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Abstract

DNA Language Models, such as GROVER,001
DNABERT2 and the Nucleotide Transformer,002
operate on DNA sequences that inherently003
contain sequencing errors, mutations, and004
laboratory-induced noise, which may signif-005
icantly impact model performance. Despite006
the importance of this issue, the robustness of007
DNA language models remains largely under-008
explored. In this paper, we comprehensivly in-009
vestigate their robustness in DNA classification010
by applying various adversarial attack strate-011
gies: the character (nucleotide substitutions),012
word (codon modifications), and sentence lev-013
els (back-translation-based transformations) to014
systematically analyze model vulnerabilities.015
Our results demonstrate that DNA language016
models are highly susceptible to adversarial at-017
tacks, leading to significant performance degra-018
dation. Furthermore, we explore adversarial019
training method as a defense mechanism, which020
enhances both robustness and classification ac-021
curacy. This study highlights the limitations022
of DNA language models and underscores the023
necessity of robustness in bioinformatics.024

1 Introduction025

Transformer-based language models are increas-026

ingly being adopted in bioinformatics, leverag-027

ing NLP techniques to tackle sequence classi-028

fication and functional prediction tasks, which029

have traditionally relied on alignment-based meth-030

ods(Steinegger and Söding, 2017; Buchfink et al.,031

2021). Notably, language models such as032

DNABERT2 (Zhou et al., 2023), Nucleotide Trans-033

former (Dalla-Torre et al., 2023), and GROVER034

(Sanabria et al., 2024) leverage large-scale genomic035

sequence data as textual data and are specialized036

for specific bioinformatics downstream tasks. By037

treating DNA sequences not merely as strings but038

as sequence data with contextual information, these039

models introduce a novel approach to solving bioin-040

formatics problems.041

A T G C G T A C G T T . . . . . . .

non-promoter

A T G C G T A C G C T . . . . . . .

promoter

. . . G G C T T T G A T T G G . . .

non-promoter

. . . G G C T T T G A T G G A . . .

promoter

Figure 1: Adversarial examples with nucleotides and
codon change, which will be misclassified by a non-
promoter to a promoter.

However, despite these advancements, the ro- 042

bustness of DNA language models remains under- 043

explored. In real-world biological environments, 044

DNA sequences are susceptible to sequencing er- 045

rors, mutations, and data noise introduced during 046

the extraction process in laboratories (Ono et al., 047

2021; Ma et al., 2019). However, there is a lack of 048

systematic research analyzing the impact of such 049

variations on model performance. While robust- 050

ness studies on language models have been active 051

in text classification, research on DNA sequence 052

classification models remains limited. Given the 053

increasing adoption of DNA classification models 054

in clinical and biotechnological applications, it is 055

crucial to assess their reliability in real-world sce- 056

narios. 057

In this paper, we explore the adversarial ro- 058

bustness of DNA language models in classifi- 059

cation tasks. In addition to existing character- 060

level attacks (nucleotide-level attacks (Kuleshov 061

1



0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Promoter Detection across Perturbation

0 10 20 30 40 50
0.2

0.4

0.6

0.8

Promoter Detection across Iteration

0 0.1 0.2 0.3 0.4 0.5
Epsilon

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Antimocrobial Resistance Classification across Perturbation

0 10 20 30 40 50
Iterations

0.0

0.2

0.4

0.6

0.8

Antimocrobial Resistance Classification across Iteration

DNABERT2 (nucleotide)
DNABERT2 (codon)
DNABERT2 (backtranslation)

NT (nucleotide)
NT (codon)
NT (backtranslation)

GROVER (nucleotide)
GROVER (codon)
GROVER (backtranslation)

