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Abstract

This paper presents a new self-supervised video representation learning framework ARVideo,
which autoregressively predict the next video token in a tailored sequence order. Two key
designs are included. First, we organize autoregressive video tokens into clusters that
span both spatially and temporally, thereby enabling a richer aggregation of contextual
information compared to the standard spatial-only or temporal-only clusters. Second,
we adopt a randomized spatiotemporal prediction order to facilitate learning from multi-
dimensional data, addressing the limitations of a handcrafted spatial-first or temporal-first
sequence order. Extensive experiments establish ARVideo as an effective paradigm for
self-supervised video representation learning. For example, when trained with the ViT-B
backbone, ARVideo competitively attains 81.2% on Kinetics-400 and 70.9% on Something-
Something V2, which are on par with the strong benchmark set by VideoMAE. Importantly,
ARVideo also demonstrates higher training efficiency, i.e., it trains 14% faster and requires
58% less GPU memory compared to VideoMAE.

1 Introduction

The transformer architecture, as introduced in Vaswani et al. (Vaswani et al., [2017)), has fundamentally
transformed the field of natural language processing (NLP) through its ability to model long-range dependencies
with minimal inductive bias. A crucial catalyst for its success lies in self-supervised learning of robust and
transferable representations from large volumes of unlabeled data. Within this paradigm, masked language
modeling (MLM) (Devlin et al., 2019) and autoregressive modeling (AR) (Radford et al., 2018} |Brown et al.,
2020; OpenAl, 2023) stand out as two leading approaches. Specifically, MLM masks random portions of input
tokens and trains models to predict masked elements; whereas AR predicts subsequent words in a sequence
based on all preceding words. These methods have propelled state-of-the-art performance in various NLP
tasks.

In the video domain, however, the landscape is different. Previous studies have predominantly relied on
supervised pretraining using image datasets, often overlooking the critical aspect of temporal dynamics (Liu
et al., [2022b; Bertasius et al.l |2021). Recently, there has been a shift towards leveraging NLP-inspired mask
language modeling (Devlin et al., [2019) or image-inspired mask image modeling (He et al 2022; Bao et al.,
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Figure 1: ARVideo autoregressive predicts spatiotemporal cluster from grouping tokens span spatial and
temporal dimension. Following (Tong et al., |2022), we first tokenize the video into discrete tokens. These
tokens are grouped into clusters, each spanning both spatial and temporal dimensions. Finally, we randomly
permute the order of these clusters and adopt an autoregressive strategy to predict subsequent clusters.

2022)) to directly exploit unlabeled video datasets for pretraining. For instance, VideoMAE
2022; [Feichtenhofer et all [2022) introduces mask autoencoder for self-supervised video
video representation learning; BEVT (Wang et al., [2022a) learns spatial representations from image data
and joint-masked image and video modeling. Despite these advancements, autoregressive modeling—another
powerful self-supervised learning approach in NLP—has yet to be extensively explored within the context
of video data analysis. Specifically, considering the strong temporal structure in videos where each frame
depends on previous frames, AR is able to naturally capture these dependencies by modeling the next frame
(or features of the next frame) given past frames and to learn how causal changes occur in videos, expecting
to induce more robust and nuanced feature representations for facilitating downstream tasks such as action
recognition, event classification, or anomaly detection.

Critically, in the practical instantiation, applying autoregressive pretraining to video data entails the same
principle of autoregressively predicting the next element in a sequential order based on its predecessors. In
natural language, these elements—words—are clearly defined and inherently follow a chronological order. For
images, elements could be conceptualized as pixels or patches arranged in a flattened sequence
[2020; [El-Nouby et al., [2024; Ren et al.| 2024). The further transition to video data, however, introduces
additional complexity due to its inherently multidimensional nature (i.e., including both spatial and temporal
dimensions). This raises a crucial inquiry: how should we define an autoregressive ‘video element’ and establish
a visual sequence order for self-supervised video representation learning?

We note traditional methods, such as converting video into a sequence of cubes (Tong et al., |2022; Bertasius|
let al., 2021 Wang et al., [2022a} [Liu et al., [2022b) and subsequently linearly mapping these cubes into
video tokens, generally reveal critical limitations in addressing this query. Specifically, the granularity of
these video tokens often fails to encapsulate the rich semantics typically represented by words in text-based
models—primarily because 1) these video tokens are too dimensionally limited, and 2) video inherently lacks
a sequential order in its spatial dimensions, although it retains this feature in its temporal aspects.

