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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal
tool for aligning large language models (LLMs) with human preferences. Direct
Preference Optimization (DPO), one of the most popular approaches, formulates
RLHF as a policy optimization problem without explicitly estimating the reward
function. It overcomes the stability and efficiency issues of two-step approaches,
which typically involve first estimating the reward function and then optimizing
the policy via proximal policy optimization (PPO). Since RLHF is essentially an
optimization problem, and it is well-known that momentum techniques can ac-
celerate optimization both theoretically and empirically, a natural question arises:
Can RLHF be accelerated by momentum? This paper answers this question in
the affirmative. In detail, we first show that the iterative preference optimization
method can be viewed as a proximal point method. Based on this observation,
we propose a general Accelerated Preference Optimization (APO) framework,
which unifies many existing preference optimization algorithms and employs Nes-
terov’s momentum technique to speed up the alignment of LLMs. Theoretically,
we demonstrate that APO can achieve a faster convergence rate than the standard
iterative preference optimization methods, including DPO and SPPO. Empirically,
we show the superiority of APO over DPO, iterative DPO, and other strong base-
lines for RLHF on the AlpacaEval 2.0 benchmark.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a pivotal technique in the era of artificial gen-
eral intelligence and recently demonstrated impressive capabilities in tasks such as text generation
(Bubeck et al., 2023; Anil et al., 2023; Touvron et al., 2023), coding (Chen et al., 2021; Austin et al.,
2021), and problem solving (Cobbe et al., 2021; Wei et al., 2022). A key element contributing to
these achievements is the alignment of LLMs with human preference data, utilizing reinforcement
learning from human feedback (RLHF) (Ziegler et al., 2019; Christiano et al., 2017; Ouyang et al.,
2022; Bai et al., 2022; Munos et al., 2023).
The standard RLHF method (Ouyang et al., 2022) involves three main steps: feedback collection, re-
ward modeling, and policy optimization. Specifically, the LLM receives human-generated prompts
and produces several possible responses. Subsequently, human preferences for these responses are
collected and used to train a reward model that matches these preferences. Finally, the policy opti-
mization process updates the large language model using optimization algorithms such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017) to produce responses with higher preference
based on the trained reward model.
Recently, Rafailov et al. (2023) introduced the Direct Preference Optimization (DPO) method based
on the Bradley-Terry (BT) model (Bradley & Terry, 1952). This method skips the reward modeling
process and replaces it with a reparameterized reward with respect to the policy, allowing for di-
rect optimization of the LLM. It simplifies the implementation, while maintaining a comparable or
even better performance than standard RLHF. Later, several works (Munos et al., 2023; Azar et al.,
2024; Wu et al., 2024; Rosset et al., 2024) considered the general preference model rather than the
BT model, and designed algorithms (Nash-MD, IPO, SPPO, and DNO) that more flexibly repre-
sent human preferences while maintaining a simple implementation. Nonetheless, both the standard
RLHF process and its variations rely on the policy optimization process. In fact, for general op-
timization problems, it is well-known that momentum techniques (Polyak, 1964; Nesterov, 2013;
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Bubeck et al., 2015b) can accelerate the convergence of the optimization algorithm in both theory
and practice. Therefore, a natural question arises:

Can reinforcement learning from human feedback be accelerated?

In this paper, we affirmatively answer this question. In details, following Xu et al. (2023); Yuan
et al. (2024b); Chen et al. (2024); Wu et al. (2024), we consider the iterative preference optimization
framework. In this framework, a series of models is constructed, with each model being improved
based on the previous one using preference optimization algorithm such as DPO and SPPO. We
demonstrate that the policy optimization problem under this framework resembles the proximal
point method (Bregman, 1967; Censor & Zenios, 1992; Kiwiel, 1997). Based on this observation,
we adapt Nesterov’s acceleration method (Nesterov, 1983; 2008; 2013; Lin et al., 2018), and intro-
duce a variant of the iterative preference optimization framework, named Accelerated Preference
Optimization (APO). At the core of APO is an extrapolation step after each policy update. The
contributions of our work are highlighted as follows:

• We propose a general preference optimization framework, APO, based on Nesterov’s momentum
to accelerate preference optimization. Our theoretical analysis shows that iterative DPO achieves
an Õ(1/t) sub-optimality gap from the optimal policy under the Bradley-Terry (BT) model. As
a comparison, our algorithm APO achieves a smaller Õ

(
(1 − α)/t

)
sub-optimality gap, where

α is the extrapolation parameter in the momentum. To the best of our knowledge, our work
provides the first convergence analysis of vanilla iterative DPO and the first accelerated preference
optimization algorithm with provable guarantees.

• With an additional minimal sub-optimality gap assumption in the BT model, we prove that APO
will convergence to the optimal policy in total variation (TV) distance at the rate of exp

(
−

O(t/(1 − α))
)
, improving the exp

(
− O(t)

)
rate of iterative DPO. In addition, we extend our

results to the general preference model and show that APO with the SPPO loss function can also
accelerate SPPO under a similar minimal sub-optimality gap assumption.

• Empirically, we verify the performance of APO when applied to DPO method on fine-tuning
Mistral-7B-Instruct-v0.2. In the AlpacaEval 2.0 evaluation tasks, APO with 3 itera-
tions achieves a length-controlled win rate of 31.73%, demonstrating a 1.78% improvement over
iterative DPO and a 5.34% improvement over Snorkel’s Mistral-PairRM-DPO. Moreover,
APO with 2 iterations obtains a win rate of 37.53%, matching iterative DPO’s 37.65% with 3 it-
erations, with noticeably shorter response lengths. This is consistent with our theoretical analysis.
In addition, the evaluation on five general instruction-following tasks from MT-Bench shows an
average score of 9.57 out of 10, further demonstrating APO’s superior performance.

Notation. For any positive integer n, we employ [n] to denote the set {0, . . . , n}. For two se-
quences {an} and {bn}, we write an = O(bn) if there exists an absolute constant C such that
an ≤ Cbn. We use Õ(·) to further hide the logarithmic factors.

2 PRELIMINARIES

In the setting of RLHF, we assume a finite context set X , and possible response set Y . For any
prompts x ∈ X , a policy π : X → ∆(Y) maps the prompt x to the discrete distributions over the
response set Y . For a given context x ∈ X collected from distribution ρ, we generate two responses
y1, y2 with a reference policy µ and receive preferences from either humans or more advanced
language models between these two responses (yw ≻ yl), where yw and yl represent the preferred
and dispreferred generated responses in {y1, y2}. Following Christiano et al. (2017); Ouyang et al.
(2022); Rafailov et al. (2023), we assume the existence of a latent reward model r∗(x, y), and the
preference distribution satisfies the Bradley-Terry (BT) model (Bradley & Terry, 1952):

P (y1 ≻ y2|x) =
exp

(
r∗(x, y1)

)
exp

(
r∗(x, y1)

)
+ exp

(
r∗(x, y2)

) . (2.1)

Under this assumption, the standard RLHF first estimates the reward model by minimizing the fol-
lowing negative log-likelihood of BT model:

L(r) = −E(x,yw,yl)∼D
[
log σ

(
r(x, yw)− r(x, yl)

)]
, (2.2)

where x is generated from distribution ρ, {yw, yl} are collected with reference policy µ and σ(z) =
1/(1 + exp(−z)) is the Sigmoid function. After the reward modeling phase, the LLM (i.e., the
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policy) is fine-tuned with the learned reward r(x, y), which aims to maximize the expected reward
with KL-regularization:

π ← argmax
π∈Π

Ex∼ρ,y∼π(·|x)[r(x, y)]− βEx∼ρ

[
KL
(
π(·|x)∥πref(·|x)

)]
, (2.3)

where Π denotes the policy class, ρ is the distribution of prompts, and the KL regularization with
parameter β > 0 is used to control the deviation of the learned policy π from the reference policy
πref. In detail, the optimization problem is usually solved with the PPO method (Schulman et al.,
2017).
Later, Rafailov et al. (2023) identified the following closed-form solution to the optimization prob-
lem in (2.3):

π(·|x) = 1

Z(x)
· πref(·|x) · exp

(
r(x, ·)
β

)
,

where Z(x) =
∑

y πref(x) · exp
(
r(x, y)/β

)
is the partition function. By reparameterizing the

reward function by the policy and substituting it into the negative log-likelihood in (2.2), Rafailov
et al. (2023) proposed the Direct Preference Optimization (DPO) method as follows:

π ← argmax
π∈Π

E(x,yw,yl)∼D

[
log σ

(
β log

π(yw|x)
πref(yw|x)

− β log
π(yl|x)
πref(yl|x)

)]
,

which avoids the explicit learning of a reward model. Here, for a finite datasetD = {(xi, y
w
i , y

l
i)

N
i=1}

and a function f : X ×Y ×Y → R, we denote the empirical expectation of function f with respect
to the dataset D by E(x,yw,yl)∼D

[
f(x, yw, yl)

]
=
∑N

i=1 f(xi, y
w
i , y

l
i)/N .

3 ACCELERATED PREFERENCE OPTIMIZATION

In this section, we present a general framework for language model alignment, namely accelerated
preference optimization (APO), which is built upon the iterative preference optimization framework.

3.1 ITERATIVE PREFERENCE OPTIMIZATION FRAMEWORK

Under the iterative Preference Optimization framework (Xu et al., 2023; Yuan et al., 2024b; Chen
et al., 2024; Wu et al., 2024), the algorithm progressively updates the policy πt, aiming to converge
to the optimal policy. In detail, for each iteration t ∈ [T ], it designates the reference policy as
the policy generated from the previous iteration, denoted by πt. It estimates the reward model by
minimizing the expected loss function l(r, x, yw, yl) over the dataset Dt:

rt(·, ·)← argmax
r(·,·)

E(x,yw,yl)∼Dt

[
ℓ(r, x, yw, yl, πt)

]
, (3.1)

Then, it updates the reference policy by solving the following KL-regularized optimization problem:

π̂t+1 ← argmax
π∈Π

Ex∼ρ,y∼π(·|x)[rt(x, y)]− βEx∼ρ

[
KL
(
π(·|x)∥πt(·|x)

)]
. (3.2)

According to Rafailov et al. (2023), for each iteration t ∈ [T ], the optimization problem (3.2) has
the following closed-form solution:

π̂t+1(y|x) ∝ πt(y|x) · exp
(
rt(x, y)

β

)
.

Thus, we can reparamterize the reward function for each policy π as follows:

rπ(x, y) = β log
π(y|x)
πt(y|x)

.

With this reparameterized reward function, the previous two-step optimization process in (3.1) and
(3.2) can be integrated into the following one-step direct preference optimization:

π̂t+1 ← arg min
rπ∈Rt

E(x,yw,yl)∼Dt

[
ℓ(rπ, x, y

w, yl, πt)
]
, (3.3)

where Dt represents the data collected at iteration t using the reference policy πt.
For the vanilla iterative preference optimization framework, the updated policy π̂t+1 is directly
used as the reference policy in the next iteration, where πt+1 = π̂t+1. In this situation, the iterative
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Algorithm 1 APO (Accelerated Preference Optimization)

1: input: Reference policy πref, learning rate β, Nesterov’s extrapolation parameter α, number of
iterations T

2: Initialize π0 = π̂0 = πref
3: for iteration t = 0, . . . , T do
4: Collect the dataset |Dt| = N with prompts distribution x ∼ ρ and current reference policy πt

5: Set the reparameterized reward function class as following:

Rt ←
{
rπ(x, y) = β log

π(y|x)
πt(y|x)

∣∣∣π ∈ Π

}
6: Update the policy π̂t+1 as following:

π̂t+1 ← argmin
π∈Π

E(x,yw,yl)∼Dt

[
ℓ(rπ, x, y

w, yl, πt)
]

(3.5)

7: Compute the policy πt+1 with an extrapolation step

πt+1(y|x) ∝ π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
(3.6)

8: end for
9: output: final policy π̂T+1

optimization of the policy resembles the (Bregman) Proximal Point Method (Bregman, 1967; Censor
& Zenios, 1992; Kiwiel, 1997), which iteratively minimizes the following proximal subproblem:

πt+1 ← argmin
π∈Π

{
ft(π) = Lt(π) + βD(π, πt)

}
(3.4)

for a given regularization parameter β and Bregman divergence D(·, ·). In this reduction, the ex-
pected reward −Ex∼ρ,y∼π(·|x)[rt(x, y)] corresponds to the target function Lt(π) in the proximal
function ft(π), and the Bregman divergence D(π, πt) is chosen as the Kullback–Leibler (KL) di-
vergence to the behavior policy πt: Ex∼ρ

[
KL
(
π(·|x)|πt(·|x)

)]
.

The Choice of Loss Function By choosing different loss function ℓ(rπ, x, y
w, yl, πt) in (3.3), we

can recover many existing iterative preference optimization algorithms. In detail, the loss function
depends on the preference model P, and we provide several concrete examples of the loss function
and the corresponding preference optimization algorithms as follows.

