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Figure 1: Representative video reconstruction results for (a) Temporal degradation, (b) Temporal
degradation + Deblurring combination, (c) Temporal degradation + Super-resolution combination,
and (d) Temporal degradation + Inpainting combination.

ABSTRACT

Recently, diffusion model-based inverse problem solvers (DIS) have emerged
as state-of-the-art approaches for addressing inverse problems, including image
super-resolution, deblurring, inpainting, etc. However, their application to video
inverse problems arising from spatio-temporal degradation remains largely un-
explored due to the challenges in training video diffusion models. To address
this issue, here we introduce an innovative video inverse solver that leverages
only image diffusion models. Specifically, by drawing inspiration from the suc-
cess of the recent decomposed diffusion sampler (DDS), our method treats the
time dimension of a video as the batch dimension of image diffusion mod-
els and solves spatio-temporal optimization problems within denoised spatio-
temporal batches derived from each image diffusion model. Moreover, we in-
troduce a batch-consistent diffusion sampling strategy that encourages consis-
tency across batches by synchronizing the stochastic noise components in im-
age diffusion models. Our approach synergistically combines batch-consistent
sampling with simultaneous optimization of denoised spatio-temporal batches
at each reverse diffusion step, resulting in a novel and efficient diffusion sam-
pling strategy for video inverse problems. Experimental results demonstrate
that our method effectively addresses various spatio-temporal degradations in
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video inverse problems, achieving state-of-the-art reconstructions. Project page:
https://solving-video-inverse.github.io/main/

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020) represent the state-of-the-art generative model-
ing by learning the underlying data distribution p(x) to produce realistic and coherent data samples
from the learned distribution pθ(x). In the context of Bayesian inference, the parameterized prior
distribution pθ(x) can be disentangled from the likelihood p(y|x), which denotes the probabil-
ity of observing y given x. This seperation facilitates the derivation of the posterior distribution
pθ(x|y) ∝ pθ(x)p(y|x).
Diffusion model-based inverse problem solvers (DIS) (Kawar et al., 2022; Chung et al., 2022a;
Song et al., 2023; Wang et al., 2023; Chung et al., 2024) leverage this property, enabling the uncon-
ditional diffusion models to solve a wide range of inverse problems. They achieve this by conditional
sampling from the posterior distribution pθ(x|y), effectively integrating information from both the
forward physics model and the measurement y. This approach allows for sophisticated and precise
solutions to complex inverse problems, introducing the power and flexibility of diffusion models in
practical applications.

Despite extensive DIS research on a wide range of image inverse problems such as super-resolution,
colorization, inpainting, compressed sensing, deblurring, and so on (Jalal et al., 2021; Kawar et al.,
2022; Chung et al., 2022a; Song et al., 2023; Wang et al., 2023; Chung et al., 2024), the appli-
cation of these approaches to video inverse problems, particularly those involving spatio-temporal
degradation, has received relatively less attention. Specifically, in time-varying data acquisition
systems, various forms of motion blur often arise due to the camera or object motions (Potmesil
& Chakravarty, 1983), which can be modeled as a temporal PSF convolution of motion dynam-
ics. These are often associated with spatial degradation caused by noise, camera defocus, and other
factors. Specifically, the spatio-temporal degradation process can be formulated as:

Y = A(X) +W (1)
with

X = [x[1] · · · x[N ]] , Y = [y[1] · · · y[N ]] , W = [w[1] · · · w[N ]] , (2)
where x[n],y[n] and w[n] denote the n-th frame ground-truth image, measurement, and additive
noise, respectively; N is the number of temporal frames, and A refers to the operator that describes
the spatio-temporal degradation process. The spatio-temporal degradation introduces complexities
that image diffusion priors cannot fully capture, as image diffusion priors are primarily designed to
handle spatial features rather than temporal dynamics. Employing video diffusion models (Ho et al.,
2022) could address these issues, but poses significant implementation challenges for video inverse
problems, due to the difficulty of training video diffusion models for various applications.

Contrary to the common belief that a pre-trained video diffusion model is necessary for solving
video inverse problems, here we propose a radically different method that addresses video inverse
problems using only image diffusion models. Inspired by the success of the decomposed diffusion
sampler (DDS) (Chung et al., 2024), which simplifies DIS by formulating it as a Krylov subspace-
based optimization problem for denoised images via Tweedie’s formula at each reverse sampling
step, we treat the time dimension of a video as the batch dimension of image diffusion models and
solve spatio-temporal optimization problems using the batch of denoised temporal frames from im-
age diffusion models. However, treating each frame of the video as a separate sample in the batch
dimension can lead to inconsistencies between temporal frames. To mitigate this, we introduce the
batch-consistent sampling strategy that controls the stochastic directional component (e.g., initial
noise or additive noise) of each image diffusion model during the reverse sampling process, en-
couraging the temporal consistency along the batch dimension. By synergistically combining batch-
consistent sampling with the simultaneous optimization of the spatio-temporal denoised batch, our
approach effectively addresses a range of spatio-temporal inverse problems, including spatial de-
blurring, super-resolution, and inpainting. Our contribution can be summarized as follows.

• We introduce an innovative video inverse problem solver using pre-trained image diffusion
models by solving spatio-temporal optimization problems within the batch of denoised
frames.
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• We develop a batch-consistent sampling strategy to ensure temporal consistency by syn-
chronizing stochastic noise components in image diffusion models.

• Extensive experiments confirm that our method generates state-of-the-art results for various
video inverse problems including blind restoration problems.