To address these challenges, we hereby present ARVideo, a novel autoregressive-based video representation
learning paradigm with two key designs (see Figure [I]). Firstly, we redefine ‘video elements’ by grouping
video tokens into spatiotemporal video clusters, differentiating from conventional single-dimensional strategies
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like spatial video clusters or temporal video clusters. This approach improves semantic representation by
aggregating more contextually relevant multidimensional information. Secondly, we find that, compared
to well-defined yet single-dimensional spatial-first or temporal-first sequence orders, a sequence order that
randomly integrates both spatial and temporal dimensions empirically yields significantly stronger results. This
suggests that effectively capturing the inherent multidimensionality of video data is crucial for autoregressive
modeling. Extensive experiments establish our ARVideo as an effective paradigm for video representation
learning. For example, while the autoregressive video representation learning baseline only attains 74.2%
on Kinetics-400 and 66.4% on Something-Something V2, ARVideo significantly boosts the results to 81.2%
(+7%) and 70.9% (+4.5%), respectively. Notably, these results not only match but, in some aspects, surpass
the strong benchmark set by VideoMAE, particularly with respect to training efficiency—ARVideo achieves
faster training speeds by 14% and reduces GPU memory consumption by 58%.

2 Related Work

2.1 Video Representation Learning

Video representation learning has witnessed significant exploration, historically driven by supervised learning
methods (Tran et al., |2018; [Wang et al., [2019; |Ren et al., [2022; [Simonyan & Zissermanl |2014; Ren et al.)
2021bjja; Bertasius et al.l 2021} Ren et al., |2020; |2023; [Liu et al., [2022b) that pretrain backbone networks
on labeled image or video data before fine-tuning. However, such methods face challenges due to inherent
discrepancy between image and video data, compounded by the scarcity of comprehensively labeled video
datasets.

In the era of self-supervised learning, recent work have designed pre-tasks incorporating temporal information
for self-supervised video representation learning (Xu et al., [2019; Benaim et al., [2020; Huang et al.| |2021}
Qian et al., [2021; [Ranasinghe et al. [2022)) and leveraging contrastive learning for effective visual representa-
tions (Qian et al.l [2021; [Kuang et al., 2021} |Li et al 2021; Diba et al.| [2021; Han et al., 2020ajb). Additional,
mask reconstruction-based methods inspired by masked language modeling (Devlin et al.,|2019) are introduced
into self-supervised image and video representation learning. For example, MAE (He et al., |2022) presents
a scalable self-supervised learning method to reconstruct masked image patches while VideoMAE (Tong
et all 2022) extends this approach to video data and reconstructs masked spacetime patches. BEVT (Wang
et al., [2022b)) separates spatial learning from temporal dynamics, training on masked images initially before
jointly on masked images and videos. Christoph et al. (Feichtenhofer et al., |2022)) introduce an efficient
video-based MAE extension with minimal biases and significant speedups. In contrast to prior works, our
ARVideo proposes a new path for self-supervised video representation learning via autoregressive pretraining.

2.2 Autoregressive Pretraining

As a representative approach for autoregressive pretraining, Generative Pretrained Transformer (GPT) trains
language models by autoregressively predicting the next word based on all preceding words in a sentence of
length n, denoted as {uy, ..., u, }. The autoregressive loss minimizes the negative log-likelihood with model
parameter 6:

L= *lOg Hp(ui|u17"'7ui—170)' (1)
i=1

This modeling strategy has fundamentally changed the landscape of natural language processing, leading to
the development of tremendously successful models like ChatGPT (Radford et al,|2018) and GPT-4 (OpenAl,
2023). Inspired by the success of autoregressive modeling in NLP, researchers start to apply autoregressive
pretraining in computer vision. ImageGPT (Chen et al.l [2020) learns effective image representations by
training a Transformer to autoregressively predict image pixels without any prior knowledge of their 2D
structure. Nevertheless, ImageGPT incurs significant computational overhead due to the quadratic complexity
of self-attention w.r.t. the input sequence, limiting itself to smaller image sizes (e.g., 32 x 32) with suboptimal
performance. lengthSAIM (Qi et al., |2023)) adopts an encoder to autoregressively learn contextual information
like a standard vision transformer (ViT) and a decoder to predict the current content, mutually reinforcing
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Figure 2: Comparison between video token and different cluster. ARVideo groups multiple tokens into
(b) Spatial cluster across the spatial domain, or (¢) Temporal cluster across the spatial domain, or (d) Spa-
tialtemporal cluster across both the spatial and temporal domain.

each other’s functions. RandSAC (Hua et al., |2022)) arranges image tokens into segments for parallel intra-
segment and sequential inter-segment autoregressive prediction. However, applying autoregressive pretraining
on video data faces notable challenges due to the extra temporal dimension. ARVideo explores the design of
autoregressive video elements and visual sequence orders for video representation learning.

Recently, AR modeling has been adopted for video generation works (Yu et al [2024; |Kondratyuk et al., [2024)).
In contrast, as a video representation learning framework, ARVideo incorporates some key design differences,
including (1) a simpler tokenizer as opposed to a specialized tokenizer (Yu et al., [2024), (2) cluster-wise
AR modeling—which operates on groups of tokens—as opposed to token-wise AR modeling using Large
Language Models (LLMs) for video generation (Kondratyuk et al., 2024), and (3) random rasterization for
spatialtemporal prediction order as opposed to predefined orders optimized for video generation tasks. These
distinctions advance ARVideo upon existing works for improved self-supervised learning outcomes.

