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Abstract

DNA Language Models, such as GROVER,
DNABERT?2 and the Nucleotide Transformer,
operate on DNA sequences that inherently
contain sequencing errors, mutations, and
laboratory-induced noise, which may signif-
icantly impact model performance. Despite
the importance of this issue, the robustness of
DNA language models remains largely under-
explored. In this paper, we comprehensivly in-
vestigate their robustness in DNA classification
by applying various adversarial attack strate-
gies: the character (nucleotide substitutions),
word (codon modifications), and sentence lev-
els (back-translation-based transformations) to
systematically analyze model vulnerabilities.
Our results demonstrate that DNA language
models are highly susceptible to adversarial at-
tacks, leading to significant performance degra-
dation. Furthermore, we explore adversarial
training method as a defense mechanism, which
enhances both robustness and classification ac-
curacy. This study highlights the limitations
of DNA language models and underscores the
necessity of robustness in bioinformatics.

1 Introduction

Transformer-based language models are increas-
ingly being adopted in bioinformatics, leverag-
ing NLP techniques to tackle sequence classi-
fication and functional prediction tasks, which
have traditionally relied on alignment-based meth-
ods(Steinegger and S6ding, 2017; Buchfink et al.,
2021).  Notably, language models such as
DNABERT?2 (Zhou et al., 2023), Nucleotide Trans-
former (Dalla-Torre et al., 2023), and GROVER
(Sanabria et al., 2024) leverage large-scale genomic
sequence data as textual data and are specialized
for specific bioinformatics downstream tasks. By
treating DNA sequences not merely as strings but
as sequence data with contextual information, these
models introduce a novel approach to solving bioin-
formatics problems.
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Figure 1: Adversarial examples with nucleotides and
codon change, which will be misclassified by a non-
promoter to a promoter.

However, despite these advancements, the ro-
bustness of DNA language models remains under-
explored. In real-world biological environments,
DNA sequences are susceptible to sequencing er-
rors, mutations, and data noise introduced during
the extraction process in laboratories (Ono et al.,
2021; Ma et al., 2019). However, there is a lack of
systematic research analyzing the impact of such
variations on model performance. While robust-
ness studies on language models have been active
in text classification, research on DNA sequence
classification models remains limited. Given the
increasing adoption of DNA classification models
in clinical and biotechnological applications, it is
crucial to assess their reliability in real-world sce-
narios.

In this paper, we explore the adversarial ro-
bustness of DNA language models in classifi-
cation tasks. In addition to existing character-
level attacks (nucleotide-level attacks (Kuleshov
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Figure 2: Anti-Microbial Resistance (AMR) gene Classification and Promoter Detection Results

et al., 2021)), we introduce word-level (codon-
level) and sentence-level (backtranslation) attacks.
We demonstrate that these attacks lead to signif-
icant performance degradation in Anti-Microbial
Resistance (AMR) gene classification (Yoo et al.,
2024) and promoter detection (Zhou et al., 2023).

Furthermore, we investigate whether a simple
adversarial training strategy can mitigate the vul-
nerabilities of DNA language models. The results
show that while its effectiveness varies by attack
type and dataset, it enhances robustness and can
occasionally improve overall model performance.

Our main contributions can be summarized into
three folds:

* We comprehensively explore the robustness
of DNA language models through multi-
granularity attack levels: character-level
(nucleotide-level), word-level (codon-level),
and sentence-level (back-translation). No-
tably, we introduce codon-level and back-
translation attacks, extending the scope be-
yond conventional character-level perturba-
tions for a more thorough robustness evalu-
ation.

* We demonstrate that increasing perturba-
tion strength causes the most severe perfor-
mance degradation in nucleotide-level pertur-
bations,thought at the risk of disrupting bio-
logical context. In the AMR gene classifica-
tion with drug labels task, our proposed back-

translation-based perturbations effectively de-
grade classification performance while pre-
serving semantic meaning.

* We show that even simple adversarial train-
ing effectively mitigates vulnerabilities and
improves classification accuracy over the orig-
inal model, highlighting its potential to en-
hance the real-world reliability of DNA clas-
sification models.

2 Related Work

Adversarial Attacks in Text Classification Ad-
versarial attacks in text classification can be broadly
categorized into character-level, word-level, and
sentence-level attacks (Ebrahimi et al., 2018b).
Character-level attacks involve random substitu-
tions at the character level, or modifications at
the word embedding or language model level (Jia
and Liang, 2017; Alzantot et al., 2018). Word-
level attacks follow a similar approach. Sentence-
level attacks include paraphrasing, backtranslation
(Ribeiro et al., 2018), and sentence embedding-
level perturbations. (Zhang et al., 2019).