2 BACKGROUND

Diffusion models. Diffusion models (Ho et al., 2020) attempt to model the data distribution pdata(x)
based on a latent variable model

pθ(x0) =

∫
pθ(x0:T )dx1:T , where pθ(x0:T ) := pθ(xT )

T∏
t=1

p
(t)
θ (xt−1|xt) (3)

where the x1:T are noisy latent variables defined by the Markov chain with Gaussian transitions

q(xt|xt−1) = N (xt|
√

βtxt−1, (1− βt)I), q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I). (4)

Here, the noise schedule βt is an increasing sequence of t, with ᾱt :=
∏t

i=1 αi, αi := 1 − βi.
Training of diffusion models amounts to training a multi-noise level residual denoiser:

min
θ

Ext∼q(xt|x0),x0∼pdata(x0),ϵ∼N (0,I)

[
∥ϵ(t)θ (xt)− ϵ∥22

]
. (5)

Then, sampling from (3) can be implemented by ancestral sampling, which iteratively performs

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ
(t)
θ∗ (xt)

)
+ β̃tϵ (6)

where β̃t := 1−ᾱt−1

1−ᾱt
βt and θ∗ refers to the optimized parameter from Eq. (5). On the other hand,

DDIM (Song et al., 2021) accelerates the sampling based on non-Markovian assumption. Specifi-
cally, the sampling iteratively performs

xt−1 =
√
ᾱt−1x̂t +

√
1− ᾱt−1ϵ̂t (7)

where

x̂t :=
1√
ᾱt

(
xt −

√
1− ᾱtϵ

(t)
θ∗ (xt)

)
, ϵ̂t :=

√
1− ᾱt−1 − η2β̃2

t ϵ
(t)
θ∗ (xt) + ηβ̃tϵ

√
1− ᾱt−1

(8)

Here, x̂t is the denoised estimate of xt that is derived from Tweedie’s formula (Efron, 2011). Ac-
cordingly, DDIM sampling can be expressed as a two-step manifold transition: (i) the noisy sample
xt ∈ Mt transits to clean manifold M by deterministic estimation using Tweedie’s formula, (ii) a
subsequent transition from clean manifold to next noisy manifold Mt−1 occurs by adding noise ϵ̂t,
which is composed of the deterministic noise ϵ

(t)
θ∗ (xt) and the stochastic noise ϵ.

Diffusion model-based inverse problem solvers. For a given loss function ℓ(x) which often stems
from the likelihood for measurement consistency, the goal of DIS is to address the following opti-
mization problem

min
x∈M

ℓ(x) (9)

where M represents the clean data manifold sampled from unconditional distribution p0(x). Conse-
quently, it is essential to find a way that minimizes cost while also identifying the correct manifold.

Recently, Chung et al. (2023a) proposed a general technique called diffusion posterior sampling
(DPS), where the updated estimate from the noisy sample xt ∈ Mt is constrained to stay on
the same noisy manifold Mt. This is achieved by computing the manifold constrained gradient
(MCG) (Chung et al., 2022b) on a noisy sample xt ∈ Mt. The resulting algorithm can be stated as
follows:

xt−1 =
√
ᾱt−1 (x̂t − γt∇xtℓ(x̂t)) +

√
1− ᾱt−1ϵ̂t, (10)
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where γt > 0 denotes the step size. Under the linear manifold assumption (Chung et al., 2022b;
2023a), this allows precise transition to Mt−1. Unfortunately, the computation of MCG requires
computationally expensive backpropagation and is often unstable.

In a subsequent work, Chung et al. (2024) shows that under the same linear manifold assumption in
DPS, the one step update by x̂t−γt∇x̂t

ℓ(x̂t) are guaranteed to remain within a linear subspace, thus
obviating the need for explicit computation of the MCG and leading to a simpler approximation:

xt−1 ≃
√
ᾱt−1 (x̂t − γt∇x̂t

ℓ(x̂t)) +
√

1− ᾱt−1ϵ̂t. (11)

Furthermore, instead of using a one-step gradient update, Chung et al. (2024) demonstrated that
multi-step update using Krylov subspace methods, such as the conjugate gradient (CG) method,
guarantees that the intermediate steps lie in the linear subspace. This approach improves the conver-
gence of the optimization problem without incurring additional neural function evaluations (NFE).
This method, often referred to as decomposed diffusion sampling (DDS), bypasses the computa-
tion of the MCG and improves the convergence speed, making it stable and suitable for large-scale
medical imaging inverse problems (Chung et al., 2024).

3 VIDEO INVERSE SOLVER USING IMAGE DIFFUSION MODELS

3.1 PROBLEM FORMULATION

Using the forward model Eq. (1) and the optimization framework in Eq. (9), the video inverse prob-
lem can be formulated as

min
X∈M

ℓ(X) := ∥Y −A(X)∥2 (12)

where X denotes the spatio-temporal volume of the clean image composed of N temporal frames
as defined in Eq. (2), and M represents the clean video manifold sampled from unconditional
distribution p0(X). Then, a naive application of the one-step gradient within the DDS framework
can be formulated by

Xt−1 =
√
ᾱt−1

(
X̂t − γt∇X̂t

ℓ(X̂t)
)
+

√
1− ᾱt−1Êt. (13)

where X̂t and Êt refer to Tweedie’s formula and noise in the spatio-temporal volume, respectively,
which are defined by

X̂t :=
1√
ᾱt

(
Xt −

√
1− ᾱtE(t)