3 Method

In this section, we present ARVideo and analyze the the design of elements and the optimal prediction
order as the key ingredients in ARVideo for autoregressive prediction with videos. Notably, throughout this
paper, we use the term ‘clustering’ to refer to the predefined grouping of tokens along spatial and temporal
dimensions, rather than the conventional meaning of unsupervised grouping based on similarity.

Ilustrated in Figure |1, ARVideo autoregressively pretrains on video data 2 € RT*H*WxC Note that directly
extending ImageGPT to videos faces significant challenges, primarily due to the added temporal dimension,
which would significantly escalate computational demands, even with low-resolution videos like 4 x 32 x 32.
Moreover, pixels as autoregressive elements lack semantic richness compared to words in the language, further
necessitating pixel grouping strategies to enhance representation learning. To better facilitate learning from
multi-dimensional video data, we also explore prediction orders across spatial and temporal dimensions.

3.1 Pixel grouping

From Pixels to Video Tokens. With patch embeddings in ViT, videos can be patchified into non-
overlapping cubes (Tong et al.l |2022; Bertasius et al.l 2021; Wang et al., [2022a; |Liu et al.l |2022b) of size
Pr x Py x Pg. Then, each cube is transformed into a video token through a linear projection layer,
resulting in N = % X % X % video tokens. This tokenization significantly reduces operational elements,
thus alleviating computational demands while ensuring that each video token encapsulates richer semantics
compared to individual pixels. For example, as reported in Table |1} using video tokens as autoregressive
elements for pretraining significantly outperforms approaches without tokenization by 3.3% while keeping

pretraining resolution consistent with previous work (Tong et al., [2022; \Wang et al., [2022a).
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Element ‘ Resolution ‘ Something- Something V2

Pixel 8§x 14 x 14 60.7
Token 16 x 224 x 224 64.0

Table 1: Grouping pixels into video tokens facilitates autoregressive pretraining on higher-resolution videos
and improves performance by 3.3%.

This promising transition from pixels to video tokens introduces a compelling query: Can further performance
gains be realized by aggregating more tokens? In pursuit of this, we examine three options: grouping video
tokens into spatial, temporal, or spatiotemporal clusters. It is important to note that within each cluster,
video tokens are always fully attended to each other. This full-attention configuration helps to enable a more
effective consolidation of semantic content within each autoregressive element.

From Tokens to Spatial Clusters. As shown in Figure (b), we strategically group spatially neighbored
tokens—those sharing the same temporal positions but varying spatially—into spatial clusters. Following

the patch embedding step, video tokens within the spatial domain Pi X % are grouped into one element,

resulting in P autoregressive elements. For example, a video of size 16 x 224 x 224 with a cube embedding
size of 2 x 16 x 16 (Tong et al.| [2022)) here will be transformed into 8 autoregressive elements, with each
element comprising 14 x 14 tokens.

From Tokens to Temporal Clusters. As illustrated in Figure (c)7 our method integrates temporal
information by grouping tokens that are temporally adjacent into temporal clusters. Specifically, tokens
within the temporal domain PLT are grouped into one element, resulting in % X % autoregressive elements.
For instance, a video of size 16 x 224 x 224 with a cube embedding size of 2 x 16 x 16 (Tong et al., 2022)

here will transformed into 14 x 14 autoregressive elements, with each element comprising 8 tokens.

From Tokens to Spatiotemporal Clusters. Moving beyond the single-dimensional grouping strategies
discussed above, we now consider the inherently multidimensional nature of video data by grouping neighboring
Kr x Ky x Kyw tokens into spatiotemporal clusters ¢ with no overlaps, as illustrated in Figure (d) This
strategy results in a total number of N = PT7;<T X PH};{H X PWMI/(W clusters, with each containing both spatial
and temporal information as an autoregressive element. ARVideo autoregressively predicts the next cluster
given all preceding clusters:

= —log Hp cilety ooy i1, 0 (2)

Cluster captures the amount of high-level, semantically meaningful information, which is greater when
multiple tokens are grouped together, as opposed to isolated low-level descriptors such as individual pixels or
tokens.

3.2 SpatialTemporal Prediction Order

For the bpatiotemporal cluster, we further explore its prediction order. Specifically, this strategy is expected
to yield yemyon K clusters at each spatial position, and clusters at each temporal position.

« W
PKH Pw Kw

Pre-defined order. We implement two systematic strategies: a spatial-first order and a temporal-first order.
The spatial-first approach prioritizes autoregressive pretraining within the % X % spatiotemporal
clusters along the spatial dimension, before transitioning to clusters in subsequent temporal positions.
Conversely, the temporal-first approach prioritizes within the PT7;<T spatiotemporal clusters along the

temporal dimension, then proceeds to clusters in subsequent spatial positions.