Adversarial Attacks in DNA Sequence Classi-
fication Kuleshov et al. (2021) and Montserrat
and Ioannidis (2022) demonstrated that nucleotide-
level adversarial attacks, including perturbations on
single nucleotide polymorphism (SNP)-based an-
cestry classification models, significantly degrade
the performance of DNA sequence classifiers. In



this paper, inspired by word-level and sentence-
level perturbations, we further explore codon-level
attacks and backtranslation-based DNA attacks.

Adversarial Training Several studies have
shown that adversarial training enhances model
robustness (Madry et al., 2018; Zhang et al., 2022;
Liu and Sun, 2023), including in DNA sequence
classification, where character-level adversarial ex-
amples are used to improve resilience (Kuleshov
et al., 2021; Montserrat and Ioannidis, 2022).

3 Adversarial Attack on DNA Language
Models

We examine the impact of adversarial attacks on
DNABERT?2 (Zhou et al., 2023), Nucleotide Trans-
former (Dalla-Torre et al., 2023), and GROVER
(Sanabria et al., 2024) across three levels at-
tack strategies: character-level (nucleotide sub-
stitutions (Kuleshov et al., 2021)), word-level
(codon modifications), and sentence-level (back-
translation-based transformations). Our analysis fo-
cuses on DNA classification task using AMR gene
(Yoo et al., 2024) and promoter detection (Zhou
et al., 2023). Further implementation details and
benchmark details are provided in Appendix A and
Appendix B.

Nucleotide-Level Attack Nucleotides are the
fundamental building blocks of nucleic acids, such
as DNA and RNA, crucial for storing and transmit-
ting genetic information. In DNA sequences, nu-
cleotides are represented by single characters, mak-
ing nucleotide-level attacks analogous to character-
level attacks in text. We conducted nucleotide-
level attacks using an enumeration approach com-
bined with trial and error search methods (Iyyer
et al., 2018; Ribeiro et al., 2018; Belinkov and
Bisk, 2018).

Codon-Level Attack A codon is a sequence of
three nucleotides in DNA or RNA that specifies
a particular amino acid. Codons are essential for
protein synthesis. Codon-level attack is similar
to word-level attacks and is also performed using
the enumeration search method including trial and
error.

Backtranslation Attack We introduce backtrans-
lation based attack method for DNA sequences.
In biological translation, translation refers to con-
verting mRNA sequences into protein amino acid
sequences, and reverse translation refers to generat-

ing possible nucleotide sequences based on protein
amino acid sequences.

4 Results

4.1 Attack Effectiveness and Context
Preservation

In Figure 2, nucleotide-level attacks (Kuleshov
et al., 2021) result in the most significant perfor-
mance degradation. While these attacks are highly
effective, they also pose a considerable risk of alter-
ing the DNA sequence’s meaning, as discussed in
Appendix D. Conversely, codon-level attacks are
better at preserving sequence meaning since they
group sequences based on meaningful units, such
as codons. Backtranslation attacks preserve context
the best but are relatively less effective in reducing
accuracy. This trend is evident in the first graph,
where there is a sharp decline in model accuracy
with increasing epsilon values for nucleotide-level
attacks, particularly affecting DNABERT?2 (Zhou
et al., 2023). In contrast, the Nucleotide Trans-
former maintaines relatively high accuracy even as
epsilon increased.

4.2 Model Robustness Comparison

The Nucleotide Transformer (Dalla-Torre et al.,
2023) and GROVER (Sanabria et al., 2024)
demonstrate superior robustness compared to
DNABERT?2 (Zhou et al., 2023). Due to its larger
model capacity and ability to handle longer se-
quences, the Nucleotide Transformer exhibits in-
creased resistance to adversarial attacks. Compared
to DNABERT?2, GROVER employs an extensive
BPE optimization process involving hundreds of
iterations and incorporates an LSTM architecture,
enhancing its ability to model long-range depen-
dencies in DNA sequences. These architectural
refinements are likely to improve its robustness
against adversarial attacks. This robustness is par-
ticularly notable in experiments involving back-
translation attacks. The second graph in Figure 2
illustrates that DNABERT?2’s accuracy significantly
drops with increasing iterations, whereas the Nu-
cleotide Transformer and GROVER maintain high
accuracy, demonstrating its robustness due to its
larger model capacity or longer sequence process-
ing capabilities.