θ∗ (Xt)
)
, Êt :=

√
1− ᾱt−1 − η2β̃2

t E
(t)
θ∗ (Xt) + ηβ̃tE

√
1− ᾱt−1

(14)

Here, Xt refers to the spatio-temporal volume at the t-th reverse diffusion step and E ∼∏N
i=1 N (0, I). Although the formula Eq. (14) is a direct extension of the image-domain coun-

terpart Eq. (8), the main technical challenge lies in training the video diffusion model E(t)
θ , which is

required for the formula Eq. (14). Specifically, the video diffusion model is trained by

min
θ

EXt∼q(Xt|X0),X0∼pdata(X0),E∼
∏N

i=1N (0,I)

[
∥E(t)

θ (Xt)− E∥22
]
, (15)

which requires large-scale video training data and computational resources beyond the scale of train-
ing image diffusion models. Therefore, the main research motivation is to propose an innovative
method that can bypass the need for computationally extensive video diffusion models.

3.2 BATCH-CONSISTENT RECONSTRUCTION WITH DDS

Consider a batch of 2D diffusion models along the temporal direction:

Ẽ
(t)

θ (Xt) :=
[
ϵ
(t)
θ∗ (Xt[1]) · · · ϵ

(t)
θ∗ (Xt[N ])

]
(16)

where ϵ
(t)
θ∗ represents an image diffusion model. Suppose that Ẽ

(t)

θ (Xt) is used for Eq. (14). Since
unconditional reverse diffusion is entirely determined by Eq. (14), the generated video is then fully
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Figure 2: Geometric illustration of the sampling path evolution. (a) Batch-independent sampling
produces independent frames. (b) Batch-consistent sampling produces identical frames. (c) Batch-
consistent sampling combined with frame-dependent perturbation through multi-step CG generates
distinct frame satisfying spatio-temporal data consistency.

controlled by the behavior of the image diffusion models. Thus, we investigate the limitations of
using a batch of image diffusion models compared to using a video diffusion model and explore
ways to mitigate these limitations.

Recall that for the reverse sampling of each image diffusion model, the stochastic transitions occur
from two sources: (i) the initialization and (ii) re-noising. Accordingly, in batch-independent sam-
pling, where each image diffusion model is initialized with independent random noise and re-noised
with independent additive noise, it is difficult to impose any temporal consistency in video gener-
ation so that each generated temporal frame may represent different content from each other (see
Fig. 2(a)). Conversely, in batch-consistent sampling, where each image diffusion model is initial-
ized with the same noise and re-noised with the same additive noise, the generated frames from the
unconditional diffusion model should be trivially reduced to identical images (see Fig. 2(b)). This
dilemma is why separate video diffusion model training using Eq. (15) was considered necessary
for effective video generation.

One of the most important contributions of this paper is demonstrating that the aforementioned
dilemma can be readily mitigated in conditional diffusion sampling originated from inverse prob-
lems. Specifically, inspired by the DDS formulation in Eq. (13), we propose a method that employs
a batch-consistent sampling scheme to ensure temporal consistency and introduces temporal diver-
sity from the conditioning steps. More specifically, the denoised image for each frame is computed
individually using Tweedie’s formula via image diffusion models:

X̂b
t :=

1√
ᾱt

(
Xt −

√
1− ᾱtẼ

(t)

θ∗ (Xt)
)

(17)

where we use the superscript b to represent the batch-consistency and Ẽ
(t)

θ∗ is a batch of image
diffusion models defined by Eq. (16). Here, the image diffusion models are initialized with the same
random noises to ensure temporal consistency. Subsequently, the denoised spatio-temporal batch is
perturbed as a whole by applying the l-step conjugate gradient (CG) to optimize the data consistency
term from the spatio-temporal degradation. This can be formally represented by

X̄t := argmin
X∈X̂b

t+Kl

∥Y −A(X)∥2 (18)

where Kl denotes the l-dimensional Kyrlov subspace associated with the given inverse problem
(Chung et al., 2024). The multistep CG can diversify each temporal frame according to the condition
and achieve faster convergence than a single gradient step. The resulting solution ensures that the
loss function from the spatio-temporal degradation process can be minimized with coherent but
frame-by-frame distinct reconstructions. Finally, the reconstructed spatio-temporal volume from
the CG is renoised with additive noise as:

Xt−1 =
√
ᾱt−1X̄t +

√
1− ᾱt−1Ê

b

t . (19)
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Figure 3: Sampling process in our video inverse problem solver. Xt is denoised to produce X̂b
t using

2D Tweedie formula, then reshaped into a video tensor. Multi-step CG in the video space, satisfying
Eq. (18), is applied to obtain X̄t, which is then reshaped back into an image batch. Finally, Xt−1 is

sampled by adding noise Ê
b

t .

where

Ê
b

t :=

√
1− ᾱt−1 − η2β̃2

t Ẽ
(t)

θ∗ (Xt) + ηβ̃tEb

√
1− ᾱt−1

(20)

Here, Eb denotes the additive random noise from N (0, I). In contrast to E in Eq. (14), which is
composed of frame-independent random noises, we impose batch consistency by adding the same
random noises to each temporal frame to ensure temporal consistency. In summary, the proposed
batch-consistent sampling and frame-dependent perturbation through multistep CG ensure that the
sampling trajectory of each frame, starting from the same noise initialization, gradually diverges
from each other during reverse sampling to meet the spatio-temporal data consistency. The geo-
metric illustration of the sampling path evolution is shown in Fig. 2(c). The detailed illustration of
the intermediate sampling process of our method is shown in Fig. 3. Additionally, the pseudocode
implementation is given in Algorithm 1.