Random Rasteration. Inspired by the random sentence permutation technique used in XLNet (Yang
et al., |2019)) for enhancing autoregressive pretraining, our random rasterization approach scrambles the order
of clusters randomly during autoregressive pretraining after adding positional embedding. By randomly
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reordering or sampling frame sequences, the model encounters more diverse temporal variations and avoids
overfitting to a fixed frame order. Besides, random permutation makes model learn short- and long-term
dependencies. Specifically, given a current frame t, the model is required to predict t+n for various n
values (ranging from 1 to the final frame), thereby training it to handle both immediate and extended
temporal relationships in the video. This method avoids the constraints of fixed sequential patterns, such as
spatial-first or temporal-first, and allows ARVideo to adaptively model both long- and short-range spatial-
temporal information. Such flexibility in autoregressive prediction orders not only captures the inherent
multidimensionality of video data more effectively but also fosters a richer, more comprehensive video
representation. We adopt this random order as the default experiment setup.

3.3 Model Architecture

We adopt the ViT (Dosovitskiy et al.l |2021; |Tong et al., 2022 as the encoder. For the decoder, we take the
Transformer decoder with cross attention but without self-attention. This design choice aims to simplify
the decoding process, emphasizing interaction between the encoded inputs while reducing training costs.
The query of the decoder is randomly initialized but includes position information to facilitate sequence
generation. Our model utilizes a strategically designed attention mask as in previous work (Chen et al., 2020;
Radford et al.l |2018]) to enable efficient autoregressive prediction in a parallel computation framework. When
transferring to downstream tasks, we remove the decoder and only finetune the encoder. We aggregate the
encoder’s output tokens using average pooling into a single, representative token. This pooled token then
serves as the input for the final classification layer.

In our implementation, we employ a mean square error (MSE) loss to measure the discrepancy between the
predicted and target cubes, as utilized in MAE (He et al.| |2022). Typically, predicting N clusters requires
multiple iterations: given c¢q, we predict cs; given ¢; and co, we predict c3; and so on, as outlined in Eq. [2} To
improve training efficiency, we follow the approach of (OpenAl, 2023; |AIL [2023; Hua et al., 2022 (Chen et al.,
2020) by leveraging attention masks to compute all clusters in a single iteration. Specifically, we concatenate
all clusters into one sequence and apply attention masks to ensure that each cluster attends only to itself and
the preceding clusters. The details of the training and finetuning can be found in Appendix [A]

4 Experiment

4.1 Dataset and Implementation Details

We primarily evaluate ARVideo on Kinetics-400 (Kay et all [2017) and Something-Something V2 (Goyal et al.,
2017). Specifically, Kinetics-400 contains 400 classes and 260k videos of 10s, with 240k for training and 20k for
validation; Something-Something V2 contains 174 classes with 169k videos for training and 25k for validation.
While Kinetics-400 provides a broad spectrum of actions with minimal context, Something-Something V2
focuses more on the interaction of actions with objects.

For our experiments, we first pretrain a vanilla video Transformer (Tong et al.| [2022) with ARVideo, and then
fine-tune the pretrained model on the target action recognition datasets. Additionally, we assess the feature
transferability on AvA v2.2 (Gu et al., [2018) and HMDB (Kuehne et al.l |2011). AvA v2.2 is a human action
localization dataset with 211k videos for training and 57k for validation; HMDB is a small video dataset with
3.5k videos for training and 1.5k videos for validation.

We follow the established protocol in prior work (Tong et al., |2022]) to train our models. Instead of using
negative log-likelihood as in GPT (Radford et al.,|2018)), we employ mean square error (MSE) loss to measure
the discrepancy between the predicted and target cubes, as utilized in MAE (He et all 2022)). We randomly
mask 80% tokens in each element in encoder to reduce the overall training costs; note that, unlike MAE or
VideoMAE, we do not reconstruct those masked regions. Please refer to Appendix [A] for model architecture
and training implementation details.

Additionally, we would like to stress that, although AR modeling is leveraged here, the video generation
quality of our pretrained model is not the focus of this study—instead, we focus on evaluating the finetuning
performance of these pretrained models on a range of downstream video benchmarks.
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Method Backbone pretrain Epoch | Frames | GFLOPs | Param | Top-1
Supervised pretraining

TANet (Liu et al.| 2021) ResNet152 IN-1K 100 16 242x4x3 59 79.3
TDNg, (Wang et al.||2021) ResNet101 IN-1K 100 8416 198x10x3 88 79.4
TimeSformer (Bertasius et al.|[2021) ViT-B IN-21K 15 8 196 x1x3 121 78.3
Motionformer (Patrick et al.||2021) ViT-B IN-21K+K400 35 16 370x1x3 109 81.1
Video Swin (Liu et al.|[2022a) Swin-B IN-21K+K400 30 32 321x1x3 88 82.7
Mask video modeling

