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ABSTRACT

Causal discovery (CD) involves inferring cause-and-effect relationships as di-
rected acyclic graphs (DAGs). In this work, we assume that the data is generated
by an additive noise model (ANM). Recent work has formulated the problem as
a continuous optimization problem, which consists of solving an inverse problem
and satisfying an acyclicity constraint. However, solving the inverse problem in
CD is often unstable, i.e. high sensitivity of the effects to perturbations in the
causes. To address this instability, we formulate the inverse problem as a regular-
ized optimization scheme and propose a novel variation-negotiation regularizer.
Compared to traditional regularization techniques for the continuous optimization
problem, e.g. ω1 penalty on graphs, the proposed regularizer exploits the variation
variable in ANMs to stabilize the solutions (i.e. DAGs). This regularizer is advan-
tageous as it does not rely on any hypotheses, such as graph sparsity, about true
DAGs. The variation-negotiation regularizer regulates the DAG purely based on
observed data.
Building on the proposed regularizer, a series of improvements to the regularized
optimization scheme reveal the connections between solving the regularized op-
timization problem and learning a diffusion model, as they share comparable ob-
jective functions. This insight leads us to develop an equivalent diffusion model
called DAG-invariant Denoising Diffusion Probabilistic Model. Extensive em-
pirical experiments on synthetic and real datasets demonstrate that the proposed
diffusion model achieves outstanding performance on all datasets.

1 INTRODUCTION

Identifying cause-and-effect relationships among variables is a challenging problem in various sci-
entific fields such as economics (Hoover, 2017), biology (Sachs et al., 2005), and climate science
(Zhang et al., 2011). Cause-and-effect relations can be represented as directed acyclic graphs
(DAGs), where nodes are variables, and directed edges indicate direct causal effects. The objec-
tive of causal discovery (CD) is to recover DAGs from observed data. In this work, we assume the
observational data follow additive noise models (ANMs), meaning each variable is defined as a func-
tion over a subset of the remaining variables, which are represented by a DAG, plus an unexplained
variation variable1 (Hoyer et al., 2008).

Traditional methods search the DAG space by testing conditional independence between variables
(Spirtes et al., 2001) or by optimizing some goodness of fit measure (Chickering, 2002). A main
challenge of these methods is that searching for true DAGs is extremely time-consuming (Chick-
ering, 1996). To address it, Zheng et al. (2018) formulates the DAG search as a continuous opti-
mization over the space of all graph adjacency matrices. The optimization objective comprises two
parts: solving an inverse problem, where, given observational data, an adjacency matrix is solved ac-
cording to ANMs, and satisfying an acyclicity constraint on the matrix. However, while promising,
continuous optimization-based approaches struggle to combat instability in solving the inverse prob-
lem. The instability of an inverse problem refers to the high sensitivity of the effects to perturbations
in the causes (Calvetti & Somersalo, 2018).

1In other work, they prefer referring to the unexplained variation as noise. However, in our work, we will
introduce other noises later. To eliminate the ambiguity, following the naming system (Manzour et al., 2021),
we use the notion of unexplained variation.
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In this paper, we investigate how to trade the unstable inverse problem in CD with a relatively stable
one using a regularization technique. We start by formulating the inverse problem as a regularized
optimization problem that consists of a data consistency (recovery) term and a regularization term.
Then, a novel variation-negotiation regularizer is proposed as the regularization term. Differing
from previous regularization techniques for CD that explore the characteristics of DAGs, e.g. ω1
penalty on graphs (Zheng et al., 2018; Nazaret et al., 2024), the proposed regularizer alternatively
exploits the unexplained variation variable in ANMs. This variation variable can be represented in
terms of DAGs according to ANMs, so estimating the variation variable is equivalent to regularizing
the solution (i.e., DAGs). We then use denoising techniques (Vincent et al., 2008) to estimate the
value of the variation variable through a negotiation strategy. Regularizing DAGs through the varia-
tion variable has two main benefits. Firstly, the regularizer does not depend on any general hypothe-
sis about true DAGs, such as the belief that real-life causal graphs are sparse. Instead, the variation-
negotiation regularizer solely regulates DAGs based on observed data. Secondly, it paves the way
for the connection between CD and diffusion models. With the proposed variation-negotiation reg-
ularizer, the regularized optimization objective can be reinterpreted as a single variation consistency
(recovery) term without any regularization term. To probe the variation from diverse observations,
we extend the single variation consistency term to multiple variation consistency terms by imposing
diversified noise. With this extension, we find that solving the proposed regularized optimization
problem and training a Denoising Diffusion Probabilistic Model (DDPM) share comparable
objective functions.

