
Instant Transformer Adaption via HyperLoRA

Rujikorn Charakorn
Sakana.AI, VISTEC

rujikorn.ch@gmail.com

Edoardo Cetin
Sakana.AI

edo@sakana.ai

Yujin Tang
Sakana.AI

yujintang@sakana.ai

Robert Lange
Sakana.AI

robert@sakana.ai

Abstract

While Foundation Models provide a general tool for rapid content creation, they
regularly require task-specific adaptation. Traditionally, this exercise involves
careful curation of datasets and repeated fine-tuning of the underlying model.
Fine-tuning techniques enable practitioners to adapt foundation models for many
new applications but require expensive and lengthy training while being notably
sensitive to hyper-parameter choices. To overcome these limitations, we introduce
HyperLoRA, a model capable of adapting Large Language Models on the fly—
solely based on a natural language description of the target task. HyperLoRA is a
hypernetwork trained to construct LoRAs in a single inexpensive forward pass.
After training HyperLoRA, we show that the ad-hoc reconstructed LoRA instances
match the performance of task-specific adapters across the corresponding test
sets. Furthermore, HyperLoRA can compress hundreds of LoRA instances and
zero-shot generalize to entirely unseen tasks. This approach provides a significant
step towards democratizing the specialization of foundation models and enables
language-based adaptation with minimal compute requirements.

1 Introduction

While recent Large language models (LLMs) exhibit a wide variety of capabilities and knowledge,
they remain rigid when adding task-specific capabilities. In such cases, practitioners often resort to
re-training parts of the model [1–4] using techniques such as parameter-efficient fine-tuning, e.g. via
Low-Rank Adaptation [LoRA, 5]. Typically, a LoRA adapter has to be optimized for each task and
requires a task-specific dataset and hyperparameter setting. This fine-tuning scheme significantly
limits the possibility of transferring knowledge between tasks and induces engineering overhead.

Recently, it has been observed that by inducing structural constraints, the low-rank matrices learned
by LoRA adapters can be further compressed. For example, one can train lossy versions of the original
adapter while maintaining downstream performance [6–8]. Furthermore, multiple LoRAs can be
combined for new tasks at inference time [9]. At the core of these approaches lies the explicit use of
decomposition or dimensionality reduction techniques (e.g., SVD or routing) for better compression
and online composition of existing LoRAs. This raises the following questions:

1. Can we end-to-end train a neural network to compress many pre-trained LoRAs?
2. Can we decode new task-specific LoRA adapters from this network solely based on natural-

language instructions for an unseen task at test time?

We hypothesize that different LoRA adapters share the same underlying adaptation mechanism and
can be optimized simultaneously without any explicit structure or recipe for combining them. To
explicitly test this hypothesis, we propose HyperLoRA (see Section 1), a hypernetwork [10] that
compresses task-specific LoRAs and generates a new LoRA adapter zero-shot at inference time.
HyperLoRA is trained to compress LoRAs on a diverse task distribution from the Super Natural
Instruction (SNI) dataset [11]. Importantly, HyperLoRA takes a natural language description of the

NeurIPS 2024 Workshop on Adaptive Foundation Models.

Task emb

HyperLoRA

𝚫𝐖

Target 𝚫𝐖

Reconstruction loss

𝐖𝟎

𝐖′

+

𝒙

𝓛(ෝ𝒚, 𝒚)

SFT loss

Base model

HyperLoRA Training

1 2 4 8 16 32 64 128 256 512
Compression ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
l.

pe
rf

or
m

an
ce

 t
o

or
ac

le
s

HyperLoRA (L)
HyperLoRA (M)
HyperLoRA (S)
Avg. LoRA
Base model

16 64 128 256 489
Number of training datasets

61

62

63

64

65

66

67

68

Av
g.

 b
en

ch
m

ar
k

pe
rf

or
m

an
ce

HyperLoRA (L)
HyperLoRA (M)
HyperLoRA (S)
MT-LoRA

Figure 1: Left: Conceptual overview of the HyperLoRA training routine. Given a set of task
description embeddings, we train a hypernetwork to generate LoRA adaptation matrices (∆W) for
various tasks. The weights of the HyperLoRA are either optimized to distill pre-trained LoRA weights
or via multi-task supervised fine-tuning on downstream tasks. Right, Top: Relative performance to
the oracles on training SNI tasks with varying compression ratios. Right, Bottom: Zero-shot LoRA
generation performance on 10 benchmark tasks. As we increase the number of pre-training datasets,
the performance of HyperLoRA increases for three different HyperLoRA architectures.

target task as an input, allowing zero-shot LoRA generation to unseen tasks. Empirically, we show
that HyperLoRA can effectively be trained either to reconstruct pre-trained adapters or via supervised
fine-tuning on a distribution of downstream tasks (see Fig. 1, top right). After training HyperLoRA
outperforms a multi-task LoRA baseline and Arrow Routing [9], a state-of-the-art zero-shot LoRA
routing method, on various benchmark tasks. Furthermore, we show that HyperLoRA can generate
LoRA adapters for previously unseen tasks solely using the language-based task description. This
highlights the generalization capabilities and applicability of HyperLoRA.

2 Preliminaries

We utilize multiple fine-tuning datasets D = {D1, . . . ,DT }, which correspond to different tasks
T = {t1, . . . , tT }. For the purpose of training HyperLoRA, we assume that each fine-tuning dataset
has a set of natural language task descriptions (Zi = {zi1, . . . , zim}): Di = {Xi, Y i, Zi}. The task
descriptions do not need to be specific to each sample but rather a general description of the dataset.
For a single task ti, the fine-tuning objective of an LLM with pre-trained weights (Ψ) is given by

∆W i = argmin
∆W i

LSFT(Di,Ψ,∆W i), (1)

where LSFT gives the supervised fine-tuning loss and ∆W i is the fine-tuning adaption for task ti to
the base weights. For the multi-task setting, we train a single adapter ∆W to minimize the expected
loss over the union of all datasets D:

∆W = argmin
∆W

EDi∼D LSFT(Di,Ψ,∆W). (2)

Low-Rank Adaptation [LoRA, 5]: LoRA is a parameter-efficient fine-tuning method that freezes
the pre-trained weights of a base model and only learns low-rank weight matrices, which serve as
an adapter to the base model. For each selected linear transformation h = W0x, the fine-tuned
transformation is given by h = W0x+∆Wx = W0x+BTAx, where A,B ∈ Rr×d are weight

2

matrices of rank r < d. We drop the layer index and module type of the LoRA weights when referring
to all LoRA weights. Otherwise, we use subscripts to indicate the layer index and module type, e.g.,
∆Wm,l, where m is the module type (e.g., query projection) and l is the layer index.

Hypernetworks: A hypernetwork is a neural network that generates parameters for another ‘base’
network [10]. It serves as an indirect encoding [12, 13] of the base network, given that the parameter
count of the hypernetwork is much smaller. This compression is achieved by learning to share
parameters indirectly. More specifically, given a layer-specific descriptor vector ϕl, a hypernetwork
with parameters θ generates the parameters of the base model at layer l ∈ {1, . . . L} as follows:
Wl = hθ(ϕl). Traditionally, the layer descriptors are either one-hot or learned vectors. The weights
θ are trained via end-to-end optimization on a downstream task.

3 HyperLoRA: Learning to Compress and Generate LoRAs

In this work, we utilize a hypernetwork to generate LoRA adapters for specific fine-tuning tasks. For
each target module (m) and layer index (l), a hypernetwork generates the two low-rank matrices
A,B based on a task description zi ∈ Zi of a task ti as follows:

∆W i
m,l = hθ(ϕ

i
m,l), with ϕi

m,l = concat
[
f(zi), E[m], E[l]]

]
, (3)

where f gives a vector representation of a text description, typically represented by a CLS token of
a bidirectional transformer model or last token activation of an LLM. E is a learnable embedding
dictionary indexed by either a module type m or a layer index l. For legibility, we introduce a
shorthand notation for HyperLoRA’s output ∆W i := hθ(ϕ

i) := hθ({ϕi
m,l}). Then, a supervised

fine-tuning training objective for HyperLoRA is

θ = argmin
θ

EDi∼D,zi∼Zi LSFT(Di,Ψ, hθ(ϕ
i)), (4)

Note that values of m and l can be batched, which allows HyperLoRA to generate ∆W for all the
modules and layer indices efficiently within a single forward pass.