Moreover, DNABERT2 promoter detection
model demonstrates greater robustness compared
to DNABERT?2 AMR drug classification models,
potentially due to the larger volume of training
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Figure 3: Comparison of success rates and accuracies between adversarial training and standard training in AMR
gene Classification across increasing iterations of backtranslation attacks

data utilized. As illustrated in the third graph,
with increasing epsilon values, the accuracy of
DNABERT?2 promoter detection model declines,
though to a lesser extent than in AMR detec-
tion models. However, DNABERT?2 still per-
forms worse than the Nucleotide Transformer and
GROVER under nucleotide-level attacks. The
fourth graph further shows that, in AMR drug clas-
sification tasks, the Nucleotide Transformer and
GROVER maintain the highest accuracy against
backtranslation attacks, whereas DNABERT?2 ap-
pears to be relatively more vulnerable to backtrans-
lation attacks. We further address the robustness of
general language model in Appendix E.

4.3 Comparative Analysis of Classification
Tasks

The experimental results indicate that the Nu-
cleotide Transformer and GROVER possess higher
robustness against adversarial attacks compared to
DNABERT?2, especially in the context of backtrans-
lation attacks. Additionally, DNABERT? trained
with larger datasets, such as those used for pro-
moter detection, demonstrates enhanced robustness.
This comparative analysis highlights the impor-
tance of model capacity, training data size and The
ability to process long sequences in improving the
resilience of DNA sequence classification models
against various adversarial attack methods.

4.4 Performance Against Defense Method

We further investigate adversarial training as a de-
fense mechanism against adversarial attacks, in-
corporating adversarial examples into the training
process to improve model robustness.

Figure 3 illustrates the changes in success rate
and accuracy over iterations when applying the
Back-translate attack in the AMR drug classifica-
tion task. The results indicate that the success rate
of adversarially trained models (red) increases at
a slower rate compared to standard training mod-
els (black). This suggests that adversarial training
enhances the model’s robustness against attacks,

leading to a relatively lower attack success rate.
Furthermore, the accuracy graphs show that ad-
versarially trained models (red) exhibit a smaller
decline in accuracy compared to standard training
(black). This observation implies that adversarial
training improves the model’s generalization per-
formance and mitigates performance degradation
when exposed to adversarial attacks. For GROVER
and DNABERT?2, the initial accuracy of adversari-
ally trained models is lower than that of standard
training models in Figure 5 and Figure 7. However,
as iterations increase, adversarially trained mod-
els demonstrate relatively higher accuracy, indicat-
ing that repeated exposure to attacks reinforce the
model’s resilience. In contrast, Nucleotide Trans-
former exhibits superior robustness, with adversari-
ally trained models outperforming standard training
models in accuracy from the outset. Additionally,
the accuracy degradation over iterations is the least
pronounced among the three models. This suggests
that the larger model capacity and ability to han-
dle longer sequences of Nucleotide Transformer
further amplify the benefits of adversarial training,
making it more resistant to adversarial perturba-
tions. Further details are described in Appendix C

5 Conclusion

In this study, we utilize three methods to gener-
ate DNA adversarial examples, proposing tech-
niques for generating adversarial examples using
nucleotide based attack, codon-based attacks and
backtranslation. These methods successfully de-
grade the performance of AMR drug classification
and promoter detection models. Nucleotide-level
attacks are the most effective, although they risk
disrupting the DNA context. Conversely, back-
translation better preserves meaning and context.
Notably, adversarial training as a defense strategy
proves effective in improving model robustness,
and in some cases, even surpassing the performance
of standard training methods. By leveraging ad-
versarial training, models become more resilient
against such attacks.



Limitations

This study has several limitations. First, the
datasets used are limited to AMR gene classifi-
cation with drug classes which may restrict the gen-
eralization of the results. Expanding experiments
to include datasets such as AMR gene families or
AMR mechanisms would provide a more compre-
hensive evaluation of adversarial robustness.

The study evaluates adversarial attack methods
on three distinct DNA language models such as
DNABERT?2, GROVER, and Nucleotide Trans-
former. While these models cover a range of archi-
tectures and sizes, extending the evaluation to ad-
ditional DNA classification models could provide
further insights into model-specific robustness.

Nucleotide-level attacks, though effective, risk
altering the biological meaning of DNA sequences.
Their impact is assessed through CG content,
species recognition rate, and mapping rate via
NCBI BLAST, demonstrating the effectiveness of
our approach. While these metrics provide valu-
able insights, further validation in real biological
experiments could strengthen the findings.