Figure 2: Anti-Microbial Resistance (AMR) gene Classification and Promoter Detection Results

et al., 2021)), we introduce word-level (codon-062

level) and sentence-level (backtranslation) attacks.063

We demonstrate that these attacks lead to signif-064

icant performance degradation in Anti-Microbial065

Resistance (AMR) gene classification (Yoo et al.,066

2024) and promoter detection (Zhou et al., 2023).067

Furthermore, we investigate whether a simple068

adversarial training strategy can mitigate the vul-069

nerabilities of DNA language models. The results070

show that while its effectiveness varies by attack071

type and dataset, it enhances robustness and can072

occasionally improve overall model performance.073

Our main contributions can be summarized into074

three folds:075

• We comprehensively explore the robustness076

of DNA language models through multi-077

granularity attack levels: character-level078

(nucleotide-level), word-level (codon-level),079

and sentence-level (back-translation). No-080

tably, we introduce codon-level and back-081

translation attacks, extending the scope be-082

yond conventional character-level perturba-083

tions for a more thorough robustness evalu-084

ation.085

• We demonstrate that increasing perturba-086

tion strength causes the most severe perfor-087

mance degradation in nucleotide-level pertur-088

bations,thought at the risk of disrupting bio-089

logical context. In the AMR gene classifica-090

tion with drug labels task, our proposed back-091

translation-based perturbations effectively de- 092

grade classification performance while pre- 093

serving semantic meaning. 094

• We show that even simple adversarial train- 095

ing effectively mitigates vulnerabilities and 096

improves classification accuracy over the orig- 097

inal model, highlighting its potential to en- 098

hance the real-world reliability of DNA clas- 099

sification models. 100

2 Related Work 101

Adversarial Attacks in Text Classification Ad- 102

versarial attacks in text classification can be broadly 103

categorized into character-level, word-level, and 104

sentence-level attacks (Ebrahimi et al., 2018b). 105

Character-level attacks involve random substitu- 106

tions at the character level, or modifications at 107

the word embedding or language model level (Jia 108

and Liang, 2017; Alzantot et al., 2018). Word- 109

level attacks follow a similar approach. Sentence- 110

level attacks include paraphrasing, backtranslation 111

(Ribeiro et al., 2018), and sentence embedding- 112

level perturbations. (Zhang et al., 2019). 113

Adversarial Attacks in DNA Sequence Classi- 114

fication Kuleshov et al. (2021) and Montserrat 115

and Ioannidis (2022) demonstrated that nucleotide- 116

level adversarial attacks, including perturbations on 117

single nucleotide polymorphism (SNP)-based an- 118

cestry classification models, significantly degrade 119

the performance of DNA sequence classifiers. In 120
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this paper, inspired by word-level and sentence-121