Algorithm 1 Video inverse problem solver using 2D diffusion models
Require: Ẽθ∗ , T, {αt}Tt=1, η,A,Y , l

1: XT ← Eb ∼ N (0, I) ▷ Controlled stochasticity
2: for t = T : 2 do
3: X̂b

t ←
(
Xt −

√
1− ᾱtẼ

(t)

θ∗ (Xt)
)
/
√
ᾱt ▷ Tweedie denoising

4: X̄t ← argmin
X∈X̂b

t+Kl
∥Y −A(X)∥2 ▷ Imposing frame-dependent data consistency

5: Êb
t ←

(√
1− ᾱt−1 − η2β̃2

t Ẽ
(t)

θ∗ (Xt) + ηβ̃tEb

)
/
√

1− ᾱt−1 ▷ Controlled stochasticity

6: Xt−1 ←
√
ᾱt−1X̄t +

√
1− ᾱt−1Ê

b
t ▷ Renoising

7: end for
8: X0 ← (X1 −

√
1− ᾱ1Ẽ

(1)

θ∗ (X1))/
√
ᾱ1

9: return X0

4 EXPERIMENTS

In this section, we conduct thorough comparison studies to demonstrate the efficacy of the proposed
method in addressing spatio-temporal degradations. Specifically, we consider two types of loss
functions for video inverse problems:

ℓ(X) := ∥Y −A(X)∥2, ℓTV (X) := ∥Y −A(X)∥2 + λ TV (X) (21)

where the first loss is from Eq. (12) and TV (X) denotes the total variation loss along the temporal
direction.

Then, classical optimization methods are used as the baselines for comparison to minimize each
loss function. Specifically, the stand-alone Conjugate Gradient (CG) method is employed to min-
imize ℓ(X), while the Alternating Direction Method of Multipliers (ADMM) is used to minimize
ℓTV (X). Additionally, diffusion-based methods are utilized as baselines to minimize the loss func-
tions in Eq. (21). Specifically, DPS (Chung et al., 2022a) is used to minimize ℓ(X). However,
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Figure 4: Qualitative evaluation of temporal degradation tasks. 1st row: temporal A with uniform
PSF with kernel width k = 7. 2nd row: temporal A with Gaussian PSF with σ=1. Red and blue boxes
indicate the enlarged views of the previous and next frames, respectively.

Uniform PSF (k = 7) Uniform PSF (k = 13) Gaussian PSF (σ = 1.0)

Method Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓

Ours (20) 12 43.16 0.992 0.004 0.008 39.69 0.984 0.008 0.035 34.25 0.959 0.029 0.068

DiffusiomMBIR (1000) 611 29.13 0.865 0.096 0.430 26.15 0.794 0.157 0.836 29.29 0.875 0.086 0.322
DPS (1000) 1244 33.42 0.914 0.071 0.325 20.61 0.666 0.303 2.055 12.21 0.610 0.272 2.210
ADMM-TV 2.4 24.46 0.744 0.245 1.297 23.57 0.697 0.304 1.580 26.76 0.826 0.155 0.656

Table 1: Quantitative evaluation of temporal degradation tasks on the DAVIS dataset. Bold indicates
the best results. FVD is displayed scaled by 10−3 for easy comparison.

instead of relying on 3D diffusion models, we use 2D image diffusion models, similar to our pro-
posed methods, to ensure that backpropagation for MCG computation can be performed through 2D
diffusion models. Second, we employ DiffusionMBIR (Chung et al., 2023b) to minimize ℓTV (X),
also using 2D image diffusion models. Unlike the original DiffusionMBIR, which applies TV along
the z-direction, we apply TV along the temporal direction.

To test various spatio-temporal degradations, we select the temporal degradation in time-varying
data acquisition systems, which is represented as PSF convolution along temporal dimen-
sion (Potmesil & Chakravarty, 1983). We select three types of PSFs: (i) uniform PSF with widths of
7, (ii) uniform PSF with widths of 13, and (iii) Gaussian PSF with a standard deviation of 1.0. Each
kernel is convolved along the temporal dimension with the ground truth video to produce the mea-
surements. Note that convolving uniform PSF with widths of 7 and 13 correspond to averaging 7 and
13 frames, respectively. Furthermore, we combined temporal degradation and various spatial degra-
dations to demonstrate various combinations of spatio-temporal degradations. For spatio-temporal
degradations, we fix a temporal degradation as a convolving uniform PSF with a width of 7 and add
various spatial degradations to the video. These spatial degradations include (i) deblurring using a
Gaussian blur kernel with a standard deviation σ of 2.0, (ii) super-resolution through a 4× average
pooling, and (iii) inpainting with random masking at a ratio r of 0.5 (For specific implementation
details of degradations, see Appendix A).

We conduct our experiments on the DAVIS dataset (Perazzi et al., 2016; Pont-Tuset et al., 2017),
which includes a wide variety of videos covering multiple scenarios. The pre-trained unconditional
256×256 image diffusion model from ADM (Dhariwal & Nichol, 2021) is used directly without
fine-tuning and additional networks. All videos were normalized to the range [0, 1] and split into
16-frame samples of size 256×256. A total of 338 video samples were used for evaluation. More
preprocessing details are described in the Appendix A.

