round is

E
[
(ϕ(s+1) − ϕ(s))(ϕ(s+1) − ϕ(s))⊤

]
=

{
Hη2Ŝ0P∥Ŝ0Σ0Ŝ0P∥Ŝ0 + Õ(η1.5−β), R0 < s < Rgrp

Õ(η), s ≤ R0

where R0 := max
{⌈

10
λmaxα

log 1
η

⌉
,
⌈
2 log1/β

1
η

⌉}
.

Proof According to Lemma I.37 in Gu et al. [20], we could write the second moment for θ̂′ as

E
[
(ϕ

′(s+1) − ϕ
′(s))(ϕ

′(s+1) − ϕ
′(s))⊤

]
=

{
Hη2Σ′

0,∥ + Õ(η1.5−β), R0 < s < Rgrp

Õ(η), s ≤ R0.

Notice that

Σ′
0,∥ := ∂Φ′(ϕ

′(0))Σ′
0∂Φ

′(ϕ
′(0))

= P ∂Φ(ϕ(0))PPΣ0PP ∂Φ(ϕ(0))P .

When R0 ≤ s < Rgrp,

E
[
(ϕ(s+1) − ϕ(s))(ϕ(s+1) − ϕ(s))⊤

]
= E

[
P (ϕ

′(s+1) − ϕ
′(s))(ϕ

′(s+1) − ϕ
′(s))⊤P

]
= Ŝ0P∥Ŝ0Σ0Ŝ0P∥Ŝ0.

The proof when s ≤ R0 is a direct conclusion of Lemma I.37 in Gu et al. [20] since the R0 ∝ log 1
η

in our case.
Then we give the moment change of ϕ within a single giant step.

Theorem I.1. Given ∥θ̂(0)−ϕ(0)∥2 = O(
√

η log 1
η ), for 0 < β < 0.5, the first and second moments

of ∆ϕ(Rgrp) := ϕ(Rgrp) − ϕ(0) are as follows:

E[∆ϕ(Rgrp)]] =
η1−β

2
Ŝ0∂

2ΦŜ0
(ϕ(0))[Ŝ0Σ0Ŝ0] + Õ(η1.5−2β) + Õ(η),

E[∆ϕ(Rgrp)⊤]] = η1−βŜ0Σ∥(ϕ
(0), Ŝ(0))Ŝ0 + Õ(η1.5−1.5β) + Õ(η),

where Σ∥(ϕ
(0), Ŝ(0)) := P∥Ŝ0Σ0Ŝ0P∥.
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Proof First we prove the first moment change as

E[∆ϕ(Rgrp)] = E[
Rgrp−1∑
s=0

ϕ(s+1) − ϕ(s)]

=

R0∑
s=0

E[ϕ(s+1) − ϕ(s)] +

Rgrp−1∑
s=R0+1

E[ϕ(s+1) − ϕ(s)]

=
η1−β

2
Ŝ0∂

2ΦŜ0
(ϕ(0))[Ŝ0Σ0Ŝ0] + Õ(η1.5−2β) + Õ(η).

The last equation is a direct conclusion of Corollary I.2.
And for the second moment, we have

E


Rgrp−1∑

s=0

ϕ(s+1) − ϕ(s)

Rgrp−1∑
s=0

ϕ(s+1) − ϕ(s)

⊤
 =

Rgrp−1∑
s=0

E[(ϕ(s+1) − ϕ(s))(ϕ(s+1) − ϕ(s))⊤]

+
∑
s̸=s′

E[(ϕ(s+1) − ϕ(s))]E[(ϕ(s′+1) − ϕ(s′))⊤]

= η1−βŜ0Σ∥(ϕ
(0), Ŝ(0))Ŝ0 + Õ(η1.5−1.5β) + Õ(η),

where the last equation uses E[(ϕ(s+1) − ϕ(s))]E[(ϕ(s′+1) − ϕ(s′))⊤] = Õ(η2).
Next, we proceed with the updates of v.

Lemma I.11. Given c := 1−β2

η2
, and we have

E
[
v̂
(Rgrp)
0 − v̂

(0)
0

]
= cη1−β

(
V
(
Σ

(0)
0

)
− v̂

(0)
0

)
+O

(
η1.5−1.5β

)
.

Proof We have

v̂
(s+1)
0 − v̂

(s)
0 = v̂

(s)
H − v̂

(s)
0

= βH
2 v̂

(s)
0 + (1− β2)

H∑
i=1

βH−i
2 V

(
ĝ
(s)
i ĝ

(s)
i

⊤
)
− v̂

(s)
0

=
(
βH
2 − 1

)
v̂
(0)
0 + (1− β2)

H∑
i=1

βH−i
2 V

(
ĝ
(s)
i ĝ

(s)
i

⊤
)
.