level perturbations, we further explore codon-level122

attacks and backtranslation-based DNA attacks.123

Adversarial Training Several studies have124

shown that adversarial training enhances model125

robustness (Madry et al., 2018; Zhang et al., 2022;126

Liu and Sun, 2023), including in DNA sequence127

classification, where character-level adversarial ex-128

amples are used to improve resilience (Kuleshov129

et al., 2021; Montserrat and Ioannidis, 2022).130

3 Adversarial Attack on DNA Language131

Models132

We examine the impact of adversarial attacks on133

DNABERT2 (Zhou et al., 2023), Nucleotide Trans-134

former (Dalla-Torre et al., 2023), and GROVER135

(Sanabria et al., 2024) across three levels at-136

tack strategies: character-level (nucleotide sub-137

stitutions (Kuleshov et al., 2021)), word-level138

(codon modifications), and sentence-level (back-139

translation-based transformations). Our analysis fo-140

cuses on DNA classification task using AMR gene141

(Yoo et al., 2024) and promoter detection (Zhou142

et al., 2023). Further implementation details and143

benchmark details are provided in Appendix A and144

Appendix B.145

Nucleotide-Level Attack Nucleotides are the146

fundamental building blocks of nucleic acids, such147

as DNA and RNA, crucial for storing and transmit-148

ting genetic information. In DNA sequences, nu-149

cleotides are represented by single characters, mak-150

ing nucleotide-level attacks analogous to character-151

level attacks in text. We conducted nucleotide-152

level attacks using an enumeration approach com-153

bined with trial and error search methods (Iyyer154

et al., 2018; Ribeiro et al., 2018; Belinkov and155

Bisk, 2018).156

Codon-Level Attack A codon is a sequence of157

three nucleotides in DNA or RNA that specifies158

a particular amino acid. Codons are essential for159

protein synthesis. Codon-level attack is similar160

to word-level attacks and is also performed using161

the enumeration search method including trial and162

error.163

Backtranslation Attack We introduce backtrans-164

lation based attack method for DNA sequences.165

In biological translation, translation refers to con-166

verting mRNA sequences into protein amino acid167

sequences, and reverse translation refers to generat-168

ing possible nucleotide sequences based on protein 169

amino acid sequences. 170

4 Results 171

4.1 Attack Effectiveness and Context 172

Preservation 173

In Figure 2, nucleotide-level attacks (Kuleshov 174

et al., 2021) result in the most significant perfor- 175

mance degradation. While these attacks are highly 176

effective, they also pose a considerable risk of alter- 177

ing the DNA sequence’s meaning, as discussed in 178

Appendix D. Conversely, codon-level attacks are 179

better at preserving sequence meaning since they 180

group sequences based on meaningful units, such 181

as codons. Backtranslation attacks preserve context 182

the best but are relatively less effective in reducing 183

accuracy. This trend is evident in the first graph, 184

where there is a sharp decline in model accuracy 185

with increasing epsilon values for nucleotide-level 186

attacks, particularly affecting DNABERT2 (Zhou 187

et al., 2023). In contrast, the Nucleotide Trans- 188

former maintaines relatively high accuracy even as 189

epsilon increased. 190

4.2 Model Robustness Comparison 191

The Nucleotide Transformer (Dalla-Torre et al., 192

2023) and GROVER (Sanabria et al., 2024) 193

demonstrate superior robustness compared to 194

DNABERT2 (Zhou et al., 2023). Due to its larger 195

model capacity and ability to handle longer se- 196

quences, the Nucleotide Transformer exhibits in- 197

creased resistance to adversarial attacks. Compared 198

to DNABERT2, GROVER employs an extensive 199

BPE optimization process involving hundreds of 200

iterations and incorporates an LSTM architecture, 201

enhancing its ability to model long-range depen- 202

dencies in DNA sequences. These architectural 203

refinements are likely to improve its robustness 204

against adversarial attacks. This robustness is par- 205

ticularly notable in experiments involving back- 206

translation attacks. The second graph in Figure 2 207

illustrates that DNABERT2’s accuracy significantly 208

drops with increasing iterations, whereas the Nu- 209

cleotide Transformer and GROVER maintain high 210

accuracy, demonstrating its robustness due to its 211

larger model capacity or longer sequence process- 212

ing capabilities. 213

Moreover, DNABERT2 promoter detection 214

model demonstrates greater robustness compared 215

to DNABERT2 AMR drug classification models, 216

potentially due to the larger volume of training 217
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Figure 3: Comparison of success rates and accuracies between adversarial training and standard training in AMR
gene Classification across increasing iterations of backtranslation attacks