3.1 HyperLoRA Architectures

Task emb

Task
encoder

Module emb

Depth emb

MLP MLP MLP MLP+ Head

A/B
emb

Rank
embM S S

+

Both A and B
[2, r, d]

A or B
[r, d]

M

One rank of A or B
[d]

L S

Figure 2: Overview of HyperLoRA architectural variations. The dashed box at the bottom shows the
output size of a single forward pass of HyperLoRA. Blue boxes are trainable modules. Cyan Boxes
are trainable embedding layers. Components in dashed boxes are only used with their corresponding
architectures. r is the rank of a LoRA adapter and d is the size of the input and the output dimension.

Most of a hypernetwork’s parameters come from the output layer, which scales linearly with the
size of the target weights [14]. To explore the complexity-performance trade-off, we propose three
variants of HyperLoRA: L , M , and S . We impose different output spaces on the hypernetwork
that represent different inductive biases and parameter counts (see Fig. 2). We note that all variants
use the same backbone architecture and only differ in their output heads and learnable embeddings:
The L architecture is the largest variant. Its final linear layer outputs low-rank A and B matrices
simultaneously with the number of weight connections to the output head |θhead| = dout × 2× r × d,
where dout is the output size of the last MLP block. M architecture is the medium-size model
with a shared output layer between the low-rank A and B matrices. That is, the head outputs a

3

low-rank matrix, either A or B, depending on the learnable embedding. The size of the output head
is |θhead| = dout × r × d. Finally, S architecture is the most parameter-efficient model with the
strongest inductive biases, where the hypernetwork outputs only one rank of a low-rank matrix at a
time. This output space makes the size of the head much smaller: |θhead| = demb × d. For reference,
a LoRA adapter has r × d × 2 × L × |M | trainable parameters, where L is the number of layers
and |M | is the number of target modules. We note that every architecture can generate the entirety
of low-rank matrices A and B in a single forward pass by batching all the input embeddings. We
provide more details of the architectures in Appendix F. Finally, we describe differences between
LoRA reconstruction and supervised fine-tuning in Appendix D

4 Experiments

We investigate the effectiveness of the different HyperLoRA architectures and training schemes in
terms of the compression of adapters and zero-shot LoRA generation for unseen tasks. As baselines,
we consider task-specific LoRAs, element-wise averaged LoRA’s, and multi-task LoRA—a LoRA
adapter trained on all training tasks. Additionally, we include results of Arrow Routing zero-shot
performance from Ostapenko et al. [9]. Note that the performance can only be compared indirectly as
it uses a different set of LoRA adapters and training tasks. Furthermore, there are likely differences in
the benchmark evaluation prompts. Finally, HyperLoRA uses a multi-task (MT) LoRA as a prediction
offset in all experiments. We found that this improves performance on the benchmarks. That is,
HyperLoRA has to learn to generate task-specific deltas, which will be added to the offset.

In all experiments, we use Mistral-7B-Instruct [15] as the base LLM model and
gte-large-en-v1.5 [16, 17] for extracting the task embedding from a natural language task descrip-
tion. All LoRA adapters are of rank 8 and only target the query and the value projection modules in
every attention block of the base LLM (totaling 3.4M parameters). We utilize the SNI dataset [11]
for training LoRA adapters. We use a subset of 500 tasks following Brüel-Gabrielsson et al. [6], 10
of which are manually chosen while the rest are randomly sampled. We use 11 tasks for hold-out
evaluation, leaving 489 datasets for training. Finally, we limit the size of each task to 500 samples to
ensure compute feasibility. All samples are in English. Task descriptions for the training datasets
and the benchmarks are fully generated, as described in Appendix J. When we use a language task
embedding as a part of the input, we average HyperLoRA performance using three descriptions for
each benchmark.

4.1 LoRA Compression

Table 1: Benchmark performance of HyperLoRA trained via reconstruction loss on 9 benchmark tasks.
Green highlight indicates that HyperLoRA outperforms the benchmark-specific LoRA adapters.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

MBPP
(pass@1)

Avg.
(9 tasks)

Base model 65.4 77.8 71.6 40.9 49.7 54.2 72.8 45.0 43.1 55.8

One-Hot Task Embeddings
HyperLoRA (Recon) L 76.4 89.9 89.4 53.8 92.6 85.0 69.7 51.2 52.6 73.4
HyperLoRA (Recon) M 76.7 89.9 89.4 53.2 92.6 85.0 69.9 51.4 52.9 73.4
HyperLoRA (Recon) S 75.2 88.8 87.4 50.9 89.1 75.6 83.9 58.1 48.1 73.0

Task Description Embeddings
HyperLoRA (Recon) L 76.6 89.8 89.4 53.9 92.6 85.0 69.6 51.2 51.8 73.3
HyperLoRA (Recon) M 76.5 89.9 89.4 53.9 92.5 84.9 70.4 51.6 52.8 73.5
HyperLoRA (Recon) S 75.4 88.8 87.8 49.1 89.7 76.7 84.2 56.9 48.0 73.0

Task-specific LoRAs 76.6 89.9 89.4 53.5 92.6 85.0 69.9 51.1 52.1 73.3

In this experiment, we aim to investigate whether HyperLoRA can recover the performance of trained
LoRAs via reconstruction training. For quality control and consistent evaluation, we train a task-
specific LoRA (oracle) on the training split of each training and benchmark task, collectively
forming a library of LoRAs. Table 1 shows the benchmark performance of HyperLoRA trained by
distilling 9 benchmark-specific LoRAs using either one-hot or natural language task embeddings
from gte-large-en-v1.5. We can see that HyperLoRA fully recovers the performance of the oracle
adapters with both task embedding types. Notably, HyperLoRA outperforms task-specific LoRAs
on several benchmarks (highlighted in green). We hypothesize that the gain comes from the lossy

4

compression of the target LoRAs, which acts as a regularization on the already trained LoRA weights.
This effect is most apparent on PIQA and WG benchmarks, where the oracle LoRA overfits and
performs worse than the base model.

4.2 Zero-Shot LoRA Generation

Table 2: Zero-shot performance on unseen benchmark tasks. HyperLoRA generates LoRAs based
on unseen task descriptions. Its performance is an average of three generated LoRAs, each with a
different instance of task descriptions. Arrow Routing results are taken from [9]. Green highlight
indicates high performance than that of the benchmark-specific LoRA adapters. Bold numbers are
used when the performance is higher than the multi-task LoRA.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

MBPP
(pass@1)

Avg.
(8 tasks)

GSM8K
(acc)

HE
(pass@1) Avg.