Example 3.1 (DPO). If we choose the loss function in (3.3) as:

ℓDPO(rπ, x, y
w, yl, πt) = − log σ

(
rπ(x, y

w)− rπ(x, y
l)
)
,

it recovers DPO (Rafailov et al., 2023).

Example 3.2 (SPPO). If we choose the loss function in (3.3) as:

ℓSPPO(rπ, x, y
w, yl, πt) =

1

2

(
rπ(x, y

w)− 1 + logZπt
(x)
)2

+
1

2

(
rπ(x, y

l) + logZπt
(x)
)2
,

where Zπt
(x) =

∑
y∈Y πt(y|x) exp

(
ηP(y ≻ πt|x)

)
represents the partition function for behavior

policy πt, it recovers the Self-Play Preference Optimization (SPPO) algorithm (Wu et al., 2024).
(See Appendix B.1 for a more detailed discussion.)

Example 3.3 (IPO). If we choose the loss function in (3.3) as

ℓIPO(rπ, x, y
w, yl, πt) =

(
rπ(x, y

w)− rπ(x, y
l)− τ−1

)2
,

where τ is a regularization parameter, it recovers the Identity Preference Optimization (IPO) algo-
rithm (Azar et al., 2024).

4
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3.2 ACCELERATED PREFERENCE OPTIMIZATION

So far, we have demonstrated that the iterative preference optimization framework resembles the
proximal point method. For standard optimization problems, it is well known that Nesterov’s mo-
mentum method (Nesterov, 1983; 2008; 2013) can accelerate the optimization algorithm both the-
oretically and empirically. In particular, Lin et al. (2018) proposed a framework called Catalyst,
which extends Nesterov’s momentum method to the proximal point method and has shown that it
can accelerate it provably. In the Catalyst method, after solving the proximal operator

xt+1 = argmin
x

{
ft(x) = f(x) + κD(x, yt)

}
,

where f(x) is the target function and D(x, yt) is the Bregman divergence, an extrapolation step is
introduced as follows:

yt+1 = xt+1 + αt(xt+1 − xt),

where αt is the Nesterov’s extrapolation parameter and xt+1 − xt denotes the momentum from the
previous update. Following the above idea, we introduce an extrapolation step after solving (3.3) to
obtain πt+1:

log πt+1(y|x) = log π̂t+1 + α
(
log π̂t+1 − log π̂t

)
, (3.7)

where α > 0 is the fixed Nesterov’s extrapolation parameter. After normalizing the policy
πt+1(y|x), we obtain

πt+1(y|x) ∝ π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
=

1

Z ′
t(x)

· π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
,

where Z ′
t(x) =

∑
y π̂t+1(y|x) ·

(
π̂t+1(y|x)/π̂t(y|x)

)α
represents the partition function.

Putting together all the key components discussed above, we present the APO framework in Algo-
rithm 1.
We notice that the extrapolation step in (3.7) is similar to the model extrapolation technique intro-
duced by Zheng et al. (2024a), which aims to develop a stronger model by extrapolating from the
aligned model and the SFT model. However, there are several notable differences between APO
and ExPO. First, the extrapolation step in ExPO is based on the strong assumption that a medium-
aligned model can be interpolated between a weaker model and a stronger model–an assumption
that lacks theoretical support. In contrast, APO is based on the observation that iterative preference
optimization resembles the (Bregman) Proximal Point method and the extrapolation step follows the
Nesterov’s momentum technique (Nesterov, 1983; Lin et al., 2018), which has provable guarantee.
Regarding algorithm design, APO is an iterative algorithm for policy optimization. For the final
iteration T , similar to the Catalyst algorithm, APO outputs the policy π̂T+1 before the extrapolation
step. In contrast, ExPO is an one-shot algorithm which only has a single iteration and outputs the
final policy after an extrapolation step. In this sense, ExPO can be seen as a special case of APO
with only one iteration.

4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of APO in Algorithm 1.
We begin with the following theorem, which outlines the optimization dynamics of the policy π̂t+1

over different iterations t ∈ [T ].

Theorem 4.1. Suppose that π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
belongs to the policy class Π for

each iteration t ∈ [T ]. Then, the updated policy π̂t in Algorithm 1 satisfies

π̂t+1(y|x) =
1

Zt(x)
· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· ri(x, y)

)
,

where rt(x, y) = β log π̂t+1(y|x)−β log πt(y|x) represents the reparameterized reward at iteration
t, and Zt(x) =

∑
y πref(y|x) ·exp

(∑t
i=0(1/(1−α)−αt+1−i/(1−α)) ·ri(x, y)/β

)
is the partition

function.

5
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Theorem 4.1 illustrates how the policy π̂t+1 evolves with respect to the reparameterized reward
rt(x, y), which is highly dependent on the choice of the loss function ℓ in Algorithm 1.
For the Bradley-Terry (BT) model with the loss function ℓDPO in Example 3.1, Theorem 1 in Rafailov
et al. (2023) demonstrates that all reward functions compatible with the BT model can be expressed
by the reparameterized reward. In addition, we introduce the following two assumptions, which are
required by our analysis.
Assumption 4.2 (Realizability). For each iteration t ∈ [T ] and each policy π ∈ Π, the following
updated policy belongs to the policy class Π:

π̂(·|x) = 1

Zπ(x)
· π(·|x) · exp

(
r∗(x, ·)

β

)
∈ Π,

where Zπ(x) =
∑

y π(x) · exp
(
r∗(x, y)/β

)
is the partition function.

Assumption 4.3 (Boundedness). For each iteration t ∈ [T ] and each policy π, πt ∈ Π, we have

β log
π(y|x)
πt(y|x)

∈ [−R,R]

for all x ∈ X , u ∈ Y .

Similar assumptions have been used in Rosset et al. (2024) to provide an analysis of the statistical
error for the reparameterized reward. Equipped with these assumptions, we have the following
performance guarantee for APO.
Theorem 4.4 (APO with ℓDPO). For the Bradley-Terry (BT) model with loss function ℓDPO, under
Assumptions 4.2 and 4.3, with probability at least 1 − δ, the sub-optimality gap between π̂t+1 and
the optimal policy π∗(x) = argmaxy∈Y r∗(x, y) is bounded by

Ex∼ρ,y∼π∗(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π̂T+1(·|x)

[
r∗(x, y)

]
≤ Õ

(
(1− α)β

T

)
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

. (4.1)

Remark 4.5. The sub-optimality gap in Theorem 4.4 consists of two terms: the optimization error
Õ
(
(1 − α)β/T

)
and the statistical error Õ

(√
T/(Nβ2(1− α)2)

)
, and there exists a tradeoff be-

tween these two errors. Specifically, a larger extrapolation parameter α → 1 will decrease the opti-
mization error but increase the statistical error. Moreover, when the dataset size is sufficiently large
(N → ∞), the optimization error becomes the dominant term in determining the sub-optimality
gap and the reduction in optimization error outweighs the increase in statistical error. Under this
situation, Theorem 4.4 suggests a Õ

(
(1−α)β/T

)
sub-optimality gap for Algorithm 1 with the loss

function ℓDPO. Compared with the standard iterative DPO method with α = 0, Algorithm 1 improves
the sub-optimality gap by a factor of 1/(1− α) thanks to the Nesterov’s momentum technique.

Theorem 4.4 only provides theoretical guarantee on the sub-optimality gap for the policy π̂T+1. In
order to derive the convergence of policy π̂T+1 to the optimal policy π∗, we need the following
minimal sub-optimality gap assumption.
Assumption 4.6 (Minimal sub-optimality gap). For each prompt x ∈ X , let y∗x =
argmaxy∈Y r∗(x, y) be the optimal response. The sub-optimality gap between the optimal response
and any other responses is strictly positive: miny ̸=y∗

x
r∗(x, y∗x)− r∗(x, y) ≥ ∆ > 0

Remark 4.7. For a general Bradley-Terry (BT) model without the minimal sub-optimality gap,
there may exist multiple responses that share the same maximum reward, i.e., r(x, y1) = r(x, y2) =
maxy∈Y r∗(x, y). In this case, the optimal policy is not unique, and it is impossible to show that the
policy π̂T+1 converges to a specific optimal policy.
Theorem 4.8 (APO with ℓDPO). For the Bradley-Terry (BT) model with loss function ℓDPO, under
Assumptions 4.2, 4.3 and 4.6, with probability at least 1− δ, the TV-distance between π̂t+1 and the
optimal policy π∗(x) = argmaxy∈Y r∗(x, y) is bounded by

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
6
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≤ exp

(
−O

(
T∆

(1− α)
· 1
β

))
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined in (4.1).

Remark 4.9. The TV-distance between π̂t+1 and the optimal policy π∗(x) = argmaxy∈Y r∗(x, y)
includes both the optimization error exp

(
− O(T/(1 − α))

)
and the statistical error

Õ
(√

T/(N(1− α)2)
)
. Similar to Theorem 4.4, there is a tradeoff between these two errors based

on the choice of α. In addition, when the dataset size is sufficiently large (N → ∞), Theorem 4.8
suggests that APO converges to the optimal policy at a rate of exp

(
−O(T/(1− α))

)
. In compar-

ison, iterative DPO is a special case of our algorithm with α = 0, which converges to the optimal
policy at a slower rate of exp

(
−O(T )

)
.

5 EXPERIMENTS

In this section, we detail the experimental settings used to validate the efficacy of our proposed APO
algorithm. We evaluate the model’s performance across various benchmark tasks and explore the
impact of different momentum schedules.

5.1 EXPERIMENTAL SETUP

Model and Datasets. We use Mistral AI’s Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023a) as our base model, which is a fine-tuned version based on the pretrained
Mistral-7B-v0.2 (Jiang et al., 2023a) on several publicly available datasets for instruction-
following. With its architecture having demonstrated robust performance improvements over
Llama2 13B Chat (Touvron et al., 2023) in Chatbot Arena (Chiang et al., 2024), MT-
Bench (Zheng et al., 2024b), and other related tasks, Mistral-7B-Instruct-v0.2 has be-
come a popular choice for base models in recent reinforcement learning (RL) fine-tuning research
(Hoang et al., 2023; Kawin et al., 2023). For training, we employ the UltraFeedback dataset (Cui
et al., 2023). Unlike traditional fine-tuning methods that depend on responses and preference labels
generated by proprietary models like GPT-4, we utilize only the instruction set from UltraFeed-
back. All responses are autonomously generated by our model following an online principle, and
the preference pairs are labeled using a separate reward model, PairRM (Jiang et al., 2023b)1. The
instruction set used for both training and validation includes a total of 64k instructions that span
a diverse range of tasks, such as UltraChat, ShareGPT, Evol-Instruct, TruthfulQA, FalseQA, and
FLAN, as detailed in Cui et al. (2023). Over three training iterations, we divided the instruction
set into three folds as in Hoang et al. (2023); Kawin et al. (2023), allocating approximately 20k
instructions per iteration, with an additional 1k left out for validation. In each iteration, we actually
allocate approximately 20k instructions for training, with an additional 1k reserved for validation.
This iterative, multi-fold approach aligns with techniques used in training SPPO (Wu et al., 2024)
and iterative KTO (Ethayarajh et al., 2024; Kawin et al., 2023) models, helping to improve gen-
eralization by preventing overfitting during the fine-tuning stage. Overall, our training pipeline is
independent of human or GPT inputs. We defer hyperparameters to Sec. F.1.
Evaluation. For evaluating the performance of our model, we utilize three common benchmarking
tasks: the AlpacaEval 2.0 (Li et al., 2023b), the MT-Bench (Zheng et al., 2024b), and the Open LLM
Leaderboard (Beeching et al., 2023; Gao et al., 2023). Among them, AlpacaEval 2.0 is the most
indicative benchmark for our method with the current choice of experimental settings, focusing on
general instruction-following capabilities as assessed by GPT-4-Turbo, with outcomes measured
by a weighted win-rate against GPT-4-Turbo. Another important benchmark is MT-Bench, which
also targets instruction-following but offers less differentiation between models. Additionally, we
present results from the Open LLM Leaderboard, which is based on accuracies of multiple-choice
questions.
AlpacaEval 2.0. As our primary evaluation metrics, AlpacaEval 2.0 incorporates an extensive set
of 805 prompts. These prompts are simplified versions derived from the AlpacaFarm (Dubois et al.,
2023) evaluation set, covering a wide range of topics such as Health, Linguistics, Entertainment,
Technology, Coding, Gaming, Arts, Sports, and more (Yuan et al., 2024b). During the evaluation,
we consult the help of GPT-4-Turbo to compare the responses generated by our model with

1In our work, we only use the reward model to behave as an oracle for the preference data, and our APO
algorithm operates solely on the collected preference data without accessing the underlying reward values.
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Table 1: AlpacaEval 2.0 evaluation. Comparison of APOwith state-of-the-art iterative training
algorithms. Results are reported in both raw win rate (%) and length-controlled (LC) win rate (%).
Additionally, the average response character length (Avg. Len) of each model is provided. The row
highlighted in light red represents the results achieved by our APO. The highest LC win rate and raw
win rate, both achieved by our APO at iteration 3, are emphasized in bold. Improvements of LC win
rate from the previous iteration to the current iteration are calculated and marked by a subscripted
’(+)’ in red.