data utilized. As illustrated in the third graph,218

with increasing epsilon values, the accuracy of219

DNABERT2 promoter detection model declines,220

though to a lesser extent than in AMR detec-221

tion models. However, DNABERT2 still per-222

forms worse than the Nucleotide Transformer and223

GROVER under nucleotide-level attacks. The224

fourth graph further shows that, in AMR drug clas-225

sification tasks, the Nucleotide Transformer and226

GROVER maintain the highest accuracy against227

backtranslation attacks, whereas DNABERT2 ap-228

pears to be relatively more vulnerable to backtrans-229

lation attacks. We further address the robustness of230

general language model in Appendix E.231

4.3 Comparative Analysis of Classification232

Tasks233

The experimental results indicate that the Nu-234

cleotide Transformer and GROVER possess higher235

robustness against adversarial attacks compared to236

DNABERT2, especially in the context of backtrans-237

lation attacks. Additionally, DNABERT2 trained238

with larger datasets, such as those used for pro-239

moter detection, demonstrates enhanced robustness.240

This comparative analysis highlights the impor-241

tance of model capacity, training data size and The242

ability to process long sequences in improving the243

resilience of DNA sequence classification models244

against various adversarial attack methods.245

4.4 Performance Against Defense Method246

We further investigate adversarial training as a de-247

fense mechanism against adversarial attacks, in-248

corporating adversarial examples into the training249

process to improve model robustness.250

Figure 3 illustrates the changes in success rate251

and accuracy over iterations when applying the252

Back-translate attack in the AMR drug classifica-253

tion task. The results indicate that the success rate254

of adversarially trained models (red) increases at255

a slower rate compared to standard training mod-256

els (black). This suggests that adversarial training257

enhances the model’s robustness against attacks,258

leading to a relatively lower attack success rate. 259

Furthermore, the accuracy graphs show that ad- 260

versarially trained models (red) exhibit a smaller 261

decline in accuracy compared to standard training 262

(black). This observation implies that adversarial 263

training improves the model’s generalization per- 264

formance and mitigates performance degradation 265

when exposed to adversarial attacks. For GROVER 266

and DNABERT2, the initial accuracy of adversari- 267

ally trained models is lower than that of standard 268

training models in Figure 5 and Figure 7. However, 269

as iterations increase, adversarially trained mod- 270

els demonstrate relatively higher accuracy, indicat- 271

ing that repeated exposure to attacks reinforce the 272

model’s resilience. In contrast, Nucleotide Trans- 273

former exhibits superior robustness, with adversari- 274

ally trained models outperforming standard training 275

models in accuracy from the outset. Additionally, 276

the accuracy degradation over iterations is the least 277

pronounced among the three models. This suggests 278

that the larger model capacity and ability to han- 279

dle longer sequences of Nucleotide Transformer 280

further amplify the benefits of adversarial training, 281

making it more resistant to adversarial perturba- 282

tions. Further details are described in Appendix C 283

5 Conclusion 284

In this study, we utilize three methods to gener- 285

ate DNA adversarial examples, proposing tech- 286

niques for generating adversarial examples using 287

nucleotide based attack, codon-based attacks and 288

backtranslation. These methods successfully de- 289

grade the performance of AMR drug classification 290

and promoter detection models. Nucleotide-level 291

attacks are the most effective, although they risk 292

disrupting the DNA context. Conversely, back- 293

translation better preserves meaning and context. 294

Notably, adversarial training as a defense strategy 295

proves effective in improving model robustness, 296

and in some cases, even surpassing the performance 297

of standard training methods. By leveraging ad- 298

versarial training, models become more resilient 299

against such attacks. 300
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Limitations301

This study has several limitations. First, the302

datasets used are limited to AMR gene classifi-303

cation with drug classes which may restrict the gen-304

eralization of the results. Expanding experiments305

to include datasets such as AMR gene families or306

AMR mechanisms would provide a more compre-307

hensive evaluation of adversarial robustness.308

The study evaluates adversarial attack methods309

on three distinct DNA language models such as310

DNABERT2, GROVER, and Nucleotide Trans-311

former. While these models cover a range of archi-312

tectures and sizes, extending the evaluation to ad-313

ditional DNA classification models could provide314

further insights into model-specific robustness.315

Nucleotide-level attacks, though effective, risk316

altering the biological meaning of DNA sequences.317

Their impact is assessed through CG content,318

species recognition rate, and mapping rate via319

NCBI BLAST, demonstrating the effectiveness of320

our approach. While these metrics provide valu-321

able insights, further validation in real biological322

experiments could strengthen the findings.323

Backtranslation methods help preserve sequence324

meaning and context, as indicated by CG content325

ratios and species recognition, supporting their role326

in enhancing model robustness. While our eval-327

uations offer a foundation, additional experimen-328

tal verification could further solidify these conclu-329

sions.330

Ethical Considerations331

This study focuses on adversarial robustness in332

DNA language models and does not involve human333

subjects or sensitive data. The adversarial attack334

methods used are intended for evaluating and im-335

proving model reliability in bioinformatics, not for336

malicious purposes. However, it is important to337

acknowledge the potential risks of adversarial at-338

tacks in bioinformatics applications, where model339

vulnerabilities could impact genomic analysis and340

medical decision-making.341
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A Implementation Details548
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Nucleotide-level 
Attack

Codon-level 
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Attack

Test with Attacked Sequence
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Figure 4: Overview of Adversarial Training(Fine-
tuning) for DNA Language Models and Testing Ad-
versarial Attacks