No Test-Time Adaptation
Base model 65.4 77.8 71.6 49.7 54.2 72.8 45.0 43.1 60.0 40.9 37.2 55.8
Average LoRA 70.7 84.4 75.4 59.9 59.0 78.0 54.3 47.1 66.1 42.4 37.8 60.9
Multi-task LoRA 73.7 86.9 84.6 64.3 66.6 80.7 59.0 50.4 70.8 44.2 36.0 64.6

Zero-Shot Adaptation
Arrow Routing 60.9 86.2 87.6 80.8 48.6 83.0 68.5 50.2 70.7 N/A 28.7 N/A
HyperLoRA (SFT) L 74.0 87.9 85.1 65.7 73.8 82.0 61.7 53.2 72.9 46.2 39.8 66.9
HyperLoRA (SFT) M 74.9 88.0 84.9 65.6 73.9 82.0 62.1 52.7 73.0 47.7 40.2 67.2
HyperLoRA (SFT) S 74.1 86.9 84.3 64.9 69.9 80.8 60.5 52.1 71.7 45.5 38.6 65.8
Oracle
Task-specific LoRAs 76.6 89.9 89.4 92.6 85.0 69.9 51.1 52.1 75.8 53.5 N/A N/A

Here, we explore whether HyperLoRA can generate useful LoRA adapters for unseen tasks. We train
HyperLoRA with SFT on 256 SNI tasks, each with 128 task descriptions. For each data point in a
training minibatch, we sample a description from the corresponding dataset in an online fashion.
Table 2 shows the zero-shot performance on 10 benchmark tasks. We observe that a multi-task
LoRA adapter performs well on the benchmarks despite of no additional fine-tuning. Still, there
is a performance gap between task-specific LoRAs and MT LoRA. We observe that SFT-trained
HyperLoRA indeed generates useful LoRAs, thus improving over the multi-task LoRA adapter
consistently and across benchmarks (indicated by bold numbers). Notably, even though HyperLoRA
cannot fully bridge the performance gap with task-specific single LoRAs, it outperforms the oracles
on a subset of tasks (highlighted in green). We also observe that the best-performing variant in
both experiments (Sections 4.1 and 4.2) is the M variation, which has a shared output layer for the
low-rank matrices (see Fig. 2). This result is in line with the general knowledge that certain inductive
biases improve models’ robustness and generalization.

5 Conclusion

Discussion. We rely on generated descriptions from GPT-4o mini to ensure high-quality and
consistent task descriptions. It is plausible that when HyperLoRA is deployed in real-world scenarios,
users might not input high-quality descriptions, which could cause performance degradation on
generated adapters. Our results have primarily focused on modulating the Mistral architecture,
with an emphasis on LLM adaptation. However, no inherent constraints prevent us from applying
HyperLoRA to other LLMs or adapting vision language models.

Limitations. We only consider LoRA as the output space of the hypernetwork. We believe there are
more efficient ways to modulate LLMs given a text description, e.g., directly modulate the activations
of the base model. Additionally, we believe the compression achieved by HyperLoRA can be further
optimized using well-designed inductive biases. Though HyperLoRA performs better when trained
on more tasks, it is yet to take full advantage of scaling up to a larger set of training tasks shown in
Appendix A.1. Finally, although HyperLoRA exhibits robustness and signs of scalability, it still does
not reach the benchmark performance of task-specific LoRAs in a zero-shot manner. Achieving such
potent zero-shot adaption is still one of the biggest challenges for HyperLoRA.

Future Work. We plan to expand HyperLoRA across multiple architectures and explore the potential
for transfer between different model sizes. Finally, our goal is to provide an openly accessible service
for various HyperLoRA configurations. We envision a user-friendly platform where individuals could
generate and download fine-tuned adapters by simply prompting a model with a chat interface.

5

References
[1] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,

and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

[2] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

[3] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems,
35:30318–30332, 2022.

[4] Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung,
Sharan Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights
from pre-training and fine-tuning transformers. arXiv preprint arXiv:2109.10686, 2021.

[5] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=nZeVKeeFYf9.

[6] Rickard Brüel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Gree-
newald, Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of
lora adapters with little overhead. arXiv preprint arXiv:2407.00066, 2024.

[7] Hwichan Kim, Shota Sasaki, Sho Hoshino, and Ukyo Honda. A single linear layer yields
task-adapted low-rank matrices. arXiv preprint arXiv:2403.14946, 2024.

[8] Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random
matrix adaptation. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=NjNfLdxr3A.

[9] Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Laurent Charlin, Nicolas Le Roux, Matheus
Pereira, Lucas Caccia, and Alessandro Sordoni. Towards modular llms by building and reusing
a library of loras. arXiv preprint arXiv:2405.11157, 2024.

[10] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[11] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 5085–5109, 2022.

[12] Jürgen Schmidhuber. Discovering neural nets with low kolmogorov complexity and high
generalization capability. Neural Networks, 10(5):857–873, 1997.

[13] Kenneth O Stanley and Risto Miikkulainen. A taxonomy for artificial embryogeny. Artificial
life, 9(2):93–130, 2003.

[14] Johannes Von Oswald, Christian Henning, Benjamin F Grewe, and João Sacramento. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

[15] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[16] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang.
Towards general text embeddings with multi-stage contrastive learning. arXiv preprint
arXiv:2308.03281, 2023.

6

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NjNfLdxr3A

[17] Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin,
Baosong Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text represen-
tation and reranking models for multilingual text retrieval. arXiv preprint arXiv:2407.19669,
2024.

[18] Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas
Chapados, and Siva Reddy. LLM2Vec: Large language models are secretly powerful text
encoders. In First Conference on Language Modeling, 2024. URL https://openreview.net/
forum?id=IW1PR7vEBf.

[19] Simon Schug, Seijin Kobayashi, Yassir Akram, João Sacramento, and Razvan Pascanu. Atten-
tion as a hypernetwork. arXiv preprint arXiv:2406.05816, 2024.

[20] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv
preprint arXiv:2106.04489, 2021.

[21] Yun He, Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang Li, Zhao
Chen, Donald Metzler, et al. Hyperprompt: Prompt-based task-conditioning of transformers. In
International conference on machine learning, pages 8678–8690. PMLR, 2022.

[22] Jesus-German Ortiz-Barajas, Helena Gomez-Adorno, and Thamar Solorio. Hyperloader: Inte-
grating hypernetwork-based lora and adapter layers into multi-task transformers for sequence
labelling. arXiv preprint arXiv:2407.01411, 2024.

[23] Zedian Xiao, William Held, Yanchen Liu, and Diyi Yang. Task-agnostic low-rank adapters for
unseen English dialects. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pages 7857–7870,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.487. URL https://aclanthology.org/2023.emnlp-main.487.

[24] Hamish Ivison and Matthew E Peters. Hyperdecoders: Instance-specific decoders for multi-task
nlp. arXiv preprint arXiv:2203.08304, 2022.

[25] Chuancheng Lv, Lei Li, Shitou Zhang, Gang Chen, Fanchao Qi, Ningyu Zhang, and Hai-Tao
Zheng. HyperloRA: Efficient cross-task generalization via constrained low-rank adapters gener-
ation. In ACL Findings 2024, 2024. URL https://openreview.net/forum?id=xa4GYUSvhW.

[26] Justin Zhao, Timothy Wang, Wael Abid, Geoffrey Angus, Arnav Garg, Jeffery Kinnison, Alex
Sherstinsky, Piero Molino, Travis Addair, and Devvret Rishi. Lora land: 310 fine-tuned llms
that rival gpt-4, a technical report. arXiv preprint arXiv:2405.00732, 2024.

[27] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1, 2018.

[28] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In
NAACL, 2019.

[29] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[30] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

[31] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

7

https://openreview.net/forum?id=IW1PR7vEBf
https://openreview.net/forum?id=IW1PR7vEBf
https://aclanthology.org/2023.emnlp-main.487
https://openreview.net/forum?id=xa4GYUSvhW

[32] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on
Artificial Intelligence, 2020.

[33] Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An
adversarial winograd schema challenge at scale. 2019.

[34] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[35] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[36] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

[37] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

8

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

A Ablations

A.1 Scaling Number of Training Tasks

Table 3: Benchmark performance of SFT-trained HyperLoRA with varying numbers of training tasks.
Due to the space constraint, we show results with {128, 256, 489} tasks. ▲▲▲ (▼▼▼) indicates increased
(decreased) performance compared to the previous increment in the number of training tasks.

Number
of tasks

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

HE
(pass@1)

MBPP
(pass@1) Avg.