The discovery motivates us to study diffusion models, such as DDPMs, which have recently emerged
as powerful generative models (Cao et al., 2024). They use a sequence of probabilistic distributions
to corrupt data in the forward process and learn a sequence of probabilistic models to reverse the
forward process (Song et al., 2021). Although DDPMs achieve breakthrough performance in data
generation, to our knowledge, only one work has studied applying DDPMs in CD tasks (Sanchez
et al., 2023), where a diffusion model is used as a parameterized density estimator to replace a
kernel-based estimation model in a CD algorithm (Rolland et al., 2022). Unlike this simple applica-
tion of diffusion models, our work aims to explore the intrinsic relation between CD and diffusion
models. By posing the notion of DAG-invariance, where true DAGs remain invariant with
any alteration to their corresponding observational data, we propose a diffusion model called
DAG-invariant Denoising Diffusion Probabilistic Model (D3PM ), whose training objective
is shown to be equivalent to the proposed regularized optimization objective. In other words,
D3PMs are coined to respond to the duty call from continuous optimization-based CD approaches
which suffer from instability.

We conducted a series of empirical studies to evaluate the performance of D3PM on 1040 syn-
thetic datasets with up to 5000 variables and real-world datasets. The results demonstrate the
superiority of D3PM over all baselines with reasonable training costs. The code is publicly avail-
able at https://anonymous.4open.science/r/D-3PM-07D1.

2 PRELIMINARIES

Here, we briefly review the prior knowledge about CD and DDPMs, respectively.

2.1 CAUSAL DISCOVERY

The CD problem is formally defined as follows: let X → Rn→d be a data matrix representing n i.i.d.
observations of d random variables. Let G be a space composed of DAGs with d vertices and some
directed edges. A DAG can be represented as a binary adjacency matrix. The goal of CD is, given
X, to derive a DAG G → G associated with the random variables, without access to ground truth
DAGs (Koller & Friedman, 2009; Spirtes et al., 2001).

In this work, we focus on causal structure learning under ANMs:

X := f(XA) + Z, (1)

where f is an arbitrary unknown function, and Z represents an n↑ d unexplained variation matrix.
Here, Z is formulated as a random variable sampled from a distribution, but the distribution is
unknown during the learning of A.
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2.2 DENOISING DIFFUSION PROBABILISTIC MODELS

DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) follow a generative mod-
elling paradigm that aims to approximate the target distribution pω(X0) =

∫
pω(X0:T )dX1:T , where

Xt, t = 1, ..., T are latent variables with identical dimensionality, given original data X0 ↓ q(X0).
DDPMs consist of two steps: the forward Markov process and the reverse Markov process. The for-
ward process gradually adds Gaussian noise to the data according to a variance schedule ε1, ...,εT :

q(X1:T |X0) :=
T∏

t=1

q(Xt|Xt↑1), q(Xt|Xt↑1) := N (Xt;
√

1 ↔ εtXt↑1,εtI). (2)

The reverse process, in contrast to the forward process, is a Markov chain with learned Gaussian
transitions pω(Xt↑1|Xt) starting at p(XT ) := N (XT ;0, I):

pω(X0:T ) := p(XT )
T∏

t=1

pω(Xt↑1|Xt), pω(Xt↑1|Xt) := N (Xt↑1;µω(Xt, t),!ω(Xt, t)). (3)

The reverse conditional probability pω(Xt↑1|Xt) is tractable when conditioned on X0:
q(Xt↑1|Xt,X0) := N (Xt↑1;µt(Xt,X0), ε̂tI) where

µt(Xt,X0) :=

↗
ϑ̄t↑1εt

1 ↔ ϑ̄t
X0 +

↗
ϑt(1 ↔ ϑ̄t↑1)

1 ↔ ϑ̄t
Xt

=
(1 ↔ ϑ̄t↑1)

↗
ϑtϑ̄t + εt

↗
ϑ̄t↑1

1 ↔ ϑ̄t
X0 +

(1 ↔ ϑ̄t↑1)
√
ϑt(1 ↔ ϑ̄t)

1 ↔ ϑ̄t
!,

ε̂t :=
1 ↔ ϑ̄t↑1

1 ↔ ϑ̄t
εt, (4)

ϑt := 1 ↔ εt, ϑ̄t :=
∏t

s=1 ϑs, and ! ↓ N (0, I). The ultimate training objective of DDPMs
can be parameterized to learn approximator µω by minimizing the difference between µt and µω

(Sohl-Dickstein et al., 2015):

L =
∑

t↓1

Eq[↘µt(Xt,X0) ↔ µω(Xt, t)↘2]. (5)

3 CONTINUOUS OPTIMIZATION BY DAG-INVARIANT DIFFUSION MODEL

In this section, we introduce a regularized optimization scheme with a novel variation-negotiation
regularizer to address instability. Additionally, we propose a diffusion model, D3PM , which shares
an equivalent training objective with the proposed regularized optimization objective.

3.1 CONTINUOUS PROGRAM WITH VARIATION-NEGOTIATION REGULARIZER

Continuous optimization-based approaches for CD involve modeling a continuous program (Zheng
et al., 2018):

A→,ω→ = arg min
A,ω

D(fω(XA),X), s.t. A is a DAG, (6)

where D is a similarity measure, and fω is a parameterized function used to approximate f in Eq.
(1). A high-quality solution to the continuous program is expected to satisfy two conditions: the
minimization problem is solved and the DAG-ness constraint is satisfied. The focus of our work
is on improving the solution to the minimization problem, which can be formulated as an inverse
problem: given X, A needs to be solved. Unfortunately, inverse problems always suffer from
instability, where small variations in the space of X can correspond to very large variances in the
matching parameters (Kasim et al., 2019; Calvetti & Somersalo, 2018).