We utilize LoRA (Hu et al., 2022) to finetune549

the DNA language models for each benchmarks.550

The learning rate is set to 0.0005, the number of551

epochs is 2, the batch size is 64. Single A100552

GPU is used, and and the entire process takes553

approximately one hour. The number of param-554

eters for each model is as follows: DNABERT-555

2 (117M), Nucleotide Transformer (2.5B), and556

GROVER (90M). DNABERT-2 is available un-557

der the Apache License 2.0, and Nucleotide Trans-558

former is distributed under the CC BY-NC-SA 4.0559

License. The GROVER model, as hosted on Hug-560

ging Face (PoetschLab/GROVER), does not have a561

publicly specified license.562

B Details of Benchmarks563

Antimicrobial Resistance Classification We564

employ the methodology outlined in Yoo et al.565

(2024) to integrate datasets from CARD v2 (Alcock566

et al., 2020) and MEGARes v3 (Bonin et al., 2023)567

for investigating antibiotic resistance. Classes with568

fewer than 15 instances are excluded. The remain-569

ing data is divided into training, testing, and val-570

idation sets, maintaining the same proportions as571

the study. Data integration is performed using the572

European Bioinformatics Institute Antibiotic Re-573

sistance Ontology (EBI ARO; Cook et al., 2016),574

with irrelevant classes excluded. Overall, the drug575

class classification dataset for AMR gene classi-576

fication is split into 75% training data, 20% test577

data, and 5% validation data. There are a total of578

9 drug classes. The MEGARes dataset is available579

under the MIT License, and the CARD dataset is 580

distributed under the CC BY-NC 4.0 License. 581

Promoter Detection The promoter detection 582

data from the Genome Understanding Evalua- 583

tion (GUE) benchmark dataset introduced in the 584

DNABERT-2 is used to detect promoters in gene 585

sequences (Zhou et al., 2023). Promoters are DNA 586

sequences that regulate the initiation of gene tran- 587

scription and play a crucial role in gene expression 588

regulation and understanding biological phenom- 589

ena. 590

The data is extracted from gene sequences of 591

various species, providing a broad context for bi- 592

ological research. Each data point includes both 593

sequences that contain promoters and those that do 594

not, enabling the model to learn how to distinguish 595

promoters. This dataset includes complex promoter 596

sequence elements known as MIX elements, which 597

are found in specific genes. We utilize the prom 598

300 all dataset from the GUE benchmark for pro- 599

moter detection. The dataset is splited into ap- 600

proximately 80% training, 10% development, and 601

10% test data, with 2 classes for binary classifica- 602

tion. The GUE dataset is distributed along with 603

DNABERT-2, which is available under the Apache- 604

2.0 License. 605

C Comparisons of Adversarial Training 606

and Standard Training 607

Figure 5, Figure 6, Figure 7, and Figure 8 compare 608

the performance differences between adversarially 609

trained models and conventionally trained mod- 610

els (black) as the number of attack iterations and 611

perturbation magnitude (epsilon) increase. Epsilon 612

represents the rate of change in the sequence for the 613

attack, indicating the proportion of the sequence 614

that is altered. Iterations indicate the number of 615

times the attack is performed. While all models 616

experience a decrease in accuracy as the number of 617

iterations and perturbation levels increase, adver- 618

sarially trained models generally maintain higher 619

accuracy and exhibit a more gradual decline in 620

performance. In terms of attack success rate, con- 621

ventionally trained models show a sharp increase in 622

attack success as the number of iterations and per- 623

turbation magnitude grow, whereas adversarially 624

trained models exhibit a more moderate increase, 625

demonstrating greater resistance to adversarial at- 626

tacks. These findings suggest that adversarial train- 627

ing effectively enhances model robustness against 628

iterative attacks and higher perturbation magni- 629

8



0 10 20 30 40 50
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

GROVER Accuracy (nucl)
GROVER adversarial training(nucl attack)
GROVER(nucl attack)

0 10 20 30 40 50
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

DNABERT2 Accuracy (nucl)
DNABERT2 adversarial training(nucl attack)
DNABERT2(nucl attack)

0 10 20 30 40 50
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

NT Accuracy (nucl)
NT adversarial training(nucl attack)
NT(nucl attack)

0 10 20 30 40 50
Iteration

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Su
cc

es
s R

at
e

GROVER Success Rate (nucl)

GROVER adversarial training(nucl attack)
GROVER(nucl attack)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6
DNABERT2 Success Rate (nucl)

DNABERT2 adversarial training(nucl attack)
DNABERT2(nucl attack)

0 10 20 30 40 50
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
NT Success Rate (nucl)

NT adversarial training(nucl attack)
NT(nucl attack)

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

GROVER Accuracy (codon)
GROVER adversarial training(codon attack)
GROVER(codon attack)