HyperLoRA (SFT) L
128 75.4 88.0 85.0 43.6 66.7 74.7 82.2 57.7 38.0 51.4 66.3 ▲▲▲
256 74.0 87.9 85.1 46.2 65.7 73.8 82.0 61.7 39.8 53.2 66.9 ▲▲▲
489 74.1 87.6 84.9 44.9 65.6 69.9 81.4 59.1 40.7 52.5 66.1 ▼▼▼

HyperLoRA (SFT) M

128 74.2 87.7 83.6 46.9 65.4 71.1 81.4 56.3 40.7 53.3 66.1 ▲▲▲
256 74.9 88.0 84.9 47.7 65.6 73.9 82.0 62.1 40.2 52.7 67.2 ▲▲▲
489 74.7 87.8 85.4 46.9 65.7 72.5 81.2 61.5 40.9 53.6 67.0 ▼▼▼

HyperLoRA (SFT) S

128 73.2 86.5 84.6 45.8 65.6 69.5 81.4 59.2 42.9 51.4 66.0 ▲▲▲
256 74.1 86.9 84.3 45.5 64.9 69.9 80.8 60.5 38.6 52.1 65.8 ▼▼▼
489 73.2 86.7 85.1 45.0 64.4 66.1 80.1 59.4 37.4 52.0 64.9 ▼▼▼

We study the impact of the number of training tasks on the zero-shot benchmark performance of
HyperLoRA in the SFT setting, where all HyperLoRA instances are trained for roughly the same number
of gradient steps (see details in Appendix G). We find that increasing the number of training tasks
improves the average zero-shot benchmark performance of the hypernetwork (Fig. 1 and Table 3). This
result hints at the plausible scalability of HyperLoRA and positive transfer between tasks. However,
after 256 tasks (128 tasks for S), we see a consistent performance drop on all variants. We
hypothesize that hypernetworks have a certain capacity for storing task knowledge. Thus, training
hypernetworks on more tasks beyond HyperLoRA’s capacity can cause performance degradation. This
hypothesis may explain why the smallest architecture S experiences the earliest performance drop.

A.2 Task Embedding Models

Table 4: Zero-shot benchmark performance of
HyperLoRA trained via SFT on 489 tasks.

gte Mistral

Avg. Benchmark
performance

S M L S M L
64.9 67.0 66.1 65.4 66.9 66.5

Avg. 66.0 66.3

Table 4 shows the zero-shot benchmark
performance with two different embed-
ding models: gte-large-en-v1.5 and
Mistral-7B-Instruct. For the gte model,
we extract a task description by presenting the
activation of the CLS token in the last layer
(1024D) as the model is a bidirectional model.
For Mistral, we use the activation of the last token in the sequence (4096D) to represent a given
description [18]. Table 4 shows the results with the two embedding models used for HyperLoRA
SFT training on 489 tasks. Both embedding models yield HyperLoRA instances with comparable
generalization capability (66.0 vs 66.3), suggesting HyperLoRA robustness to specific text embedding
methods.

A.3 Varying Task Descriptions

Table 5: Benchmark performance of HyperLoRA
trained via reconstruction on 9 benchmark tasks.

Aligned Unaligned
Train Eval Train (random) Random strings

HyperLoRA L 73.3 73.6 49.1 68.2
HyperLoRA M 73.5 70.2 49.5 68.5
HyperLoRA S 73.0 72.9 55.7 53.9

Avg. 73.3 72.2 51.4 63.5

We investigate the impact of input task descrip-
tions on the performance of generated LoRAs.
We use four types of task descriptions:

• Train: Training descriptions
• Eval: Unseen descriptions
• Random strings: Random literal strings
• Train (random): Training descriptions randomly sampled from other benchmarks

For each description type, we use the gte-large-en-v1.5 embedding and report the average per-
formance using three descriptions. The four types can be grouped into two categories based on the
alignment between the descriptions and the tasks: aligned (Train, Eval) and unaligned (Train (ran-
dom) and Random strings). We observe a performance gap between the two description categories.

9

Specifically, training and evaluation descriptions generate the best performing LoRAs, matching
the performance of oracle LoRAs, despite the evaluation descriptions being unseen. These results
suggest that HyperLoRA are robust to changes in the task description as long as the descriptions are
aligned with the task. On the other hand, if the descriptions are not aligned with the task at hand, the
generated LoRAs will not perform as well, as indicated by the performance of the unaligned group.

A.4 Prediction Offset

64.5

65.0

65.5

66.0

66.5

67.0

67.5

Av
g.

 b
en

ch
m

ar
k

pe
rf

or
m

an
ce

M
T

Lo
RA

 o
ff

se
t

Av
g.

 L
oR

A
of

fs
et

N
o

of
fs

et

MT-LoRA baseline

Figure 3: Impact of prediction offsets.

We ablate the inclusion of the MT LoRA prediction off-
set in HyperLoRA. We train HyperLoRA L with 256 SNI
training datasets using three different offset types: MT
LoRA, Avg. LoRA, and not using offset. Fig. 3 shows
the performance differences. We find that using either MT
LoRA or Avg. LoRA improves for the zero-shot perfor-
mance equally, despite the worse benchmark performance
of Avg. LoRA (see Table 2). Because we apply the offset
to low-rank matrices as opposed to the full adapter ma-
trix in each layer, we hypothesize that the offset serves a
shared adapter “basis”, which eases the learning process.
We discuss this topic further in Appendix I.

A.5 Training Schemes

Table 6: Zero-shot benchmark performance of
HyperLoRA trained via reconstruction and SFT.

Recon SFT

Benchmark
performance

S M L S M L
61.8 61.7 62.0 65.8 67.2 66.9

Avg. 61.83 66.63

In this section, we investigate the zero-shot per-
formance of SFT-trained and reconstruction-
trained HyperLoRA. All model instances are
trained with roughly equal wall-clock time of
10 hours (see Appendix G for details). From
Table 6, we can see that there is a clear per-
formance gap between reconstruction and SFT
training schemes. Specifically, SFT produces HyperLoRA instances that perform significantly better
than that of reconstruction training (66.63 vs 61.83 benchmark performance averaged over model
architectures). We attribute the performance difference to the library of LoRAs needed for recon-
struction training. For reconstruction-trained HyperLoRA to generalize, the target LoRA adapters of
similar tasks should be clustered in some latent manifold. In contrast, SFT training does not need
pre-trained task-specific LoRA adapters, thus sidestepping this challenge via end-to-end learning. In
(Appendix B.1), we show that pre-trained adapters for similar tasks do not live nearby in the weight
space, supporting our claim of a potential problem when reconstructing pre-trained LoRA adapters.

B Analysis

B.1 LoRAs of Similar Tasks

Here, we investigate the relationship between LoRA adapters by inspecting their similarity in the
parameter space, performance on the benchmarks, and similarity of their description embeddings.
To measure adapter similarity, we compute the cosine similarity of the concatenation of flattened
low-rank A and B matrices of all layers. In the top row of Fig. 4, we plot the adapters’ similarity
against task description similarity (using the mean embedding of each task). We find no correlation
between the cosine similarity of the adapters’ weights (y-axis) and the task embedding similarity
(x-axis) indicated by near-zero Pearson correlation coefficients.

In the bottom row of Fig. 4, we change the y-axis from adapters’ relative benchmark performance
to benchmark-specific adapters. We find a positive correlation between the relative benchmark
performance of SNI-trained adapters and the task embedding similarity. That is, adapters perform
better on a benchmark if their task descriptions are similar to those of the benchmark. However,
despite their similar functionalities, adapters with similar descriptions are not similar in the parameter
space. We believe that this relationship has a significant impact on the limited generalization of
reconstruction-trained HyperLoRA. We further discuss this topic in Appendix I.