To address the instability, we aim to reformulate the problem in a way that limits its instability and
makes it possible to recover reasonably good solutions, a process known as regularization (Calvetti

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

& Somersalo, 2018). Our contribution is to pose the solution to the minimization problem in Eq. (6)
as a regularized optimization scheme and propose a novel regularizer R(A):

min
A,ω

Data Consistency︷ ︸︸ ︷
D(fω(XA),X) +ϖ

Regularization︷ ︸︸ ︷
R(A) , (7)

where R is designed to restrict the solutions to the space of desirable A, and ϖ is a positive scalar
determining the balance between matching the data and minimizing R(A).

Variation-negotiation Regularizer Traditional regularization methods uniformly explore the char-
acteristics of DAGs, for example, by applying an ω1 penalty on graphs. In contrast, the proposed
regularizer focuses on exploiting the variation variable Z. The regularization effect of regulating Z
on A can be found in the formula Z = X ↔ f(XA), which is derived from Eq. (1). Therefore,
Z directly influences the measure of the data consistency term in Eq. (7). Without making general
hypotheses about true DAGs, such as graph sparsity, the variation-negotiation regularizer aims to
estimate the variation Z accurately. The estimation would consequently have a regularization effect
on A, purely based on the observed data X. However, due to the inaccessibility of the variation
Z, we introduce two learnable counterparts, ZX and ZN, with a negotiation strategy to collabora-
tively probe its value. Specifically, ZX and ZN function as two separate predictors from different
viewpoints to estimate the variation Z, to ensure consistency through negotiation.

We first describe the setting of the two counterparts. The design of ZX is derived from formula
Z = X ↔ f(XA). However, f is not accessible here. As a remedy, we use a parameterized
estimator fω to approximate f . Then, ZX is defined as ZX := X ↔ fω(XA) ≃ Z. Another
counterpart, ZN, draws heavily from the philosophy of Denoising Autoencoders (Vincent et al.,
2008), which suggests that partially destroyed data help reconstruct clean “repaired” data. Here,
noisy data, symbolized as X + N, with artificial noise N drawn from some pre-defined distribution
facilitate the recovery of Z. Specifically, by inputting the noisy data, a parameterized estimator gε is
employed to predict Z+N. As a result, it holds that ZN := gε(X+N)↔N ≃ (Z+N)↔N = Z.

As we achieve ZX and ZN, our objective is to encourage them to reach a consensus. This entails
both ZX approaching ZN and vice versa. The level of agreement is assessed using the dot product
for each observation. A higher positive value indicates a significant level of agreement. Finally, the
regularized minimization objective with the variation-negotiation regularizer is formulated as:

min
A,ω,ε

Data Consistency︷ ︸︸ ︷
↘X↔ fω(XA)↘2︸ ︷︷ ︸

↔ZX↔2

+

Regularization on A︷ ︸︸ ︷
↘gε(X + N) ↔N↘2
︸ ︷︷ ︸

↔ZN↔2

↔ϖtr((X↔ fω(XA))(gε(X + N) ↔N)T )
︸ ︷︷ ︸

ωtr(ZXZT
N)

,

(8)

where the computation of the dot product is concisely expressed by calculating the matrix trace (tr),
and ϖ is a hyper-parameter that controls the strength of the negotiation agreement between ZX and
ZN.

Optimization Objective as One Variation Consistency Term If the value of ϖ is set to 2, a specific
expression of Eq. (8) can be derived:

min
A,ω,ε

↘
V ariation Consistency︷ ︸︸ ︷

(X↔ fω(XA))︸ ︷︷ ︸
ZX

↔ (gε(X + N) ↔N)
︸ ︷︷ ︸

ZN

↘2, (9)

which provides an alternative interpretation for the regularized minimization problem given in Eq.
(7), where the problem is formulated as a data consistency term and a regularization term. The
problem is now presented as a single variation consistency term without any regularization term. In
this reformulation, ZX plays a dual role — measuring variation (X↔fω(XA) ≃ Z) and optimizing
A.

Two valuable properties can be observed from the equivalent expression. Firstly, it is strictly non-
negative, which facilitates optimization solvers. Another property is that the simple one-variation
consistency term can be easily extended to multiple ones by diversifying the noise term N. Diverse
noises are beneficial for probing the true value of variation Z, as diversified noisy data provide
different observations for denoising techniques to recover variations.