Backtranslation methods help preserve sequence
meaning and context, as indicated by CG content
ratios and species recognition, supporting their role
in enhancing model robustness. While our eval-
uations offer a foundation, additional experimen-
tal verification could further solidify these conclu-
sions.

Ethical Considerations

This study focuses on adversarial robustness in
DNA language models and does not involve human
subjects or sensitive data. The adversarial attack
methods used are intended for evaluating and im-
proving model reliability in bioinformatics, not for
malicious purposes. However, it is important to
acknowledge the potential risks of adversarial at-
tacks in bioinformatics applications, where model
vulnerabilities could impact genomic analysis and
medical decision-making.
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A Implementation Details
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Figure 4: Overview of Adversarial Training(Fine-
tuning) for DNA Language Models and Testing Ad-
versarial Attacks

We utilize LoRA (Hu et al., 2022) to finetune
the DNA language models for each benchmarks.
The learning rate is set to 0.0005, the number of
epochs is 2, the batch size is 64. Single A100
GPU is used, and and the entire process takes
approximately one hour. The number of param-
eters for each model is as follows: DNABERT-
2 (117M), Nucleotide Transformer (2.5B), and
GROVER (90M). DNABERT-2 is available un-
der the Apache License 2.0, and Nucleotide Trans-
former is distributed under the CC BY-NC-SA 4.0
License. The GROVER model, as hosted on Hug-
ging Face (PoetschLab/GROVER), does not have a
publicly specified license.

B Details of Benchmarks

Antimicrobial Resistance Classification We
employ the methodology outlined in Yoo et al.
(2024) to integrate datasets from CARD v2 (Alcock
et al., 2020) and MEGARes v3 (Bonin et al., 2023)
for investigating antibiotic resistance. Classes with
fewer than 15 instances are excluded. The remain-
ing data is divided into training, testing, and val-
idation sets, maintaining the same proportions as
the study. Data integration is performed using the
European Bioinformatics Institute Antibiotic Re-
sistance Ontology (EBI ARO; Cook et al., 2016),
with irrelevant classes excluded. Overall, the drug
class classification dataset for AMR gene classi-
fication is split into 75% training data, 20% test
data, and 5% validation data. There are a total of
9 drug classes. The MEGARes dataset is available

under the MIT License, and the CARD dataset is
distributed under the CC BY-NC 4.0 License.

Promoter Detection The promoter detection
data from the Genome Understanding Evalua-
tion (GUE) benchmark dataset introduced in the
DNABERT-2 is used to detect promoters in gene
sequences (Zhou et al., 2023). Promoters are DNA
sequences that regulate the initiation of gene tran-
scription and play a crucial role in gene expression
regulation and understanding biological phenom-
ena.

The data is extracted from gene sequences of
various species, providing a broad context for bi-
ological research. Each data point includes both
sequences that contain promoters and those that do
not, enabling the model to learn how to distinguish
promoters. This dataset includes complex promoter
sequence elements known as MIX elements, which
are found in specific genes. We utilize the prom
300 all dataset from the GUE benchmark for pro-
moter detection. The dataset is splited into ap-
proximately 80% training, 10% development, and
10% test data, with 2 classes for binary classifica-
tion. The GUE dataset is distributed along with
DNABERT-2, which is available under the Apache-
2.0 License.

C Comparisons of Adversarial Training
and Standard Training

Figure 5, Figure 6, Figure 7, and Figure 8 compare
the performance differences between adversarially
trained models and conventionally trained mod-
els (black) as the number of attack iterations and
perturbation magnitude (epsilon) increase. Epsilon
represents the rate of change in the sequence for the
attack, indicating the proportion of the sequence
that is altered. Iterations indicate the number of
times the attack is performed. While all models
experience a decrease in accuracy as the number of
iterations and perturbation levels increase, adver-
sarially trained models generally maintain higher
accuracy and exhibit a more gradual decline in
performance. In terms of attack success rate, con-
ventionally trained models show a sharp increase in
attack success as the number of iterations and per-
turbation magnitude grow, whereas adversarially
trained models exhibit a more moderate increase,
demonstrating greater resistance to adversarial at-
tacks. These findings suggest that adversarial train-
ing effectively enhances model robustness against
iterative attacks and higher perturbation magni-
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Figure 5: Comparison of Adversarial Training and Standard Training in Promoter Detection with Increasing
Iterations
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Figure 6: Comparison of Adversarial Training and Standard Training in Promoter Detection Across Different
Perturbation Levels
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Figure 7: Comparison of Adversarial Training and Standard Training in Antimicrobial Resistance Drug Classification

with Increasing Iterations
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Figure 8: Comparison of Adversarial Training and Standard Training in Antimicrobial Resistance Drug Classification
Across Different Perturbation Levels



tudes while mitigating performance degradation.
Figures present accuracy and success rate trends
under different perturbation settings. However, all
results are based on a single run.

