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ABSTRACT

While diffusion models excel at image generation, their growing adoption raises
critical concerns about copyright issues and model transparency. Existing attribu-
tion methods identify training examples influencing an entire image, but fall short
in isolating contributions to specific elements, such as styles or objects, that are of
primary concern to stakeholders. To address this gap, we introduce concept-level
attribution through a novel method called Concept-TRAK, which extends influence
functions with a key innovation: specialized training and utility loss functions
designed to isolate concept-specific influences rather than overall reconstruction
quality. We evaluate Concept-TRAK on novel concept attribution benchmarks us-
ing Synthetic and CelebA-HQ datasets, as well as the established AbC benchmark,
showing substantial improvements over prior methods in concept-level attribution
scenarios.

1 INTRODUCTION

Diffusion models ( s ; ;b; ,

, ) have ach1eved remarkable success in image generat10n not merely through
generating high-fidelity images, but through their ability to learn and flexibly compose concepts from
training data ( s ; , ).

This capability raises important questions about accountability and transparency. When models learn
and exploit specific concepts from training data, stakeholders need to understand which training
samples contributed to those concepts: whether for recognizing artistic contributions, ensurmg
fair compensation, safety auditing, model debugging, or copyright compliance ( , ;

s 5 s 5 s 5 5 ’ )'

To address these diverse needs, data attribution methods ( s
, ) have emerged as promising tools, estimating how rnuch each tralmng

example contributes to a generated output ( , ). These methods have proven valuable
for tasks such as data valuation ( s ), curation ( R ), and understanding
model behavior ( , ). While recent work has begun exploring attribution methods

tailored for diffusion models ( s s

, ), these approaches generally est1mate contrlbutlons at the level of entire 1mages This
broad perspective poses a critical limitation: in many practical scenarios, stakeholders care about
specific concepts within an image, rather than the whole composition.

For example, consider an Al-generated image depicting an IP-protected character (e.g., Pikachu)
rendered in a pencil drawing style as shown in Figure 1(a). In such cases, copyright concerns
from IP holders (e.g., The Pokémon Company) would primarily focus on the character itself, not
the stylistic pencil rendering. Yet, traditional attribution methods, e.g., TRAK, identify training
samples that influenced the generation of the full image, failing to isolate those tied to particular
concepts. As Figure 1(a) demonstrates, these methods tend to retrieve stylistically similar images
(e.g., pencil-drawn objects) but miss the character that is actually subject to copyright protection.

To address this gap, we introduce concept-level attribution, which estimates each training example’s
contribution to specific semantic features such as styles, objects, or concepts. Building on this, we
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(a) Traditional attribution (b) Concept attribution with Concept-TRAK
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Figure 1: (a) Traditional attribution methods like TRAK identify training samples that influenced
an entire generated image, often yielding influences unrelated to specific concepts of interest. (b)
Our Concept-TRAK identifies training samples that specifically influenced a targeted concept (e.g.,
"Pikachu"), enabling precise attribution for features of interest.

propose Concept-TRAK, an extension of influence functions ( , ) that quantifies
how training data affects the model’s ability to generate individual concepts. Our key insight is that
effective concept attribution requires designing loss functions that capture concept-relevant directions
rather than optimizing for overall reconstruction quality. Concept-TRAK achieves this through
reward-based formulations that explicitly target concept-relevant influences. As shown in Figure 1(b),
Concept-TRAK correctly identifies training samples responsible for the concept of Pikachu, rather
than irrelevant stylistic cues.

To rigorously evaluate our method, we introduce novel concept-level attribution benchmarks on
Synthetic and CelebA-HQ datasets. Concept-TRAK substantially outperforms baselines, especially
for out-of-distribution samples with unseen concept combinations. Additionally, we evaluate on the
established AbC benchmark ( ), a retrieval-based framework for text-to-image
model data attribution, where Concept- TRAK significantly outperforms prior methods by accurately
retrieving training examples that influence specific concepts. Finally, case studies on IP-protected
content, unsafe concept detection, model debugging, and relational concept learning highlight
Concept-TRAK’s practical utility for real-world applications and understanding concept learning in
diffusion models.

2 BACKGROUND

2.1 DIFFUSION MODEL

Diffusion models ( ; ; R ) are a class of
generative models that synthesize i 1mages through an 1terat1ve denoising process. Starting from a
clean image x, the forward process adds Gaussian noise to produce a sequence of increasingly noisy
images x4, following, q(z; | z0) = N (y/azxo, (1 — ay)I), where oy is a noise schedule controlling
the level of corruption at timestep ¢.

A neural network eg(x¢,t) is trained to predict the added noise ¢, enabling reconstruction of
from z; at noise level ¢. The training objective is called the denoising score matching (DSM) loss:
Lpsm(70;0) = Eyy t.e[lle — €o (s, t)||3], which encourages the model to approximate the gradient of
the log-density (i.e., score function): €y(x¢,t) o< V log p¢(x). For simplicity, we omit the timestep ¢
in eg(x¢,t) when the context is clear.

Diffusion models can be extended to condmonal generation by incorporating additional information
¢, such as a text prompt ( , ). In this setting, the model learns
eg(xe;¢) x Viogpe(xy | ), allowing it 0 generate images that are not only realistic but also aligned
with the conditioning input.

2.2 DATA ATTRIBUTION

The goal of data attribution is to estimate the contribution of a training sample ! to a model’s
utility loss V, e.g., a performance metric or objective function that quantifies how well the model
performs (e.g., test loss) ( s ; s ; s ). While
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Leave-One-Out retraining provides exact attribution, it is computationally prohibitive for modern
large-scale models.