4
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Optimization Objective as Multiple Variation Consistency Terms The second property motivates
us to further improve the minimization objective:

min
A,ω,ε

∑

t

↘cdata(t)(X↔ fω(XA)) ↔ cnoise(t)(gε(X + Nt) ↔Nt)↘2, (10)

where Nt denotes the t-th imposed noise. cnoise(t) quantifies the noise magnitudes of Nt, whereas
cdata(t) is set inversely proportional to cnoise(t). The ranges of the two coefficients are (0, 1).
Intuitively, coefficients cdata(t) and cnoise(t) are designed to avoid the negative influence brought
by the approximation error of variations for over-vast noises. Additionally, to ensure the negotiation
effect between ZX and ZN is reserved with the added coefficients, there is a modification to gε
in Eq. (9). Given X + Nt, the estimation target of gε is changed to cdata(t)

cnoise(t)
Z + Nt, such that

cnoise(t)(gε(X + Nt) ↔ Nt) = cnoise(t)(
cdata(t)
cnoise(t)

ZN + Nt ↔ Nt) = cdata(t)ZN holds and is
thus able to negotiate with cdata(t)(X ↔ fω(XA)) = cdata(t)ZX. This setting allows the evolved
minimization objective to work effectively for varying noises. Given an instance, if the magnitude
of t-th noise is vast, cnoise(t) is large, then cdata(t) becomes small. According to cdata(t)(X ↔
fω(XA)) ↔ cnoise(t)(gε(X + Nt) ↔Nt) = cdata(t)(ZX ↔ ZN), the effect of t-th noise is small.
The mechanism prevents the performance of estimating A from degenerating for over-vast noises.

Connection to Diffusion Models Upon performing algebraic manipulations on Eq. (10), we arrive
at the following expression:

min
A,ω,ε

∑

t

↘
Blurred Data︷ ︸︸ ︷

(cdata(t)X + cnoise(t)Nt)↔
Approximator︷ ︸︸ ︷

(cdata(t)fω(XA) + cnoise(t)gε(X + Nt)) ↘2, (11)

where cdata(t)X + cnoise(t)Nt represents blurred data, which is the sum of faded clean data
cdata(t)X and weighted noise cnoise(t)Nt. The minimization objective follows the learning
paradigm in which an approximator is trained to estimate blurred data with different noise mag-
nitudes.

By setting all noises Nt to be independently drawn from standard Gaussian distribution, the con-
nection between the proposed regularized minimization objective and diffusion models becomes
apparent:

min
A,ω,ε

∑

t

↘
µt︷ ︸︸ ︷

(cdata(t)X0 + cnoise(t)Nt)↔
µω︷ ︸︸ ︷

(cdata(t)fω(X0A) + cnoise(t)gε(Xt, t)) ↘2. (12)

Upon reviewing Eq. (5), the training objective of DDPMs consists of two terms: the mean of t-th
noised data µt and the corresponding approximator µω . The terms µt and µω in Eq. (5) conceptually
resemble the blurred data term and the approximator term in Eq. (11), respectively. Therefore, the
minimization objective is similar to the learning objective of DDPMs. The only difference between
Eq. (11) and (12) is the input of gε. Here, the random variables X + Nt are replaced by random
variables Xt, which are generated according to a Markov process q(Xt|Xt↑1) in terms of Nt,
starting from t = 1 with X0 := X. Nonetheless, this modification does not alter the nature of the
input, since they are all noisy data generated along with noise Nt, although in different manners.

Even though the resemblance between the proposed minimization objective and the training objec-
tive of DDPMs has been uncovered, there are challenges in transitioning the resemblance to strict
equivalence. Firstly, existing diffusion models are designed to generate data without consideration
for DAGs and ANMs. This results in no diffusion model instantiating µω term in Eq. (12). Another
one is how to specify the t-dependent coefficients cdata(t) and cnoise(t) such that the equivalence
is strictly guaranteed. Once these challenges are overcome, the solution (i.e. a diffusion model) will
be qualified to respond to the duty call from continuous optimization-based CD methods, combating
instability.

3.2 DAG-INVARIANT DENOISING DIFFUSION PROBABILISTIC MODEL

In this section, we introduce a novel diffusion model called D3PM for CD. The learning objective
of D3PM is demonstrated to be completely equivalent to the proposed regularized continuous

5
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program in Eq. (12). Sec. 3.2.1 describes the integration of DAG and ANMs into D3PM by
introducing the concept of DAG-invariance. In Sec. 3.2.2, we analytically determine the coefficients
cdata(t) and cnoise(t) for the proposed minimization objective. With the determined coefficients,
the equivalence between the proposed minimization objective and the training objective of D3PM
is established in Sec. 3.2.3. Furthermore, in Sec. 3.2.4, we illustrate how to estimate discrete DAGs
via trained D3PMs.

3.2.1 DAG-INVARIANCE

We introduce the concept of DAG-invariance for D3PM . Let A be the DAG of given tabular
data, then A remains invariant during the noising process on tabular data X. This means that all
immediately noised data of X share an identical DAG. For each step t, the immediately generated
Xt can be expressed as Xt = f(X0A) + Z + Nt, where Nt represents the t-th noise, and the
DAG A remains constant for every t. An opposite notion which might facilitate the understanding
of DAG-invariance is DAG-variance: Xt is suggested to be represented as Xt = f(X0At) + Zt,
where At (we assume DAG At always exists for each Xt) and Zt are different from A and Z,
respectively, at least at one time. The notion of DAG-invariance can be extended to the forward and
reverse diffusion processes of DDPMs as follows: Xt = c1(t)(f(X0A) + Z) + c2(t)Nt, where
c1(t) and c2(t) are certain time-dependent coefficients involved in diffusion process.