D Adversarial DNA Sequence validation

D.1 Promoter Detection Sequence validation
G+C o
A+T+G+C

To validate adversarial sequences in promoter
detection, we compared the GC content of the orig-
inal sequences and the adversarially generated se-
quences. Prior research has highlighted the strong
correlation between promoter regions and GC con-
tent (Umarov et al., 2019). Using this insight, we
assess whether the adversarial sequences maintain
a similar GC content distribution to the original se-
quences. We calculate the GC content percentage
using Equation 1.

Specifically, we measure the Pearson correlation
coefficient (Pearson, 1896) between the GC content
of original and adversarial sequences to quantify
their similarity. This approach allows us to evaluate
whether the adversarial sequences retain key GC
content characteristics, providing an initial valida-
tion measure.

Table 1 demonstrates a decreasing trend in the
Pearson correlation coefficient of GC content be-
tween the original and perturbed sequences as the
perturbation level increases. This trend is observed
in both nucleotide-level and codon-level attacks,
where a higher perturbation parameter (e) results
in a lower Pearson correlation coefficient. Table
2 presents the Pearson correlation coefficient be-
tween the original sequences and perturbed se-
quences as the number of iterations increases for
nucleotide-level, codon-level, and backtranslation-
based attacks. Across all attack methods, the Pear-
son correlation coefficient decreases as the num-
ber of iterations increases. However, in the case
of backtranslation, the decline is less pronounced
compared to nucleotide-level and codon-level at-
tacks, which may suggest that backtranslation bet-
ter preserves the contextual integrity of the original
sequences.

GC% = x 100

D.2 Antimicrobial Resistance Drug
classification Sequence validation

To evaluate the effectiveness of adversarial DNA
sequences for attacks as the number of iterations
and the magnitude of perturbations increase, we
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utilize the BLAST (Basic Local Alignment Search
Tool(Altschul et al., 1990)) database mapping API
provided by the National Center for Biotechnology
Information (NCBI)(Johnson et al., 2008).

Analysis of the BLAST mapping results reveal
a gradual decline in the mapping rate of adversar-
ially perturbed sequences as the same species as
the original test dataset, as the intensity of adver-
sarial perturbations increased. Specifically, when
the perturbation magnitude is small, the perturbed
sequences are mapped as the same species as the
original sequence. However, as the perturbation
magnitude increases, the likelihood of being classi-
fied as a different species increases. This indicates
that adversarial attacks effectively induce classifi-
cation perturbations in the intended direction. How-
ever, if the perturbed sequences are classified as
entirely different species, the effectiveness of the at-
tack sequences may be somewhat diminished. Ide-
ally, a adversarial sequence should not excessively
distorted the biological properties of the sequence.
Excessive perturbation, however, may result in ad-
versarial sequences being recognized as entirely
different species, which could undermine their in-
tended effectiveness.

Additionally, we examine cases where BLAST
fails to clearly match the input sequence to any
species in the existing database (i.e., cases where
BLAST does not recognize the sequence). The
results indicate that as the intensity of the adver-
sarial attack increases, the proportion of sequences
that BLAST fails to recognize rose sharply. This
suggests that larger perturbations lead to greater dis-
tortion of the biological properties of the original
DNA sequences. In particular, for iterations, both
the mapping rate and recognition rate are signifi-
cantly low, suggesting that the results may not fully
align with real-case scenarios. However, similar
to the validation of promoter detection sequences,
applying backtranslation results in higher mapping
and recognition rates compared to nucleotide-level
and codon-level attacks. This may indicate that
backtranslation relatively better preserves the con-
textual integrity of the sequences. Consequently,
in such cases, the effectiveness of the adversarial
sequences may also be reduced, further distancing
them from the natural noise present in real-world
conditions. This is particularly evident in multi-
iteration nucleotide and codon-level attacks, as well
as backtranslation, where recognition and mapping
rates in the BLAST database are significantly low,
making them a form of worst-case performance



€

Nucleotide-level Attack Codon-level Attack

0.1 0.9910
0.2 0.9788
0.3 0.9614
0.4 0.9361
0.5 0.8990

0.9903
0.9776
0.9592
0.9327
0.8970

Table 1: Pearson Correlation Coefficient of GC content based on perturbation (¢) for different attack strategies.