Note that

E
[
ĝ
(s)
i ĝ

(s)
i

⊤
]
= E

[
Σ(θ̂

(s)
i )
]

= E
[
Σ(ϕ

(0)
0 + x

(s)
i )
]

= E
[
Σ(ϕ

(0)
0 ) +O

(
η0.5−0.5β

)]
= Σ

(0)
0 +O

(
η0.5−0.5β

)
.
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Combining with the linearity of V , we conclude that

E
[
v̂
(s+1)
0 − v̂

(s)
0

]
=
(
βH
2 − 1

)
v̂
(0)
0 +

(
1− βH

2

)
V
(
Σ

(0)
0

)
+O

(
η1.5−0.5β

)
E
[
v̂
(s+1)
0

]
= βH

2 v̂
(s)
0 +

(
1− βH

2

)
V
(
Σ

(0)
0

)
+O

(
η1.5−0.5β

)
.

To transfer from v̂
(0)
0 to arbitrary v̂

(s)
0 , we simply expand to get the result:

E
[
v̂
(s)
0

]
= βsH

2 v̂
(0)
0 +

[(
1− βH

2

)
V
(
Σ

(0)
0

)
+O

(
η1.5−0.5β

)](
1 + βH

2 + β2H
2 + · · ·+ β

(s−1)H
2

)
= βsH

2 v̂
(0)
0 +

[(
1− βH

2

)
V
(
Σ

(0)
0

)](1− βsH
2

1− βH
2

)
+O

(
η1.5−0.5β

)
· O
(
η−β

)
= βsH

2 v̂
(0)
0 +

(
1− βsH

2

)
V
(
Σ

(0)
0

)
+O

(
η1.5−1.5β

)
.

Thus we have

E
[
v̂
(Rgrp)
0 − v̂

(0)
0

]
= cη1−β

(
V
(
Σ

(0)
0

)
− v̂

(0)
0

)
+O

(
η1.5−1.5β

)
.

where the last equation uses the fact that 1− β
RgrpH
2 = 1− (1− cη1−β) +O(η2−2β) = cη+O(η2).

Also, for the second moment change of v̂, we get the following lemma

Lemma I.12. The second moment change of v̂ over a giant step is

E
[(

v̂
(Rgrp)
0 − v̂

(0)
0

)(
v̂
(Rgrp)
0 − v̂

(0)
0

)⊤]
= O(η2−β).

Proof

E
[ (

v̂
(s+1)
0 − v̂

(s)
0

)(
v̂
(s+1)
0 − v̂

(s)
0

)⊤ ]
= E

[(
(βH

2 − 1) + (1− β2)
H∑
i=1

βH−i
2 V

(
ĝ
(s)
i ĝ

(s)
i

⊤
))

(
(βH

2 − 1) + (1− β2)

H∑
i=1

βH−i
2 V

(
ĝ
(s)
i ĝ

(s)
i

⊤
))⊤ ]

= O
(
(1− βH

2 )2
)
= O

(
η2
)
.

E
[(

v̂
(Rgrp)
0 − v̂

(0)
0

)(
v̂
(Rgrp)
0 − v̂

(0)
0

)⊤]
= E

Rgrp−1∑
s=0

(
v̂
(s+1)
0 − v̂

(s)
0

)Rgrp−1∑
s=0

(
v̂
(s+1)
0 − v̂

(s)
0

)⊤
=

Rgrp−1∑
s=0

E
[(

v̂
(s+1)
0 − v̂

(s)
0

)(
v̂
(s+1)
0 − v̂

(s)
0

)⊤]
+
∑
s ̸=s′

E
[(

v̂
(s+1)
0 − v̂

(s)
0

)]
E
[(

v̂
(s′+1)
0 − v̂

(s′)
0

)⊤]
= O(η2−β).

41



ADAM REDUCES A UNIQUE FORM OF SHARPNESS: THEORETICAL INSIGHTS NEAR THE MINIMIZER MANIFOLD

The last equation uses

E
[ (

v̂
(s+1)
0 − v̂

(s)
0

)(
v̂
(s+1)
0 − v̂

(s)
0

)⊤ ]
= O(η2),

and

E
[(

v̂
(s+1)
0 − v̂

(s)
0

)]
E
[(

v̂
(s′+1)
0 − v̂

(s′)
0

)⊤]
= O(3− 3β).

The above equation completes the proof.