For quantitative comparison, we focus on the following two widely used standard metrics: peak
signal-to-noise-ratio (PSNR) and structural similarity index (SSIM) (Wang et al., 2004) with
further evaluations with two perceptual metrics - Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018) and Fréchet Video Distance (FVD) (Unterthiner et al., 2019). FVD
results are displayed scaled by 10−3 for easy comparison. For all proposed methods, we employ l
= 5, η = 0.15 for 20 NFE in temporal degradation tasks, and l = 5, η = 0.8 for 100 NFE in spatio-
temporal degradation tasks unless specified otherwise.
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Figure 5: Qualitative evaluation of spatio-temporal degradation tasks. Each spatio-temporal degra-
dation is combined with various spatial degradation tasks. 1st row: Deblurring (σ = 2.0). 2nd row:
SR (× 4). 3rd row: Inpainting (r = 0.5).

+ Deblur (σ = 2.0) + Super-resolution (×4) + Inpainting (r = 0.5)

Method Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓

Ours (100) 60 27.77 0.810 0.270 0.275 25.71 0.724 0.279 0.352 29.45 0.877 0.047 0.136

DiffusiomMBIR (1000) 611 21.79 0.583 0.304 1.809 21.41 0.552 0.418 2.085 19.46 0.535 0.509 2.689
DPS (1000) 1244 18.19 0.401 0.602 3.183 21.39 0.532 0.318 1.672 27.43 0.817 0.115 0.650
ADMM-TV 2.4 22.76 0.638 0.462 1.698 22.09 0.592 0.469 1.739 22.53 0.663 0.326 1.892

Table 2: Quantitative evaluation of spatio-temporal degradation tasks on the DAVIS dataset. Bold
indicates the best results. FVD is displayed scaled by 10−3 for easy comparison.

4.1 RESULTS

We present the quantitative results of the temporal degradation tasks in Table 1. The table shows
that the proposed method outperforms the baseline methods by large margins in all metrics. The
large margin improvements in FVD indicate that the proposed method successfully solves inverse
problems with temporally consistent reconstruction. Fig. 4 shows the qualitative reconstruction
results for temporal degradations A. The proposed method restores much finer details compared to
the baselines and demonstrates robustness across various temporal PSFs. In contrast, as shown in
Fig. 4, while DPS performs well in reconstructing uniform PSFs with a kernel width of 7, it fails
to accurately reconstruct frame intensities as the kernel becomes wider or more complex as shown
in the bottom figures, leading to significant drops in Table 1. DiffusionMBIR ensures temporal
consistency and performs well for static scenes, but it struggles with dynamic scenes in the video.
In the same context, ADMM-TV produces unsatisfactory results for dynamic scenes.

The results of the spatio-temporal degradations are presented in Table 2 and Fig. 5. Even with
additional spatial degradations, the proposed method consistently outperforms baseline methods.
On the other hand, DPS often produces undesired details, as shown in Fig. 5. DiffusionMBIR fails
to restore fine details in dynamic scenes. Specifically, in the 3rd row of Fig. 5, DiffusionMBIR
restores the static mural painting but fails to capture the motion of the person. This is because TV
regularizer often disrupts the restoration of dynamic scenes. In this context, our method ensures
temporal consistency without the need for a TV regularizer. Furthermore, thanks to the consistent
performance even at low NFE, the proposed method achieves a dramatic 10× to 50× acceleration
in reconstruction time. For handling temporal degradation with 20 NFE, the proposed diffusion
model-based inverse problem solver can now achieve speeds exceeding 1 FPS.

4.2 ABLATION STUDY

Effect of CG updates. Experimental results demonstrate the tangential CG updates in video space
on the denoised manifold are key elements in solving spatio-temporal degradations. Here, we com-
pare the proposed method with a stand-alone CG method to demonstrate its impact within the solver.
We applied the same CG iterations as in the proposed method but excluded the diffusion updates. As
shown in Fig. 6, while the stand-alone CG method nearly solves the video inverse problem, it leaves

8
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Figure 6: Reconstruction results of (left) stand-alone CG method and (right) the proposed method.

residual artifacts, as seen in the first row, or fails to fully resolve spatial degradation, as shown in
the second row. In contrast, the proposed method generates natural and fully resolved frames. This
indicates that the diffusion update in the proposed method refines the unnatural aspects of the CG
updates.

Effect of batch-consistent sampling. Fig. 7 illustrates the inter-batch difference within the de-
noised manifold M during the reverse diffusion process. The blue plot shows results from our full
method, while the green and orange plots represent results without stochasticity control and with
gradient descent (GD) updates instead of conjugate gradient (CG) updates, respectively. Notably,
GD converges more slowly than CG. Our method consistently achieves low inter-batch difference
(i.e., high inter-batch similarity), ensuring batch-consistent reconstruction and precise reconstruc-
tions. In contrast, the absence of stochasticity control or the use of GD updates results in higher
difference (i.e., lower similarity), leading to less consistent sampling. The intermediate samples
X̂t in Fig. 7 and reconstruction results in Table 3 further confirm that our method outperforms the
others in producing batch-consistent results. Further experimental results and ablation studies are
illustrated in Appendix C.

Figure 7: The inter-batch difference within the denoised manifold M, quanti-
fied as

∑N−1
i=1 ∥X̂t[i + 1] − X̂t[i]∥/(N − 1), throughout the reverse diffusion

sampling process. 1⃝ indicates stochasticity control and 2⃝ indicates using CG
updates within the denoised manifold M.

Method PSNR ↑

Full 39.69
w/o 1⃝ 30.86

w/o 1⃝, 2⃝ 23.22

Method FVD ↓

Full 0.035
w/o 1⃝ 0.567

w/o 1⃝, 2⃝ 1.275

Table 3: Recon-
struction results of
the ablation study.