10

0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.92

0.93

0.94

0.95

0.96

Lo
RA

 C
os

in
e

si
m

im
ila

ry

Pearson correlation: -0.00
Benchmark Task: arc_challenge

0.5 0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

Lo
RA

 C
os

in
e

si
m

im
ila

ry

Pearson correlation: 0.01
Benchmark Task: boolq

0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

0.870

Lo
RA

 C
os

in
e

si
m

im
ila

ry

Pearson correlation: -0.01
Benchmark Task: openbookqa

0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.50

0.55

0.60

0.65

0.70

0.75

Re
l.

Pe
rf

. t
o

Be
nc

hm
ar

k
Lo

RA Pearson correlation: 0.14
Benchmark Task: arc_challenge

0.5 0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Re
l.

Pe
rf

. t
o

Be
nc

hm
ar

k
Lo

RA Pearson correlation: 0.27
Benchmark Task: boolq

0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Re
l.

Pe
rf

. t
o

Be
nc

hm
ar

k
Lo

RA Pearson correlation: 0.18
Benchmark Task: openbookqa

Figure 4: Top row: Each plot shows the similarity between a benchmark LoRA adapter and 489
SNI-trained adapters in the weight space (y-axis) against their similarity in the task embedding space
(x-axis). Bottom row: Each plot shows SNI-trained adapters’ performance relative to a benchmark
adapter (y-axis) with the same x-axis. We can see that LoRAs with similar description embeddings
to the benchmarks’ perform better in those benchmarks, suggesting their shared functionalities.
However, LoRAs with similar functionalities are not nearby in the parameter space.

B.2 Visualization of HyperLoRA Activations

125 100 75 50 25 0 25 50

75

50

25

0

25

50

75

100

Encoded Task Emb (perplexity=4)

mbpp
arc_easy
winogrande
humaneval
boolq
piqa
openbookqa
arc_challenge
hellaswag
gsm8k

100 50 0 50 100 150

60

40

20

0

20

40

HyperLoRA Activation (perplexity=4)

mbpp
arc_easy
winogrande
humaneval
boolq
piqa
openbookqa
arc_challenge
hellaswag
gsm8k

100 50 0 50 100 150

60

40

20

0

20

40

HyperLoRA Activation (perplexity=4)

mbpp
arc_easy
winogrande
humaneval
boolq
piqa
openbookqa
arc_challenge
hellaswag
gsm8k

Figure 5: 2D t-SNE projection of activations of HyperLoRA’s task encoder (left) and activations for
the last MLP block (right) grouped by benchmark tasks (represented by colors). We probe HyperLoRA
with unseen three task descriptions per benchmark. We can see activations clustering in both plots,
indicating that HyperLoRA indeed learns to generate LoRAs tailored to specific tasks.

Next, we aim to understand HyperLoRA further and see whether it generates task-specific LoRA
adapters for unseen tasks with unseen descriptions. We probe our best-performing model in the
zero-shot evaluation setting, SFT HyperLoRA M trained on 256 training tasks. We probe the model
on all the benchmark tasks, each with three unseen descriptions. Fig. 5 shows the 2D t-SNE projection
of HyperLoRA’s task encoder activation and the output of the last MLP block. We can see a clear
clustering in both projection plots based on the tasks (colors). HyperLoRA generates different adapters
for different tasks, confirming that HyperLoRA indeed performs task-specific adaptation ‘on the fly’.
Moreover, similar tasks, e.g., MBPP and HumanEval, are clustered together in both plots, suggesting
that SFT-trained HyperLoRA produces similar adapters for semantically similar tasks.

11

C Related Work

Hypernetworks for Adaptation: Hypernetworks [10] provide a general indirect encoding method
for neural network weights. They have been applied to different architectures [e.g., in attention, 19]
and training paradigms [e.g., in continual learning, 14]. Here, we focus on generating low-rank
adapters using natural language instructions. Previous work [20–22] considers hypernetworks for
LLM adaptation in a multi-task context but only uses learned task identifiers instead of natural
language for adaptation. Thus, these approaches do not enable task-wise zero-shot generalization.

Hypernetworks for Zero-Shot LLM Adaptation: Xiao et al. [23] explore the use of HyperLoRA on
a limited set of English dialects; they only consider five dialects, one of which is unseen. Furthermore,
the hypernetwork relies on an expert-based transformation of the dialects, limiting the possibility of
generalization. Closely related to our work is Hyperdecoders [24]: a hypernetwork that generates
adapters on the fly based on the input sequence. While per-sequence adaptation is desirable for
benchmark evaluation—where the LLM should always output the correct answer—we argue that
description-based adaptation gives more control to users since they can steer the LLM in creative
ways based on user-generated descriptions. Our work improves upon Xiao et al. [23] and Ivison
and Peters [24] in several ways, including achieving task-wise zero-shot generalization, simpler and
more general hypernetwork input requirements, and more comprehensive experiments, ablations
and analyses. Concurrent to our work, Lv et al. [25] propose a similar approach that utilizes a
hypernetwork to generate LoRA adapter at inference time. However, their hypernetwork assumes that
the context vector provided to the hypernetwork contains few-shot examples. In contrast, HyperLoRA
only assumes a task description, which users can produce themselves within seconds.

Zero-shot LoRA Routing: Arrow Routing [9] routes each token to different LoRAs based on the
token alignment with the LoRAs’ first singular vectors. Although it performs well on the benchmark
tasks, this routing mechanism is fully based on a heuristic. On the other hand, HyperLoRA learns to
generate task-specific LoRAs based on task descriptions, which generally gives good performance
for well-crafted descriptions. Additionally, it gives the user an option to further prompt-optimize the
description for even stronger downstream performance.

D HyperLoRA Training Schemes

D.1 Training HyperLoRA via LoRA Reconstruction (Distillation)

The most straightforward way to train HyperLoRA is to reconstruct pre-trained task-specific LoRAs.
This setup allows us to utilize publicly available libraries of LoRAs [6, 26]. Alternatively, one can
also use a two-stage procedure, in which a library of LoRAs is manually pre-trained first, and then
one trains HyperLoRA to reconstruct them. For the sole purpose of compressing LoRAs, we can train
HyperLoRA using one-hot or learnable vectors as task embeddings. However, these embeddings do
not allow zero-shot LoRA generation for unseen tasks. To enable zero-shot LoRA generation, we
additionally condition HyperLoRA with embeddings of natural language task descriptions, which
allows HyperLoRA to generate LoRA adapters for various tasks—including unseen ones—given
corresponding task descriptions. Given a suitable library of LoRA adapters Ω, the reconstruction loss
for HyperLoRA can be written as

L(Ω, θ) = E∆W i∼Ω |∆W i − hθ(ϕ
i)|. (5)

D.2 Training HyperLoRA via Supervised Fine-Tuning

Alternatively, HyperLoRA can be directly optimized on fine-tuning datasets. Training HyperLoRA with
SFT sidesteps the need for intermediate target LoRA adapters and allows for end-to-end training
of the hypernetwork. This training scheme is preferred if existing trained LoRAs are not naturally
clustered by their functionalities or downstream tasks. For instance, t1 and t2 could be two related
tasks requiring a similar LLM capability, but ∆W 1 and ∆W 2 could be in different minima. Thus,
HyperLoRA trained via reconstruction training would have to compress numerically different ∆W 1

and ∆W 2, making it less likely to generalize. In fact, we empirically find that a HyperLoRA trained
via reconstruction fails to generalize to unseen tasks (Appendix A.5). In contrast, an SFT-trained
HyperLoRA can implicitly learn to cluster tasks, which has been shown to improve zero-shot LoRA
routing performance [9]. The SFT loss for HyperLoRA is given by Eq. (4).