The concept of DAG-invariance offers two main benefits. Firstly, it makes the technique of vari-
able substitution X0 = f(X0A) + Z feasible throughout the diffusion process, allowing A to be
explicitly involved in the forward and reverse processes of D3PM . Additionally, as A correspond-
ing to the given data is shared across all noisy data generated in all timesteps, we can treat A as a
trainable matrix (parameters), paving the way for modelling the optimization problem. Lastly, the
fundamental mechanism of DDPMs remains unaffected. Specifically, with DAG-invariance, the for-
ward transition kernel of D3PM , q(Xt|Xt↑1), remains consistent with the one in Eq. (2), which
follows a Gaussian distribution. It also ensures that the reverse transition kernel q(Xt↑1|Xt) is also
a Gaussian distribution (Feller, 1949).

There might be a concern about DAG-invariance: whether optimizing A would be negatively influ-
enced as the imposed noise is extremely large. It should be reassured, since, for D3PM , coefficients
cdata(t) and cnoise(t) are designed to scale the weights of optimizing A for varying noise magni-
tudes, as mentioned for Eq. 10.

3.2.2 SOLVING OPTIMIZATION PROBLEMS IN DIFFUSION PROCESS

There is no difference in the forward diffusion process between D3PM and DDPMs, despite the
introduction of DAG-invariance. This means that the forward process of D3PM is the same as
q(X1:T |X0) defined in Eq. (2). Therefore, our focus should be on the reverse diffusion process of
D3PM — pω,ε(X0:T |X0). We will start by discussing the reverse conditional Gaussian transition
kernel of D3PM conditioned on X0, q(Xt↑1|Xt,X0), with DAG-invariance. Then, we will design
the reverse conditional Gaussian transition approximator pω,ε(Xt↑1|Xt,X0). This process will
involve establishing the values for cdata(t) and cnoise(t).

Reverse Conditional Gaussian Transition with DAG-Invariance The reverse conditional Gaus-
sian transition kernel of D3PM is defined as q(Xt↑1|Xt,X0) := N (Xt↑1;µt(Xt,X0), ε̂tI). The
variance ε̂tI is set to untrained time-dependent constants as shown in Eq. (4). The mean of D3PM
and µt in Eq. (4) share an identical expression. With DAG-invariance, it can be written as:

µt(Xt,X0) =
(1 ↔ ϑ̄t↑1)

↗
ϑtϑ̄t + εt

↗
ϑ̄t↑1

1 ↔ ϑ̄t
(f(X0A) + Z) +

(1 ↔ ϑ̄t↑1)
√
ϑt(1 ↔ ϑ̄t)

1 ↔ ϑ̄t
!

= cdata(t)f(X0A) + cnoise(t)(
cdata(t)

cnoise(t)
Z + !), (13)

where ! ↓ N (0, I), cdata(t) := (1↑ε̄t→1)
↗
εtε̄t+ϑt

↗
ε̄t→1

1↑ε̄t
and cnoise(t) :=

(1↑ε̄t→1)
↗

εt(1↑ε̄t)

1↑ε̄t

hold. The detailed derivation process is provided in Appendix A.1. We will later verify whether the
values of cdata(t) and cnoise(t) determined here secure the equivalence between optimizing DAG
and training D3PM in Sec. 3.2.3.

6
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Reverse Conditional Gaussian Transition Approximator The approximator is defined as
pω,ε(Xt↑1|Xt,X0) := N (Xt↑1;µω,ε(Xt, t,X0),!ω(Xt, t)). Once the approximator is
obtained, the reverse process can be represented as a Markov chain pω,ε(X0:T |X0) :=

p(XT )
∏T

t=1 pω,ε(Xt↑1|Xt,X0). For the variance !ω , we choose the untrained parameterization
ε̂tI . Regarding µω,ε, thanks to DAG-invariance, we can parameterize it according to the expression
of µω term in Eq. (12):

µω,ε(Xt, t,X0) := cdata(t)fω(X0A) + cnoise(t)gε(Xt, t), (14)

where

gε(Xt, t) :=

↗
ϑ̄t↑1εt

1 ↔ ϑ̄t
X̂0 +

↗
ϑt(1 ↔ ϑ̄t↑1)

1 ↔ ϑ̄t
Xt, X̂0 :=

Xt ↔
↗

1 ↔ ϑ̄t!ε(Xt, t)↗
ϑ̄t

. (15)

The approximated objective of fω and gε is consistent with the setting of the optimization objec-
tive as multiple variation consistency terms in Sec. 3.1. The parameterization of gε matches the
expression of µt in Eq. (4) but with different prediction objectives. More detailed setting about
approximators fω and !ε is provided in Appendix C.1.

One thing to note is that original tabular data X0 is involved in the reverse Gaussian transition
approximator, which is different from unconditional DDPMs. For unconditional DDPMs, taking
X0 as input is not allowed for reverse transition approximators. Nonetheless, conditioning X0 is
not inappropriate for D3PM , since, in CD, X0 plays the role as a condition for estimating DAGs.
And, this difference does not deprive the generative ability of D3PM at the sampling stage, due to
the existence of gε and variance !ω . Since the generative ability is not the main focus of CD, we
leave the discussion to Appendix B.