5 CONCLUSION

In this work, we introduce an innovative video inverse problem solver that utilizes only image dif-
fusion models. Our method leverages the time dimension of video as the batch dimension in image
diffusion models, integrating video inverse optimization within the Tweedie denoised manifold. We
combine batch-consistent sampling with video inverse optimization at each reverse diffusion step,
resulting in a novel and efficient solution for video inverse problems. Extensive experiments on
temporal and spatio-temporal degradations demonstrate that the proposed method achieves superior
quality while being faster than previous DIS methods, even reaching speeds exceeding 1 FPS.

9
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A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION OF DEGRADATIONS

For spatio-temporal degradations, we applied temporal degradation followed by spatial degradation
sequentially. We utilize spatial degradation operations for super-resolution, inpainting, and deblur-
ring as specified in the official implementation from Wang et al. (2023) and Chung et al. (2022a).
For super-resolution, we employ 4× average pooling as the forward operator A. For inpainting, we
use a random mask to eliminate half of the pixels for both the forward operator A. In deblurring, we
apply a Gaussian blur with a standard deviation (σ) of 2.0 and a kernel width of 13 as the forward
operator A.

A.2 DATA PREPROCESSING DETAILS

We conducted every experiment using train/val sets of DAVIS 2017 dataset (Perazzi et al., 2016;
Pont-Tuset et al., 2017). 480p resolution dataset has a spatial resolution of 480×640. Therefore, to
avoid spatial distortion, the frames were first center cropped to 480×480, then resized to a resolution
of 256×256. The resizing was performed using the ‘resize’ function from the ‘cv2’ library. After
that, all videos were normalized to the range [0, 1]. In the temporal dimension, the video was
segmented into chunks of 16 frames starting from the first frame. Any remaining frames that did not
form a complete set of 16 were dropped. Through this process, a total of 338 video samples were
obtained. The detailed data preprocessing code and the preprocessed Numpy files have all been
open-sourced.

A.3 COMPARATIVE METHODS

DiffusionMBIR (Chung et al., 2023b). For DiffusionMBIR, we use the same pre-trained image
diffusion model (Dhariwal & Nichol, 2021) with 1000 NFE sampling. The optimal ρ and λ values
are obtained through grid search within the ranges [0.001, 10] and [0.0001, 1], respectively. The
values are set to (ρ, λ) = (0.1, 0.001) for temporal degradation, and (ρ, λ) = (0.01, 0.01) for spatio-
temporal degradation.

DPS (Chung et al., 2022a). For DPS, we use the same pre-trained image diffusion model (Dhariwal
& Nichol, 2021) with 1000 NFE sampling. The optimal step size ζ is obtained through grid search
within the range [0.01, 100]. The value is set to ζ = 30 for both temporal degradation and spatio-
temporal degradation. Memory issues exist when performing DPS sampling more than 5 batch sizes
in NVIDIA GeForce RTX 4090 GPU with VRAM 24GB. Therefore, we divide 16-frame videos
into 4-frame videos and use them for all DPS experiments.

ADMM-TV. Following the protocol of Chung et al. (2023b), we optimize the following objective

X∗ = argmin
X

1

2
∥AX − Y ∥22 + λ∥DX∥1 (22)

where D = [Dt,Dh,Dw], which corresponds to the classical TV. t, h, and w represent temporal,
height, and width directions, respectively. The outer iterations of ADMM are solved with 30 iter-
ations and the inner iterations of CG are solved with 20 iterations, which are identical settings to
Chung et al. (2023b). We perform a grid search to find the optical parameter values that produce
the most visually pleasing solution. The parameter is set to (ρ, λ) = (1, 0.001). We set initial X as
zeros.
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B EXTENSION TO BLIND INVERSE PROBLEMS

B.1 BLIND VIDEO DEBLURRING ON GOPRO DATASET

To address established video deblurring dataset (GoPro) (Nah et al., 2017), we further extend our
method to solve blind video inverse problems. In the standard approach to blind deconvolution,
alternating between PSF estimation and deconvolution is intuitive and effective. Since initial PSF
estimation is challenging, we first use a light-weight video deblurring module, DeepDeblur (Nah
et al., 2017), for pre-reconstruction and estimate the initial PSF from it. Using this PSF, we perform
Stage 1 reconstruction using our method, then refine the PSF based on the resulting video. Finally,
the refined PSF is used for the final (Stage 2) reconstruction. In summary, our method leverages a
lightweight pre-restoration module to estimate the initial PSF and achieves the final reconstruction
using the refined PSF. The detailed algorithm is given in Algorithm 2.

The GoPro dataset consists of 240 fps videos captured using a GoPro camera, with blur strengths
created by averaging 7 to 13 consecutive frames (Nah et al., 2017). All experiments are conducted on
the GoPro test dataset. In our method, Ours (blind) refers to blind reconstruction applied to randomly
selected blur strengths between 7 and 13, while Ours (known, k = 13) corresponds to reconstruction
at the maximum blur strength of 13 with known degradation. To highlight the effectiveness of our
approach, we compared our results with the reconstructions from the pre-restoration module. Further
refinements in our method significantly improve performance, achieving a highly satisfactory level.
As shown in Fig. 8 and Table 4, our proposed method, Ours (blind), consistently achieves superior
performance on the GoPro dataset.

Figure 8: Reconstruction results on the GoPro test dataset (Nah et al., 2017). (Top) DeepDeblur
(Nah et al., 2017) and (bottom) the proposed extension. Enlarged views of the sample are included
for detailed comparison.