12

E Hyperparameter Settings

Table 7: Hyperparameters for training a task-specific LoRA adapter.
Hyperparameters Task-specific LoRA HyperLoRA (SFT) HyperLoRA (recon)
Batch size 4 4 Number of the target LoRAs

Epochs 10

80 for 16 tasks
40 for 32 tasks
20 for 64 tasks
10 for 128 tasks
5 for 256 tasks
3 for 489 tasks

100000

Gradient accumulation steps 2 16 1
Max learning rate 8× 10−5 10−4 10−3

Max gradient norm 1.0 1.0 1.0
NEFTune noise alpha 5.0 5.0 5.0
Warmup fraction 0.1 0.1 0.1
Learning rate scheduler Linear with warm up Linear with warm up Linear with warm up

{
"alpha_pattern": {},
"auto_mapping": null,
"base_model_name_or_path": "models/Mistral-7B-Instruct-v0.2",
"bias": "none",
"fan_in_fan_out": false,
"inference_mode": true,
"init_lora_weights": true,
"layer_replication": null,
"layers_pattern": null,
"layers_to_transform": null,
"loftq_config": {},
"lora_alpha": 16,
"lora_dropout": 0.05,
"megatron_config": null,
"megatron_core": "megatron.core",
"modules_to_save": null,
"peft_type": "LORA",
"r": 8,
"rank_pattern": {},
"revision": null,
"target_modules": [
"q_proj",
"v_proj"

],
"task_type": "CAUSAL_LM",
"use_dora": false,
"use_rslora": true

}

Listing 1: The parameter-efficient fine-tuning (PEFT) config for all LoRA adapters.

Table 7 and Listing 1 show the training configuration of all models trained in this work. For LoRA
reconstruction training, each prediction target is an entirety of a LoRA adapter. That is, there is a
total of 489 training samples for 489 SNI tasks. Thus, we increase the epochs to 100, 000 to ensure
that the HyperLoRA converges.

F Additional Details of HyperLoRA Architectures

13

Hypermod: HyperModulator(
(task_encoder): TaskEncoder(
(mlp): Sequential(
(0): Linear(in_features=1024, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)

)
)
(layer_depth_encoder): Sequential(
(0): Embedding(32, 32)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)

)
(layer_type_encoder): Sequential(
(0): Embedding(2, 32)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)

)
(mixer): Sequential(
(0): Linear(in_features=128, out_features=512, bias=True)
(1): SiLU()
(2): Dropout(p=0.05, inplace=False)
(3): Linear(in_features=512, out_features=128, bias=True)
(4): SiLU()
(5): Dropout(p=0.05, inplace=False)

)
(mlp1): MLPResidualBlock(
(mlp): Sequential(

(0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(1): Linear(in_features=128, out_features=512, bias=True)
(2): SiLU()
(3): Dropout(p=0.05, inplace=False)
(4): Linear(in_features=512, out_features=128, bias=True)
(5): SiLU()
(6): Dropout(p=0.05, inplace=False)

)
)
(mlp2): MLPResidualBlock(
(mlp): Sequential(
(0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(1): Linear(in_features=128, out_features=512, bias=True)
(2): SiLU()
(3): Dropout(p=0.05, inplace=False)
(4): Linear(in_features=512, out_features=128, bias=True)
(5): SiLU()
(6): Dropout(p=0.05, inplace=False)

)
)
(mlp3): Sequential(
(0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(1): Linear(in_features=128, out_features=512, bias=True)
(2): SiLU()
(3): Dropout(p=0.05, inplace=False)
(4): Linear(in_features=512, out_features=512, bias=True)
(5): SiLU()

)
)

Listing 2: Detailed backbone architecture.

Listings 2 and 3 shows the details of the backbone of HyperLoRA. Specifically, the size of the module
and layer embedding (E[m] and E[l]) is 32D. Together, they form a dictionary of 34 learnable
embeddings (32 layers + 2 target modules). The task encoder is a linear layer that takes in a text
embedding (1024D for the gte embedding and 4096D for Mistral embedding) and outputs a
64D vector. The encoded task, module, and layer embedding are concatenated and then fed into
mlp0 followed by a residual MLP block mlp1. At this point, for M and S , we add a 128D A/B
embbedding to the residual stream. The output is then fed to another residual MLP block mlp2. At
this point, for S , we add a 128D rank embedding to the residual stream. After this, we feed the
activation to the last MLP block. The output of the last MLP block is then fed to a linear head, whose
output size is as follows:

• L : 2× r × d giving both A and B matrices

• M : r × d giving a low-rank matrix A or B depending on the A/B embedding

14

(AB_emb): ParameterDict(
(q_proj): Object of type: ParameterDict
(v_proj): Object of type: ParameterDict

(q_proj): ParameterDict(
(A): Parameter containing: [torch.cuda.FloatTensor of size 128]
(B): Parameter containing: [torch.cuda.FloatTensor of size 128]

)
(v_proj): ParameterDict(

(A): Parameter containing: [torch.cuda.FloatTensor of size 128]
(B): Parameter containing: [torch.cuda.FloatTensor of size 128]

)
)

(rank_emb): Sequential(
(0): Embedding(8, 128)
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)

)

Listing 3: Detailed A/B and rank embedding of HyperLoRA.

• S : d giving a rank of a low-rank matrix depending on both the A/B embedding and the
rank embedding.

For ease of explanation, we assume d is the same for the input and the output space of a linear
transformation. In practice, din = dout = 4096 for q_proj module and din = 4096, dout = 1024 for
v_proj module. r = 8 for all adapters in this work. Finally, we list the number of trainable parameters
of each architecture: 55, 252, 992 for L , 34, 282, 240 for M , 4, 923, 392 for S , 3, 407, 872 for
LoRA.

G Training Details

All models trained in this work fit in a single H100 GPU (80GB of VRAM). Notably, SFT requires
much more memory because of the need to backpropagate the gradient through the base LLM.
Reconstruction training, on the other hand, should be possible in a modern consumer-grade GPU.

For reconstruction training, we fix the training epochs to be 100K but scale the batch size to match
the number of target LoRA adapters. This means the model trains much faster for a lower number
of target LoRAs while maintaining the same number of optimizer steps. For reference, training to
reconstruct 9 benchmark-specific LoRAs takes around 10 minutes to complete, while training to
reconstruct 489 SNI LoRA adapters takes around 10 hours.

For SFT training, we aim to keep the number of optimizer steps the same as we do for reconstruction
training. However, since we cannot fit all fine-tuning samples, we scale the number of epochs inverse
to the number of training tasks (see Table 7).

Additionally, for reconstruction training, instead of predicting the weights directly, HyperLoRA learns
to predict the z-score of a normal distribution of each weight entry in the low-rank A,B matrices.
At test time, the output is multiplied by the standard deviation of each element before adding to the
mean, converting the prediction to the correct scale.

H Training and Evaluation Datasets

We use 500 SNI datasets publicly available at https://huggingface.co/Lots-of-LoRAs. 489
tasks are used for training and the rest for evaluation. Specifically, we use the following evaluation
tasks: task_035, task_039, task_1557, task_202, task_304, task_362, task_614, task_701, task_706,
task_710, task_726.

For benchmark evaluation, we choose 10 widely used benchmarks that collectively cover a variety of
LLM capability assessments, e.g., reasoning, math, science, coding, and world knowledge. Specifi-
cally, we include the following benchmarks: Arc-challenge (ArcC) and Arc-easy (ArcE) [27], BoolQ
[28], GSM8K [29], Hellaswag (HS) [30], OpenBookQA (OQA) [31], PIQA [32], Winogrande (WG)
[33], HumanEval (HE) [34], and MBPP [35].

15

https://huggingface.co/Lots-of-LoRAs

H.1 Benchmark Details

Every benchmark used in the experiments is publicly available in HuggingFace dataset space. We
evaluate the models on the benchmarks detailed as follows.

H.1.1 GSM8K

We evaluate the models on the test split, using chain-of-thought response pre-filling: "Let’s think step
by step."