3.2.3 EQUIVALENCE BETWEEN TRAINING D3PM AND SOLVING OPTIMIZATION PROBLEM

To match the density q(X0), the learned reverse transition pω,ε(Xt↑1|Xt,X0) can be trained by
minimizing cross entropy. Following previous work (Sohl-Dickstein et al., 2015), a lower bound
can be expressed in terms of Kullback-Leibler divergence for D3PM (See Appendix A.3 for a
derivation). The loss function L for D3PM is defined as:

L =
∑

t↓1

Eq[
1

2ε̂t

↘µt(Xt,X0) ↔ µω,ε(Xt, t,X0)↘2]. (16)

By dropping the weights as per (Ho et al., 2020) and plugging in Eq. (13) and (14), we obtain:

L =
∑

t↓1

Eq[↘(cdata(t)X0 + cnoise(t)!) ↔ (cdata(t)fω(X0A) + cnoise(t)gε(Xt, t))↘2]. (17)

This shows that the determined coefficients cdata(t) and cnoise(t) ensure training D3PM is equiv-
alent to solving the proposed minimization objection of Eq. (12).

3.2.4 ESTIMATION OF DAGS

While D3PM addresses instability in inverse problems of continuous-optimization based CD ap-
proaches, the acyclicity constraint in Eq. (6) is missing. To measure the DAG-ness of A, an addi-
tional loss term Ldag := tr(eA↘A ↔ d) as proposed in (Zheng et al., 2018) is introduced, where ⇐
denotes the Hadamard product, resulting in the final training objective for D3PM :

A→,ω→,ε→ = arg min
A,ω,ε

∑

t↓1

Eq[Linv + Ldag], (18)

where Linv represents ↘(cdata(t)X0 + cnoise(t)!) ↔ (cdata(t)fω(X0A) + cnoise(t)gε(Xt, t))↘2.

After obtaining the optimal continuous-valued matrix A→ using Eq. (18), a heuristic strategy is
employed to derive a DAG. This involves setting a small threshold ϱ to remove edges from A→ with
absolute weights smaller than ϱ (Ng et al., 2020). If the resulting graph still contains cycles, edges
are iteratively removed starting from the lowest absolute weights until a DAG is obtained.
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4 RELATED WORK

The approaches for CD can be categorized into four branches as defined in (Hasan et al., 2023).
The first category is the constraint-based approaches, such as PC (Kalisch & Bühlmann, 2007;
Spirtes et al., 2001), FCI, and CD-NOD (Colombo et al., 2012; Zhang, 2008). These approaches
detect causal relationships in observational data through conditional independence tests and then
infer whether the data satisfies a DAG. They offer strong interpretability and the ability to incorpo-
rate domain knowledge but heavily rely on the quantity and quality of data. The second category
is Functional Causal Model (FCM) based approaches, such as ANM (Hoyer et al., 2008), CAM
(Bühlmann et al., 2014), PNL (Zhang et al., 2015), IGIC (Janzing et al., 2012), FOM (Cai et al.,
2020), SCORE (Rolland et al., 2022), SAM (Kalainathan et al., 2022), and DiffAN (Sanchez et al.,
2023). These approaches distinguish among different DAGs in the same equivalence class by im-
posing additional assumptions on the data distributions and/or function classes. They exhibit strong
applicability and are adept at handling nonlinear relationships but come with strong assumptions
imposed by the model.

The third category is Score-based algorithms, such as GES (Chickering, 2002; Hauser & Bühlmann,
2012), fGES (Ramsey et al., 2017), RL-BIC (Zhu et al., 2020), and CORL (Wang et al., 2021). These
algorithms search over the space of all possible DAGs to find the graph that best explains the data.
They increase the potential for searching for the correct causal graph while preserving sufficient
interpretability but significantly reduce the efficiency of the model due to searching through all
possible DAG spaces. The fourth category is the continuous optimization-based approaches such
as NOTEARS (Zheng et al., 2018), which transforms the originally discrete and challenging-to-
optimize DAG search space into a continuous and optimizable constraint space (Chen et al., 2023;
Hasan et al., 2023). These methods leverage the powerful learning capabilities of deep learning
to learn accurate causal graphs and improve optimization capabilities (Hasan et al., 2023), coupled
with reduced computation time when utilizing GPUs.

Concurrent work The proposed method is closest to continuous optimization-based approaches. It
explores the similarity between the proposed regularized continuous program for CD and diffusion
models. Transitioning the resemblance to equivalence, D3PM is accordingly designed. A related
work is DiffAN, which studies the link between CD and diffusion models. However, the difference
between our work and DiffAN is vast. Firstly, DiffAN belongs to the category of FCM-based CD
methods, which deviates from continuous optimization-based approaches. Secondly, DiffAN heav-
ily relies on SCORE, which takes advantage of the Hessian of the data log-likelihood for topological
ordering. For estimating the Hessian, SCORE utilizes a second-order Stein gradient estimator over a
radial basis function kernel, while DiffAN replaces the kernel-based estimation with diffusion mod-
els. By contrast, our work focuses on revealing the inseparable connection between diffusion models
and CD rather than treating diffusion models as a plug-and-play density estimation approach.