To address this limitation, influence functions ( , ) efficiently approximate the effect
of removing a training example z* using gradient-based estimates. Given a model with parameters
6 € R and training loss £(-; ), the influence function is defined as:

I(%av) - gVH Gi-

Here, g; = Vo L(z}; 0) represents the gradient of the loss with respect to parameters 6 for sample x,
gy = VgV(0) is the gradient of utility loss V, and H = V2L(D; 6) denotes the Hessian matrix of the
training loss computed over the entire training dataset D = {z}}¥ . However, computing influence
functions remains computationally challenging, as each attribution query requires recomputing
training gradients for the entire training set in addition to the expensive Hessian computation (

) )-

To address this, TRAK ( , ) proposes projecting gradients into a lower-dimensional
space using a random projection matrix P € R?** with k < d:

I(z},V) & (PTgy) 'H5' Py,

where Hp = PTHP € R¥*¥ is the projected Hessian. This enables efficient storage and reuse of
gradient for multiple attribution queries.

2.3  DATA ATTRIBUTION FOR DIFFUSION MODELS

Prior work on diffusion models ( s ; ; s ) has primarily
focused on whole-image attribution, typically usmg the same obJectlve for both training and utility
losses. These studies reveal that attribution performance is highly sensitive to the choice of loss
function. In particular, the standard DSM loss introduces stochasticity via both the noise term e
and the perturbed input z;, resulting in noisy gradient estimates that require extensive averaging to
be reliable, making it suboptimal for attribution. To mitigate this, D-TRAK (

employs the squared £2-norm ||eg||3, and DAS ( , ) employs the squared ¢;-norm H€9 Ik
to compute influence scores, achieving improved stability and accuracy.

These findings highlight that choosing a robust loss function for gradient computation is essential
for reliable attribution in diffusion models. We extend this insight to the concept-level setting,
which demands loss functions specifically designed to capture concept-specific influence.

3 METHOD

We present Concept-TRAK, a framework for quantifying the contribution of individual training
samples to specific concepts learned by diffusion models. Unlike prior work that measures influence
on entire generated images, our approach targets how training data affects the model’s ability to
represent particular semantic concepts.

3.1 DEFINITION: CONCEPT-LEVEL ATTRIBUTION

We define concept-level attribution as measuring how training sample ), influences the model’s
ability to generate concept cureet. We quantify this through the expected concept presence:
Po(Crarget) = By ~prampie(-1e) [P(Crarget|20)]

where p(Curget|T0) represents the probability that concept ciare is present in image xo, and psample (+|¢)
represents the sampling distribution used for generation.

More specifically, we consider two attribution scenarios (Figure 2):
* Global attribution: p,myi. represents the model’s generative distribution (e.g., conditional sam-
pling with CFG), measuring concept probability across all generations

* Local attribution: pgmpe = 0(zo — 2§™), measuring how training data influences the specific
manifestation of a concept in a particular generated image z§™
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Figure 2: (a) Global concept attribution identifies training samples that influenced the learning of
general concepts across all generations. (b) Local concept attribution identifies training samples that
influenced the learning of specific concept manifestations appearing in a particular generated image.
For example, when applying local concept attribution to the “dog” concept in a generated image of a
bulldog-like dog, we can observe that it retrieves images similar to bulldogs, demonstrating more
targeted attribution.

To approximate how training samples contribute to this concept probability, we employ influence
function frameworks:

I(xlm Ctargel) = véﬁl)ncepl(ctargeﬁ H)H_lvﬁ’ﬁtrain(xé; 9)7 (1

where Econcept(clarget; ) measures model performance for specific concept generation (i.e., our utility
loss V), and Ly (2f; 0) captures the training sample’s contribution.

In this work, we focus on concepts Cirger that can be specified as conditioning inputs (e.g., text prompts
of “Pikachu”, “Mario”, or class index), enabling us to leverage existing conditional generation
mechanisms for precise attribution. For general concept attribution including visual concepts, please
refer to the Appendix C.

3.2 Loss FUNCTION DESIGN

While the theoretical setup would be to use pg (cmrget) as the utility loss and the standard DSM loss for
training loss, prior work has shown that attribution performance is highly sensitive to loss function
design (Section 2.3). The key challenge lies in designing loss functions Lconcept and Lirin that provide
robust, concept-relevant gradients rather than generic denoising signals.

Geometric Motivation Our approach is motivated by the hypothesis that meaningful concept
directions correspond to tangent vectors of the diffusion model’s latent space, which we leverage to
design concept-aware loss functions.

The latent variables of diffusion models x;, lie on a lower-dimensional manifold (Chung et al., 2022b;
Liu et al., 2022). Prior work has identified semantically rich structure within this manifold’s tangent
space, enabling concept-based editing approaches (Park et al., 2023b). Additionally, classifier-free
guidance vector €p(x, ¢) — eg(2+), which contain rich concept information (Brack et al., 2023; Wang
et al., 2023c¢), have been shown to operate effectively in the tangent space of the data manifold (Chung
et al., 2024; Kwon et al., 2025).

Motivated by these findings, we hypothesize that concept-relevant directions can be more effectively
captured by operating in the tangent space (Chung et al., 2022a; Park et al., 2023b; Wang et al.,
2023c) rather than through standard denoising objectives.

Solution: Reward Optimization Our geometric motivation raises a practical question: how do we
identify concept-relevant directions within the tangent space and incorporate them into loss functions?
We propose that reward optimization provides this capability: reward gradients V,, R(x:) serve
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as concept-specific guidance directions that point toward concept-enhancing regions in the tangent
space.