Model Epochs AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B-Instruct-v0.2 - 17.11 14.72 1676

Snorkel (Mistral-PairRM-DPO) - 26.39 30.22 2736

Contextual AI (KTO-Mistral-PairRM) - 29.71 33.23 2521

Self-Rewarding 70B Iter1 - - 9.94 1092
Self-Rewarding 70B Iter2 - - 15.38 1552
Self-Rewarding 70B Iter3 - - 20.44 2552

DPO Iter1 Epoch 1 25.35 30.71 2369
DPO Iter2 Epoch 3 26.92 32.54 2529
DPO Iter3 Epoch 4 27.32 34.99 2847

APO Iter1 (π̂1) Epoch 1 25.35(+8.24) 30.71 2369
APO Iter1 (π1) - 28.23 35.75 2640
APO Iter2 (π̂2) Epoch 1 29.56(+4.21) 37.53 2636
APO Iter2 (π2) - 29.73 38.65 2799
APO Iter3 (π̂3) Epoch 4 31.73(+2.17) 39.38 2950

those produced by GPT-4-Turbo. The final win rate are weighted based on the uncertainty of the
judge. Employing the default AlpacaEval 2.0 pipeline, this metric demonstrates a 0.93 Spearman
correlation and 68.1% agreement rate with human annotators (Li et al., 2023b).
MT-Bench: MT-Bench comprises of 80 multi-turn questions across eight distinct dimensions: Writ-
ing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The evaluation pro-
cess prompts the GPT-4 judge to assign scores from 1 to 10 to the generated responses. However,
this scoring metric has limitations. Particularly, score saturation occurs quickly in certain dimen-
sions, making it difficult to distinguish between models. Additionally, this can disadvantage models
that perform exceptionally well in these saturated dimensions, as their distinctiveness is less recog-
nizable.
Open LLM Leaderboard: The Open LLM Leaderboard evaluates models across six different tasks,
focusing on a variety of language modeling capabilities. Each task consists of multiple-choice ques-
tions (MCQs), with the most probable choice being selected and compared against the correct an-
swer. The final score is calculated based on accuracy. The ability for answering MCQs are not
directly related with instruction-following abilities. The results are deferred to Sec. F.2.
Baselines. Starting from Mistral-7B-Instruct-v0.2, we compare our method with existing
iterative training results, including iterative DPO (Hoang et al., 2023) and iterative KTO (Ethayarajh
et al., 2024; Kawin et al., 2023). We also present results from our own iterative DPO training. All
three baselines utilize the same base model, training dataset, dataset splits, and training pipelines,
which effectively highlights the differences in methodology. Additionally, as one of the pioneer-
ing approaches in iterative DPO, we include the Self-Rewarding algorithm (Yuan et al., 2024b) as
another baseline. Note that different from other baselines, the training for the Self-Rewarding al-
gorithm incorporates additional self-instruct data augmentation and is based on the LLama2 70B
model, but requires no external reward model.

5.2 EXPERIMENTAL RESULTS

Having introduced our evaluation metrics and baselines, we now turn to our training pipeline
and main results. In Algorithm 1, we begin by setting π0 = π̂0 = πref as the base model,
Mistral-7B-Instruct-v0.2. At each iteration, we sample five pairs of responses under
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Table 2: MT-Bench Evaluation. The MT-Bench comprises a total of 8 tasks. We present the average
score for all 8 tasks, as well as the average score across 5 dimensions relevant to our training dataset:
Writing, Roleplay, Extraction, STEM, and Humanities. Each task includes 2 progressive turns, and
we provide the average score for the first turn, the second turn, and the overall average of both turns.

Model MT-Bench Average of Five Tasks
1st Turn 2nd Turn Average 1st Turn 2nd Turn Average

Mistral-7B-Instruct-v0.2 8.08 7.20 7.64 9.42 8.86 9.14

DPO Iter1 7.98 7.29 7.63 9.56 9.06 9.31
DPO Iter2 7.80 7.26 7.52 9.36 8.98 9.17
DPO Iter3 7.61 7.25 7.43 9.23 9.04 9.14

APO Iter1 7.98 7.29 7.63 9.56 9.06 9.31
APO Iter2 7.95 7.26 7.60 9.56 9.23 9.40
APO Iter3 7.72 7.33 7.53 9.69 9.44 9.57

the current policy πt and rank them using their PairRM score (Jiang et al., 2023a). We designate
the top-ranked response as the winner and the bottom-ranked response as the loser. Following the
proximal point update described in equation (6), we proceed with a momentum extrapolation. We
note that when the policy is a softmax linear function, update (3.6) reduces to a momentum extrap-
olation in the parameter space. Consequently, we carry out an extrapolation in the parameter space
to approximate the corresponding momentum step (3.6) in the probability space.
AlpacaEval 2.0 Evaluation. Table 1 summarizes the AlpacaEval 2.0 results of different models.
As shown, APO surpasses all other state-of-the-art iterative training models under the same ex-
perimental setting, with a final length controlled (LC) win rate 2 of 31.73%, and a raw win rate of
39.38%. This demonstrates an increase of 1.78% in LC win rate and 1.74% in raw win rate over
our implementation of iterative DPO, which only achieved an LC win rate of 29.95% and a raw win
rate of 37.64%. Delving deeper into the effects of extrapolation from one iteration to the next, we
observe that starting from the same iteration 1 with an LC win rate of 25.35%, APO at iteration 2
achieves a 29.56% LC win rate, which is 4.21% higher than iteration 1, and 2.64% higher than the
26.92% attained by vanilla DPO. By iteration 3, APO exibits a further 2.17% improvement over
its previous iteration, maintaining a lead of 1.78% over vanilla DPO. This is significant, especially
considering the increasing challenge of achieving gains at higher performance levels. Notably, the
momentum acceleration step is both training-free and data-free. It maximizes the potential of a
single iteration of training data, advancing further toward optimality without requiring additional
inputs. While iterative training across three iterations with approximately 20k data points each often
plateaus at around 30%, APO effectively surpasses this threshold by a large margin.
Next, we discuss the effect of generation length. All iterative DPO training baselines, including
Snorkel’s Mistral-PairRM-DPO and our DPO Iter3, exhibit a trend of increasing response
length. This is inevitable because all response pairs used for training are generated online and ranked
by PairRM, where longer sequences are more likely to be chosen as winners. This effect accumulates
as the model trains on its own generation. We discuss this effect from the following perspectives:
First, both humans and GPT-4 exhibit length bias, and our goal is not to prevent any length growth
but to evaluate it from a perspective of fairness. Therefore, we primarily refer to the LC win rate 2,
which reflects the predicted win rate when response lengths are at the same level as the baseline.
Second, we note that APO Iter2 achieves a significantly higher LC win rate and overall win
rate compared to Snorkel’s iterative DPO implementation, while generating much shorter responses
(2636 characters compared to 2736). When compared to our DPO Iter3, APO Iter2 achieves
a comparable win rate, but also with shorter response lengths. This verifies a faster convergence rate
and enhanced performance of our methodology. Finally, this length growth is not inherent to our
method but is a result of the online training and PairRM ranking mechanism. It can be mitigated if
we query winner/loser pairs and preference choices from GPT-4 or human, with much higher cost.

2The length-controlled learning rate is calculated using logistic regression, with inputs including the model
weights, the instruction, and the length difference between the model and a baseline. The LC win rate is de-
signed to correlate more strongly with human preferences and to be more robust against length attacks. Longer
responses are penalized in a manner that closely simulates (by causual inference) human length preferences.
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MT-Bench Evaluation. In addition, we also evaluate our model using the MT-Bench tasks. Among
the eight tasks, three—math, coding, and reasoning—are evaluated by a GPT-4 math judge, while
the other five—writing, roleplay, extraction, STEM, and humanities—are evaluated by a GPT-4
general judge. Table 2 illustrates the results of iterative DPO and APO across all three iterations.
Since the UltraFeedback dataset is not designed for math/code tasks, and our model has never seen
correct answers, the ability to solve math questions is not directly related to our training objective.
Therefore, we also provide an average of scores for the five tasks focusing on general instruction-
following abilities. From Table 2, we see that APO exhibits superior performance on the five general
tasks, showing consistent improvement with each iteration, with average scores progressing from
9.31 to 9.40 to 9.57. In contrast, both the base model and the iteratively trained DPO model maintain
an average score of around 9.14. Moreover, even when math, coding and reasoning are included, the
performance of APO in the second turn surpasses that of other models. However, because it is not
specifically trained on math problems, the overall average score is slightly reduced. This decline in
average is primarily due to a saturation in the tasks where our method excels (achieving 9.57 out of
10), with limited room for further improvement in these areas. Consequently, the tasks where our
model was not trained on become more detrimental when calculating an average of eight.

5.3 DISCUSSION

Effect of Coefficient α. In Table 3, we explore how different choices of α might affect performance.
At iteration 1, performance fluctuates when changing α, peaking at α = 0.3 with a win rate of
28.23%. Lower and higher values of α yield less stable results, indicating that extreme values may
either underutilize or overcompensate the momentum effect. At iteration 2, the model demonstrates
performance improvements at both α = 0.3 and α = 0.6, with the highest win rate of 30.62%
observed at α = 0.6. Although α = 0.3 continues to provide a strong performance, it is surpassed
by the higher α = 0.6, suggesting that the optimal α might increase with iterations as the model
stabilizes. Nevertheless, we continue to use α = 0.3 at iteration 2, as our theoretical analysis
assumes α as a constant. While an adaptive approach to setting α might offer benefits, α = 0.3 has
consistently shown to be the most stable and effective choice across different iterations.

Table 3: The effect of different extrapolation strategy and parameters at iteration 1 and 2. Results
are reported in terms of length-controlled win rate (%). The row labeled ”Start from π̂0” represents
results at t = 1 (π1). The row labeled ”Start from π̂1” corresponds to results at t = 2 (π2). Ad-
ditionally, the row labeled ”Start from π1” shows results when the momentum vector is calculated
using π̂2 − π1 instead of π̂2 − π̂1, which is not covered by our theoretical guarantee.

Starting From α =0.1 α =0.2 α =0.3 α =0.4 α =0.5 α =0.6

π̂0 27.41 25.30 28.23 24.40 25.52 26.57

π̂1 28.11 29.15 29.73 28.70 29.33 30.62
π1 28.23 28.16 27.21 28.44 29.75 28.90

Effect of Extrapolation Strategy. When the momentum vector is calculated using π̂2 − π1 instead
of π̂2 − π̂1, the performance appears less stable, with the lowest LC win rate being 27.21. Despite
achieving competitive win rates at certain α values, the results are generally lower than those using
the standard Nesterov’s momentum scheme. Intuitively, π̂2 − π̂1 = (π̂2 − π1) + (π1 − π̂1) includes
accumulated information, acting as an exponential average of all previous updates. In contrast, if ex-
trapolation is based on π1, the direction’s variance is significantly higher, leading to less predictable
outcomes. This instability underscores the importance of adhering to the theoretically guaranteed
strategy for consistent performance gains.