VIMPAC (Tan et al.| 2021) ViT-L HowTol00M 100 10 N/Ax10x3 307 774
BEVT (Wang et al.||2022a) Swin-B K400 150 32 282x1x3 88 76.2
VideoMAE (Tong et al.| 2022) ViT-B K400 800 16 180%x2x3 87 80.0
VideoMAE (Tong et al.| 2022) ViT-B K400 1600 16 180x2x3 87 81.5
Autoregressive pretraining

iGPT (Chen et al.| 2020) ViT-B IN-1K 300 16 180x2x3 87 61.2
Randsac (Hua et al.||[2022) ViT-B IN-1K 1600 16 180x2x3 87 70.3
TokenGPTF ViT-B IN-1K 300 16 180%x2x3 87 68.5
TokenGPTf ViT-B K400 800 16 180%x2x3 87 74.2
ARVideo ViT-B K400 800 16 180x2x3 87 80.1
ARVideo ViT-B K400 1600 16 180x2x3 87 81.2

Table 2: Comparison with the state-of-the-art methods on Kinetics-400. “N/A” indicates the
numbers are not available for us. { indicates the implementation by us with the token replacing pixel in
iGPT. Note that random order is adopted in sequencing clusters inside our ARVideo.

Method ‘ Backbone ‘ Pretrain ‘ Epoch ‘ Frames ‘ GFLOPs ‘ Param | Top-1
Supervised pretraining

TEINetg, (Liu et al.| 2020) ResNet50x 2 IN-1K 50 8416 99x10x3 50 66.5
TANet g, (Liu et al.||2021) ResNet50x2 IN-1K 50 8416 99x2x3 51 66.0
TDNg, (Wang et al.|[2021) ResNet101x2 IN-1K 60 8+16 198x1x3 88 69.6
SlowFast (Feichtenhofer et al.||2019) | ResNet101 K400 196 8432 106x1x3 53 63.1
MViTvl (Fan et al.| 2021) MViTvl-B K400 100 64 455x1x3 37 67.7
TimeSformer (Bertasius et al.||2021) ViT-B IN-21K 15 8 196x1x3 121 59.5
TimeSformer (Bertasius et al.| [2021) ViT-L IN-21K 15 64 5549x1x3 430 62.4
ViViT FE (Arnab et al.|[2021) ViT-L IN-21K+K400 35 32 995x4x3 N/A 65.9
Motionformer (Patrick et al.||2021) ViT-B IN-21K+K400 35 16 370x1x3 109 66.5
Video Swin (Liu et al.|[2022a) Swin-B IN-21K+-K400 30 32 321x1x3 88 69.6
Mask video modeling

VIMPAC (Tan et al.|[2021) ViT-L HowTol00M 100 10 N/Ax10x3 307 68.1
BEVT (Wang et al.|[2022a) Swin-B IN-1K+K400 150 32 321x1x3 88 70.6
MaskFeatt312 (Wei et al.|[2022) MViT-L K600 1600 10 2828 x1x3 218 75.0
VideoMAE (Tong et al.||2022) ViT-B SSv2 800 16 180%2x3 87 69.6
VideoMAE (Tong et al.||2022) ViT-B SSv2 2400 16 180%2x3 87 70.8
Autoregressive pretraining

iGPT (Chen et al.| 2020) ViT-B IN-1K 300 16 180x2x3 87 54.3
Randsac (Hua et al.|[2022) ViT-B IN-1K 1600 16 180x2x3 87 59.6
TokenGPTY ViT-B IN-1K 300 16 180%x2x3 87 59.2
TokenGPTY ViT-B SSv2 800 16 180x2x3 87 66.4
ARVideo ViT-B SSv2 800 16 180%2x3 87 69.8
ARVideo ViT-B SSv2 2400 16 180%2x3 87 70.9

Table 3: Comparison with the state-of-the-art methods on Something-Something V2. “N/A”
indicates the numbers are not available for us. T indicates the implementation by us with the token replacing
pixel in iGPT. Note that random order is adopted in sequencing clusters inside our ARVideo.

4.2 Main results

Kinetics-400. We pretrain the ViT-B backbone for both 800 and 1600 epochs on Kinetics-400, and report the
corresponding results in Table [2l Spatiotemporal cluster and random rasteration order are adopted. Notably,
ARVideo attains 80.1% top-1 accuracy under 800 epochs and 81.2% top-1 accuracy under 1600 epochs,
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Method | K400 — AVA v2.2 | K400 — HMDB
Contrastive Learning

MoCo | - | 67.9
Mask video modeling
VideoMAE | 26.7 \ 73.3
Autoregressive pretraining
ARVideo | 26.9 | 74.1

Table 4: Comparison of model transferability. We first pretrain models on Kinetics-400, and then transfer
them to AVA v2.2 and HMDB.