0 10 20 30 40 50
Iteration

0.4

0.5

0.6

0.7

0.8

DNABERT2 Accuracy (codon)
DNABERT2 adversarial training(codon attack)
DNABERT2(codon attack)

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

NT Accuracy (codon)
NT adversarial training(codon attack)
NT(codon attack)

0 10 20 30 40 50
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Su
cc

es
s R

at
e

GROVER Success Rate (codon)

GROVER adversarial training(codon attack)
GROVER(codon attack)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

DNABERT2 Success Rate (codon)

DNABERT2 adversarial training(codon attack)
DNABERT2(codon attack)

0 10 20 30 40 50
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
NT Success Rate (codon)

NT adversarial training(codon attack)
NT(codon attack)

0 10 20 30 40 50
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

GROVER Accuracy (bt)
GROVER adversarial training(bt attack)
GROVER(bt attack)

0 10 20 30 40 50
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

DNABERT2 Accuracy (bt)
DNABERT2 adversarial training(bt attack)
DNABERT2(bt attack)

0 10 20 30 40 50
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

NT Accuracy (bt)
NT adversarial training(bt attack)
NT(bt attack)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s R

at
e

GROVER Success Rate (bt)

GROVER adversarial training(bt attack)
GROVER(bt attack)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
DNABERT2 Success Rate (bt)

DNABERT2 adversarial training(bt attack)
DNABERT2(bt attack)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6
NT Success Rate (bt)

NT adversarial training(bt attack)
NT(bt attack)

Figure 5: Comparison of Adversarial Training and Standard Training in Promoter Detection with Increasing
Iterations

9



0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

GROVER Accuracy (nucl)
GROVER adversarial training(nucl attack)
GROVER(nucl attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.55

0.60

0.65

0.70

0.75

0.80

DNABERT2 Accuracy (nucl)
DNABERT2 adversarial training(nucl attack)
DNABERT2(nucl attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

NT Accuracy (nucl)
NT adversarial training(nucl attack)
NT(nucl attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

GROVER Success Rate (nucl)

GROVER adversarial training(nucl attack)
GROVER(nucl attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.0

0.1

0.2

0.3

0.4

DNABERT2 Success Rate (nucl)

DNABERT2 adversarial training(nucl attack)
DNABERT2(nucl attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.0

0.1

0.2

0.3

0.4

NT Success Rate (nucl)

NT adversarial training(nucl attack)
NT(nucl attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

GROVER Accuracy (codon)
GROVER adversarial training(codon attack)
GROVER(codon attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.55

0.60

0.65

0.70

0.75

0.80

0.85
DNABERT2 Accuracy (codon)
DNABERT2 adversarial training(codon attack)
DNABERT2(codon attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

NT Accuracy (codon)
NT adversarial training(codon attack)
NT(codon attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

GROVER Success Rate (codon)

GROVER adversarial training(codon attack)
GROVER(codon attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.0

0.1

0.2

0.3

0.4

DNABERT2 Success Rate (codon)

DNABERT2 adversarial training(codon attack)
DNABERT2(codon attack)

0.0 0.1 0.2 0.3 0.4 0.5
Perturbation (epsilon)

0.0

0.1

0.2

0.3

0.4

NT Success Rate (codon)

NT adversarial training(codon attack)
NT(codon attack)

Figure 6: Comparison of Adversarial Training and Standard Training in Promoter Detection Across Different
Perturbation Levels
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Figure 7: Comparison of Adversarial Training and Standard Training in Antimicrobial Resistance Drug Classification
with Increasing Iterations
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Figure 8: Comparison of Adversarial Training and Standard Training in Antimicrobial Resistance Drug Classification
Across Different Perturbation Levels
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tudes while mitigating performance degradation.630