6 CONCLUSIONS AND FUTURE WORK

In this work, we studied the iterative preference optimization framework for aligning large language
models (LLMs) with human preferences and showed that it resembles the proximal point method.
Based on this observation, we introduced a general framework, APO, incorporating Nesterov’s mo-
mentum technique. Theoretically, we show that our method achieves a faster convergence rate than
the standard iterative DPO and SPPO methods. Our experimental results demonstrate the superiority
of APO over iterative DPO on the AlpacaEval 2.0 benchmark and on the instruction-following tasks
of MT-Bench, achieving both accelerated convergence rate, and better final performance.
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Limitation. Due to limited computational resources, we do not evaluate APO with the SPPO (Wu
et al., 2024) loss function in the current experiments, and we plan to investigate it in our future work.
Additionally, while our model demonstrates consistent improvements on instruction-following tasks,
it faces challenges in solving math problems. This limitation is largely due to the choice of dataset
and the restriction of not utilizing additional information from GPT-4 or human sources. In the
future, we aim to address this by incorporating larger datasets and leveraging GPT-4 supervision.
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A RELATED WORK

A.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Learning from human feedback in reinforcement learning can be traced back to Knox & Stone
(2009); Wirth et al. (2017) and was later popularized by Christiano et al. (2017), which incorporated
human preferences into deep reinforcement learning. Recently, RLHF has gained popularity in
natural language processing and has become a paradigmatic method for fine-tuning large language
models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; OpenAI, 2023) to align with human
objectives. The standard process for alignment with human feedback (Ouyang et al., 2022) requires
both reward modeling and policy optimization. Recently, Rafailov et al. (2023) proposed the Direct
Preference Optimization method, which replaces the reward modeling process with a reparame-
terized reward and directly performs policy optimization using preference data. Similarly, Kawin
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et al. (2023) proposed the Kahneman-Tversky Optimization method (KTO) with a reparameterized
reward, while considering different human-aware loss functions.
More recently, iterative variants of policy optimization have garnered increasing attention. Xu
et al. (2023) investigated the iterative preference optimization method and proposed the PAIRWISE
CRINGE algorithm, which iteratively generates a new preference dataset using the current model
and then updates the model with a combination of the original preference data and the newly la-
beled data. Additionally, they studied the iterative version of Direct Preference Optimization (DPO)
and demonstrated that it achieves better performance than standard PPO or DPO. Later, Yuan et al.
(2024b) studied Self-Rewarding Language Models, where the algorithm iteratively updates the ref-
erence policy in the DPO method and uses LLM-as-a-Judge prompting (Zheng et al., 2024b) to
provide its own rewards for the generated new preference data. Despite this work demonstrating the
superiority of iterative optimization process, there is a lack of theoretical foundations for these prac-
tical frameworks. Recently, Xiong et al. (2023) proposed Gibbs Sampling from Human Feedback,
offering theoretical analysis with the aid of linear function approximation and the incorporation of
an uncertainty bonus. Compared with previous methods, the reference policy remains fixed, the
newly trained model is only used to generate new preference data, and this trained model will not be
inherited in the subsequent iteration. On the contrary, our research focuses on studying the iterative
DPO model without incorporating an uncertainty bonus, and it continually updates the reference
policy throughout the process.
Most of the works motioned above rely on the assumption that the latent preference distribution
P (y1 ≻ y2|x) follows the Bradley-Terry (BT) model (Bradley & Terry, 1952)), and there exists a
series of works focusing on general preference, where human preference may not strictly be transi-
tive. Under the general preference assumption, iterative optimization (Munos et al., 2023; Swamy
et al., 2024; Rosset et al., 2024; Wu et al., 2024) is also employed to find the Nash-equilibrium
policy. We leave the extension of our algorithm to general preference model in the future work.

A.2 ACCELERATED OPTIMIZATION WITH MOMENTUM

The idea of accelerating gradient methods has been extensively explored over the decades. One of
the earliest contributions to this field was the Polyak momentum (Polyak, 1964), which achieved
faster convergence by leveraging the history of previous iterates. However, this early approach
sometimes failed to converge even for strongly convex objectives (Lessard et al., 2016). This was
further refined by Nesterov’s accelerated gradient (NAG) (Nesterov, 1983), with a guarantee for
faster convergence rates for general smooth convex functions. Following these foundational works,
other acceleration algorithms and analyses emerged for gradient descent and its proximal variants
(Beck & Teboulle, 2009; Tseng, 2009; Taylor et al., 2017; Allen-Zhu & Orecchia, 2014; Bubeck
et al., 2015a; Diakonikolas & Orecchia, 2017; Cohen et al., 2020). In addition, there has been
another line of work in understanding Nesterov’s acceleration through continuous analysis and Lya-
punov function analysis (Su et al., 2016; Shi et al., 2019; Shi, 2021; Shi et al., 2022; Chen et al.,
2022). Momentum techniques have also proven effective in accelerating minimax game settings (Jin
et al., 2022; Kovalev et al., 2022; Thekumparampil et al., 2022; Li et al., 2023a; Yuan et al., 2024a).
However, the application of acceleration techniques to LLMs remains relatively unexplored.
The Proximal Point Method (PPM) (Moreau, 1965; Martinet, 1970; Rockafellar, 1976; Güler, 1992;
Bauschke & Combettes) is a fundamental methodology that achieves optimality by iteratively solv-
ing auxiliary problems in a regularized form. Generally, these auxiliary problems cannot be solved
directly, and different approximation methods yield various types of acceleration (He & Yuan, 2012;
Salzo et al., 2012). One of the connections between PPM and NAG is established in Ahn & Sra
(2022), where the authors interpret the updates of NAG as different approximations of the prox-
imal method. The Catalyst approach (Lin et al., 2015; 2018) represents another variant of PPM
that achieves accelerated convergence through practical inexact schemes (Lin et al., 2015; Salzo
et al., 2012). This method effectively integrates Nesterov’s acceleration with the proximal point
framework, making it applicable to a wide range of machine learning algorithms, including gradient
descent and block coordinate descent. It can be applied to variance reduction algorithms (Lin et al.,
2015; 2018), demonstrating its strong adaptability to various machine learning scenarios. Despite
the widespread adoption of momentum acceleration in both theoretical and practical applications,
we are the first to establish a connection between DPO and the proximal point method, linking it-
erative DPO with the Catalyst approach, and providing a comprehensive theoretical analysis of this
interpretation.
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B ACCELERATED PREFERENCE OPTIMIZATION WITH GENERAL
PREFERENCES

In the previous sections, we assumed the existence of a latent reward function and focused on the
Bradley-Terry (BT) model. However, (Tversky, 1969) observed that the preferences across all pos-
sible responses may not be monotonous or transitive, which cannot be represented by a latent reward
function. In this section, we extend the analysis to environments with general preferences and focus
on the win probability between different responses.
In detail, for an environment with general preferences, we denote the probability that response y1 is
preferred over response y2 given the context x as P(y1 ≻ y2|x), and we assume that the preference
model is antisymmetric, such that P(y2 ≻ y1|x) = 1 − P(y1 ≻ y2|x). Under this assumption, we
define the reward rπ,π′ = Ey1∼π,y2∼π′

[
P(y1 ≻ y2|x)

]
as the win probability for policy π against

policy π′. Our goal is to identify the von Neumann winner (Dudı́k et al., 2015) with the preference
model. Specifically, the von Neumann winner corresponds to the Nash equilibrium of the following
two-player zero-sum game:

(π∗, π∗) = argmax
π

min
π′

Ey1∼π,y2∼π′
[
P(y1 ≻ y2|x)

]
= argmax

π
min
π′

rπ,π′ .

B.1 REDUCTION TO SPPO WITH ℓSPPO

For the Self-Play Preference Optimization (SPPO) (Wu et al., 2024) algorithm, if we set the learning
rate β in Algorithm 1 to be the inverse of the learning rate η in the SPPO algorithm, the preference
optimization process can be expressed as follows:

πt+1 = argmin
π

Ex∼ρ,y∼πt(·|x)

[
log

(
π(y|x)
πt(y|x)

)
− η

(
P(y ≻ πt|x)− logZπt(x)

)]2

= argmin
π

Ex∼ρ,y∼πt(·|x)

[
β log

(
π(y|x)
πt(y|x)

)
−
(
P(y ≻ πt|x)− logZπt

(x)

)]2
= arg min

rπ∈Rt

Ex∼ρ,y∼πt(·|x)

[
rπ(x, y)− Ey′∼πt

[
P(y ≻ y′|x)

]
+ logZπt

(x)
]2

= arg min
rπ∈Rt

Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y)− 1(y ≻ y′|x) + logZπt

(x)
]2

+ Cπt

= arg min
rπ∈Rt

Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y)− 1(y ≻ y′|x) + logZπt

(x)
]2
/2

+ Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y

′)− 1(y′ ≻ y|x) + logZπt
(x)
]2
/2 + Cπt

,

where Zπt
(x) =

∑
y∈Y πt(y|x) exp

(
ηP(y ≻ πt|x)

)
represents the partition function for behavior

policy πt, Cπt
= Ex∼ρ,y,y′∼πt(·|x)

[
P(y ≻ y′|x)− 1(y ≻ y′|x)

]2
is the variance of behavior policy

πt, the second equation holds due to β = η−1 and the last equation holds because y, y′ collected
under the same behavior policy. Therefore, the preference optimization process in SPPO is aligned
with our Algorithm 1 using the SPPO loss function:

ℓSPPO(rπ, x, y
w, yl, πt) =

1

2

(
rπ(x, y

w)− 1 + logZπt(x)
)2

+
1

2

(
rπ(x, y

l) + logZπt(x)
)2
.

B.2 THEORETICAL ANALYSIS WITH GENERAL PREFERENCES

In section 4, Theorems 4.4 and 4.8 analyze the performance of Algorithm 1 under the Bradley-
Terry (BT) model. For a general preference model, Theorem B.2 provides a convergence rate for
Algorithm 1 with the loss function ℓSPPO in Example 3.2, under the assumption of a minimal sub-
optimality gap.
Assumption B.1 (Minimal sub-optimality gap with general preferences). For each prompt x ∈
X , we assume there exist a unique optimal response y∗x ∈ Y such that for any other sub-optimal
responses y ̸= y∗x, we have

P(y∗x ≻ y′|x)− P(y ≻ y′|x) ≥ ∆,∀y′ ∈ Y.
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Theorem B.2 (APO with ℓSPPO). For general preference model with loss function ℓSPPO, under the
mild assumptions of realizability (Assumption E.3), boundedness (Assumption E.4) and Assumption
B.1, with probability at least 1−δ, the TV-distance between π̂t+1 and the optimal policy π∗(x) = y∗x
is bounded by

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ exp

(
−O

(
t∆

(1− α)
· 1
β

))
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

.

Remark B.3. When the dataset size is sufficiently large (N → ∞), Theorem B.2 suggests that
APO converges to the optimal policy at a rate of exp

(
− O(T/(1 − α))

)
. When α = 0, our

algorithm reduces to the standard SPPO algorithm in Wu et al. (2024), which only converges to the
optimal policy at a slower rate of exp

(
−O(T )

)
. It is worth noting that Wu et al. (2024) provides a

Õ(1/
√
T ) sub-optimality gap guarantee for the average policy π̄ = 1

T

∑T
t=1 πt. In comparison, our

result relies on a minimal sub-optimality gap assumption (Assumption B.1) and provides a faster
convergence rate between the final policy π̂t+1 and the optimal policy π∗. As discussed in Remark
4.7, this assumption is used to ensure the uniqueness of the optimal policy, which is necessary for
the convergence guarantee.

C PROOF OF MAIN RESULTS

C.1 PROOF OF THEOREM 4.1

In this section, we provide the proof of Theorem 4.1, which is crucial for understanding the opti-
mization dynamics of Algorithm 1.

Proof of Theorem 4.1. Based on the definition of the reparameterized reward rt, we have

rt(x, y) = β log π̂t+1(y|x)− β log πt(y|x). (C.1)

Furthermore, the extrapolation step (3.6) satisfies

πt+1(y|x) =
1

Z ′
t(x)

· π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
,

where Z ′
t(x) =

∑
y π̂t+1(y|x) ·

(
π̂t+1(y|x)/π̂t(y|x)

)α
represents the partition function. Taking the

logarithm of both sides yields the following equation

log πt+1(y|x) = (1 + α) log π̂t+1(y|x)− α log π̂t(y|x)− logZ ′
t(x). (C.2)

For simplicity, we define lt(x, y) = β log π̂t+1(y|x)− β log π̂t(y|x), and thus we have

lt+1(x, y) = β log π̂t+2(y|x)− β log π̂t+1(y|x)
= rt+1(x, y) + β log πt+1(y|x)− β log π̂t+1(y|x)
= rt+1(x, y) + α

(
β log π̂t+1(y|x)− β log π̂t(y|x)

)
− β logZ ′

t(x)

= rt+1(x, y)− β logZ ′
t(x) + αlt(x, y), (C.3)

where the second equation holds due to (C.1) and the third equation holds due to (C.2). Recursively
using (C.3) over all iterations, we derive the following equation:

lt(x, y) = rt(x, y)− β logZ ′
t−1(x) + αlt−1(x, y)

= rt(x, y)− β logZ ′
t−1(x) + αrt−1(x, y)− αβ logZ ′

t−2(x) + α2lt−2(x, y)

= . . .

=

t∑
i=0

αt−i · rt(x, y)− αt−i · β logZ ′
i−1(x), (C.4)
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where we assume Z ′
−1(x) = 1 for simplicity. Finally, by summing (C.4) over all iterations 0 ≤ j ≤

t, we have

β log π̂t+1(y|x)− β log π̂1(y|x)

=

t∑
j=0

j∑
i=0

αj−iri(x, y) + αj−i · β logZ ′
i−1(x)

=

t∑
i=0

t∑
j=i

αj−iri(x, y) + αj−i · β logZ ′
i−1(x)

=

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· ri(x, y) +

(
1

1− α
− αt+1−i

1− α

)
· β logZ ′

i−1(x). (C.5)

Given that π̂1 = πref, we have

π̂t+1(y|x)

= πref(y|x) · exp
{
β ·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· rt +

(
α

1− α
− αt+2−i

1− α

)
· β logZ ′

i−1(x)

}

∝ πref(y|x) · exp
{
β ·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· rt
}
.

Thus, we complete the proof of Theorem 4.1.

C.2 PROOF OF THEOREM 4.4

In this section, we provide the proof of Theorem 4.4. To simplify the notation, we define the auxil-
iary policy, which is updated following the dynamics of π̂t+1 in Theorem D.1, but using the latent
reward r∗(x, y) instead of the reparameterized reward rt(x, y):

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)
, (C.6)

where Z∗
t (x) =

∑
y πref(y|x)·exp

(∑t
i=0(1/(1−α)−αt+1−i/(1−α))·r∗(x, y)/β

)
is the partition

function for the auxiliary policy. With this notation, the following lemma provide a upper bound for
the statistical errors arising from the gap between the reparameterized reward rt(x, y) and the latent
reward r∗(x, y).