Method (GoPro) FVD ↓ LPIPS ↓ PSNR ↑ SSIM ↑

DeepDeblur 0.119 0.116 30.93 0.904
Ours (blind) 0.058 0.017 38.98 0.974

Ours (known, k=13) 0.024 0.012 38.05 0.981

Table 4: Quantitative evaluations on video deblurring using the GoPro test dataset (Nah et al., 2017).
Bold indicates the best and underline indicates the second best results.

B.2 BLIND VIDEO SUPER-RESOLUTION AND VIDEO FRAME INTERPOLATION

In blind video super-resolution, information about the degradation type can be inferred from the
degraded measurement. For instance, if a 64×64 measurement is provided as input to a 256×256
restoration module, it is straightforward to estimate that the degradation corresponds to a 4× super-
resolution (SR). Since the spatial resolution of the measurement can be directly determined, the
corresponding SR process can be applied based on this estimation, enabling a simple implementation
of blind video SR.
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Algorithm 2 Ours (blind) - Extension to blind video deblurring
Require: Ẽθ∗ , T, {αt}Tt=1, η,Y , l, fϕ
1: Xpre ← fϕ(Y ) ▷ PSF estimation using pre-restoration module
2: hσ ← argminhσ

∥Y −Xpre ∗ hσ∥2

3: XT ← Eb ∼ N (0, I)
4: for t = T : 2 do
5: X̂b

t ←
(
Xt −

√
1− ᾱtẼ

(t)

θ∗ (Xt)
)
/
√
ᾱt ▷ Stage 1 with estimated PSF

6: X̄t ← argmin
X∈X̂b

t+Kl
∥Y −X∗hσ∥2

7: Êb
t ←

(√
1− ᾱt−1 − η2β̃2

t Ẽ
(t)

θ∗ (Xt) + ηβ̃tEb

)
/
√

1− ᾱt−1

8: Xt−1 ←
√
ᾱt−1X̄t +

√
1− ᾱt−1Ê

b
t

9: end for
10: X0 ← (X1 −

√
1− ᾱ1Ẽ

(1)

θ∗ (X1))/
√
ᾱ1

11: hσ ← argminhσ
∥Y −X0 ∗ hσ∥2 ▷ PSF estimation using stage 1 result

12: XT ← Eb ∼ N (0, I)
13: for t = T : 2 do
14: X̂b

t ←
(
Xt −

√
1− ᾱtẼ

(t)

θ∗ (Xt)
)
/
√
ᾱt ▷ Stage 2 with refined PSF

15: X̄t ← argmin
X∈X̂b

t+Kl
∥Y −X∗hσ∥2

16: Êb
t ←

(√
1− ᾱt−1 − η2β̃2

t Ẽ
(t)

θ∗ (Xt) + ηβ̃tEb

)
/
√

1− ᾱt−1

17: Xt−1 ←
√
ᾱt−1X̄t +

√
1− ᾱt−1Ê

b
t

18: end for
19: X0 ← (X1 −

√
1− ᾱ1Ẽ

(1)

θ∗ (X1))/
√
ᾱ1

20: return X0

For video frame interpolation, a flow estimation module like RAFT (Teed & Deng, 2020) can be
employed to generate warped estimations. Subsequently, our method can serve as an inpainting
solver to fill in the gaps within the warped estimations, leveraging the explicit temporal constraints
provided by batch-consistent sampling. This adaptability may allow our method to effectively tackle
video interpolation tasks.
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C FURTHER EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 VRAM-EFFICIENT SAMPLING

The proposed method is VRAM-efficient, treating video frames as batches in the image diffusion
model for sampling. As shown in Table 5, the method can reconstruct an 8-frame video at 256x256
resolution using less than 11GB of VRAM, which is feasible on GPUs like the GTX 1080Ti or
RTX 2080Ti (11GB VRAM). With a single RTX 4090 GPU (24GB VRAM), it can reconstruct a
32-frame video at the same resolution.

Frame # VRAM (GB)

1 2.73
2 3.36
4 4.90
8 7.33

16 13.33
32 23.65

RTX 4090 (24 GB)

Table 5: Our VRAM usage for 256×256 video.

C.2 ABLATION STUDY OF STOCHASTICITY

Experimental results show that synchronizing stochastic noise along batch direction enables batch-
consistent reconstruction, offering an effective solution for video inverse problems. While it is
theoretically possible to achieve batch-consistent sampling with η set to 0 (by eliminating stochastic
noise), our empirical findings, as shown in Table 6, indicate that incorporating stochastic noise
is beneficial for video reconstruction, particularly in cases involving spatio-temporal degradations.
Consequently, in our experiments, the optimal η value was determined through a grid search.

η PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓

0.0 18.04 0.298 0.573 1.726
0.2 19.29 0.363 0.481 1.306
0.4 21.80 0.508 0.283 0.677
0.6 24.21 0.649 0.152 0.387
0.8 25.71 0.724 0.279 0.352
1.0 26.04 0.738 0.339 0.457

Table 6: Ablation study on the selection of η for spatio-temporal degradation (×4 SR). Bold indi-
cates the best and underline indicates the second best results.

C.3 COMPARISON WITH ADDITIONAL VIDEO RESTORATION METHOD

To evaluate reconstruction performance in comparison to the latest video restoration methods,
we conducted additional experiments with the recently proposed DiffIR2VR (Yeh et al., 2024),
which has shown superior video processing performance over both supervised video processing
method (Youk et al., 2024) and diffusion-based method SDx4 upscaler (Rombach et al., 2022).
While DiffIR2VR (Yeh et al., 2024) supports video super-resolution tasks, we conducted experi-
ments on video super-resolution (×4) task. To ensure fair comparisons with identical resolutions,
we used patch reconstruction. As shown in Table 7, our method outperforms DiffIR2VR, achieving
superior reconstruction performance.