‘ Encoder ‘ Decoder ‘ .. .
Method ‘ 9) ‘ Koy /Value ‘ ") ‘ Koy /Value ‘ Training Time GPU Memory
VideoMAE | 160 160 1568 1568 145h 41.3G
ARVideo | 300 300 1372 300 127h (-12.4%) | 26.1G (-36.8%)

Table 5: The comparison of pretraining time and GPU memory.

exhibiting significant improvements over previous autoregressive methods. Specifically, taking 1600-epoch-
pretrained ARVideo for comparison, it outperforms iGPT, the baseline model, by a striking +20.0%, and
Randsac, the previous state-of-the-art autoregressive model on images, by +10.9%. Additionally, compared
to TokenGPT, which performs token-level autoregressive prediction, ARVideo showed advancements of
+12.7% when TokenGPT was pretrained on an image dataset, and +7.0% when it was pretrained on the
Kinetics-400 dataset.

Moreover, we note that ARVideo performs competitively against the strong benchmark—the mask video
modeling method, VideoMAE. For example, the performance difference between ARVideo and VideoMAE is
only 0.1% with 800 epochs of pretraining; this margin remains minimal at 0.3% with 1600 epoch pretraining.
These results validate the effectiveness of ARVideo as a pioneering autoregressive pretraining method in
self-supervised video representation learning, equalling—and in some aspects surpassing—the performance of
established mask modeling methods.

Something-Something V2. We pretrain the ViT-B backbone for 800 and 2400 epochs on the Something-
Something V2 dataset. Spatiotemporal cluster and random rasteration order are adopted. As reported in
Table 3] ARVideo achieves top-1 accuracies of 69.8% and 70.9% for 800 and 2400 epochs, respectively, which
are significantly stronger than prior autoregressive pretraining methods. For example, under 2400 epochs,
ARVideo surpassed the baseline model iGPT by +16.6% and outperforms the best-performing image-based
autoregressive method, Randsac, by +11.3%. It also surpassed TokenGPT pre-trained on image datasets
by +11.7% and on the Something-Something V2 dataset by 4+4.5%. Additionally, when compared to the
strong masked video modeling method VideoMAE, ARVideo also performs competitively in both 800 epochs
of pretraining (i.e., 0.2% accuracy difference) and 2400 epochs of pretraining (i.e., 0.1% accuracy difference).
Together with the observations in Kinetics-400, these results can establish ARVideo as a strong alternative to
masked modeling approaches for video analysis.

Transfer Learning. To investigate the feature transferability of ARVideo, we transfer the model trained
on Kinetics-400 to AvA v2.2 and HMDB. We can observe that ARVideo demonstrate strong transferability,
achieving 26.9 mAP on AvA v2.2 and 74.1% Top-1 accuracy on HMDB—outperforming both VideoMAE and
MoCo (see Table . For example, compared to VideoMAE, ARVideo shows (slight) improvements of 0.2%
on AvA v2.2 and 0.8% on HMDB.

Computation cost. We report the training time and GPU memory usage in Table [5| (with ViT-B trained
on Kinetics-400 for 800 epochs, using 8 x A6000). Compared to VideoMAE, ARVideo presents significant
reductions in both GPU memory usage and training time—ARVideo reduces training cost by 12.4% (from
145 hours to 127 hours) and GPU memory consumption by 36.8% (from 41.3G to 26.1G). This advantage
stems from ARVideo’s shorter sequence length as we drop the last cluster in the autoregressive modeling.
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Figure 3: The attention rank comparison between VideoMAE and ARVideo

case ‘ Ky ‘ Ky ‘ Kw ‘ Something-Something V2
Token/Cube 1 1 1 64.0
spatial cluster 1 % % 66.0
spatial cluster 1 7 7 66.2
temporal cluster PLT 1 1 65.2
temporal cluster 2 1 1 65.6
spatiotemporal cluster 4 7 7 65.5
spatiotemporal cluster (ARVideo) | 2 7 7 66.8

Table 6: Ablation study on the cluster shape.

Attention rank. The self-attention mechanism computes attention scores for a given input sequence, forming
what is known as the attention map. The rank of this matrix can serve as a measure of its ability to capture
complex patterns in the data. Typically, high-rank attention matrices suggest a model that can capture a
wide variety of patterns and relationships within the data, while low-rank matrices may suggest a model
that does not well utilize its full capacity or operates on simpler data (Wang et al.l 2020). Following this
instruction, we plot the rank of the attention map in each layer of VideoMAE and our ARVideo in Figure [3]
We can observe that, across nearly all layers except the 6;,, ARVideo maintains higher attention ranks than
VideoMAE, indicating a stronger representational ability of our model’s self-attention layers.