Lemma C.1. Under the mild assumptions of realizability (Assumption 4.2) and boundedness (As-
sumption 4.3), with probability at least 1−δ, the TV-distance between the policy π̂T+1 and auxiliary
policy π∗

T+1 is upper bounded by:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]
≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

.

With the help of Lemma C.1, we start the proof of Theorem 4.4.

Proof of Theorem 4.4. For each iteration t ∈ [T ] and prompt x ∈ X , according to the definition of
π∗
t+1 in (C.6), we have

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)
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∝ πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)

= πref(y|x) · exp

(
1

β
·
(
t+ 1

1− α
− α

(1− α)2
+

αt+2

(1− α)2

)
· r∗(x, y)

)
.

For simplicity, we set γ = ((t+1)/(1−α)−α/(1−α)2+αt+1/(1−α)2)/β, and the sub-optimality
gap for the policy π̂t+1 and a fixed prompt x can be denoted as:

Ey∼π∗(·|x)
[
r∗(x, y)

]
− Ey∼π∗

t+1(·|x)
[
r∗(x, y)

]
= r∗(x, y∗x)−

∑
y∈Y πref(y|x) · exp

(
γ · r∗(x, y)

)
· r∗(x, y)∑

y′∈Y πref(y′|x) · exp
(
γ · r∗(x, y′)

)
=

∑
y ̸=y∗

x
πref(y|x) · exp

(
γ · r∗(x, y)− γ · r∗(x, y∗x)

)
·
(
r∗(x, y∗x)− r∗(x, y)

)∑
y′∈Y πref(y′|x) · exp

(
γ · r∗(x, y′)− γ · r∗(x, y∗x)

) ,

where y∗x = argmaxy∈Y r∗(x, y) denotes the optimal response given the prompt x. For simplicity,
we set z(x, y) = exp

(
γ · r∗(x, y)− γ · r∗(x, y∗x)

)
and Z(x) =

∑
y ̸=y∗

x
πref(y|x) · z(x, y). With this

notation, we have

Ey∼π∗(·|x)
[
r∗(x, y)

]
− Ey∼π∗

t+1(·|x)
[
r∗(x, y)

]
= −

∑
y ̸=y∗

x
πref(y|x) · z(x, y) · log z(x, y)

γ ·
∑

y′∈Y πref(y′|x) · z(x, y)

= −
(
1− πref(y

∗
x|x)

)
·
∑

y ̸=y∗
x
πref(y|x)/

(
1− πref(y

∗
x|x)

)
· z(x, y) · log z(x, y)

γ ·
∑

y′∈Y πref(y′|x) · z(x, y)

≤ −

∑
y ̸=y∗

x
πref(y|x) · z(x, y) · log

(∑
y ̸=y∗

x
πref(y|x) · z(x, y)/

(
1− πref(y

∗
x|x)

))
γ ·
∑

y′∈Y πref(y′|x) · z(x, y)

= −
Z(x) · log

(
Z(x)/

(
1− πref(y

∗
x|x)

))
γ ·
(
Z(x) + πref(y∗x|x)

) , (C.7)

where the inequality holds due to f(x) = x log x is a convex function with the fact that∑
y ̸=y∗

x
πref(y|x)/

(
1 − πref(y

∗
x|x)

)
= 1, and the last equation holds due to z(x, y∗x) = 1. Now,

we consider the following auxiliary function for 0 < Z ≤ 1− πref(y
∗
x|x):

f(Z) = −Z · log
(
Z/
(
1− πref(y

∗
x|x)

))
−
(
Z + πref(y

∗
x|x)

)
· log

((
1− πref(y

∗
x|x)

)
/πref(y

∗
x|x)

)
.

With basic math calculation, we have

f ′(Z) = log

(
1− πref(y

∗
x|x)

Z

)
−
(
1 + log

((
1− πref(y

∗
x|x)

)
/πref(y

∗
x|x)

))
f(Z) ≤ f

((
1− πref(y

∗
x|x)

)
/ exp

(
1 + log

((
1− πref(y

∗
x|x)

)
/πref(y

∗
x|x)

)))
≤ 0.

Substituting the result f(Z) ≤ 0 into (C.7), we have

Ey∼π∗(·|x)
[
r∗(x, y)

]
− Ey∼π∗

t+1(·|x)
[
r∗(x, y)

]
≤ −

Z(x) · log
(
Z(x)/

(
1− πref(y

∗
x|x)

))
γ ·
(
Z(x) + πref(y∗x|x)

)
≤

log
((

1− πref(y
∗
x|x)

)
/πref(y

∗
x|x)

)
γ

= Õ

(
(1− α)β

t

)
. (C.8)
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Therefore, the sub-optimality gap between π̂t+1 and the optimal policy π∗(x) =
argmaxy∈Y r∗(x, y) is bounded by

Ex∼ρ,y∼π∗(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π̂T+1(·|x)

[
r∗(x, y)

]
= Ex∼ρ,y∼π∗(·|x)

[
r∗(x, y)

]
− Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
+ Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π̂T+1(·|x)

[
r∗(x, y)

]
≤ Ex∼ρ,y∼π∗(·|x)

[
r∗(x, y)

]
− Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
+ Ex∼ρ

[
2DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

≤ Ex∼ρ,y∼π∗(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)

≤ Õ

(
(1− α)β

T

)
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the first inequality holds due to the definition of TV-distance with the fact that r∗(x, y) ∈
[−1, 1], the second inequality holds due to Lemma (C.1) and the last inequality holds due to (C.8).
Thus, we complete the proof of Theorem 4.4.

C.3 PROOF OF THEOREM 4.8

In this section, we provide the proof of Theorem 4.8.

Proof of Theorem 4.8. For each iteration t ∈ [T ] and prompt x ∈ X , according to the definition of
π∗
t+1 in (C.10), we have

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)

∝ πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)

= πref(y|x) · exp

(
1

β
·
(
t+ 1

1− α
− α

(1− α)2
+

αt+2

(1− α)2

)
· r∗(x, y)

)
.

For simplicity, we set γ =
(
(t+1)/(1−α)−α/(1−α)2+αt+1/(1−α)2

)
/β, and for each prompt

x ∈ X , the KL-divergence between π∗
t+1(·|x) and the optimal policy π∗(x) = argmaxy∈Y r∗(x, y)

can be denoted as:

KL
(
π∗(x)∥π∗

t+1(·|x)
)
= log

1

π∗
t+1

(
y∗x|x

)
= log

∑
y∈Y πref(y|x) · exp

(
γ · r∗(x, y)

)
πref(y∗x|x) · exp

(
γ · r∗(x, y∗x)

)
≤
∑

y ̸=y∗
x
πref(y|x) · exp

(
γ · r∗(x, y)

)
πref(y∗x|x) · exp

(
γ · r∗(x, y∗x)

)
=

∑
y ̸=y∗

x
πref(y|x) · exp

(
γ ·
(
r∗(x, y)− r∗(x, y∗x)

))
πref(y∗x|x)

≤
maxy ̸=y∗

x
exp

(
− γ ·

(
r∗(x, y∗x)− r∗(x, y)

))
πref(y∗x|x)

≤ exp(−γ∆)

πref(y∗x|x)

= exp

(
−O

(
t∆

(1− α)
· 1
β

))
, (C.9)
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where y∗x = argmaxy∈Y r∗(x, y) denotes the optimal response given the prompt x, the first inequal-
ity holds due to the fact that log(1+x) ≤ x, the second inequality holds due to

∑
y ̸=y∗

x
πref(y|x) ≤ 1

and the last inequality holds due to Assumption 4.6. Therefore, the TV distance between optimal
policy π∗ and π̂T+1 can be upper bounded as following:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
≤ Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[√
1

2
· DKL

(
π∗(·|x)∥π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ exp

(
−O

(
t∆

(1− α)
· 1
β

))
,

where the first inequality holds due to DTV(X,Y ) ≤ DTV(X,Z)+DTV(Z, Y ), the second inequality
holds due to Lemma C.1, the third inequality holds due to DTV(X,Y ) ≤

√
DKL(X∥Y )/2 and the

last inequality holds due to (C.9). Thus, we complete the proof of Theorem 4.8.

C.4 PROOF OF THEOREM B.2

In this section, we provide the proof of Theorem B.2. Similar to the proof of Theorem 4.4, we
define the auxiliary policy, which is updated according to the dynamics of π̂t+1 as described in
Theorem D.1. However, in environments with general preferences, a latent reward r∗(x, y) may
not exist. Instead, we use the win probability of response y against the policy πt to replace the
reparameterized reward rt(x, y). Specifically, we set:

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)
, (C.10)

where r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
and Z∗

t (x) =
∑

y πref(y|x) · exp
(∑t

i=0(1/(1 − α) −
αt+1−i/(1 − α)) · r∗t (x, y)/β

)
is the partition function for the auxiliary policy. With this notation,

the following lemma provide a upper bound for the statistical errors arising from the gap between
the reparameterized reward rt(x, y) and the win probability r∗t (x, y).
Lemma C.2. Under the mild assumptions of realizability (Assumption 4.2) and boundedness (As-
sumption 4.3), the TV-distance between the policy π̂T+1 and auxiliary policy π∗

T+1 is upper bounded
by:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]
≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

.

With the help of Lemma C.2, we start the proof of Theorem B.2.

Proof of Theorem B.2. For each iteration t ∈ [T ] and prompt x ∈ X , according to the definition of
π∗
t+1 in (C.6), we have

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)

∝ πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)
,
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where the win probability r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
. According to the Assumption B.1, for

each prompt x ∈ X and behavior policy πt, the unique optimal response y∗x ∈ Y satisfies

r∗t (x, y
∗
x) = Ey′∼πt

[
P(y∗x ≻ y′|x)

]
≥ Ey′∼πt

[
P(y ≻ y′|x)

]
+∆ = r∗t (x, y) + ∆,∀y ̸= y∗x.

(C.11)

For simplicity, we set γt =
(
1/(1 − α) − αt+1−i/(1 − α)

)
/β, and for each prompt x ∈ X , the

KL-divergence between π∗
t+1(·|x) and the optimal policy π∗(x) = y∗x can be denoted as:

KL
(
π∗(x)∥π∗

t+1(·|x)
)
= log

1

π∗
t+1

(
y∗x|x

)
= log

∑
y∈Y πref(y|x) · exp

(∑t
i=0 γi · r∗i (x, y)

)
πref(y∗x|x) · exp

(∑t
i=0 γi · r∗i (x, y∗x)

)
≤
∑

y ̸=y∗
x
πref(y|x) · exp

(∑t
i=0 γi · r∗i (x, y)

)
πref(y∗x|x) · exp

(∑t
i=0 γi · r∗i (x, y∗x)

)
=

∑
y ̸=y∗

x
πref(y|x) · exp

(∑t
i=0 γi

(
r∗i (x, y)− r∗i (x, y

∗
x)
))

πref(y∗x|x)

≤
maxy ̸=y∗

x
exp

(
−
∑t

i=0 γi
(
r∗i (x, y

∗
x)− r∗i (x, y)

))
πref(y∗x|x)

≤
exp(−

∑t
i=0 γi∆)

πref(y∗x|x)

= exp

(
−O

(
t∆

(1− α)
· 1
β

))
, (C.12)

where y∗x denotes the optimal response given the prompt x, the first inequality holds due to the fact
that log(1+ x) ≤ x, the second inequality holds due to

∑
y ̸=y∗

x
πref(y|x) ≤ 1 and the last inequality

holds due to (C.11). Therefore, the TV distance between optimal policy π∗ and π̂T+1 can be upper
bounded as following:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
≤ Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[√
1

2
· DKL

(
π∗(·|x)∥π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ exp

(
−O

(
t∆

(1− α)
· 1
β

))
,

where the first inequality holds due to DTV(X,Y ) ≤ DTV(X,Z)+DTV(Z, Y ), the second inequality
holds due to Lemma C.2, the third inequality holds due to DTV(X,Y ) ≤

√
DKL(X∥Y )/2 and the

last inequality holds due to (C.12). Thus, we complete the proof of Theorem B.2.

D PROOF OF LEMMAS IN APPENDIX C

D.1 PROOF OF LEMMA C.1

In this subsection, we provide the proof of Lemma C.1 and first propose the following lemmas.

Lemma D.1. Under the mild assumptions of realizability and boundedness (see detailed definitions
in Appendix E.1), for each iteration t ∈ [T ], with probability at least 1− δ, the estimation error can
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be upper bounded as follows:

Ex∼ρ,(y1,y2)∼πt

[(
r∗(x, y1)− r∗(x, y2)− rt(x, y1) + rt(x, y2)

)2] ≤ O

(
log
(
|Π|/δ

)
N

)
,

where reparameterized reward rt(x, y) = β log π̂t+1(y|x)− β log πt(y|x).
Lemma D.2. For any x ∈ R+, we have (1 + x) · | log x| ≥ |x− 1|.