Method (DAVIS) PSNR ↑ FVD ↓ LPIPS ↓

DiffIR2VR (Yeh et al., 2024) 30.51 0.212 0.061
Ours 32.88 0.166 0.089

Table 7: Quantitative evaluations on video super-resolution (×4) using the DAVIS dataset. Bold
indicates the best results.
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C.4 TEST ON ADDITIONAL VIDEO DATASETS

To further evaluate the adaptability of our method across diverse datasets, we conducted additional
experiments on a high-frame-rate dataset (collected from Pexels1). For the high-frame-rate dataset
from Pexels, we compared our method with DiffIR2VR (Yeh et al., 2024) on video super-resolution
(×4) task. As shown in Table 8, our method maintains superior performance even on high-frame-rate
data.

Method (Pexels) PSNR ↑ FVD ↓ LPIPS ↓

DiffIR2VR (Yeh et al., 2024) 31.31 0.301 0.056
Ours 33.79 0.205 0.104

Table 8: Quantitative evaluations on video super-resolution (×4) using the high frame rate (Pexels)
dataset. Bold indicates the best results.

C.5 HUMAN PERCEPTUAL STUDY

We conducted a perceptual human evaluation comparing our method with baseline methods used in
the paper. Specifically, we collected a total of 36 votes from computer vision researchers. Recon-
struction results were displayed side-by-side, and researchers were asked to vote on the method that
best addressed each of the following questions: (Q1) Which video has better reconstruction quality?
(Q2) Which video has better temporal consistency? As shown in Table 9, our method outperformed
the baseline methods in both aspects according to human perceptual evaluations.

Method (DAVIS) Q1 (votes / total votes) ↑ Q2 (votes / total votes) ↑

ADMM-TV 0 0
DPS 0.056 0.056

DiffusionMBIR 0 0
Ours 0.944 0.944

Table 9: Human perceptual study on various video inverse problems using the DAVIS dataset. Bold
indicates the best results.

C.6 LIMITATIONS AND FUTURE WORKS

Our method employed the unconditional pixel-space diffusion model (Dhariwal & Nichol, 2021),
which supports a maximum resolution of 256×256. Consequently, the current approach is con-
strained to this spatial resolution. Extending the framework to latent diffusion models presents a
promising direction for enhancing both supported resolution and reconstruction quality. In scenarios
with severe temporal degradation, such as video frame interpolation, our method may become less
reliable. However, as discussed in Appendix B.2, our framework is flexible enough to incorporate
additional modules to address these challenges. For blind video deblurring, we utilize a two-round
sampling process, which results in a doubling of the sampling time. Future research to reduce this
additional sampling time could enhance the efficiency of blind inverse problem solvers.

1https://www.pexels.com/
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C.7 PREVIEW OF FUTURE WORK ON LATENT DIFFUSION MODELS

Extending our method to latent diffusion models (Rombach et al., 2022) represents a promising
direction, and we are actively working on this as part of our future work. We aim to significantly
improve the resolution of various video inverse problems by replacing image diffusion models with
latent image diffusion models. We provide a sample result to demonstrate the feasibility of this
extension, highlighting that our method can effectively handle latent diffusion models. As shown in
Figure 9, our future work provides up to a 4× resolution improvement for solving a wide range of
video inverse problems. In summary, our method is adaptable to various diffusion models, enabling
broader applications and enhanced performance.

Figure 9: Preview sample of future work on latent diffusion models. The sample provides results at
a resolution of 1024×1024, addressing temporal degradation combined with inpainting.
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C.8 DETAILED VISUALIZATIONS OF EXPERIMENTAL RESULTS

Figure 10: Ablation study results showing eight consecutive Tweedie denoised frames at different
diffusion timesteps: the first row displays the 1st of 20 DDIM sampling steps, the second row dis-
plays the 5th step, and the third row displays the 10th step.
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Figure 11: Detailed qualitative comparison in temporal degradation using a uniform PSF with k=7
on the DAVIS dataset, shown with a 2-frame skip.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 12: Detailed qualitative comparison in temporal degradation using a uniform PSF with k=13
on the DAVIS dataset, shown with a 2-frame skip.
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Figure 13: Detailed qualitative comparison in temporal degradation using a Gaussian PSF with σ=1
on the DAVIS dataset, shown with a 2-frame skip.
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Figure 14: Detailed qualitative comparison in spatio-temporal degradation, including the spatial
deblurring (σ=2.0) task on the DAVIS dataset, shown with a 2-frame skip.
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Figure 15: Detailed qualitative comparison in spatio-temporal degradation, including the spatial
super-resolution (× 4) task on the DAVIS dataset, shown with a 2-frame skip.
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Figure 16: Detailed qualitative comparison in spatio-temporal degradation, including the spatial
inpainting (r=0.5) task on the DAVIS dataset, shown with a 2-frame skip.
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Figure 17: Additional reconstruction results for temporal degradations: (top) uniform PSF with k=7,
(bottom) uniform PSF with k=13.
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Figure 18: Additional reconstruction results for spatio-temporal degradations. The spatial degrada-
tions are: (top) deblurring (σ=2.0), (mid) super-resolution (× 4), and (bottom) inpainting (r=0.5).
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