I.4. Weak Approximation

After we get the first and second moment changes within a giant step, we now utilize the moment
calculation to prove Theorem 2.1. First, we recall our slow SDE for AGMs{

dζ(t) = Pζ,S(t)

(
Σ

1/2
∥ (ζ(t);S(t))dWt − 1

2S(t)∇
3L(ζ) [Σ⋄(ζ(t);S(t))] dt

)
,

dv(t) = c (V (Σ(ζ))− v) dt.

We then open the projection mapping Pζ,S(t) as{
dζ = ∂ΦS(v)(ζ)S(v)Σ

1/2(ζ)dWt +
1
2∂

2ΦS(v)(ζ) [S(v)Σ(ζ)S(v)] dt,

dv(t) = c (V (Σ(ζ))− v) dt.
(5)

Now it suffices to prove the SDE in Equation (5) tracks the trajectory in AGMs within O( 1
η2
) steps

in a weak approximation sense.
First, we have to show that the solution of Equation (5) in close in the minimizer manifold

Lemma I.13. Let X(t) := (ζ(t)⊤,v(t)⊤)⊤ be the solution of Equation (5) with ζ(0) ∈ Γ, and
v(0) ∈ Rd, then we have that ζ(t) ∈ Γ for all t ≥ 0.

Proof According to Du and Duan [11], Filipović [15], for a closed manifold M to be viable for the
SDE dX(t) = A(X(t))dWt + b(X(t))dt, where A(·) : R2d → R2d×2d and b(·) : R2d → R2d

are locally Lipchitz, it suffices to show that the following Nagumo type consistency condition holds:

µ(x) := b(x)− 1

2

∑
j

D[Aj(x)]Aj(x) ∈ Tx(M), Aj(x) ∈ Tx(M).

Following the argument in Gu et al. [20], here we also only need to show that P⊥(x)µ(x) = 0,
where P⊥(x) := Id − ∂ΦI(x). ΦI(x) is also the gradient flow projection at point x.

P⊥(x)
∑
j

D[Aj(x)]Aj(x) = P⊥(x)
∑
j

D[∂ΦS(x)SΣ
1/2]∂ΦS(x)SΣ

1/2

= P⊥(x)S
∑
j

∂2ΦS(x)[ΦS(x)SΣ
1/2,Σ1/2]

= −P⊥(x)S∇2L(x)†∂2(∇L)(x)[Σ∥(x,S)].

The last equation uses Lemma I.3. Agian, applying Lemma I.3 gives

P⊥(x)b(x) = −1

2
P⊥(x)S∇2L(x)†∂2(∇L)(x)[Σ∥(x,S)].

The above equation completes the proof.
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To establish Theorem 2.1, we give an equivalent theorem, which capture the closeness of X(t)
and X̄t in a long horizon. Also, for the proof of Theorem 2.1, it suffices to prove the following
lemma, whose proof would be shown at the end of Appendix I.4.

Theorem I.2 (Adaption of Theorem I.4 in Gu et al. [20]). If ∥θ(0) − ϕ(0)∥2 = O(
√
η log 1

η ) and

ζ(0) = ϕ(0), v(0) = v(0), then for a giant step Rgrp = ⌊ 1
η0.25

⌋, for every test function g ∈ C3,

max
0≤n≤⌊ T

η0.75
⌋

∣∣∣E[g (X̄(nRgrp)
)
]− E

[
g
(
X(nη0.75)

)
]
∣∣∣ = Cgη

0.25(log
1

η
)b,

where Cg is a constant independent of η but depends on g(·) and b > 0 is a universal constant
independent of g(·) and η.

I.5. Preliminary and Additional Notations

We first introduce some notations and preliminary background. We consider the following stochastic
gradient algorithms (SGAs)

xn+1 = xn + ηeh(xn, ξn),

where xn ∈ R2d is the parameter vector, ηe is the effective learning rate, h(·, ·) : R2d × R2d → R2d

depend on the current parameter vector xn and the noise vector ξn sampled from some distribution
Ξ(xn).

We also consider the Stochastic Differential Equation (SDE) of the following form:

dXt = b(Xt, t)dt+ σ(Xt, t)dWt,

where b : R2d ×R+ → R2d is the drift vector function and σ : R2d ×R+ → R2d×2d is the diffusion
matrix function.

According to the moment calculations in Corollary I.2,Lemma I.10, Lemma I.11, and Lemma I.12,
we set ηe = η1−β , and

b(Xt, t) =

((
1

2
∂2ΦS(v)(ζ) [Σ(ζ,S(v))]

)⊤
, c (V (Σ(ζ))− v)⊤

)⊤

,

σ(Xt, t) =

(
∂ΦS(v)(ζ)Σ

1/2(ζ,S(v)), 0

0, 0

)
.