Consider the reward optimization objective ( , ; s ):
max By, v po (o) [R(20)] = Dk (Po (-]¢) | Prampte (] ¢))

where R(zg) is a reward function, py(-|c) is our target model for reward optimization, and 3 controls
regularization strength. While the sampling distribution pgmple(-|c) can vary in practice, we use
po(-|c) in our derivation for theoretical clarity. (For general case, please refers to Appendix B.1)

The optimal solution is ( , ; , ):

p"(zolc) o< po(wolc) exp(R(zo)/B),
For diffusion models, we can extend this to intermediate timesteps by defining rewards on noisy
latents R(x) ( , )-

To analyze the gradient direction toward this reward-shaped distribution, we define a loss based on
Explicit Score Matching (ESM) ( , ; R ):

Lesm(0;0) = Euymg(ayfao) [[|Ver logp(ile) — Ve, logp*(xt\c)H%] :
For all subsequent loss functions, we assume x; ~ g(x¢|xzo) unless otherwise specified.

The score function of p* (x;|c) decomposes as V, log p* (z¢|c) = V4, log po(at|c)+1/5-V, R(x4).
Converting to diffusion model notation, this leads to our reward-based loss function:

Lreward(0;0) = Eq, [||sgleo(ve;c) — 1/8 -V, R(we)] — ea(wi;0)|13] - )

where sg|-] is stop-gradient operation, and /3 is a hyperparameter whose specific choice becomes
irrelevant due to gradient normalization (Section 3.4).

Intuitively, Eq. (2) steers the model’s output in the direction of the reward gradient V,, R(x;). We
now instantiate this framework with concrete reward designs that ensure the gradients operate in the
tangent space.

3.3 CONCEPT-TRAK

We now instantiate our reward-based framework by designing specific reward functions for concept
attribution. Following Eq. (2), we replace the general reward R(z;) with two concept-specific rewards:
one that increases the probability of generating training sample ), and another that increases the
probability of concept c. These become our training and utility losses, respectively.

Training Loss To capture how training sample z{, influences the model’s generation, we define:

Rtrain(xt) £ Ing(x6|i'0)’
where &g = E[xg|x,] is the posterior mean predicted by diffusion model. This reward encourages the
model to generate samples likely to have originated from .

Following the approach from Diffusion Posterior Sampling (DPS) ( ), we assume
Gaussian distributions for the training data, i.e., p(z{|xg) o exp(—|lzf — :170H /o2 .), giving us
Riain(4) X —1/0gawa - ||l — Z0]|?. While DPS uses this for posterior sampling, we propose to use
it for attribution by constructing a training loss. This gradient V., |0 — z}||* operates as tangent
vectors on the data manifold ( , ), aligning with our geometric framework.

Substituting this into our framework (Eq. (2)) gives us the training loss:
Luain(w030) = Eq, [[lsgleo(@e5¢) + A Vi, |20 — 25]|*] — ez )], 3)

where A\¢ = 1/(804aa) is a hyperparameter whose specific choice becomes irrelevant due to gradient
normalization (Section 3.4).

While DSM loss has a similar goal of capturing how training samples influence generation, our
train loss differs in how the learning signal is constructed. DSM provides reconstruction-driven
signal, whereas our DPS-based reward explicitly yields tangent-space guidance vectors, which we
empirically find more stable for concept-level attribution.

'Interestingly, this tangent space motivated formulation yields an equivalent loss to V-DB from the GFlowNet
framework ( s ) under specific assumptions.
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Utility Loss To measure concept presence, we define:

Rconcept(zt) £ 1()gp(ctzirget|xt)

Maximizing this reward corresponds to maximizing a lower bound of our target concept probability
Po(Ctarget) = Egmpuampe [P0 (Carget|Z0)] (Appendix B.2). Here, pmpie determines the attribution scope:
for global attribution, it represents the model’s generative distribution; for local attribution, psample =

§(zo — ).

When cirge is a conditioning input, the reward gradient reduces to classifier-free guidance vectors

€0(4; Carger) — €0(x¢) ( , ), which operate as concept-relevant tangent vec-
tors ( s ; s ). For concepts embedded within condition ¢, we use
concept slider guidance €y (z; ¢) —eg (a5 ) ( , ) to measure the target concept’s

contribution within the context, where c_ is the condition that removes the target concept (e.g., c:
“pencil drawing of Pikachu”, c_: “pencil drawing”).

Substituting this into our framework (Eq. (2)), the corresponding utility loss is:

Econcepl(ctargeﬁ 9) =Ky 2, [HSg[eQ(xt; C) + A - (60(-1'1&; C) - 60(3715; C—))] - 69(33753 C)H%] ) 4

where )\ is a scaling constant whose specific value does not impact on final attribution scores due to
gradient normalization (Section 3.4).

Concept-Level Influence Function Having designed both training and utility losses to operate
through reward gradients in the tangent space, we can now apply the influence function framework:

I(méa Ctargel) = vaﬁconcep[(ctarget; G)THilvaﬁlrain(xé; 0) (5)

This measures the alignment between the guidance direction induced by training sample z and
the guidance direction representing target concept Cireer. High alignment indicates that the training
sample significantly contributed to the model’s ability to generate the concept.

3.4 ADDITIONAL TECHNIQUES

Deterministic Sampling via DDIM Inversion To eliminate stochasticity from the forward diffusion
process x; ~ g(x|zo) for more stable attribution, we employ deterministic DDIM inversion to derive
deterministic noisy latents z; = DDIMinv(z{, 0 — ¢) from training samples z. Combined with our
loss functions, this approach removes all sources of randomness from gradient computation, resulting
in more stable influence estimates through improved gradient fidelity.

Global vs. Local Concept Attribution The choice of sampling distribution psampie in our utility
loss (Eq. (4)) determines the attribution scope. We implement this distinction as follows: (1) Global
attribution uses the full conditional distribution, sampling z; via DDIM from noise. Local attribution
constrains this to Psampie (o) = d(xo — 2§™), requiring 2 = z; We enforce this constraint by

sampling x; via DDIM from noise that used for generating ™.