With the help of Lemmas D.1 and D.2, we now begin the proof of Lemma C.1.

Proof of Lemma C.1. For each iteration t ∈ [T ] and prompt x ∈ X , the TV-distance between
π̂t+1(·|x) and π∗

t+1(·|x) can be upper bounded as follows:

DTV
(
π̂t+1(·|x), π∗

t+1(·|x)
)

= Ey∼π∗
t+1(·|x)

[
1

2
·
∣∣∣ π̂t+1(y|x)
π∗
t+1(y|x)

− 1
∣∣∣]

≤ Ey∼π∗
t+1(·|x)

[
1

2
·
(
1 +

π̂t+1(y|x)
π∗
t+1(y|x)

)
·
∣∣∣ log π̂t+1(y|x)

π∗
t+1(y|x)

∣∣∣]
=

1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]+ 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]

≤

√
1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2 + 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2
≤

√
1

2
· Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+

1

2
· Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
, (D.1)

where the first inequality holds due to Lemma D.2, the second inequality holds due to x + y ≤√
2(x2 + y2) for x, y > 0, and the last inequality holds due to E[x]2 ≤ E[x2]. In addition, for each

iteration t ∈ [T ] and prompt x ∈ X , we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2DKL

(
π̂t+1(·|x)∥π∗

t+1(·|x)
)
· DKL

(
π∗
t+1(·|x)∥π̂t+1(·|x)

)
= Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2Ey∼π∗

t+1(·|x)

[
− log

π̂t+1(y|x)
π∗
t+1(y|x)

]
· Ey∼π̂t+1(·|x)

[
log

π̂t+1(y|x)
π∗
t+1(y|x)

]
= Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
, (D.2)

where the inequality holds due to KL-divergence is non-negative. According to Theorem 4.1 and
definition of π∗

t+1 in (C.6), we have

log
π̂t+1(y|x)
π∗
t+1(y|x)

=
logZ∗

t (x)

logZt(x)
+

t∑
i=0

1

β
·
(

1

1− α
− αt+1−i

1− α

)
·
(
ri(x, y)− r∗(x, y)

)
. (D.3)

Substituting (D.3) into (D.2), we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
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≤ Ey∼π∗
t+1(·|x),y′∼π̂t+1(·|x)

[( t∑
i=0

αt+1−i ·
(
ri(x, y)− r∗(x, y)

)
−
(
ri(x, y

′)− r∗(x, y′)
)2]

≤ Ey∼π∗
t+1(·|x),y′∼π̂t+1(·|x)

[
(t+ 1) ·

t∑
i=0

α2
t+1−i ·

(
ri(x, y)− ri(x, y

′)− r∗(x, y) + r∗(x, y′)
)2]

,

(D.4)

where αi =
(
1/(1 − α) − αi/(1 − α)

)
/β and the last inequality holds due to Cauchy–Schwarz

inequality. According to the definition of coverage coefficient κt in (4.1), for policy π̂T+1, we have

Ey∼π∗
T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+ Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
≤ (T + 1)·

T∑
t=0

1

β2(1− α)2
· Ey∼π∗

T+1(·|x),y′∼π̂T+1(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗(x, y) + r∗(x, y′)
)2]

≤ (T + 1)·
T∑

t=0

κt

β2(1− α)2
· Ey∼π∗

t (·|x),y′∼π̂t(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗(x, y) + r∗(x, y′)
)2]

≤ 1

σ2(1 +R) ·
(
1− σ(1 +R)

)2 · (T + 1)
∑T

t=0 κt · log
(
T |Π|/δ

)
Nβ2(1− α)2

, (D.5)

where the first inequality holds due to (D.4) with the fact that αi ≤ 1/(1−α), the second inequality
holds due to the definition of coverage coefficient κt in (4.1) and the last inequality holds due to
Lemma D.1 with a union bound on the probability across all T iterations. Finally, substituting (D.5)
into (D.1), we have

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

≤ Ex∼ρ

[√
1

2
· Ey∼π∗

T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+

1

2
· Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]]

≤ 1

σ(1 +R) ·
(
1− σ(1 +R)

) ·
√

(T + 1)
∑T

t=0 κt · log
(
T |Π|/δ

)
Nβ2(1− α)2

.

Thus, we complete the proof of Lemma C.1.

D.2 PROOF OF LEMMA C.2

In this subsection, we provide the proof of Lemma C.2 and first propose the following lemma.
Lemma D.3. Under the mild assumptions of realizability and boundedness (see detailed definitions
in Appendix E.3), for each iteration t ∈ [T ], with probability at least 1− δ, the estimation error can
be upper bounded as follows:

Ex∼ρ,(y1,y2)∼πt

[(
r∗t (x, y1)− r∗t (x, y2)− rt(x, y1) + rt(x, y2)

)2] ≤ O

(
log
(
|Π|/δ

)
N

)
,

where the win probability r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
and reparameterized reward rt(x, y) =

β log π̂t+1(y|x)− β log πt(y|x),

With the help of Lemma C.2, we start the proof of Lemma C.2. The proof is similar to the proof of
Lemma C.1, however, it is worth noting that this proof relies on a different auxiliary policy based
on the win probability rather than the latent reward:

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)
,
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where the win probability r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
and Z∗

t (x) =
∑

y πref(y|x) ·
exp

(∑t
i=0(1/(1 − α) − αt+1−i/(1 − α)) · r∗t (x, y)/β

)
is the partition function for the auxiliary

policy.

Proof of Lemma C.2. For each iteration t ∈ [T ] and prompt x ∈ X , the TV-distance between
π̂t+1(·|x) and π∗

t+1(·|x) can be upper bounded as follows:

DTV
(
π̂t+1(·|x), π∗

t+1(·|x)
)

= Ey∼π∗
t+1(·|x)

[
1

2
·
∣∣∣ π̂t+1(y|x)
π∗
t+1(y|x)

− 1
∣∣∣]

≤ Ey∼π∗
t+1(·|x)

[
1

2
·
(
1 +

π̂t+1(y|x)
π∗
t+1(y|x)

)
·
∣∣∣ log π̂t+1(y|x)

π∗
t+1(y|x)

∣∣∣]
=

1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]+ 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]

≤

√
1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2 + 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2
≤

√
1

2
· Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+

1

2
· Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
, (D.6)

where the first inequality holds due to Lemma D.2, the second inequality holds due to x + y ≤√
2(x2 + y2) for x, y > 0, and the last inequality holds due to E[x]2 ≤ E[x2]. In addition, for each

iteration t ∈ [T ] and prompt x ∈ X , we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2DKL

(
π̂t+1(·|x)∥π∗

t+1(·|x)
)
· DKL

(
π∗
t+1(·|x)∥π̂t+1(·|x)

)
= Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2Ey∼π∗

t+1(·|x)

[
− log

π̂t+1(y|x)
π∗
t+1(y|x)

]
· Ey∼π̂t+1(·|x)

[
log

π̂t+1(y|x)
π∗
t+1(y|x)

]
= Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
, (D.7)

where the inequality holds due to KL-divergence is non-negative. According to Theorem 4.1 and
definition of π∗

t+1 in (C.10), we have

log
π̂t+1(y|x)
π∗
t+1(y|x)

=
logZ∗

t (x)

logZt(x)
+

t∑
i=0

1

β
·
(

1

1− α
− αt+1−i

1− α

)
·
(
ri(x, y)− r∗(x, y)

)
. (D.8)

Substituting (D.8) into (D.7), we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
≤ Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[( t∑
i=0

αt+1−i ·
(
ri(x, y)− r∗i (x, y)

)
−
(
ri(x, y

′)− r∗i (x, y
′)
)2]

≤ Ey∼π∗
t+1(·|x),y′∼π̂t+1(·|x)

[
(t+ 1) ·

t∑
i=0

α2
t+1−i ·

(
ri(x, y)− ri(x, y

′)− r∗i (x, y) + r∗i (x, y
′)
)2]

,

(D.9)
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where αi =
(
1/(1 − α) − αi/(1 − α)

)
/β and the last inequality holds due to Cauchy–Schwarz

inequality. According to the definition of coverage coefficient κt in (4.1), for policy π̂T+1, we have

Ey∼π∗
T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+ Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
≤ (T + 1)·

T∑
t=0

1

β2(1− α)2
· Ey∼π∗

T+1(·|x),y′∼π̂T+1(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗t (x, y) + r∗t (x, y
′)
)2]

≤ (T + 1)·
T∑

t=0

κt

β2(1− α)2
· Ey∼π∗

t (·|x),y′∼π̂t(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗t (x, y) + r∗t (x, y
′)
)2]

≤ O

(
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
, (D.10)

where the first inequality holds due to (D.9) with the fact that αi ≤ 1/(1−α), the second inequality
holds due to the definition of coverage coefficient κt in (4.1) and the last inequality holds due to
Lemma D.3 with a union bound on the probability across all T iterations. Finally, substituting
(D.10) into (D.6), we have

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

≤ Ex∼ρ

[√
1

2
· Ey∼π∗

T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+

1

2
· Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
.

Thus, we complete the proof of Lemma C.2.

E PROOF OF LEMMAS IN APPENDIX D

E.1 PROOF OF LEMMA D.1

In this section, we adapt the previous results on the estimation error from maximum likelihood esti-
mation to the Bradley-Terry (BT) model (Bradley & Terry, 1952) and provide the proof of Lemma
D.1.
We start the analysis with the conditional probability estimation setting. For an instance space X
and a target space Y , we collect the dataset D = (zi, oi)

N
i=1, where zi is sampled from a reference

policy zi ∼ µi, and oi is then generated with the latent conditional density P (oi|zi) = f∗(zi, oi).
Under this situation, the maximum likelihood estimator across a function class F : Z ×O → R can
be denoted as follows

f = argmax
f∈F

N∑
i=1

log f(zi, oi).

For an i.i.d. sampled dataset D, where µ1 = µ2 = . . . = µN , Geer (2000) (Chapter 7) provides
upper bounds for the estimation error between f and the hidden function f∗. Later, Agarwal et al.
(2020) extended these results to reinforcement learning, allowing for a martingale sampling process.

Lemma E.1 (Theorem 21, Agarwal et al. 2020). For a finite function class |F| < +∞, if the latent
function f∗ ∈ F , then with probability at least 1− δ, we have

N∑
i=1

Ez∼µi

∥∥f(z, ·)− f∗(z, ·)
∥∥2

TV ≤ 2 log
(
|F|/δ

)
.
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With the help of lemma E.1, we start to prove Lemma D.1.

Proof of Lemma D.1. Based on the Bradley-Terry (BT) model defined in equation (2.1), for the
prompt xi ∈ X and the generated responses y1, y2, we have

P (y1 ≻ y2|x) = σ
(
r∗(xi, yi,1)− r∗(xi, yi,2)

)
.

In this context, we define the instance zi and target oi as follows

zi = (xi, yi,1, yi,2),

oi = 1(yi,1 ≻ yi,2)− 1(yi,2 ≻ yi,1).

For each policy π ∈ Π, we denote the reparameterized reward rπ(x, y) = β log π(y|x) −
β log πt(y|x). Thus, the density function for an instance z = (x, y1, y2) with reward rπ can be
represented as

frπ (z, o) = σ
(
o ·
(
rπ(x, y1)− rπ(x, y2)

))
,

and we denote the density function class F as F = {frπ |π ∈ Π}. Based on Assumption 4.2 and
the definition of the Bradley-Terry (BT) model, we have fr∗ ∈ F , and the latent density function
satisfies P (o|z) = fr∗(z, o). Consequently, the maximum likelihood estimator can be expressed as

frt = arg max
frπ∈F

N∑
i=1

log frπ (zi, oi),

where rt(x, y) = β log π̂t+1(y|x) − β log πt(y|x). Thus, according to Lemma E.1, the estimation
error between r∗ and rt can be upper bounded by

N∑
i=1

Ez∼µi

∥∥frt(z, ·)− fr∗(z, ·)
∥∥2

TV ≤ 2 log
(
|Π|/δ

)
. (E.1)

Since the dataset Dt is collected with reference policy πt, we have

Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y1)− r∗(x, y2)

)
− σ

(
rt(x, y1)− rt(x, y2)

)]2
=

1

2
· Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y1)− r∗(x, y2)

)
− σ

(
rt(x, y1)− rt(x, y2)

)]2
+

1

2
· Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y2)− r∗(x, y1)

)
− σ

(
rt(x, y2)− rt(x, y1)

)]2
= Ex∼ρ,(y1,y2)∼πt

∥∥frt(z, ·)− fr∗(z, ·)
∥∥2

TV

≤
log
(
|Π|/δ

)
N

, (E.2)

where the second equation holds due to the definition of TV-distance with z = (x, y1, y2) and
the inequality holds due to (E.1). According to Assumption 4.3, we have r∗(x, y) ∈ [−1, 1] and
rt(x, y) ∈ [−R,R], which implies that

Ex∼ρ,(y1,y2)∼πt

[(
r∗(x, y1)− r∗(x, y2)− rt(x, y1) + rt(x, y2)

)2]
≤ 1

σ2(1 +R) ·
(
1− σ(1 +R)

)2
× Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y1)− r∗(x, y2)

)
− σ

(
rt(x, y1)− rt(x, y2)

)]2
≤ 1

σ2(1 +R) ·
(
1− σ(1 +R)

)2 · log
(
|Π|/δ

)
N

,

where the first inequality holds due to |a− b| · |maxx∈[a,b] σ
′(x)| ≤ |σ(a)− σ(b)| with the fact that

σ′(x) = σ(x)(1 − σ(x)) ≤ σ(1 + R)
(
1 − σ(1 + R)

)
and the last inequality holds due to (E.2).