Next, we are going to define the one giant step change of the parameter, both for SGAs and SDE.

ˆ̄X(lRgrp) := (ΦŜ(lRgrp)(θ̂, ˆvlRgrp), ∆(n) := ˆ̄X((n+1)Rgrp) − ˆ̄X(nRgrp),

∆̃(n) := X(n+1)ηe −
ˆ̄X(nRgrp), b(n) := b( ˆ̄X(nRgrp)), σ(n) := σ( ˆ̄X(nRgrp)).

We now give a lemma to give the approximation of the first, second, and higher-order moment change
of the SDE.
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Lemma I.14. There exists a positive constant c0 independent of ηe and g such that for all ζ ∈ Γ, it
holds for all 1 ≤ i ≤ d that ∣∣∣E[∆̃i(ζ, n)]− ηebi(ζ)

∣∣∣ ≤ c0η
2
e ,∣∣∣∣∣E[∆̃i(ζ, n)∆̃j(ζ, n)]− ηe

d∑
l=1

σi,l(ζ)σl,j(ζ)

∣∣∣∣∣ ≤ c0η
2
e

E

[∣∣∣∣∣
6∏

s=1

∆̃is(ζ, n)

∣∣∣∣∣
]
≤ c0η

3
e .

Proof (i) By Lemma I.13, the first half solution ζ(t) in X(t) of Equation (5) stays in the manifold
almost surely when ζ(0) ∈ Γ. (ii) We assume that L ∈ C5, so b, σ ∈ C4. (iii) We know that Γ
is compact by Assumption 2.2. Then we can directly apply Lemma B.3 in Malladi et al. [41] and
Lemma 26 in Li et al. [33].

Lemma I.15 (Adaption of Lemma I.41 in Gu et al. [20]). Given drift term and diffusion term
b, σ ∈ Gα and Lipschitz. Let s ∈ [0, T ] and g ∈ Gα. Then for t ∈ [s, T ], we can define:

u(x, s, t) := EXt∼PX(x,s,t)[g(Xt)].

where PX(x, s, t) denotes the distribution of Xt with the initial condition X(s) = x. Then
u(·, s, t) ∈ Gα uniformly in s, t.

I.6. Proof of the Approximation for Slow SDE of AGMs

For the giant step constant β ∈ (0, 0.5), we define several quantities a1 = 1.5−2β
1−β ∈ (1, 1.5),

a2 = 1
1−β ∈ (1, 2), a3 = 2−2β

1−β = 2, a4 = 1.5−1.5β
1−β = 1.5. In this part, we will show that only a1

and a2 would impact the error bound in our approximation theorem.
The following lemma captures the difference between the SDEs’ and the AGMs’ first and second

moment changes, as a key step to control the approximation error, utilizing the moment calculation
results from the last section.

Lemma I.16. If ∥θ(0)−ϕ(0)∥2 = O(
√
η log 1

η ), then it holds for all 0 ≤ n ≤ ⌊T/ηe⌋ and 1 ≤ i ≤ d

that ∣∣∣E[∆(n)
i − ∆̃

(n)
i | E(nRgrp)

0 ]
∣∣∣ ≤ c1

(
ηa1e (log

1

ηe
)b + ηa2e (log

1

ηe
)b
)
,∣∣∣E[∆(n)

i ∆
(n)
j − ∆̃

(n)
i ∆̃

(n)
j | E(nRgrp)

0 ]
∣∣∣ ≤ c1

(
ηa1e (log

1

ηe
)b + ηa2e (log

1

ηe
)b
)
,

E

[∣∣∣∣∣
6∏

s=1

∆
(n)
is

| E(nRgrp)

∣∣∣∣∣
]
≤ c21η

2a1
e (log

1

ηe
)2b,

E

[∣∣∣∣∣
6∏

s=1

∆̃
(n)
is

| E(nRgrp)

∣∣∣∣∣
]
≤ c21η

2a1
e (log

1

ηe
)2b,

where c1 and b are constants independent of ηe and g.
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Proof According to Appendix I.2, we have that

E

[∣∣∣∣∣
6∏

s=1

∆
(n)
is

| E(nRgrp)

∣∣∣∣∣
]
= O(η3−3β).