Gradient Normalization Varying loss magnitudes across timesteps can cause certain gradients
to dominate attribution results. To address this, we normalize each timestep gradient g; to unit
norm, g = g¢/||g:||2, ensuring that no single timestep exerts disproportionate influence on the final
attribution score. This normalization also makes our method invariant to hyperparameters such as 3
and oy, in our framework, providing additional robustness.

Gradient Projection Following TRAK ( , ), we project gradients to lower-
dimensional space (k < d) for computational efficiency. Moreover, we approximate the Hessian
using the Fisher Information Matrix, which requires only negligible overhead given pre-computed
training gradients.

We refer to the complete method incorporating reward optimization based loss function, deterministic
sampling, and gradient normalization within the influence function framework Eq. (5) as Concept-
TRAK. Further implementation details provided in Appendix E.
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4 EXPERIMENTS

In this section, we evaluate Concept-TRAK across multiple concept attribution scenarios, comparing it
against TRAK ( , ), D-TRAK ( R ), DAS ( , ). For text-to-
image (T2I) model, we additionally compare against an unlearning-based attribution method (

R ). To evaluate concept-level attribution, we conduct two controlled evaluations on class-
conditional diffusion models and evaluate on an established real-world T2I model data attribution
benchmark (AbC, ( )). Note that standard Linear Datamodeling Score (LDS,

( )) used in traditional data attribution is inapplicable to concept-level attribution evaluation
(see Appendix A for detailed discussion).

Scope of Experiments Since baseline methods were (@) In-distribution Out-of-distribution
not developed with concept-level attribution in mind, it (@.H) (@, H) (A, N (A, H)

is natural that they struggle under our evaluation. Our

comparisons should therefore be viewed not as criti- . ' A ?

cisms of prior methods, but as evidence that this newly
defined task demands specialized approaches, highlight-  (b) Test sample

ing the need for further research in this direction. (A, H) Concept  Top Influences
attribution

In the main text, we focused on controlled evaluations ‘ m A . A

on synthetic and CelebA-HQ datasets, and evaluation O x O

on the established AbC benchmark for T2I models. In

the appendix, we provide extended analyses including: Figure 3: Experimental setup. (a) Train dif-
(1) set-level attribution as an alternative baseline (Ap- fusion models on image—tuple pairs (shape,
pendix D.1), (2) challenging real-world scenarios with  color), excluding all red—triangle combina-
semantically similar concepts (Appendix D.2.1) and tions. (b) Generate ID/OOD samples and
complex compositional prompts (Appendix D.2.2), (3) perform concept-level attribution; the pre-
qualitative case studies on diverse applications (Ap- diction is correct if the top influential train-
pendix D.2.3, Appendix D.4). ing samples contain the target concept.

4.1 CONTROLLED EVALUATION: SYNTHETIC DATASET

Evaluating concept attribution requires knowing the ground truth source of each concept, which is
unavailable in real datasets. To address this, we construct a controlled synthetic dataset with two
binary concepts: color € {red, blue} and shape € {triangle, circle}. We train a conditional diffusion
model where each condition is encoded as concatenated one-hot vectors.

To comprehensively evaluate concept attribution methods, we design our dataset to enable testing in
both in-distribution (ID) and out-of-distribution (OOD) scenarios (Figure 3(a)). We exclude {red,
triangle} combinations from training, creating ID cases where concept combinations were seen
during training (e.g., blue circle) and OOD cases requiring novel concept combinations through
generalization (e.g., red triangle). This setup allows us to understand how attribution methods behave
when training data directly supports the generated output versus when the model must combine
concepts in novel ways.

Evaluation Protocol We use Precision@10 to evaluate concept attribution. As illustrated in
Figure 3(b), we generate a test image and perform concept attribution for a specific concept (e.g.,
"shape"). We then check whether the top-ranked training samples contain the same target concept
as the generated image. In this example, a training sample with a triangle is correct (()) while
one with a circle is incorrect (x). We generate 16 test images for each concept combination and
report Precision@ 10 averaged across all test cases. Note that baseline methods perform standard
data attribution on the generated image, while Concept-TRAK performs concept-specific attribution
targeting individual concepts within that image, i.e., local concept attribution.

Results As shown in Table 1, Concept-TRAK maintains strong performance in both ID (1.00) and
OOD (0.85) scenarios, while baseline methods exhibit a significant performance drop in the OOD
setting (< 0.50). This gap underscores a fundamental distinction between attribution settings. In ID
cases, image-based attribution methods can succeed for concept retrieval only by leveraging visual
similarity, since there exists training samples that includes the same concept combinations as those in
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Figure 4: The target concept for each method is indicated in parentheses (Shape/Color). A data
attribution method succeeds when the top influential training samples contain the same concept as
the generated sample. (a) In-distribution case: Both baseline methods and our approach successfully
retrieve relevant training samples. (b) Out-of-distribution: Our method accurately retrieves training
samples for each individual concept (triangle for shape, red for color), while baselines can only
retrieve samples related to one concept due to image-level attribution limitations.

Table 1: Precision@ 10 on synthetic dataset. Table 2: Precision@ 10 on CelebA-HQ dataset.
In-distribution ~ Out-of-distribution In-distribution Out-of-distribution
Method  Shape Color Avg. Shape Color Avg. Method Eyeglasses Male Smiling Avg. Eyeglasses Male Smiling Avg.
Ours 1.00 1.00 1.00 0.80 0.90 0.85 Ours 0.97 093 0.87 092 1.00 1.00  0.90 0.97
DAS 1.00  1.00 1.00 1.00 0.00 0.50 DAS 0.99 099 090 0.96 0.70 0.60 0.70 0.67
D-TRAK 1.00 1.00 1.00 1.00 0.00 0.50 D-TRAK 0.56 0.44 051 050 0.30 0.60 0.00 0.30
TRAK 0.67 093 0.80 0.60 0.30 0.45 TRAK 0.86 096 0.71 0.84 0.60 0.70  0.50 0.60

the generated output (Figure 4(a)). In contrast, OOD cases contain no training samples with the exact
target concept combination, requiring methods to isolate the contribution of individual concepts from
compositionally novel outputs (Figure 4(b)).