Thus, we complete the proof of Lemma D.1.
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E.2 PROOF OF LEMMA D.2

Proof of Lemma D.2. We prove this inequality based on two situations: x ≥ 1 or x < 1. For the
case that x ≥ 1, we have

(1 + x) · | log x| = (1 + x) log x ≥ (1 + x)

(
1− 1

x

)
≥ x

(
1− 1

x

)
= x− 1,

where the first inequality holds due to log x ≥ 1−1/x and the second inequality holds due to x ≥ 1.
We now consider the case where x < 1. In this case, we have

(1 + x) · | log x| = −(1 + x) log x ≥ −(1 + x)(x− 1) ≥ −(x− 1),

where the first inequality holds due to log x ≤ x− 1 and the second inequality holds due to x < 1.
Combining the results in these two cases, we complete the proof of Lemma D.2.

E.3 PROOF OF LEMMA D.3

In this section, we provide the proof of Lemma D.3, and we summarize our definitions and assump-
tions as follows. Similar assumptions are used in Rosset et al. (2024) to analyze the statistical error
from the reparameterized reward.
Definition E.2 (Feasible Policy Class). For each iteration t ∈ [T ], let Πt ⊆ Π represent the feasible
policy class, which includes all potential policies πt generated by Algorithm 1 during iteration t,
based on various possible samplings from the data collection process.
Assumption E.3 (Realizability). For each iteration t ∈ [T ] and each potential policy π ∈ Πt, we
assume that the following updated policy also belongs to the policy class Π:

π̂(·|x) = 1

Zπ(x)
· π(·|x) · exp

(
r∗π(x, ·)

β

)
∈ Π,

where r∗π(x, y) = Ey′∼π

[
P(y ≻ y′|x)

]
denotes the win probability against the behavior policy π

and Zπ(x) =
∑

y∈Y π(y|x) exp
(
r∗π(x, y)/β

)
is the partition function.

Assumption E.4 (Boundedness). For each iteration t ∈ [T ] and each potential policy πt ∈ Πt, we
have

β log
π̂t+1(y|x)
πt(y|x)

∈ [−R,R]

holds for all x ∈ X , u ∈ Y and any potential collected data set Dt.

Based on these assumption, we now begin the proof of Lemma D.3

Proof of Lemma D.3. For each policy π ∈ Πt and the corresponding reparameterized reward
rπ(x, y) = β log

(
π(y|x)/πt(y|x)

)
, we have

Ex∼ρ,y∼πt(·|x)

[
rπ(x, y)− r∗t (x, y) + logZπt

(x)
]2

= Ex∼ρ,y∼πt(·|x)

[
rπ(x, y)− Ey′∼πt

[
P(y ≻ y′|x)

]
+ logZπt(x)

]2
= Ex∼ρ,y,y′∼πt(·|x)

[
rπ(x, y)− 1(y ≻ y′|x) + logZπt

(x)
]2

+ Cπt

= Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y)− 1(y ≻ y′|x) + logZπt

(x)
]2
/2

+ Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y

′)− 1(y′ ≻ y|x) + logZπt
(x)
]2
/2 + Cπt

= Ex∼ρ,yw,yl∼πt

[
ℓ(rπ, x, y

w, yl, πt)
]
+ Cπt ,

where Zπt
(x) =

∑
y∈Y πt(y|x) exp

(
r∗t (x, y)/β

)
is the partition function, Cπt

=

Ex∼ρ,y,y′∼πt(·|x)
[
P(y ≻ y′|x) − 1(y ≻ y′|x)

]2
is the variance of behavior policy πt and the third

equation holds because y, y′ collected under the same behavior policy. Conditioned on Assumption
E.3, there exists a policy π∗

t+1 ∈ Π such that rπ∗
t+1

(x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
− logZπt

(x). Un-
der this situation, according to the standard concentration argument based on Bernstein’s inequality,
the least-squares estimator π̂t+1 satisfies

Ex∼ρ,y∼πt(·|x)
[
rπ̂t+1

(x, y)− rπ∗
t+1

(x, y)
]2 ≤ O

(
(R+ 1)2 · log

(
|Π|/δ

)
N

)
, (E.3)
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Table 4: Open LLM Leaderboard Evaluation. Comparison of APO with state-of-the-art itera-
tive training algorithms, results are reported using v0.4.1 of the lm-evaluation-harness
library. Tasks and parameters follows Beeching et al. (2023).

Models Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Avg. Avg. 5

Mistral-7B-Instruct-v0.2 63.74 66.81 77.90 42.00 84.77 59.12 65.72 70.47

DPO Iter1 65.36 69.19 77.11 36.92 85.1 58.89 65.43 71.13
DPO Iter2 66.47 69.93 78.14 42.46 85.44 58.29 66.79 71.65
DPO Iter3 66.72 68.07 77.51 41.47 85.74 58.85 66.39 71.37

APO Iter1 65.36 69.19 77.11 36.92 85.1 58.89 65.43 71.13
APO Iter2 66.98 70.98 77.51 42.61 85.32 58.69 67.02 71.90
APO Iter3 65.78 69.75 77.03 37.83 85.43 58.76 65.76 71.35

where the ineqaulity holds due to Lemma 6 in Xu & Zeevi (2020) with the Assumption E.4. There-
fore, we have

Ex∼ρ,(y1,y2)∼πt

[(
r∗t (x, y1)− r∗t (x, y2)− rt(x, y1) + rt(x, y2)

)2]
= Ex∼ρ,(y1,y2)∼πt

[(
rπ∗

t+1
(x, y1)− rπ∗

t+1
(x, y2)− rt(x, y1) + rt(x, y2)

)2]
≤ 2Ex∼ρ,y1∼πt

[
rπ∗

t+1
(x, y1)− rt(x, y1)

]2
+ 2Ex∼ρ,y2∼πt

[
rπ∗

t+1
(x, y2)− rt(x, y2)

]2
≤ O

(
(R+ 1)2 · log

(
|Π|/δ

)
N

)
,

where the first inequality holds due to (x + y)2 ≤ 2x2 + 2y2 and the last inequality holds due to
(E.3). Thus, we complete the proof of Lemma D.3.

F ADDITIONAL DETAILS IN EXPERIMENTS

F.1 HYPERPARAMETERS

Our training is conducted on eight A100 GPUs, setting a global batch size of 64. This is done
through setting a local batch size of 8 across all GPUs, with a gradient accumulation step of 1.
We utilize the RMSProp optimizer for each iteration, tuning the learning rate and β parameters.
Although we initially considered a range of learning rates from [5× 10−7, 1× 10−7, 5× 10−8], we
found that a fixed learning rate of 5 × 10−7 while adjusting β across iterations results in enhanced
performance. The final β value is set at 0.01 for the first iteration, 0.1 for the second iteration, and
1.0 for the third iteration. The extrapolation parameter α is set to be a constant 0.3. In addition, the
learning rate follows a linear schedule with a warm-up ratio of 0.1. For inference, we employ the
vllm library (Kwon et al., 2023) for response generation, configured with a temperature of 0.7 and
a top p of 0.9. The maximum token length for response generation is set to 2048 tokens. Finally,
evaluations across all benchmarks are conducted using eight A6000 GPUs.

F.2 OPEN LLM LEADERBOARD EVALUATION

We provide the result of Open LLM Leaderboard. We calculate the average scores across six tasks,
as well as the average of five tasks excluding GSM8k. This exclusion is due to our training’s empha-
sis on general instruction-following ability, with no exposure to correct answers for math problems.
Table 4 shows that APO demonstrates robust performance across multiple tasks. Notably, at itera-
tion 2, APO achieves the highest overall average score of 67.02, outperforming the baseline models.
When focusing on the average of five key tasks, excluding GSM8k, APO iteration 2 again leads with
an impressive score of 71.90. Although APO iteration 3 shows a slight decrease in the overall aver-
age score, it maintains a competitive edge. This decline is primarily attributed to the low correlation
of multiple-choice question tasks with instruction-following abilities. we note that all trained base-
lines exhibit similar performance suboptimality on this metric, while the AlpacaEval performance
increases.

F.3 RESPONSE EXAMPLES IN DIFFERENT ITERATIONS
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Table 5: Generation example of our fine-tuned model by APO at different iterations.

Prompt Hi, my sister and her girlfriends want me to play kickball with them. Can you
explain how the game is played, so they don’t take advantage of me?

Iteration 1 Hello! I’d be happy to help explain the rules of kickball to ensure that you feel
confident and prepared for your game with your sister and her girlfriends. Kickball
is a fun, social, and inclusive game that combines elements of baseball and soccer.
Here’s a breakdown of the essential rules: 1. Teams and Setup: - Divide into two
teams, ideally of equal numbers. - Designate a field with a home base, a first base, a
second base, a third base, and a kickball diamond. - Choose a team to be in the field
(defense) and one to be at bat (offense). 2. Equipment: - A standard soccer ball (or
a large, soft kickball) is used. - No specialized equipment is required for players,
except for comfortable clothing and athletic shoes. 3. Objective: - The objective
of the game is for the team at bat to score runs by kicking the ball and advancing
around the bases, while the fielding team tries to prevent this by getting the runners
out. 4. Batting: - The game begins with a pitch (roll) from the pitcher (field player)
to the kicker (batter). - The kicker attempts to kick the ball with their foot (no toe-
kicks or using hands are allowed). - After a valid kick, the runner(s) may advance
around the bases, trying to reach the next base before the ball reaches that base or
a defensive player tags them. 5. Fielding: - The fielding team’s goal is to get the
runners out. - Players can attempt to catch a kicked ball in mid-air to retire the
side (three consecutive outs), or they can touch a base with the ball before a runner
reaches it to force them out. 6. Scoring: - A run is scored when a player advances
around all four bases and returns to home plate. - Each inning is typically limited to
a specific number of outs or runs scored (agree on this beforehand). 7. Fair Play: -
Encourage sportsmanship and ensure all players understand and respect the rules to
maintain a fun and enjoyable experience for everyone involved. 8. Additional rules:
- Discuss any specific house rules or modifications to the game before starting, such
as allowing multiple kicks per at-bat or implementing a mercy rule if one team is
significantly ahead in runs. I hope this information is helpful! If you have any
further questions or need clarification on any rules, feel free to ask. Good luck and
have a great time playing kickball with your sister and her girlfriends!
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Table 6: Generation example of our fine-tuned model by APO at different iterations.

Prompt Hi, my sister and her girlfriends want me to play kickball with them. Can you
explain how the game is played, so they don’t take advantage of me?

Iteration 2 Hello! It’s great that your sister and her friends have invited you to join them for a
game of kickball. Kickball is a fun, social, and inclusive team sport that combines
elements of baseball and soccer. Here’s a basic explanation of how the game is
played to ensure you feel prepared and confident on the field. Keep in mind that
variations may exist depending on the specific rules your group chooses to follow,
but this outline should provide a solid foundation. 1. Teams and Setup: Divide
into two even teams, ideally with similar numbers of players (typically 8-12 per
team). Designate one team as the home team (they’ll be up to bat first), and the
other as the visiting team. Set up a diamond-shaped kicking area (the ”kickline”)
approximately 60 feet from a base diamond, similar to baseball. Mark out four bases
(first, second, third, and home) in a square shape around the diamond, with home
plate located at the end of the kickline. 2. Objective: The objective of kickball is to
score runs by hitting the ball with your foot and advancing around the bases before
returning to home plate safely. The opposing team aims to get outs by fielding the
ball and tagging runners with the ball or touching them with it while they’re not
on a base. 3. Batting: The batter stands at home plate and kicks the ball when
it’s pitched towards them by the pitcher from the opposing team. A runner may
advance from their base at the start of each pitch, but they must return to that base
before the ball is touched by a fielder or thrown to that base. If a runner advances
too far before returning to their base, they risk being tagged out in a force play.
4. Fielding: Fielders position themselves around the diamond and outfield to catch
fly balls or field grounders. They can also attempt to tag runners with the ball
while they’re advancing between bases or when they reach a base. Once a fielder
catches a fly ball or tags a runner, they record an out. A maximum of three outs
per inning is typical. 5. Scoring: Runners score by advancing around the bases
and returning safely to home plate. A run is scored when a player reaches home
plate after kicking the ball and successfully advances around all four bases without
being tagged out or reaching base before a preceding runner is retired (resulting in
that runner being forced out). 6. Inning Structure: Each team gets an opportunity
to bat in each half-inning. The inning ends when three outs are recorded by the
fielding team. Typically, games consist of multiple innings until one team reaches a
predetermined number of runs (e.g., five or ten). 7. Fair Play: Ensure that everyone
follows the rules and plays in good spirits. Kickball is meant to be an enjoyable
experience for all involved, so focus on having fun while staying mindful of safety
and fairness. If you feel unsure about any aspect of the game or suspect your sister
and her friends might be taking advantage of you, communicate openly with them
about your concerns and work together to find solutions that maintain a balanced
and enjoyable playing field for everyone.
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Table 7: Generation example of our fine-tuned model by APO at different iterations.