We can further use Corollary I.2, Lemma I.10, Lemma I.11, and Lemma I.12, which gives∣∣∣E[∆(n)
i − ηeb

(n)
i ]
∣∣∣ ≤ c2

(
ηa1e (log

1

ηe
)b + ηa2e (log

1

ηe
)b
)
, (6)∣∣∣∣∣E[∆(n)

i ∆
(n)
j − ηe

d∑
l=1

σ
(n)
i,l σ

(n)
l,j ]

∣∣∣∣∣ ≤ c2

(
ηa1e (log

1

ηe
)b + ηa2e (log

1

ηe
)b
)

(7)

E

[∣∣∣∣∣
6∏

s=1

∆
(n)
is

∣∣∣∣∣
]
≤ c22η

2a1
e (log

1

ηe
)2b. (8)

Notice that the above equations uses a1 < a3 and a2 < a4 for all β ∈ (0, 0.5). These three equations
and Lemma I.14 give the Lemma.

Lemma I.17. For a test function g ∈ C3, and we define ul,n(x) := u(x, lηe, nηe) = EXt∼P(x,lηe,nηe)[g(Xt)].

If ∥θ(0) − ϕ(0)∥2 = O(
√
η log 1

η ), then for all 0 ≤ l ≤ n− 1, and 1 ≤ n ≤ ⌊T/ηe⌋, it holds that

∣∣∣E[ul+1,n(X̄
(lRgrp) +∆(l))− ul+1,n(X̄

(lRgrp) + ∆̃(l)) | X̄(lRgrp)]
∣∣∣ ≤ Cg,3(η

a1
e + ηa2e ) log(

1

ηe
)b,

where Cg,3 is some positive constant independent of ηe but can depend on g.

Proof Given g ∈ C3, by Lemma I.15, we have ul,n(x) ∈ C3 for all l and n. Which is to say that
there exists a function Q(·) ∈ G, such that the partial derivative of ul,n(X) with respect to l, n,x up
to the third order is bounded by Q(x). By the law of total expectation and triangle inequality,∣∣∣E[ul+1,n(

ˆ̄X(lRgrp) +∆(l))− ul+1,n(
ˆ̄X(lRgrp) + ∆̃(l)) | ˆ̄X(lRgrp)]

∣∣∣
≤
∣∣∣E[ul+1,n(

ˆ̄X(lRgrp) +∆(l))− ul+1,n(
ˆ̄X(lRgrp) + ∆̃(l)) | ˆ̄X(lRgrp), E(lRgrp)

0 ]
∣∣∣︸ ︷︷ ︸

I1

+ η2025 E[
∣∣∣ul+1,n(

ˆ̄X(lRgrp) +∆(l))
∣∣∣ | ˆ̄X(lRgrp), E(lRgrp)

0 ]︸ ︷︷ ︸
I2

+ η2025 E[
∣∣∣ul+1,n(

ˆ̄X(lRgrp) + ∆̃(l))
∣∣∣ | ˆ̄X(lRgrp), E(lRgrp)

0 ]︸ ︷︷ ︸
I3

.

For I2 and I3, due to the compactness of Γ and v ⪯ R1 from Assumption F.3, Q(x) can be bounded
for some constant Cg,4 independent of ηe but could depend on test function g. Hence, we have that
I2 + I3 ≤ Cg,4η

2025.
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Using the triangle inequality, we first decompose I1 into several terms as

I1 ≤
d∑

i=1

∣∣∣∣E [∂ul,n∂Xi
( ˆ̄X(Rgrp))

(
∆

(l)
i − ∆̃

(l)
i

)
| ˆ̄X(lRgrp), E(lRgrp)

0

]∣∣∣∣︸ ︷︷ ︸
I1,1

+
1

2

∑
1≤i,j≤d

∣∣∣∣E [ ∂2ul,n
∂Xi∂Xj

( ˆ̄X(Rgrp))
(
∆

(l)
j ∆

(l)
i − ∆̃

(l)
i ∆̃

(l)
j

)
| ˆ̄X(lRgrp), E(lRgrp)

0

]∣∣∣∣︸ ︷︷ ︸
I1,2

+ |R|+ |R̃|,

where the third order remainders R and R̃ are

R =
1

6

∑
1≤i,j,k≤d

∣∣∣∣E [ ∂3ul,n
∂Xi∂Xj∂Xk

( ˆ̄X(Rgrp) + α∆(l))
(
∆

(l)
j ∆

(l)
i ∆

(l)
k

)
| ˆ̄X(lRgrp), E(lRgrp)

0

]∣∣∣∣
R̃ =

1

6

∑
1≤i,j,k≤d

∣∣∣∣E [ ∂3ul,n
∂Xi∂Xj∂Xk

( ˆ̄X(Rgrp) + α̃∆̃(l))
(
∆̃

(l)
j ∆̃

(l)
i ∆̃

(l)
k

)
| ˆ̄X(lRgrp), E(lRgrp)