5 EXPERIMENTS

We use gradient-based optimization to train D3PMs according to Eq. (18). For more information
on the model architecture and hyper-parameter settings, please see Appendix C.1. We evaluate
the performance of synthetic and real data and compare it to state-of-the-art CD methods from
observational data.

Baselines: We compare D3PMs with 10 baselines. More details can be found in Appendix C.2.
Regarding FCM-based approaches, we consider CAM (Bühlmann et al., 2014), SAM (Kalainathan
et al., 2022), and DiffAN (Sanchez et al., 2023) as references. For score-based and continu-
ous optimization-based models, we select the following methods: CORL (Wang et al., 2021),
NOTEARS (Zheng et al., 2018), GOLEM (Ng et al., 2020), GraN-DAG (Lachapelle et al., 2020),
GAE (Ng et al., 2019), DAG-GNN (Yu et al., 2019), and SDCD (Nazaret et al., 2024). Metrics:
The experiments’ metrics are averaged over five randomly generated datasets of different seeds over
causal graphs and variations. Following (Zhu et al., 2020; Ng et al., 2019; 2020), we evaluate the
estimated graphs using three metrics: Structural Hamming Distance (SHD), False Discovery Rate
(FDR), and True Positive Rate (TPR). SHD measures the smallest number of edge additions, dele-
tions, and reversals required to convert the estimated graph into the true DAG, implicitly taking both
FDR and TPR into account. Therefore, we take SHD as the primary metric for all experiments.
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5.1 SYNTHETIC DATASET
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(a) 1000 observations
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(b) 5000 observations

Figure 1: Logarithm of SHD for datasets with varying numbers of observations, generated by the
function f1 or f2 with different variation distributions and causal graphs with increasing numbers of
variables d and varying edge numbers. ERi (SFi) means an ER (SF) graph whose number of edges
is about i · d.

In line with previous work (Sanchez et al., 2023; Wang et al., 2021; Lachapelle et al., 2020; Ng
et al., 2019), we consider causal relationships with two functions: f1(XA) := AT cos(X + 1) and
f2(XA) := 2 sin(AT cos(X+1)+0.5 ·1)+(AT cos(X+1)+0.5 ·1). The data is generated from
ANMs using either function f1 or f2, with variation drawn from Gaussian or Gumbel distribution,
and a causal graph. The causal graph A is constructed using either the Erdős–Rényi (ER) (Erdos
et al., 1960) or the Scale Free (SF) (Bollobás et al., 2003) model. We conduct experiments with
different sample sizes (n → {1000, 5000}), graph sizes (d → {10, 20, 50, 100, 150, 1000, 5000}),
and numbers of edges (1d or 4d).

We classify causal graphs with less than or equal to 150 nodes as small and medium-scale graphs,
and those with more than 150 nodes as large-scale.

Datasets with Small and Medium-scale Causal Graphs In Figure 1, the logarithm of SHD for
D3PM and baselines is displayed. The corresponding SHD value can be found in the tables in
Appendix D.1. Acorss all datasets, D3PM ranks first. The second-best positions vary depend-
ing on the observation number, variation type, causal relationship, and edge number. No baseline
method secures the second place in at least 50% of the datasets. This demonstrates the outstanding
performance and robustness of D3PM across varying dataset settings. Furthermore, NOTEARS
is modelled as solving a regularized optimization problem with the regularizer of ω1 penalty on
graphs. However, NOTEARS dramatically falls behind our model, which shows the effectiveness of
the proposed variation-based regularizer.

D3PM not only outperforms most baselines but also has a significant advantage over them, espe-
cially for causal graphs with a large number of nodes. The y-axis in Figure 1 represents log(SHD),
so even a small gap in the figure implies a vast difference in SHD. For datasets of causal graphs
containing 150 nodes and 150 edges, with causal relationship f1, D3PM outperforms the best
baselines by an average of 49.68 SHD. As the number of edges increases to 600, this number rises
to 197.88 SHD. The corresponding numbers for causal relationship f2 are 67.88 and 317.01, respec-
tively. In addition to SHD, the metrics of FDR and TPR are documented in the tables in Appendix
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D.1. When comparing the average FDR and TPR of D3PM with those of the second-best baselines
selected in terms of SHD, D3PM achieves the best FDR in 168 out of 192 cases and the best TPR
in 185 out of 192 cases. TPR measures actual positives, while FDR evaluates false positives.