Figures present accuracy and success rate trends631

under different perturbation settings. However, all632

results are based on a single run.633

D Adversarial DNA Sequence validation634

D.1 Promoter Detection Sequence validation635

GC% =
G+ C

A+ T +G+ C
× 100 (1)636

To validate adversarial sequences in promoter637

detection, we compared the GC content of the orig-638

inal sequences and the adversarially generated se-639

quences. Prior research has highlighted the strong640

correlation between promoter regions and GC con-641

tent (Umarov et al., 2019). Using this insight, we642

assess whether the adversarial sequences maintain643

a similar GC content distribution to the original se-644

quences. We calculate the GC content percentage645

using Equation 1.646

Specifically, we measure the Pearson correlation647

coefficient (Pearson, 1896) between the GC content648

of original and adversarial sequences to quantify649

their similarity. This approach allows us to evaluate650

whether the adversarial sequences retain key GC651

content characteristics, providing an initial valida-652

tion measure.653

Table 1 demonstrates a decreasing trend in the654

Pearson correlation coefficient of GC content be-655

tween the original and perturbed sequences as the656

perturbation level increases. This trend is observed657

in both nucleotide-level and codon-level attacks,658

where a higher perturbation parameter (ϵ) results659

in a lower Pearson correlation coefficient. Table660

2 presents the Pearson correlation coefficient be-661

tween the original sequences and perturbed se-662

quences as the number of iterations increases for663

nucleotide-level, codon-level, and backtranslation-664

based attacks. Across all attack methods, the Pear-665

son correlation coefficient decreases as the num-666

ber of iterations increases. However, in the case667

of backtranslation, the decline is less pronounced668

compared to nucleotide-level and codon-level at-669

tacks, which may suggest that backtranslation bet-670

ter preserves the contextual integrity of the original671

sequences.672

D.2 Antimicrobial Resistance Drug673

classification Sequence validation674

To evaluate the effectiveness of adversarial DNA675

sequences for attacks as the number of iterations676

and the magnitude of perturbations increase, we677

utilize the BLAST (Basic Local Alignment Search 678

Tool(Altschul et al., 1990)) database mapping API 679

provided by the National Center for Biotechnology 680

Information (NCBI)(Johnson et al., 2008). 681

Analysis of the BLAST mapping results reveal 682

a gradual decline in the mapping rate of adversar- 683

ially perturbed sequences as the same species as 684

the original test dataset, as the intensity of adver- 685

sarial perturbations increased. Specifically, when 686

the perturbation magnitude is small, the perturbed 687

sequences are mapped as the same species as the 688

original sequence. However, as the perturbation 689

magnitude increases, the likelihood of being classi- 690

fied as a different species increases. This indicates 691

that adversarial attacks effectively induce classifi- 692

cation perturbations in the intended direction. How- 693

ever, if the perturbed sequences are classified as 694

entirely different species, the effectiveness of the at- 695

tack sequences may be somewhat diminished. Ide- 696

ally, a adversarial sequence should not excessively 697

distorted the biological properties of the sequence. 698

Excessive perturbation, however, may result in ad- 699

versarial sequences being recognized as entirely 700

different species, which could undermine their in- 701

tended effectiveness. 702

Additionally, we examine cases where BLAST 703

fails to clearly match the input sequence to any 704

species in the existing database (i.e., cases where 705

BLAST does not recognize the sequence). The 706

results indicate that as the intensity of the adver- 707

sarial attack increases, the proportion of sequences 708

that BLAST fails to recognize rose sharply. This 709

suggests that larger perturbations lead to greater dis- 710

tortion of the biological properties of the original 711

DNA sequences. In particular, for iterations, both 712

the mapping rate and recognition rate are signifi- 713

cantly low, suggesting that the results may not fully 714

align with real-case scenarios. However, similar 715

to the validation of promoter detection sequences, 716

applying backtranslation results in higher mapping 717

and recognition rates compared to nucleotide-level 718

and codon-level attacks. This may indicate that 719

backtranslation relatively better preserves the con- 720

textual integrity of the sequences. Consequently, 721

in such cases, the effectiveness of the adversarial 722

sequences may also be reduced, further distancing 723

them from the natural noise present in real-world 724

conditions. This is particularly evident in multi- 725

iteration nucleotide and codon-level attacks, as well 726

as backtranslation, where recognition and mapping 727

rates in the BLAST database are significantly low, 728

making them a form of worst-case performance 729
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ϵ Nucleotide-level Attack Codon-level Attack
0.1 0.9910 0.9903
0.2 0.9788 0.9776
0.3 0.9614 0.9592
0.4 0.9361 0.9327
0.5 0.8990 0.8970

Table 1: Pearson Correlation Coefficient of GC content based on perturbation (ϵ) for different attack strategies.