0

]∣∣∣∣ ,
where α, α̃ ∈ (0, 1). Again, notice that the Γ is compact and vv ⪯ R1, thus we can bound the
derivatives of ul,n(x) for any X as∣∣∣∣∂ul+1,n

∂Xi
(X)

∣∣∣∣ ≤ Cg,4,

∣∣∣∣ ∂2ul+1,n

∂Xi∂Xj
(X)

∣∣∣∣ ≤ Cg,4,

∣∣∣∣ ∂3ul+1,n

∂Xi∂Xj∂Xk
(X)

∣∣∣∣ ≤ Cg,4. (9)

For the term I1,1 and I1,2, by applying Lemma I.16, we have that

I1,1 ≤ dc1Cg,4(η
a1
e + ηa2e )(log

1

ηe
)b, I1,2 ≤

d2

2
c1Cg,4(η

a1
e + ηa2e )(log

1

ηe
)b.

Next, we bound the remainders R and R̃. By Cauchy-Schwarz inequality,

|R| ≤ 1

6

∑
1≤i,j,k≤d

√√√√E

[(
∂3ul,n

∂Xi∂Xj∂Xk
( ˆ̄X(Rgrp) + α∆(l))

)2

| ˆ̄X(lRgrp), E(lRgrp)
0

]
×

√
E
[(

∆
(l)
j ∆

(l)
i ∆

(l)
k

)2
| ˆ̄X(lRgrp), E(lRgrp)

0

]
≤ d3

6
Cg,4c1η

a1
e log(

1

ηe
)b,

where the last inequality uses Lemma I.16 and Equation (9).
Similarly, we can prove that there exists a positive constant Cg,5 such that

|R̃| ≤ d3

6
Cg,5c1η

a1
e log(

1

ηe
)b.

Combining the bounds for I1, I2, and I3 gives the lemma.
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Finally, we are ready to prove Theorem I.2.
Proof [Proof of Theorem I.2] For 0 ≤ l ≤ n = ⌊ T

η0.75
⌋, we denote the random variable by

x̂l,n such that follows a distribution PX( ˆ̄X(lRgrp), lηe, nηe). When we set l = n, P(x̂n,n =
ˆ̄X(nRgrp)) and setting l = 0 gives x̂0,n ∼ X(nηe). Recall the previous definition that u(x, s, t) =
EXt∼PX(x,s,t)[g(Xt)], and we define that Tl+1,n := ul+1,n(

ˆ̄X(lRgrp) + ∆(l), (l + 1)ηe, nηe) −
ul+1,n(

ˆ̄X(lRgrp) + ∆̃(l), (l + 1)ηe, nηe). Using the definition of xl,n, we can rewrite the distance
between AGMs and SDE measured by a test function g as∣∣∣E [g(X̄(nRgrp))− g(X(nηe))

]∣∣∣
≤
∣∣∣E [g(xn,n)− g(x0,n) | E

(nRgrp)
0

]∣∣∣+O(η2025).

The above equation uses the law of total expectation and the definition of δ-good event E(nRgrp)
0 in

Definition I.1. Then the Triangle inequality gives

∣∣∣E [g(xn,n)− g(x0,n) | E
(nRgrp)
0

]∣∣∣ ≤ n−1∑
l=0

∣∣∣E [g(x̂l+1,n)− g(x̂l,n) | E
(nRgrp)
0

]∣∣∣+O(η2025)

=

n−1∑
l=0

∣∣∣E [Tl+1,n | E(nRgrp)
0

]∣∣∣+O(η2025)

=
n−1∑
l=0

∣∣∣E [E [Tl+1,n | ˆ̄X(lRgrp), E(nRgrp)
0

]
| E(nRgrp)

0

]∣∣∣+O(η2025)

≤
n−1∑
l=0

E
[∣∣∣E [Tl+1,n | ˆ̄X(lRgrp), E(nRgrp)

0

]∣∣∣ | E(nRgrp)
0

]
+O(η2025)

≤ nCg,3(η
a1
e + ηa2e ) log(

1

ηe
)b

≤ TCg,3(η
a1−1
e + ηa2−1

e ) log(
1

ηe
)b.

where the second last inequality uses Lemma I.17. Recap that a1 = 1.5−2β
1−β , a2 = 1

1−β , β ∈ (0, 0.5).
Let β = 0.25, and we complete the proof.