4.2 CONTROLLED EVALUATION: CELEBA-HQ

We extend our evaluation to real images using CelebA-HQ with three binary concepts: eyeglasses,
male, and smiling. We deliberately exclude all samples containing the combination {eyeglasses,
male, smiling} from the training dataset, creating a more challenging OOD scenario where the
model should compositionally combine three concepts. We follow the same Precision@ 10 evaluation
protocol, generating 16 test images per available combination.

Results As shown in Table 2, Concept-TRAK achieves consistently strong performance in both ID
(0.92) and OOD (0.97) scenarios. In contrast, DAS performs well in ID (0.96) but drops substantially
in OOD settings (0.67). This difference reflects the distinct challenges of each setting: ID scenarios
often benefit from image-level similarity, as retrieved samples visually resembling the generated
image typically contain the target concept. However, OOD scenarios require isolating individual
concepts from compositionally novel combinations, where image-level similarity is insufficient for
accurate concept attribution (see qualitative results in Appendix D.3).

4.3 ATTRIBUTION BY CUSTOMIZATION (ABC)

We use the Attribution by Customization Benchmark (AbC) ( s ), an established
benchmark for T2I model data attribution. AbC evaluates attribution methods on models fine-tuned
with exemplar images to learn new concepts via special tokens (V'), measuring whether attribution
method successfully retrieves the exemplars from generated images. This setup offers a rare source
of ground truth: generated outputs are known to be directly influenced by the exemplars. While this
setting lacks generality for large-scale training regimes, it remains the most reliable way to evaluate
concept-level attribution in current T2I models.

Evaluation Protocol Following the setup in ( ), we report Recall@10, i.e., the
proportion of times the exemplar images are successfully retrieved from a pool containing the
exemplars and 100K LAION images. While the original benchmark involves not only learning
exemplar using special tokens but also fine-tuning the model’s parameter on the exemplar dataset,
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AbC-style AbC-content Table 3: Ablation study.
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Figure 5: Recall@10 performance on AbC benchmark.
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Figure 6: Qualitative results on the AbC benchmark. Correctly retrieved samples are highlighted with
red boxes. Previous methods (Unlearn, D-TRAK) struggle with interference from style elements and
retrieve unrelated images, while Ours (Global) successfully isolates target concepts (V).

real-world use cases more commonly involve investigating the concepts generated or utilized by a
single pretrained model. To better reflect this, we adopt textual inversion ( , ) with a
frozen base model (SD1.4v) ( , ), which only trains with a special token (V'),
without parameter updates. Further implementation details are provided in the Appendix E.

Results Our method achieves significantly higher Recall@ 10 while maintaining computational
efficiency comparable to TRAK-based method, as shown in Figure 5. As illustrated in Figure 6, prior
methods often fail to isolate the concept of interest (V') due to interference from style or other visual
elements in the generated image. In contrast, Concept-TRAK effectively isolates and attributes the
target concept (V'), demonstrating superior performance in concept-level attribution. These results
can be explained by the inherently compositional nature of T2I generation. In this AbC benchmark,
a model is required to combine a learned concept (V') with diverse styles or objects to generate
test samples. As we demonstrated from controlled evaluation, such compositional scenario makes
precise concept attribution substantially more difficult for image-based attribution methods, thereby
amplifying the performance gap observed with Concept-TRAK.

Ablation Study We conduct an ablation study using 48 samples from the AbC dataset to assess the
impact of each design choice. Starting from the baseline TRAK with Lpsy, adding concept-aware
utility gradients (A), DPS-based training gradients (B), DDIM inversion (C), and gradient normal-
ization (D) progressively improves performance, with our full method achieving 0.955 Recall@10.

5 RELATED WORK

Data Attribution Established data attribution methods include influence functions ( ,
) which approximate leave-one-out retraining via gradients. TRAK and LoGra ( ,
, ) improve scalablllty through random projections. Game-theoretic approaches

like Data Shapley ( , , ), based on Shapley values (
s ), were initially limited by retraining costs, but recent work ( s : )
improves efficiency by removing this requirement. Unlearning-based methods ( , )

offer alternative trade-offs between efficiency and theoretical rigor.

Data Attribution for lefuswn Models Early diffusion attribution methods adapted influence

functions ( , ), but were biased by timestep-dependent gradient
norms. ( ) addressed this via a re-normalized formulation. ( ) extended
TRAK to diffusion models, exploiting its scalability. ( ) later proposed the Diffusion

Attribution Score, which quantifies per-sample influence by directly comparing predicted distributions,
yielding more precise attributions than loss-based approaches.
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6 CONCLUSION

In this work, we offer an initial investigation into concept-level attribution, introducing Concept-
TRAK as a foundational framework. It introduces specialized reward-based training and utility
loss functions designed to isolate concept-specific influences. Concept-TRAK outperforms existing
methods on novel concept attribution benchmarks using the Synthetic and CelebA-HQ datasets, as
well as the AbC benchmark. We expect these contributions to inspire further research toward more
robust concept-level attribution benchmarks and methods for increasingly sophisticated generative
models.