Prompt Hi, my sister and her girlfriends want me to play kickball with them. Can you
explain how the game is played, so they don’t take advantage of me?

Iteration 3 Hello! It’s great that your sister and her friends have invited you to join their kick-
ball game. Kickball is a fun, social, and inclusive sport, well-loved for its simplicity
and energy. To ensure you feel confident and prepared for the game, here’s a basic
explanation of how kickball rules typically work. Keep in mind that variations ex-
ist, so always clarify any specific rules with your group before playing. 1. Teams
and Setup: Divide into two teams, ideally through an evenly distributed random
draw or team selection process. Designate a field with clear boundaries using cones
or markers 2̆013 a diamond shape or rectangle works well. Each team defends
a designated home base (typically marked by a large cone or object). 2. Equip-
ment: A standard soccer ball is commonly used for kickball games. No specialized
equipment is required beyond that, although gloves may be worn for comfort or
to improve grip on the ball. 3. Objective: The objective of the game is to score
points by kicking the ball and successfully advancing around the bases 2̆013 first
base, second base, third base, and home plate 2̆013 before returning to home base.
A run is scored when a player reaches home base after completing a full circuit
around the bases. 4. Starting the Game: A coin toss determines which team bats
first. The fielding team positions themselves around the bases and in the outfield,
ready to receive the kicked ball. The batting team gathers near home plate with
a designated kicker ready to start the inning. 5. Kicking and Running: The kicker
takes a stance and kicks the ball forcefully with their foot, aiming for a solid contact
to launch the ball as far as possible. Runners on base attempt to advance based on
where the ball lands and how the fielding team reacts. 6. Fielding Rules: Fielders
must retrieve or touch the ball before a runner advances to the next base. Once a
fielder has the ball, they can tag runners with it to record outs. However, runners
can advance on a missed catch or an overthrow. If a fielder touches a base before a
runner arrives, the runner is out. 7. Scoring: A run is scored when a batter safely
kicks the ball and reaches first base, while teammates advance around the bases and
return to home plate before the inning ends (three outs). 8. Inning Structure: Each
team takes turns at-bat and in the field. Typically, an inning lasts until the fielding
team records three outs, at which point the teams switch roles. A game consists of
multiple innings, with the team with the most runs at the end declared the winner.
9. Fair Play and Sportsmanship: Encourage a friendly and respectful environment,
following the spirit of the game. Ensure all players understand the rules, and focus
on having fun rather than taking advantage of one another. If needed, consult your
group to establish additional guidelines or modifications to accommodate skill lev-
els and preferences. 10. Additional Tips: - Wear comfortable clothing and shoes
appropriate for running and kicking. - Stay hydrated and take breaks as needed. -
Communicate clearly with teammates and opponents. - Focus on improving your
skills, both as a kicker and a runner, to contribute effectively to your team. With this
foundational knowledge, you should feel more confident joining your sister and her
friends for a kickball game. Enjoy the experience and have fun!
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Table 8: Another generation example of our fine-tuned model by APO at different iterations.

Prompt How did US states get their names?

Iteration 1 The naming of US states reflects a rich and varied history, influenced by explor-
ers, Native American cultures, natural features, and political considerations. Here
are some common ways US states got their names: 1. Names derived from Native
American words: Many states’ names come from Native American languages or
place names. For example, California comes from the Spanish rendition of the Na-
tive American word ”Quercus californius,” meaning ”californio,” or ”californian,”
which referred to the native people or the abundant california trees. Florida’s name
comes from the Spanish word ”Pascuan Floridus,” meaning ”flowery land,” a term
used by explorer Juan Ponce de Le0̆0f3n, likely inspired by the abundant natu-
ral beauty he encountered. 2. Names inspired by explorers and European settlers:
Some states are named after famous explorers, settlers, or colonial founders. For in-
stance, Virginia was named after Queen Elizabeth I of England, who was known as
the ”Virgin Queen” due to her status as an unmarried monarch. Georgia was named
after King George II of Great Britain in honor of his support for the founding of a
colony there. 3. Names based on geographical features: Several states are named
after prominent geographical features, such as mountains, rivers, or bodies of water.
For example, Colorado’s name comes from the Spanish word ”colorado,” meaning
”red,” a term often used to describe the reddish hue of the area’s soil and water.
Montana’s name means ”mountainous” in Latin. 4. Names reflecting historical
events or early settlement patterns: Some states’ names are connected to significant
historical events or early settlement patterns. For instance, Maine was originally
called ”Norumbega” based on tales of a mythical northern land of abundance, but
was later renamed by English explorer John Smith to reflect its northern location
relative to Massachusetts. Texas was named by the Spanish as ”Tejas,” meaning
”friends” or ”allies,” due to the friendly reception given to Spanish explorers by the
local Caddo and Tonkawa tribes. 5. Names honoring political or ideological affilia-
tions: A few states’ names reflect political or ideological affiliations. For example,
Vermont was originally called ”New Vermont” or ”New England’s Plymouth” due
to its ties to the English county of Vermont and the Pilgrims of Plymouth Colony.
Later, when it sought independence from New York, the name was adopted as a
tribute to the revolutionary ideals of the Republic of Vermont. Overall, US states’
names offer a fascinating glimpse into the rich history of exploration, settlement,
and political development that shaped the American nation.
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Table 9: Another generation example of our fine-tuned model by APO at different iterations.

Prompt How did US states get their names?

Iteration 2 US states have varied histories regarding how they received their names, with some
derived from native place names or geographical features, others from explorers or
colonial founding figures, and still others from natural elements or symbolic con-
cepts. Here’s a brief overview of how some common state names came to be: 1.
Alabama: Derived from the Native American Chickasaw and Creek words ”alha-
homa” or ”allapaha,” meaning ”thicketed place” or ”place with ticklenut trees.” 2.
Alaska: Russian explorer Vitus Bering, who first documented the region in 1741,
named it ”Alaska” from the Russian words ”alas k0̆4300̆44f,” meaning ”great land”
or ”large country.” 3. Arizona: Named after the Arizona Mining District, which in
turn was derived from the Spanish term ”Arizonia,” meaning ”arid” or ”dry,” likely
in reference to the desert climate. 4. Arkansas: Originally called the ”Land of Hi-
eroglyphics” by early European explorers due to the abundance of Native American
petroglyphs found in the region. Later, it was named Arkansas after the Quapaw
tribe’s name for a village near present-day Osceola, which translates to ”people of
the south wind.” 5. California: Spanish explorer Juan Rodriguez Cabrillo is cred-
ited with giving the name ”California” to the region in 1542, possibly inspired by
the ancient mythical island of Califoria described by Greek geographer Ptolemy as
lying offshore west of the Pacific Ocean, abundant with gold and paradisiacal con-
ditions. 6. Colorado: Derived from the Spanish word ”colorado,” meaning ”red,”
likely in reference to the red soil and red sandstone formations found in the re-
gion. 7. Connecticut: Named by Dutch explorer Adriaen Block in honor of the
Mohegan and Montauk Sachems (tribal leaders) Huskera or Quinipet and Sinigtot
or Sitenico, whom he met in 1614. The name Connecticut comes from the Mohe-
gan word ”quinnipiac,” meaning ”long tidal river.” 8. Delaware: Named after Sir
Thomas West, 3rd Baron De La Warr, an English nobleman who served as the first
colonial governor in 1630. The name Delaware comes from the Delaware River,
which was named after the Lenape Native American tribe, whose name means ”up-
stream people” or ”people of the cleared land.” 9. Florida: Spanish explorer Juan
Ponce de Le0̆0f3n is credited with discovering Florida in 1513 and naming it after
”Pascua Florida,” meaning ”feast of flowers,” likely due to the abundant bloom-
ing vegetation he encountered during his expedition. 10. Georgia: Named after
King George II of Great Britain in honor of his support for establishing a colony
there in 1732. 11. Hawaii: The islands’ indigenous Polynesian name, ”Hawaii
Loa,” translates to ”long home” or ”homeland,” reflecting the archipelago’s unique
identity as a distinct and unified cultural entity. The name Hawaii became widely
known to Europeans through British explorer James Cook, who visited in 1778 and
adopted it for the larger island of Hawaii in his charts. 12. Idaho: Derived from a
Shoshone Native American word, ”hee-da-ho,” meaning ”gem of the mountains” or
”the sun comes from the waters.” This name was popularized during the late 19th
century when Idaho was being considered for statehood. 13. Illinois: Derived from
a Native American word, ”Illiniwek,” meaning ”tribe of superior men” or ”tribe
dwelling properly.” This term referred to various tribes within the Illini Confeder-
acy, which inhabited much of present-day Illinois prior to European contact. 14.
Indiana: Named after the Native American term ”Indian0̆0e1,” meaning ”land of
the Indians,” reflecting that the region was inhabited by various Native American
tribes when European settlers arrived. 15. Iowa: Derived from a Native American
word, ”ayoua,” meaning ”prairie” or ”beautiful land.” This name was popularized
during the late 19th century when Iowa was being considered for statehood. These
examples represent just a fraction of US states and their unique origin stories. Many
other states have names rooted in Native American languages, European explorers,
geographical features, or symbolic concepts.
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Table 10: Another generation example of our fine-tuned model by APO at different iterations.

Prompt How did US states get their names?

Iteration 3 US states have varied histories regarding how they earned their names. Here are
some common ways and specific examples: 1. Indigenous Place Names: Many
state names originate from Native American languages spoken by tribes inhabiting
the regions prior to European exploration. For instance: - Florida: Derived from
the Native American word ”Pvscaleola ” or ”Scal scal lla, ” meaning ”flowing wa-
ter ” or ”land of flowers, ” depending on the specific indigenous tribe. European
explorer Juan Ponce de Leon may have chosen this name based on reports of native
peoples and their designations for the land. - Missouri: Derived from the Missouri
River, which in turn took its name from the Miwoksi or Missouri Nation, a Siouan-
speaking people inhabiting the area at the time of French explorer Louis Jolliet and
Jacques Marquette’s passage in 1673. Their name translates roughly to ”people of
large canoes. ” 2. European Explorers and Settlers: Many states were named after
early European explorers, settlers, or monarchs. For example: - Virginia: Named
after Queen Elizabeth I of England in honor of her reign and patronage, specifi-
cally her title ”the Virgin Queen. ” Sir Walter Raleigh, who received a royal charter
to establish colonies in North America, chose this name. - California: Named by
Spanish explorer Vasco N0̆0fa0̆0f1ez de Balboa in 1542, who gave it the Latinized
name ”California ” after the Classical mythological figure Californias, who was
believed to inhabit a paradisiacal island on the western edge of the known world.
3. Natural Features: Some states bear names inspired by distinctive geographic or
topographical features. For instance: - Colorado: Derived from the Spanish ”col-
orado, ” meaning ”red ” 2̆013 a reference to the red soil and rock formations found
throughout the region. - Mo ntana: Named for the Latin word ”montanus, ” mean-
ing ”mountainous. ” 4. Historical Events: A few states have names connected to
significant historical events. For example: - Texas: Derived from the Spanish ”Te-
jas, ” meaning ”friends ” or ”allies. ” The name referred to the indigenous peoples
who initially welcomed Spanish explorers in the late 16th century. Later, Mexico
used the name when it ruled the region, and after Texas gained independence in
1836, the name remained. - Wisconsin: Named by French explorer Jean Nicolet
in 1634 after the native peoples he encountered, the ”Wisconsin ” or ”Meskous-
ing ” 2̆013 an Algonquian-speaking people. The name ”Wisconsin ” is believed to
mean ”gathering place ” or ”place of the red people. ” 5. Symbolic Meanings: In
some cases, state names reflect symbolic or metaphorical concepts. For example:
- Nevada: Derived from the Spanish ”nevado, ” meaning ”snow-covered mountain
range, ” which aptly describes the state’s mountainous terrain and its name’s asso-
ciation with the silver rush that brought settlers to the area in the late 19th century
(the silver being referred to as ”white gold ” or ”silver snow ”). These examples
illustrate just a few ways US states have acquired their names throughout history.
The specific origins of each state name are complex and often intertwined with the
rich tapestry of indigenous, European, and American cultural influences that have
shaped the United States.
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