Compatibility with recent works. We highlight that our proposed ARVideo is compatible with several
recent works (Yang et al., 2022; Wang et al., [2023) that incorporate extra motion cues (Yang et al., [2022)
or extra knowledge distillation (Wang et al., |2023)) to VideoMAE. These methods are orthogonal to both
VideoMAE and our ARVideo. As shown in Table[7] ARVideo can be effectively combined with these methods,
yielding consistent improvements. Specifically, ARVideo with motion cues achieves a 0.6% improvement
over VideoMAE with motion cues (from 71.8% to 72.4%). Similarly, ARVideo with distillation outperforms
VideoMAE with distillation by 0.8% (from 73.7% to 74.5%).

4.3 Ablation Study

In this part, we ablate four factors—cluster shape, mask ratio, prediction order, and decoder design. Note
that, unless otherwise specified, all ablations are conducted on the ViT-B backbone with 200 epochs of

pretraining.
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Method ‘ Component ‘ Something-Something V2
VideoMAE VideoMAE 70.8
MotionMAE(Yang et al., [2022) VideoMAE+Motion 71.8
MVD(Wang et al., [2023) VideoMAE+Distillation 73.7
ARVideo ARVideo 70.9
MotionARVideo ARVideo+Motion(Yang et al.l |2022]) 72.4
DistillARVideo ARVideo+Distillation(Wang et al., 2023) 74.5

Table 7: Compatible with recent self-supervised video representation learning framework.

Mask Ratio ‘ SSv2

Order ‘ SSv2
Spatial-First 65.6 75% 66.0
i 80% 66.8

Temporal-First 66.0
Spatial-temporal random | 66.8 90% 65.6
95% 64.8

Table 8: Ablati h icti
able 8: Ablation study on the prediction Table 9: Ablation study on the mask ratio from 75%

order. to 95%.
Decoder . .
Method Self-Atten  Cross-Atten Something-Something V2
ARVideo v 66.8
ARVideo v v 66.6

Table 10: Ablation study on the decoder architecture.

Cluster shape. We group neighboring and non-overlapped K1 x K X Ky tokens into one cluster and analyze
the effect of different cluster shapes. Three situations are considered: 1) Ky = Ky = Ky = 1, equivalent
to the TokenGPT, which pertains autoregressively at the token/cube level; 2) Kr = le Kw=Kyg=1,

representing a temporal cluster; and 3) Kr =1, Ky = %, Ky = %, representing a spatial cluster.

We report the results in Table [6] Firstly, we can observe that all clustered configurations significantly
enhance performance over the TokenGPT baseline. For example, simply grouping tokens into spa-
tial/temporal /spatiotemporal clusters yields 2.0%/2.2%/2.8% improvements, respectively. Then, when compar-
ing different clusters, we note that our spatiotemporal cluster (ARVideo) with K7 = 2, Ky = Ky = 7 attains
the best performance of 66.8%, outperforming the best-performed spatial cluster (K7 =1, Ky = Ky = T7) by
0.8% and the best-performed temporal clusters (Kr = 2, Ky = Ky = 1) by 1.2%. However, it is interesting
to note that, if a poorly designed spatiotemporal cluster (Kr =4, Ky = Ky = 7) is used, the performance
will drop to 65.5%.

Decoder Width ‘ Decoder Depth ‘ Something-Something V2

384 4 66.0
512 4 66.8
768 4 66.8
512 2 66.2
512 4 66.8
512 8 66.6

Table 11: Ablation study on the decoder depth and width.

Prediction order. In our evaluation of prediction order, which plays an important role in constructing
the video sequence, we first check with the predefined spatial-first and temporal-first orders. As shown in

10
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Pretraining ‘ Finetuning ‘ Something-Something V2
Uni-direction Attention | Bi-direction Attention 66.8
Bi-direction Attention | Bi-direction Attention 49.9

Table 12: Ablation study on the Attention.

Case | Patch size | Something-Something V2

Token 16x16 x2 64.0

Token 32x32 x4 53.2

Token 114x114 x4 48.9 (-15.1)
Spatiotemporal cluster | 16x16 x2 71.0(+4.6)

Table 13: Ablation study on tokenization with larger patch size.

Table |8 temporal-first order achieves 66.0% top-1 accuracy, which is 0.4% higher than spatial-first order.
However, our randomized spatial-temporal prediction order, adept at learning both long- and short-range
spatial-temporal dynamics, exhibits a superior performance of 66.8%, surpassing the predefined spatial-first
approach by 1.2% and the temporal-first approach by 0.8%.

Mask Ratio. To reduce the temporal redundancy, ARVideo randomly masks a portion of tokens as in
Flip (Li et al.l |2023)).This approach differs from VideoMAE, which relies on bidirectional information to
reconstruct masked regions. Instead, ARVideo maintains its core AR paradigm by predicting the next cluster
in a unidirectional manner. We hereby check how the masking ratio affects the overall performance. As
shown in Table @ our study starts from a mask ratio of 75% (i.e., same as the MAE’s setup), which achieves
66.0% top-1 accuracy. Increasing the mask ratio to 80% boosted the top-1 accuracy to 66.8%, while further
increases to 90% and 95% lower the top-1 accuracies by 1.2% and 2.0%, respectively. We stress that, although
ARVideo used a lower mask ratio than VideoMAE, it still enjoys faster training speeds and reduced GPU
load (see Section [4.2] and Table [5)).