Appendix J. Proof of Theorems in Appendix D

J.1. Proof of Adam and AdamE-λ’s Implicit Bias with Label Noise

In this part, we give the proof of Theorem D.1 and Theorem D.2.
Proof [Proof of Theorem D.1] With label noise, the gradient covariance matrix Σ(ζ) = α∇2L(ζ)
for any ζ ∈ Γ.

We recall the SDE formula in Equation (5) and Lemma I.9{
dζ(t) = ∂ΦS(v)(ζ)S(v)Σ

1/2(ζ)dWt − 1
2St∂

2(∇L)(ζ[PV∇2L′(ϕ′
(0)

)(PΣ0P )P ]dt,

dv(t) = c (V (Σ(ζ))− v) dt.
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And P := S
1/2
0 . By applying Lemma I.2, and replacing Σ with α∇2L, we can reduce the SDE

formula as {
dζ(t) = −α

2St∂
2(∇L)(ζ)[St]dt,

dv(t) = c (V (Σ(ζ))− v) dt.

Then we can write out the constraint for the fixed point (ζ∗,v∗) of this ODE as

−1

2
S(v∗)∂2(∇L)(ζ∗)[S(v∗)] = 0, (10)

V (Σ(ζ∗))− v∗ = 0. (11)

Solving Equation (10) and Equation (11) gives

∂2(∇L)(ζ∗)[S(V (Σ(ζ∗)))] = 0. (12)

Integrating by parts gives us

∂2 (∇L) [S] = ∇
[
⟨∇2L,S⟩

]
−∇ (S)

[
∇2L

]
. (13)

We use H and ∇2L interchangeably to denote the Hessian matrix. For the first term, note that

⟨S,H⟩ =
∑
j,k

[S]jk Hjk

=
∑
i,j,k

PjiHjkPki

=
∑
i

[PHP ]ii

= tr (PHP )

= tr
(
(DiagH)

1
2

)
+O(ϵtr(H)),

where the last equality comes from the update rule of Adam: S = (DiagH)−
1
2 + O(ϵ),P =

(DiagH)−
1
4 +O(

√
ϵ). For the second term, we also plug in the update rule of Adam, and use hj to

denote Hjj , which turns out to be the gradient of the same thing:

∇ (S)
[
∇2L

]
=
∑
j,k

∇
(
[S]jk

)
∇2

jkL

=
∑
j

∇
(
[S]jj

)
∇2

jjL

=
∑
j

∇
(
h
− 1

2
j

)
· hj +O

ϵ
∑
j

hj


=
∑
j

∇ (hj) · −
1

2
h
− 1

2
j +O(ϵtr(H))

=
∑
j

∇
(
−h

1
2
j

)
+O(ϵtr(H))

= −∇tr
(
(DiagH)

1
2

)
+O(ϵtr(H)).
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Summarizing, our drift term can be represented as a constant multiple of

S∇tr
(
(DiagH)

1
2

)
+O(Sϵtr(H)), (14)

forming a preconditioned gradient flow that implicitly minimizes tr
(
(DiagH)

1
2

)
when ϵ → 0.

Combining Equation (12) and Eq. (14) gives the result in Theorem D.1.
Proof [Proof of Theorem D.2] Now we consider the optimizer AdamE-λ, the variant of Adam
proposed as a verification case of our main results, whose update rule is

mk+1 := β1mk + (1− β1)∇ℓk(θk)

vk+1 := β2vk + (1− β2)∇ℓk(θk)
⊙2

θk+1,i := θk,i − η
mk+1,i

(vk+1,i)
λ + ϵ

for all i ∈ [d], λ ∈ (0, 1).

Now for AdamE-λ, the precondition matrix S = (DiagH)−λ, and P = (DiagH)−λ/2, which gives

⟨S,H⟩ =
∑
j,k

[S]jk Hjk

=
∑
i,j,k

PjiHjkPki

=
∑
i

[PHP ]ii

= tr (PHP )

= tr
(
(DiagH)1−λ

)
+O(ϵtr(H)).

Also, similar to the case for Adam, we have

∇ (S)
[
∇2L

]
=
∑
j,k

∇
(
[S]jk

)
∇2

jkL

=
∑
j

∇
(
[S]jj

)
∇2

jjL

=
∑
j

∇
(
h−λ
j

)
· hj +O

ϵ
∑
j

hj


=
∑
j

∇ (hj) · −λh−λ
j

= − λ

1− λ

∑
j

∇
(
−h1−λ

j

)
+O(ϵtr(H))

= − λ

1− λ
∇tr

(
(DiagH)1−λ

)
+O(ϵtr(H)).