Iteration Nucleotide-level Attack Codon-level Attack Back-translation Attack
10 0.9525 0.9481 0.9303
20 0.8911 0.8925 0.9271
30 0.8512 0.8498 0.9264
40 0.8236 0.8193 0.9250
50 0.8068 0.7987 0.9270

Table 2: Pearson Correlation Coefficient of GC content based on iteration for different attack strategies.
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Figure 9: Accuracy and attack success rate (ASR) un-
der codon-level and nucleotide-level perturbations in
Antimicrobial Resistance Drug Classification Across
Different Perturbation Levels

exploration.730

E Adversarial Evaluation of GPT-4o on731

DNA AMR Classification732

We present additional analysis on the adversar-733

ial robustness of gpt-4o-mini-2024-07-18 fine-734

tuned for DNA AMR classification. This study has735

demonstrated that DNA Language Models are vul-736

nerable to adversarial attacks, and we extend this737

investigation to examine whether general-purpose738

LLMs, when adapted for biological sequence clas-739

sification, exhibit similar weaknesses.740

By applying codon-level and nucleotide-level741

perturbations, we observe a sharp decline in model742

accuracy as perturbation intensity increased (drop-743

ping to 31.76% at the highest level), while the at-744

tack success rate (ASR) rises to a maximum of745

60.67% in Figure 9.746

With the growing interest in applying LLMs to747

DNA sequence analysis (Sarumi and Heider, 2024;748

Liu et al., 2024), ensuring robustness remains a749

critical challenge. Adversarial training and domain- 750

specific robustness strategies may be necessary to 751

enhance the reliability of such models in biological 752

sequence tasks. 753

F Effect of Realistic Sequencing Errors 754

on Robustness 755

To evaluate model robustness under more realis- 756

tic sequencing scenarios, we simulate sequencing 757

errors using PBSIM2 (Ono et al., 2021), incorpo- 758

rating real-world error patterns observed in PacBio 759

and Oxford Nanopore sequencing. Sequencing Er- 760

ror Simulation is a technique used to model errors 761

occurring during the genome sequencing process, 762

playing a crucial role in genome analysis, algorithm 763

evaluation, and robustness assessment in bioinfor- 764

matics. PBSIM2, widely used for this purpose, 765

simulates insertion, deletion, and substitution er- 766

rors, as well as the length distribution observed in 767

long-read sequencing technologies such as PacBio 768

and Oxford Nanopore, enabling the generation of 769

reads that closely resemble real sequencing data. 770

The simulated sequencing error data can be utilized 771

to test model robustness by incorporating noise 772

similar to that encountered in real sequencing ex- 773

periments. This holds significant importance from 774

the perspective of adversarial training and robust- 775

ness assessment, as it helps deep learning-based 776

genomic analysis models maintain predictive accu- 777

racy while improving their resilience to sequencing 778

errors. Our experiments show that the model’s 779

performance degrades under these conditions, in- 780

dicating that realistic sequencing errors can pose 781

a challenge to robustness. In the promoter detec- 782
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ϵ Nucleotide-level Attack Codon-level Attack
0.1 93.05 92.60
0.2 70.35 85.98
0.3 16.25 75.81
0.4 1.36 46.15
0.5 0.50 13.03

Table 3: Species Matching rate (%) based on perturbation (ϵ) for different attack strategies.

ϵ Nucleotide-level Attack Codon-level Attack
0.1 99.75 99.88
0.2 84.49 99.88
0.3 25.56 96.40
0.4 2.61 68.98
0.5 0.62 24.81

Table 4: Recognition Rate (%) based on perturbation (ϵ) for different attack strategies.

tion task with Nucleotide Transformer, accuracy783

dropped from 0.8892 to 0.8608.784
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Iteration Nucleotide-level Attack Codon-level Attack Back-translation Attack
10 0.25 1.24 1.99
20 0.25 0.25 2.73
30 0.25 0.25 3.47
40 0.25 0.25 1.61
50 0.25 0.25 3.10

Table 5: Species Matching rate (%) based on iteration for different attack strategies.

Iteration Nucleotide-level Attack Codon-level Attack Back-translation Attack
10 0.25 1.99 15.63
20 0.25 0.25 16.63
30 0.25 0.25 18.11
40 0.25 0.25 18.73
50 0.37 0.25 16.63

Table 6: Species Recognition rate (%) based on iteration for different attack strategies.
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