Decoder Architecture. We hereby explore the effects of different decoder architectures. As reported in
Table whether or not having self-attention in the decoder has little effect on performance (i.e., 66.6%
vs. 66.8%), but excluding self-attention significantly reduces computational costs. Therefore, we take the
decoder without self-attention by default in ARVideo.

Decoder Width and Depth. Lastly, we systematically ablate two critical aspects in designing decoders: its
width and depth. We start with a four-layer decoder and follow the default setup in VideoMAE. As presented
in Table increasing the decoder width shows performance improvement from 66.0% at a width of 384 to
66.8% at a width of 512. Further width increase makes the performance plateau. Meanwhile, in terms of
depth, deviations from the four-layer standard negatively impacted performance: e.g., increasing to eight
layers decreased performance by 0.2%, while reducing to two layers dropped performance by 0.6% (see the
last three rows in Table .

Uni-direction vs. Bi-direction. We employ unidirectional attention during the pretraining phase to
preserve the autoregressive property, ensuring that each cluster only attends to its preceding clusters. When
we replaced this with bidirectional attention during pretraining, we observed a significant performance drop
of 16.9% top-1 accuracy as shown in Table This decline is attributed to information leakage, where
tokens can access both past and future contexts, thereby disrupting the sequential dependencies essential for
effective AR modeling. For downstream tasks, we utilize bidirectional attention to leverage comprehensive
video representations for classification. This ablation highlights that unidirectional attention is vital during
pretraining to maintain the integrity of AR modeling,

Tokenization vs. Clustering. An alternative to clustering is to use tokenization with a larger patch size,
thus mapping more pixels into a single token. However, as shown in Table enlarging the patch size to
114 x 114 x 4 results in a notable 15.1% performance drop, whereas our spatiotemporal clustering approach
yields a 4.6% improvement.
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5 Conclusion

This paper introduces ARVideo for self-supervised video representation learning, inspired by the autoregressive
principles of GPT in natural language processing. Diverging from conventional methods, our approach
innovatively uses video token clusters as the element for autoregressive prediction, significantly reducing
computational demands while still managing to capture essential spatial-temporal dynamics. This advancement
improves the efficiency of video data processing and sets a new paradigm for self-supervised video representation
learning. The promising results obtained from ARVideo underscore its potential and advocate for further
exploration and development of autoregressive pretraining methods within the video domain.

Future work. Building upon our current framework, we believe it would be both interesting and promising
to further scale our training data to a billion-scale dataset and enhance compatibility with LLMs. These
advancements aim to improve the scalability and versatility of our approach, potentially leading to more
robust performance and broader applications in video analysis and understanding. Additionally, integrating
our method with LLMs could open new avenues for multimodal learning and more sophisticated video
interpretation tasks, thereby increasing the overall impact of our research in the field.
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A Implementation Details

All experiments except main results follow the same hyperparameters including using the ViT-B backbone
with depth of 12 and channel of 768 with 200 epochs of pretraining. TokenGPT indicates we perform token
wise autoregressive modeling without any grouping or permutation. TokenGPT is a simple baseline of
autoregressive modeling for video self-supervised learning.

Architecture: We utilize ViT-B as the backbone of our model. A patch embedding layer with dimensions
2 x 16 x 16 is employed to map the video input into video tokens. The encoder comprises 12 blocks, each
containing an attention layer and an MLP layer, with each block having a channel size of 768. Conversely,
the decoder consists of 4 blocks, each featuring a cross-attention layer and an MLP layer, with a channel size
of 512.

Training Hyperparameters: We employ the AdamW optimizer with a weight decay of 0.05 and a base
learning rate of 6e-4. The training schedule comprises a 40-epoch warmup phase followed by a cosine decay
learning rate schedule.

Finetuning Hyperparameters: During finetuning, we remove the decoder and fine-tune the entire encoder.
For the Something-Something V2 dataset, we employ the AdamW optimizer with a base learning rate of
5e—4 and a weight decay of 0.05. The batch size is set to 512, and we utilize a cosine decay learning rate
schedule with 5 warmup epochs over a total of 40 training epochs. Our data augmentation strategies include
repeated augmentation (factor of 2) and RandAugment with parameters (9, 0.5), while flip augmentation is
disabled. Additionally, we apply label smoothing (0.1), mixup (0.8), and cutmix (1.0). The drop path rate is
configured at 0.1, and no dropout is applied for Something-Something V2. The layer-wise learning rate decay
factor is set to 0.75.

For the Kinetics-400 dataset, most settings remain unchanged except for the following adjustments: the base
learning rate is increased to le™3, flip augmentation is enabled, and the total number of training epochs is
extended to 75.
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