Utilizaing Equation (13), we get the regularization term for AdamE-λ as

∂2 (∇L) [S] = ∇
[
⟨∇2L,S⟩

]
−∇ (S)

[
∇2L

]
=

1

1− λ
tr
(
(DiagH)1−λ

)
+O(ϵtr(H)),

49



ADAM REDUCES A UNIQUE FORM OF SHARPNESS: THEORETICAL INSIGHTS NEAR THE MINIMIZER MANIFOLD

Evaluating the above equation when ϵ → 0 completes the proof.

J.2. Proof of Lemma D.1

Proof Recall that the manifold is defined as Γ =
{
θ|⟨zi,u⊙2 − v⊙2⟩ = yi,∀i ∈ [n]

}
. So if any

θ =
(
u
v

)
belongs to Γ, and another θ̃ =

(
ũ
ṽ

)
satisfies that ũ⊙2

i − ṽ⊙2
i = u⊙2

i − v⊙2
i for any i ∈ [d],

then θ̃ also belongs to Γ.
Next, we derive the explicit expression of the Hessian matrix when θ ∈ Γ:

∇2L(θ) = 2

n

n∑
i=1

2
(
zi⊙u
−zi⊙v

)(
zi⊙u
−zi⊙v

)⊤
+
(
⟨zi,u⊙2 − v⊙2⟩ − yi

)( diag(z) 0
0 −diag(z)

)

=
4

n

n∑
i=1

(
zi⊙u
−zi⊙v

)(
zi⊙u
−zi⊙v

)⊤
.

Hence, we have that

tr(Diag(H)e0) ∝
d∑

i=1

(|ui|2e0 + |vi|2e0),

and
∥∥u⊙2 − v⊙2

∥∥e0
e0

=
∑d

i=1 |u2i − v2i |e0 . Let e0 ∈ (0, 1], and we assume that

θ ∈ arg min
θ′∈Γ

tr(Diag(H)e0) = arg min
θ′∈Γ

d∑
i=1

(|ui|2e0 + |vi|2e0).

First we prove by contradiction that ui = 0 or vi = 0 for any i ∈ [d]. If there exists some i
such that ui ̸= 0 and vi ̸= 0, then denote s = min {|ui|, |vi|}, we construct θ̃ =

(
ũ
ṽ

)
by letting

ũj = uj , ṽj = vj for j ̸= i and ũi = |ui| − s, ṽi = |vi| − s. Then ũ⊙2 − ṽ⊙2 = u⊙2 − v⊙2, so
θ̃ ∈ Γ, but |ũi|2e0 + |ṽi|2e0 < |ui|2e0 + |vi|2e0 , a contradiction.

Now assume θ /∈ argminθ′∈Γ
∥∥u⊙2 − v⊙2

∥∥
e0

. There must exist some θ̃ ∈ Γ such that∥∥ũ⊙2 − ṽ⊙2
∥∥
e0

<
∥∥u⊙2 − v⊙2

∥∥
e0

. WLOG assume for any i ∈ [d], either ũi = 0 or ṽi = 0,
else we can construct another minimizer that preserves

∥∥ũ⊙2 − ṽ⊙2
∥∥
e0

as above. But now we have∑d
i=1 |u2i − v2i |e0 =

∑d
i=1 |ui|2e0 + |vi|2e0 , and

∑d
i=1 |ũ2i − ṽ2i |e0 =

∑d
i=1 |ũi|2e0 + |ṽi|2e0 , which

indicates that
∑d

i=1 |ũi|2e0 + |ṽi|2e0 <
∑d

i=1 |ui|2e0 + |vi|2e0 , a contradiction.
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Figure 1

Figure 2

Figure 3

Figure 4: (a): Coutour of the elliptical loss, from which we can see the two tips as the flattest minima.
(b): SGD implicitly minimizes tr(H) and converges to the flattest minima. (c): Adam reduces
sharpness too but converges to a different and sparser minimum.
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Figure 5

Figure 6

Figure 7

Figure 8: Comparison of conventional SDE and slow SDE.
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Figure 9

Figure 10

Figure 11: The curve of final test loss vs. scale of training data with d = 10000, κ = 50. (a): Loss
comparison between SGD with different learning rates, and Adam with different learning rates and
β2’s. (b): Loss comparison between AdamE with λ = 0.001, 0.25, 0.75, 0.9, Adam and SGD.
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Figure 12: Deep matrix factorization with label noise. Adam and SGD are trained on identical
data and noise realizations. Top: evolution of tr(H) and tr(Diag(H)1/2). Bottom: training and test
MSE. Adam converges to a point with larger overall curvature but smaller diagonal curvature, and
exhibits higher test error.
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