Iteration Nucleotide-level Attack Codon-level Attack Back-translation Attack

10 0.9525
20 0.8911
30 0.8512
40 0.8236
50 0.8068

0.9481 0.9303
0.8925 0.9271
0.8498 0.9264
0.8193 0.9250
0.7987 0.9270

Table 2: Pearson Correlation Coefficient of GC content based on iteration for different attack strategies.

Nucleotide-Level Attack

ppppp

(epsilon)

(epsilon)

Figure 9: Accuracy and attack success rate (ASR) un-
der codon-level and nucleotide-level perturbations in
Antimicrobial Resistance Drug Classification Across
Different Perturbation Levels

exploration.

E Adversarial Evaluation of GPT-40 on
DNA AMR Classification

We present additional analysis on the adversar-
ial robustness of gpt-40-mini-2024-07-18 fine-
tuned for DNA AMR classification. This study has
demonstrated that DNA Language Models are vul-
nerable to adversarial attacks, and we extend this
investigation to examine whether general-purpose
LLMs, when adapted for biological sequence clas-
sification, exhibit similar weaknesses.

By applying codon-level and nucleotide-level
perturbations, we observe a sharp decline in model
accuracy as perturbation intensity increased (drop-
ping to 31.76% at the highest level), while the at-
tack success rate (ASR) rises to a maximum of
60.67% in Figure 9.

With the growing interest in applying LLMs to
DNA sequence analysis (Sarumi and Heider, 2024;
Liu et al., 2024), ensuring robustness remains a
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critical challenge. Adversarial training and domain-
specific robustness strategies may be necessary to
enhance the reliability of such models in biological
sequence tasks.

F Effect of Realistic Sequencing Errors
on Robustness

To evaluate model robustness under more realis-
tic sequencing scenarios, we simulate sequencing
errors using PBSIM2 (Ono et al., 2021), incorpo-
rating real-world error patterns observed in PacBio
and Oxford Nanopore sequencing. Sequencing Er-
ror Simulation is a technique used to model errors
occurring during the genome sequencing process,
playing a crucial role in genome analysis, algorithm
evaluation, and robustness assessment in bioinfor-
matics. PBSIM2, widely used for this purpose,
simulates insertion, deletion, and substitution er-
rors, as well as the length distribution observed in
long-read sequencing technologies such as PacBio
and Oxford Nanopore, enabling the generation of
reads that closely resemble real sequencing data.
The simulated sequencing error data can be utilized
to test model robustness by incorporating noise
similar to that encountered in real sequencing ex-
periments. This holds significant importance from
the perspective of adversarial training and robust-
ness assessment, as it helps deep learning-based
genomic analysis models maintain predictive accu-
racy while improving their resilience to sequencing
errors. Our experiments show that the model’s
performance degrades under these conditions, in-
dicating that realistic sequencing errors can pose
a challenge to robustness. In the promoter detec-



¢  Nucleotide-level Attack Codon-level Attack

0.1 93.05 92.60
0.2 70.35 85.98
0.3 16.25 75.81
0.4 1.36 46.15
0.5 0.50 13.03

Table 3: Species Matching rate (%) based on perturbation (¢) for different attack strategies.

¢  Nucleotide-level Attack Codon-level Attack

0.1 99.75 99.88
0.2 84.49 99.88
0.3 25.56 96.40
0.4 2.61 68.98
0.5 0.62 24 .81

Table 4: Recognition Rate (%) based on perturbation (¢) for different attack strategies.

tion task with Nucleotide Transformer, accuracy
dropped from 0.8892 to 0.8608.
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Iteration Nucleotide-level Attack Codon-level Attack Back-translation Attack

10 0.25 1.24 1.99
20 0.25 0.25 2.73
30 0.25 0.25 3.47
40 0.25 0.25 1.61
50 0.25 0.25 3.10

Table 5: Species Matching rate (%) based on iteration for different attack strategies.

Iteration Nucleotide-level Attack Codon-level Attack Back-translation Attack

10 0.25 1.99 15.63
20 0.25 0.25 16.63
30 0.25 0.25 18.11
40 0.25 0.25 18.73
50 0.37 0.25 16.63

Table 6: Species Recognition rate (%) based on iteration for different attack strategies.
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