H.1.2 HumanEval and MBPP

We use the evalplus library [36] for coding evaluation. For both MBPP and HumanEval, we use the
following response pre-fill: "“‘python"

H.2 Question-Answering Tasks

The rest of the benchmarks are question-answering based tasks. In these tasks, we do not use
response-prefilling. Instead, each task has a specific instruction template shown in Listing 4.

OQA_TEMPLATE = (
"Complete the following passage or answer the question by choosing the correct choice.\n\n"
"{question_stem}\n\n"
"{choices[label][0]}: {choices[text][0]}\n{choices[label][1]}: {choices[text][1]}\n"
"{choices[label][2]}: {choices[text][2]}\n{choices[label][3]}: {choices[text][3]}\n\n"
"You must respond with the letter corresponding to the correct choice (A,B,C,D) without any explanation."

)
ARC_TEMPLATE = (

"Answer the question below by choosing the correct choice.\n\n"
"{question}\n\n"
"{choices[label][0]}: {choices[text][0]}\n{choices[label][1]}: {choices[text][1]}\n"
"{choices[label][2]}: {choices[text][2]}\n{choices[label][3]}: {choices[text][3]}\n\n"
"You must respond with the letter corresponding to the correct choice without any explanation."

)
HSWAG_TEMPLATE = (

"You are provided with an incomplete passage below as well as 4 choices of continuation "
"with only one of them being the correct ending. "
"Treat the endings as being labelled 0, 1, 2, 3 in order.\n\n"
"Passage: {ctx}\n\n"
"0: {endings[0]}\n"
"1: {endings[1]}\n"
"2: {endings[2]}\n"
"3: {endings[3]}\n\n"
"You must respond with the only number corresponding to the correct ending (0,1,2,3) for the passage "
"without any explanation."

)
PIQA_TEMPLATE = (

"Choose the option that either answers the question, completes the sentence, or solves the problem. "
"Pay attention to the properties of the objects in the question and how they interact with each other. "
'If both options are correct, choose the one that is more convenient or more common.\n\n"""{goal}"""\n\n'
"0: {sol1}\n1: {sol2}\n\n"
"You must respond with either `0` or `1` without any explanation."

)
WINOGRANDE_TEMPLATE = (

"Given the following situation:\n\n{sentence}\n\nWhich option is correct?\n\n"
"Option 1: {option1}\n\nOption 2: {option2}\n\n"
"You must respond with either `1` or `2` without any explanation."

)
BOOLQ_TEMPLATE = (

"{passage}\n\nQuestion: {question}?\n\nPlease answer with either `true` or `false` without any explanation."
)

Listing 4: Instruction templates of QA-based benchmark tasks.

I Utilizing Full Adaptation Matrix vs Low-Rank Matrices

Similar to Fig. 4, Fig. 6 show the similarity of SNI adapters to benchmark-specific adapters, but
instead of using the concatenation of flattened A and B matrices, we use flattened ∆W instead.

16

0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.02

0.04

0.06

0.08

0.10

Lo
RA

 C
os

in
e

si
m

im
ila

ry

Pearson correlation: 0.38
Benchmark Task: arc_challenge

0.5 0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Lo
RA

 C
os

in
e

si
m

im
ila

ry

Pearson correlation: 0.17
Benchmark Task: boolq

0.6 0.7 0.8 0.9
Task Description Emb. Similarity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Lo
RA

 C
os

in
e

si
m

im
ila

ry

Pearson correlation: 0.31
Benchmark Task: openbookqa

Figure 6: Each plot shows the similarity between a benchmark LoRA adapter and 489 SNI-trained
adapters in the ∆W weight space. There is a positive correlation between the two variables indicated
by small positive Pearson correlation coefficients.

With the change, we find a positive correlation between the task embedding similarity and the adapter
similarity in the weight space. This is likely because, for a given ∆W matrix, there are many possible
permutations of low-rank matrices A and B. This suggests that if we compute the reconstruction
loss in the full adaptation matrix space, reconstruction-trained HyperLoRA could generalize better.
However, we empirically find that it does not outperform HyperLoRA trained to reconstruct low-rank
matrices at zero-shot LoRA generation.

Furthermore, we also ablate how the prediction offset is applied to HyperLoRA under SFT training.
First, the offset could be added to the low-rank matrices:

∆W = (Bpred +Boffset)
T (Apred +Aoffset) (6)

= BT
predApred +BT

predAoffset +BT
offsetApred +BT

offsetAoffset. (7)

The other approach is to apply the offset to the full adaptation matrix:

∆W = BT
predApred +BT

offsetAoffset (8)

In a preliminary experiment, we find that applying the offset to the low-rank matrices performs better
than the alternative for SFT training. We hypothesize that the cross terms (the middle two terms in
Eq. (7)) ease the learning process. Effectively, the offset matrices in the cross terms act as ‘answer
bases‘ for Apred and Bpred to act upon.

17

J Generating Task Descriptions with a Foundation Language Model

System message
You are a creative and helpful assistant.

Prompt

Given the following question-response pairs, please give a short description of the task describing what the task is.

{IN CONTEXT EXAMPLES}

Now, you must describe the task based on the following question-response pairs.

{5 sampled question-answer pairs}

Please use the information in the question-answer pairs and example description and come up with several descriptions
that explain the task. Each description should be written in plain text, with the following format.

Description 1: DESCRIPTION_1
Description 2: DESCRIPTION_2
...

You should also be creative and vary the structure and the length of the descriptions such that they'll be diverse and
cover various writing styles. You should ignore the specific question-answer pairs and focus on the high-level concept
and topic of the task in general.
DO NOT describe that there are multiple choice options or the format of the answer.
DO NOT include the answer format, e.g., 'choose the correct option', 'answer with only one word', etc.
DO NOT describe how to answer the question, but rather what the task is about and the skills and knowledge
required.
You can include reasoning steps that should be used to reach the expected answer.

Response with 20 descriptions. Use simple words and please be clear and diverse in your descriptions.

In-context examples

Here are some examples of the structure of the task of describing a task based on question-response pairs.

Example question-answer pair: 1
Input
You are given a question on high school macroeconomics. You are also given 4 answer options (associated with 'A', 'B', 'C',
'D'), out of which only one is correct. You need to answer the question by selecting the correct option. You should only
answer with the choice letter, not the whole answer.
Input: Allocative efficiency (A)means that no inferior products will be produced. (B)implies that the economy's output is
distributed evenly. (C)means that those who work hardest will get more. (D)implies that resources are used to produce
the goods and services society desires in just the right amounts.
Output:
Expected output
D
Plausible descriptions
Description 1: Your job is to analyze the provided question about economics. Use your understanding of economic
principles to guide your choice.
Description 2: Utilize your economic understanding to determine which choice is right. The correct answer will be the one
that best aligns with economic principles.

Example question-answer pair: 2
Input
In this task, you are given a country name and you need to return the capital city of the given country.
Input: Senegal
Output:
Expected output
Dakar
Plausible descriptions
Description 1: Given the name of a country, your job is to provide its capital city.
Description 2: For each country listed, determine and state its capital city. This requires familiarity with global locations
and capitals.

Figure 7: The prompt template used to query GPT-4o mini for task descriptions.

18

We automate task description generation for each task by leveraging powerful closed-source language
models [37]. We query GPT-4o mini with carefully constructed prompts that incentivize diversity
to facilitate downstream generalization. In particular, we generate 200 descriptions per task by
querying the model 10 times, each time asking for 20 descriptions given randomly sampled five
question-answer pairs from the task. We leverage in-context learning by providing examples of
question-answer pairs with matching descriptions. Finally, we also designed our prompts to avoid
overly verbose responses and unnecessary information, such as explicit mentions of answer formats
and additional instructions. We use the generated descriptions for the training and benchmark tasks.
Fig. 7 shows the exact prompt used for querying GPT-4o mini for task descriptions.

K Example of Task Descritions

Here, we provide examples of task descriptions used in the experiments.