Datasets with Large-scale Causal Graphs The scalability of our method and baselines is tested by
increasing the number of nodes from 150 to 1000. The results are shown in the rightmost part of all
sub-figures in Figure 1. As the graph size increases, some baselines are unable to run. DiffAN and
CORL are unacceptably time-consuming for d = 100 and d = 150, respectively. Baselines SAM,
GraN-DAG, and DAG-GNN fail to run for 1000 nodes. The figure demonstrates that the remaining
baselines consistently lag behind D3PMs by a large margin. To further challenge all approaches,
the number of vertices is significantly increased to 5000. In this case, only the baseline of SDCD is
chosen, as it is the only work claiming to be qualified to run in the similiar data scale. The numerical
results can be found in Table 18 and 19 in the appendix. D3PM is the best-performing method in
terms of SHD across all datasets. On average, the SHD of SDCD is 4.01 times larger than that of
D3PM for f1, and the number is 6.79 for f2.

Efficiency of D3PM is also assessed in Appendix D.4. Among D3PM and 4 baselines, D3PM is
ranked fourth when d = 10 and is moved to the second position as d is increased to 1000, indicating
that D3PM is qualified to work on large-scale datasets.

5.2 REAL-WORLD DATASET

We compare D3PMs and baselines using a real dataset provided by (Sachs et al., 2005). This
dataset pertains to a well-studied protein network problem and includes gene expression data con-
sisting of 7466 observational data for 11 proteins. A signalling molecule causal graph, which is
commonly accepted as ground truth, is used to evaluate the performance of CD methods. The re-
sults are shown in Figure 2 in the Appendix. Eight out of ten baselines produce SHDs greater than
23, GAE achieves an SHD of 18. Both D3PM and GraN-DAG hold the top position with an SHD
of 17.

6 CONCLUSION

To address the instability encountered by continuous optimization-based CD approaches, we pro-
pose the variation-negotiation regularizer, which eliminates any general hypotheses about true
DAGs. Based on this regularizer, we identify a similarity between the regularized optimization
problem and the training objective of diffusion models. This leads to the development of a novel
diffusion model, called D3PM , whose training objective is equivalent to the regularized optimiza-
tion problem. We demonstrate its superiority over various baselines with different dataset settings.

In terms of future work, it would be valuable to extend the assumption of data generation beyond
ANMs. Additionally, exploring the adaptation of the variation-negotiation regularizer and D3PM
to observational time-series data represents a promising research direction.
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Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard
Schölkopf, and Francesco Locatello. Score matching enables causal discovery of nonlinear addi-
tive noise models. In Proceedings of International Conference on Machine Learning, pp. 18741–
18753, 2022.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal
protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):
523–529, 2005.

Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A. Tsaftaris. Diffusion models for causal
discovery via topological ordering. In Proceedings of International Conference on Learning Rep-
resentations, pp. 1–20, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of International Conference on
Machine Learning, pp. 2256–2265, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Proceedings
of International Conference on Learning Representations, pp. 1–36, 2021.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, prediction, and search. MIT press,
2001.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
! ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of Advances
in Neural Information Processing Systems, pp. 1–11, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of International Confer-
ence on Machine Learning, pp. 1096–1103, 2008.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiaoqiang Wang, Yali Du, Shengyu Zhu, Liangjun Ke, Zhitang Chen, Jianye Hao, and Jun Wang.
Ordering-based causal discovery with reinforcement learning. In Proceedings of International
Joint Conference on Artificial Intelligence, pp. 3566–3573, 2021.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with graph neural
networks. In Proceedings of International conference on machine learning, pp. 7154–7163, 2019.

David D Zhang, Harry F Lee, Cong Wang, Baosheng Li, Qing Pei, Jane Zhang, and Yulun An. The
causality analysis of climate change and large-scale human crisis. Proc. Natl. Acad. Sci., 108(42):
17296–17301, 2011.

Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of latent
confounders and selection bias. Artif. Intell., 172(16-17):1873–1896, 2008.

Kun Zhang, Zhikun Wang, Jiji Zhang, and Bernhard Schölkopf. On estimation of functional causal
models: general results and application to the post-nonlinear causal model. ACM Trans. Intell.
Syst. Technol., 7(2):1–22, 2015.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. In Proceedings of Advances in Neural Information Processing
Systems, pp. 1–12, 2018.

Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning. In
Proceedings of International Conference on Learning Representations, pp. 1–17, 2020.

13


	Introduction
	Preliminaries
	Causal Discovery
	Denoising Diffusion Probabilistic Models

	Continuous Optimization by DAG-invariant Diffusion Model
	Continuous Program with Variation-negotiation Regularizer
	DAG-invariant Denoising Diffusion Probabilistic Model
	DAG-invariance
	Solving Optimization Problems in Diffusion Process
	Equivalence between Training D3PM and Solving Optimization Problem
	Estimation of DAGs


	Related Work
	Experiments
	Synthetic Dataset
	Real-world Dataset

	Conclusion
	Extended Derivations
	Derivation of Reverse Conditional Probability Conditioned on X0 with DAG-invariance
	Derivation of Reparameterized Forward Process with DAG-invariance
	Derivation of Training Objective of D3PM

	Sampling Data by D3PM
	Experiment Setting
	DAG-invariant Diffusion Model
	Baseline Methods

	More Experimental Results
	Datasets with Small, Medium, and Large-scale Causal Graphs
	Datasets with Extreme Large-scale Causal Graphs
	Real-world Dataset
	Efficiency Study