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

This work made use of large language models to assist with proofreading and improving the clarity
of the writing. All research ideas, theoretical development, experiments, and coding were carried out
solely by the authors.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, and
Kristian Kersting. Sega: Instructing text-to-image models using semantic guidance. Advances in
Neural Information Processing Systems, 36:25365-25389, 2023.

Blake Brittain. Getty images lawsuit says stability ai misused photos to train
ai. Reuters, February 2023. URL https://www.reuters.com/legal/
getty-images—lawsuit—-says—-stability-ai-misused-photos—-train-ai-2023-02-06/.

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 5253-5270, 2023.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
gpt? llm-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
inverse problems using manifold constraints. Advances in Neural Information Processing Systems,
35:25683-25696, 2022b.

Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye. Cfg++: Manifold-
constrained classifier free guidance for diffusion models. arXiv preprint arXiv:2406.08070, 2024.

Junwei Deng, Shiyuan Zhang, and Jiaqi Ma. Computational copyright: Towards a royalty model for
music generative ai. arXiv preprint arXiv:2312.06646, 2023.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion. arXiv preprint arXiv:2208.01618, 2022.

Rohit Gandikota, Joanna Materzyriska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
sliders: Lora adaptors for precise control in diffusion models. In European Conference on Computer
Vision, pages 172—-188. Springer, 2024.

GenLaw2024. 2nd workshop on generative ai and law (genlaw '24). https://www.genlaw.
org/2024-1icml, July 2024. Held at the International Conference on Machine Learning (ICML)
2024, Vienna, Austria.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 2242-2251. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/
v97/ghorbanil9c.html.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840—6851, 2020.

Yuzheng Hu, Pingbang Hu, Han Zhao, and Jiaqi Ma. Most influential subset selection: Challenges,

promises, and beyond. Advances in Neural Information Processing Systems, 37:119778-119810,
2024.

11


https://www.reuters.com/legal/getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/
https://www.reuters.com/legal/getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/
https://www.genlaw.org/2024-icml
https://www.genlaw.org/2024-icml
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html

Under review as a conference paper at ICLR 2026

Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A variational perspective on diffusion-
based generative models and score matching. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=bXehDYU]JjXi.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Herndndez-Lobato, Richard E. Turner,
and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with
KL-control. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1645-1654. PMLR, 06-11 Aug 2017. URL https://proceedings.mlr.press/
v70/jaquesl7a.html.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms. arXiv preprint arXiv:1908.08619, 2019a.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Giirel, Bo Li,
Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based on the
shapley value. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pages 1167-1176. PMLR, 16-18 Apr 2019b. URL
https://proceedings.mlr.press/v89/jial9%a.html.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
Speedrunning the nanogpt baseline, 2024. URL https://github.com/KellerJordan/
modded—nanogpt.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885-1894. PMLR, 2017.

Tomasz Korbak, Hady Elsahar, German Kruszewski, and Marc Dymetman. On reinforcement
learning and distribution matching for fine-tuning language models with no catastrophic for-
getting. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 16203—16220. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/67496dfa96afddab795530cc7c69b57a-Paper—-Conference.pdf.

Mingi Kwon, Shin seong Kim, Jaeseok Jeong, Yi Ting Hsiao, and Youngjung Uh. Tcfg: Tangential
damping classifier-free guidance. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2620-2629, June 2025.

Jinxu Lin, Linwei Tao, Minjing Dong, and Chang Xu. Diffusion attribution score: Evaluating
training data influence in diffusion model. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=kuutidLf6R.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. In International Conference on Learning Representations, 2022.

Zhen Liu, Tim Z Xiao, , Weiyang Liu, Yoshua Bengio, and Dinghuai Zhang. Efficient diversity-
preserving diffusion alignment via gradient-informed gflownets. In ICLR, 2025.

Taywon Min, Haeone Lee, Hanho Ryu, Yongchan Kwon, and Kimin Lee. Understanding impact of
human feedback via influence functions. arXiv preprint arXiv:2501.05790, 2025.

Bruno Mlodozeniec, Runa Eschenhagen, Juhan Bae, Alexander Immer, David Krueger, and Richard
Turner. Influence functions for scalable data attribution in diffusion models. arXiv preprint
arXiv:2410.13850, 2024.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

12


https://openreview.net/forum?id=bXehDYUjjXi
https://proceedings.mlr.press/v70/jaques17a.html
https://proceedings.mlr.press/v70/jaques17a.html
https://proceedings.mlr.press/v89/jia19a.html
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://proceedings.neurips.cc/paper_files/paper/2022/file/67496dfa96afddab795530cc7c69b57a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67496dfa96afddab795530cc7c69b57a-Paper-Conference.pdf
https://openreview.net/forum?id=kuutidLf6R

Under review as a conference paper at ICLR 2026

Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge
multiplicatively: Exploring diffusion models on a synthetic task. Advances in Neural Information
Processing Systems, 36:50173-50195, 2023.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
attributing model behavior at scale. In Proceedings of the 40th International Conference on
Machine Learning, pages 27074-27113, 2023a.

Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the
latent space of diffusion models through the lens of riemannian geometry. Advances in Neural
Information Processing Systems, 36:24129-24142, 2023b.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920-19930, 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684—10695, 2022.

Laura Ruis, Maximilian Mozes, Juhan Bae, Siddhartha Rao Kamalakara, Dwarak Talupuru, Acyr
Locatelli, Robert Kirk, Tim Rocktischel, Edward Grefenstette, and Max Bartolo. Procedural knowl-
edge in pretraining drives reasoning in large language models. arXiv preprint arXiv:2411.12580,
2024.

Seyedmorteza Sadat, Manuel Kansy, Otmar Hilliges, and Romann M Weber. No training, no problem:
Rethinking classifier-free guidance for diffusion models. arXiv preprint arXiv:2407.02687, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479-36494, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in neural
information processing systems, 35:25278-25294, 2022.