Training descriptions

sni_cosmosqa_passage_inappropriate_binary
● Assess whether the given passage contains any elements that are unsuitable or illogical. Contextual understanding

is key to making your evaluation.
● Look closely at the information provided in the context and determine its appropriateness or nonsensical nature

based on logical reasoning.
● Assess given contexts critically, marking whether they hold inappropriate content or convey meaning in a way that

is difficult to comprehend.

sni_winomt_classification_gender_identifiability_anti
● In this task, you will distinguish between identifiable and unidentifiable gender references in sentences featuring

different professions.
● Your task consists of evaluating professional descriptions within sentences and determining if their respective

genders can be classified as clearly identifiable or obscure.
● Engage with sentences that present two different professions, paying attention to pronouns that could reveal or

obscure the gender of the highlighted role.

sni_kth_largest_element
● In this task, you are required to dissect a set of integers and identify which one corresponds to the kth position

when sorted by size. Knowledge of ascending order and magnitude awareness are pivotal.
● Your mission here is to discover which number holds the kth place when considering size among others in a list.

Practicing sorting and prioritization will be beneficial.
● The job is to pick out the kth greatest number from a list of integers, which means reevaluating them according to

their increasing or decreasing order.

Figure 8: Examples of training descriptions from three SNI training tasks.

19

Evaluation descriptions

boolq
● Analyze the given details about various subjects, including movies, sports, and television shows. Your role is to

confirm whether certain claims are true or false.
● Your task is to determine the truthfulness of specific statements based on the provided background information.

This requires careful reading and comprehension of the content.
● The goal is to evaluate factual claims made in relation to highlighted texts. You will need to discern whether the

statements align with the information provided.

gsm8k
● You will be tasked with interpreting mathematical situations described in words. The goal is to use logical

reasoning and calculations to determine the numerical answers based on the context provided.
● This task challenges your problem-solving abilities through mathematical reasoning. You must carefully read each

scenario and systematically work through the data to compute the final outcome.
● Your role is to engage with practical math scenarios presented as questions. The task requires translating textual

data into numerical operations that will lead you to the final solution.

humaneval
● Engage in building distinct functions that meet the requirements of various presented problems, honing your

ability to translate problem statements into logical code. Utilize structured thinking to implement efficient
solutions.

● You are tasked with generating specific solutions in Python by interpreting problem descriptions associated with
tasks like counting odds or validating inputs. Recognizing patterns and leveraging programming techniques will be
beneficial.

● This task focuses on developing algorithms in Python for specific scenarios, such as counting characters,
assessing conditions between numbers, or converting integers into a different format. Critical thinking and
algorithmic design will be important.

Figure 9: Task descriptions of the benchmark tasks: boolq, gsm8k, and humaneval.

Evaluation descriptions

mbpp
● Your challenge is to solve a series of problems by writing functions in Python. These problems require handling lists

and strings, allowing you to showcase your proficiency in coding while addressing practical programming
scenarios.

● You will be tasked with creating various Python functions that tackle programming challenges. The exercises will
test your ability to manipulate data structures, search for patterns, and implement checks on numerical products.

● The goal is to develop Python functions that perform designated operations on lists and strings. This requires a
solid grasp of logical reasoning and the ability to apply relevant algorithms in your code.

winogrande
● In this exercise, you need to read short narratives and discern which person or object fits best within the context

of the sentence.
● This task requires synthesizing information from concise textual scenarios to identify crucial elements that drive

the narrative forward.
● The goal is to evaluate descriptions and select the entity that best aligns with the sentiments or actions presented

in the scenario.

piqa
● You will explore practical questions and select an answer that presents a logical and widely accepted approach to

solve a given problem or complete a task successfully.
● Analyze the provided scenarios where practical advice or solutions are required, focusing on selecting the most

commonly used or convenient method.
● Given a question related to common tasks, your responsibility is to discern which proposed solution aligns with

typical practices or makes the task easier to achieve.

Figure 10: Task descriptions of the benchmark tasks: mbpp, winogrande, piqa

20

Evaluation descriptions

hellaswag
● This task revolves around completing an unfinished text by selecting an ending that matches its tone and

context. It requires you to think critically about how narratives develop and conclude effectively.
● This task asks you to select a suitable conclusion for an unfinished narrative or instructional content. It

tests your comprehension and reasoning skills as you assess how well each option aligns with the given
text.

● Your task involves completing an incomplete passage by selecting the ending that logically continues the
context provided. This requires reading comprehension and the ability to infer meaning from a text.

arc_easy
● Your job is to discern which information best answers a posed question, focusing on practical examples

and scientific principles. This requires a strong grasp of underlying concepts in ecology or physics.
● You will analyze questions that explore important connections such as environmental issues or animal

adaptations. Utilize your background knowledge to evaluate and select the most fitting answer.
● This task involves selecting answers that reflect accurate relationships or effects seen in nature or society.

You will need to sort through potential choices critically to find the appropriate one.

arc_challenge
● This task is about analyzing questions which examine your grasp of scientific ideas. You must connect

conceptual knowledge with practical examples from geology, ecology and environmental changes.
● The objective here is to evaluate various scientific scenarios and infer the most logical explanations or

definitions based on established knowledge. This task will strengthen your analytical and reasoning skills in
the context of natural science.

● Your role is to interpret questions focusing on earth science and biological interactions. This demands a
clear understanding of relevant processes, such as decomposition, weathering, and species adaptation.

Figure 11: Task descriptions of the benchmark tasks: hellaswag, arc_easy, arc_challenge

Evaluation descriptions

openbookqa
● Analyze the provided statements carefully and determine which one best fits into the context of the

passage. This requires comprehension skills and the ability to make logical inferences.
● Consider each option in relation to what is presented in the input. Discern which one logically completes

or responds accurately to the notion being expressed.
● Here, you'll be presented with different statements, and your role is to decide which one appropriately

complements or responds to a scenario. This process involves critical analysis and synthesis of
information.

Figure 12: Task descriptions of the benchmark tasks: openbookqa

21

Random descriptions

● dogs;cats;bananas;
● 7@9.qwepra#/.sd,s'2OC^039u#rdagjbL
● ggggggggggggggggggggg

Figure 13: Random descriptions

L Scaling Number of Descriptions per Task

1 16 32 64 128
Number of descriptions per task

62

63

64

65

66

67

Av
g.

 b
en

ch
m

ar
k

pe
rf

or
m

an
ce

16 ds
32 ds
64 ds
128 ds
256 ds
489 ds
MT-LoRA baseline

Figure 14: Zero-shot benchmark performance of SFT-trained HyperLoRA with varying number of
descriptions per training task.

Fig. 14 shows mixed results on the benchmark performance when vary the number of descriptions per
training task. For consistency, we always train HyperLoRA with 128 descriptions per training task.

22

	Introduction
	Preliminaries
	HyperLoRA: Learning to Compress and Generate LoRAs
	HyperLoRA Architectures

	Experiments
	LoRA Compression
	Zero-Shot LoRA Generation

	Conclusion
	Ablations
	Scaling Number of Training Tasks
	Task Embedding Models
	Varying Task Descriptions
	Prediction Offset
	Training Schemes

	Analysis
	LoRAs of Similar Tasks
	Visualization of [BlueViolet]HyperLoRA Activations

	Related Work
	[BlueViolet]HyperLoRA Training Schemes
	Training HyperLoRA via LoRA Reconstruction (Distillation)
	Training HyperLoRA via Supervised Fine-Tuning

	Hyperparameter Settings
	Additional Details of HyperLoRA Architectures
	Training Details
	Training and Evaluation Datasets
	Benchmark Details
	GSM8K
	HumanEval and MBPP

	Question-Answering Tasks

	Utilizing Full Adaptation Matrix vs Low-Rank Matrices
	Generating Task Descriptions with a Foundation Language Model
	Example of Task Descritions
	Scaling Number of Descriptions per Task