Lloyd S Shapley et al. A value for n-person games. 1953.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pages 2256-2265. PMLR, 2015.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 6048—6058, 2023a.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
standing and mitigating copying in diffusion models. Advances in Neural Information Processing
Systems, 36:47783-47803, 2023b.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-

tional Conference on Learning Representations, 2021a.

13



Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661-1674, 2011.

Bram Wallace, Meihua Dang, Rafael Rafailov, Lingi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8228-8238, 2024.

Jiachen T Wang, Yuqing Zhu, Yu-Xiang Wang, Ruoxi Jia, and Prateek Mittal. Threshold knn-shapley:
A linear-time and privacy-friendly approach to data valuation. arXiv preprint arXiv:2308.15709,
2023a.

Jiachen T Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training run. arXiv
preprint arXiv:2406.11011, 2024a.

Sheng-Yu Wang, Alexei A Efros, Jun-Yan Zhu, and Richard Zhang. Evaluating data attribution for
text-to-image models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 7192-7203, 2023b.

Sheng-Yu Wang, Aaron Hertzmann, Alexei Efros, Jun-Yan Zhu, and Richard Zhang. Data attribution
for text-to-image models by unlearning synthesized images. Advances in Neural Information
Processing Systems, 37:4235-4266, 2024b.

Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-based) text-
controlled generative models. Advances in Neural Information Processing Systems, 36:35331—
35349, 2023c.

Yuxin Wen, Yuchen Liu, Chen Chen, and Lingjuan Lyu. Detecting, explaining, and mitigating memo-
rization in diffusion models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=84n3UwkH7b.

Tong Xie, Haoyu Li, Andrew Bai, and Cho-Jui Hsieh. Data attribution for diffusion models: Timestep-
induced bias in influence estimation. Transactions on Machine Learning Research, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Jingfeng Yao, Cheng Wang, Wenyu Liu, and Xinggang Wang. Fasterdit: Towards faster diffu-
sion transformers training without architecture modification. Advances in Neural Information
Processing Systems, 37:56166-56189, 2024.

Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing properties of data attribu-
tion on diffusion models. In The Twelfth International Conference on Learning Representations,
2024.

14


https://openreview.net/forum?id=84n3UwkH7b

Under review as a conference paper at ICLR 2026

A DISCUSSIONS

A.1 LDS BENCHMARK

Linear Datamodeling Score (LDS, ( )) is the most widely used benchmark in data
attribution methods. LDS measures influence on specific utility losses through leave-K-out evaluation.
More specifically, it linearly approximates each data point’s impact on utility loss by measuring the
difference between models trained on randomly subsampled data versus the full dataset.

While LDS is sometimes treated as a ground-truth proxy, it is unsuitable for our setting due to both
theoretical and practical limitations:

Structural limitation in class-conditional setting: In datasets like CelebA-HQ, many attributes
(e.g., “eyeglasses”) appear in over half of the data. Under LDS’s standard protocol (removing the
top 50% most influential samples), many positive examples remain. Since conditional models can
reproduce a concept from even a small number of positives, the measured utility drop can be minimal,
systematically underestimating influence. This makes measuring each concept’s true impact nearly
impossible, arising from the violation of LDS’s linearity assumption ( s ). The influence
on class generation probability exhibits highly non-linear behavior, such as sharp increases after a
sufficient number of sample removals.

Computational infeasibility for text-to-image setting: Running LDS requires retraining dozens of
models (often 64+) after removing large portions of the training set. For instance, training a single
T2I model on MS-COCO to reach qualitatively minimally meaningful generation already requires
~8 GPU-days, making LDS prohibitively expensive.

Retrieval-based evaluation as an alternative: Our retrieval-based evaluation avoids this prevalence
issue by directly checking whether the top-ranked training samples indeed contain the target concept,
without being confounded by leftover positives after partial data removal.

A.2 LIMITATIONS AND FUTURE WORK

Our research advances beyond traditional data attribution by identifying training samples that specifi-
cally contribute to particular concepts. While Concept-TRAK demonstrates superior performance
compared to existing methods on concept-level attribution tasks, our approach has limitations. As
illustrated in Figure 12(a) with the Simpsons example, our method occasionally retrieves stylistically
similar but conceptually distinct images (e.g., other cartoon characters rather than Simpsons-specific
content).

We hypothesize that this limitation stems from the fundamental challenge of gradient estimation
in diffusion models. While our reward-optimization-based loss formulation and ddim inversion
successfully eliminate stochasticity from the standard diffusion loss computation and provide more
stable gradient estimates, perfect gradient estimation would theoretically require the true DSM
loss computed with infinite Monte Carlo samples over both the noise term e and noisy latents x;.
Our deterministic approximation, though significantly improved, cannot fully capture this infinite
sampling complexity. Consequently, some attribution errors persist.

For concept-level attribution to serve as a reliable tool for addressing copyright concerns and en-
abling model debugging, further development is required in two key areas: (1) establishing more
sophisticated benchmarks that measure concept-level attribution performance across diverse concept
types and contexts, and (2) enhancing the precision and theoretical guarantees of concept-level
attribution methods. This work represents an initial investigation that introduces the concept-level
attribution problem and proposes Concept-TRAK as a foundational framework, and we anticipate that
these contributions will catalyze further research into more robust concept-level attribution methods
suitable for increasingly sophisticated generative models.

A.3 IMPACT STATEMENTS
While our work provides tools for analyzing training data and understanding diffusion models for

image generation without direct safety concerns, there exists potential for misuse by model developers
who might exploit our tools to learn unsafe or problematic concepts. We emphasize that our method
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is intended for responsible model development and governance, including the identification and
mitigation of harmful content in training datasets, and understanding the model’s behavior.

B THEORETICAL DETAILS

B.1 CLASSIFIER-FREE GUIDANCE EXTENSION

We derive the reward optimization loss for the case where pgmple corresponds to classifier-free
guidance sampling. Under certain assumptions, this yields loss gradients equivalent to Eq. (2) derived
from py in the main manuscript.

Consider the reward optimization objective with classifier-free guidance sampling:

max By npo (o) [R(20)] = Dk (Po (-]¢) | Prampte ([ c))

where psample(-|c) represents the classifier-free guidance distribution used in practice. The optimal
solution follows the same form:

p* (o) o< Prample (o ¢) exp(R(zo)/B)

Following the same ESM derivation as the main text, we obtain the CFG-based reward loss:

Livara(20:0) = Eq, [lIsglef ™ (wi50) = 1/8 - Vi, Rl(@i)] — 57 (245 0)|3]

where €5 (245 ¢) = €g(x1) + (eo(x¢; ¢) — €g(4)) is the CFG noise prediction.

Expanding this expression:
Livara (03 0) = Eq, [[lsgleo(xe) +y(eo (w15 ¢) — €o(x¢) = 1/8 - Vi, R(a:)]
—(eq(we) +v(eo(s;¢) — eal@e)))I3]

The gradient of this loss is:
1

VoL i) ~ s, |

V. Rlae) Voleo(ae) +1(colani ) — ee@ct»)}

Under the assumption that Vgeg(z;) contributes minimally to concept-specific attribution directions,
this simplifies to:

Vo LIS (20:0) ~ E,, [gvxtmmvaee(xt; cﬂ

This is equivalent to the gradient of Eq. (2) up to a constant factor, which becomes irrelevant under
gradient normalization. While this assumption is strong, it may be justified since eg(z) captures
general denoising patterns across the dataset, which could be largely independent of specific concept
directions. The effectiveness of Eq. (2) in our experiments provides some empirical support for this
approximation.

B.2 LOWER BOUND JUSTIFICATION FOR UTILITY LOSS

We provide the mathematical justification for why maximizing our reward function Reconcept (Zt) =
log p(Ctarget |+ ) corresponds to optimizing a lower bound of our target concept probability pg (Ciarget) =

Ez, ~Paample [po (Ctarget |z0)].
Since pg (Ctarget|x()) must be computed through the diffusion process, we have:
log pe (Ctarget) = log Eﬂ?o’\/psample [po (Ctarget|$0)] (6)
= 108 Baympumpc [~ o) [P0 (Carger| 7] @
UCt)] 3

> IF“ﬂffo ~Psample, Tt ~q(Tt|20) [IOg Po (Ctaxget

where the inequality follows from applying Jensen’s inequality twice (due to the concavity of
log). Therefore, maximizing E, », [10g po(Ciarget|Z+)] optimizes a lower bound of our target concept
probability.
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C OTHER TYPES OF REWARD

In this section, we show how to apply Concept-TRAK beyond textual concepts. We cover two
scenarios: explicit differentiable reward models and implicit reward models defined by preference
datasets.

C.1 EXTERNAL DIFFERENTIABLE REWARD MODELS

Suppose we have access to an explicit, differentiable classifier that can predict the probability of a
specific concept: log p(cmrge[|m0). Here, ciargec can be any concept of interest—for example, visual
features, image aesthetics, etc. If this concept classifier is trained only on clean images z¢, then
similar to our earlier approach, we define the reward model as R(x;:) = log p(Carget|Z0), Where
&g = El[xo|xy] is the posterior mean predicted by the diffusion model ( ,

This yields our utility loss based on external reward model:

Lreward-pps (243 0) = [sg [ea () — 1/8 - Vi, 1og plcarget|0)] — €0 ()| -
C.2 PREFERENCE DATASETS

For scenarios where concepts are defined through preference data rather than explicit classifiers, we
can adapt our framework to work with preference pairs. This is particularly useful when the desired
concept is subjective (e.g., aesthetic quality, safety) or difficult to define through explicit labels.

Given preference pairs (¢, ) where 2§ > z, indicates that zJ is preferred over z; , we need
to define how a noisy latent x; sampled from our diffusion process relates to these preferences.
Following the intuition that we want to steer the denoising process toward preferred outcomes and
away from non-preferred ones, we define the reward function as:

R(xyad,xg) = logp(xd |20) — log p(zg |20), 9)
where £g = E[zo|z,] is the posterior mean predicted from the current noisy latent x.
This formulation captures the likelihood that the current denoising trajectory will lead to the preferred

sample mar versus the non-preferred sample x; . Under our Gaussian assumption that p(mﬂfco) x
exp(—||#o — x%||3), we obtain:

R(xt;zar,xo_) x —||&p — ngg + ||&o — x&”% + const (10)

Taking the gradient with respect to x:
Ve R(w;08,20) = Ve, [l20 = 25 |13 = Va, 80 = 27 13- (11)

This gradient naturally encourages the denoising process to move toward preferred samples x{

(negative gradient term) and away from non-preferred samples xz, (positive gradient term), making it
suitable for integration into our Reward-DPS framework.

The resulting utility loss becomes:
ﬁPreference—DPS((xS_vIa)§ 0) = Emo,mt[Hsg[GG(xt) -1/8- me,R(xtQ zg,ma)] - 69(%)”3]

= Eoo.a[lIsgleo(wt) +1/8 - (Vo 20 — 2q |3 = Va, [0 — 25 [13)] — eo(ae) 3],
enabling concept attribution with preference data without explicitly training a reward model.

D ADDITIONAL RESULTS

D.1 ADDITIONAL BASELINE: SET-LEVEL ATTRIBUTION

In the main paper, we focus our evaluation on local concept attribution, which measures the influence
of training samples on a specific concept within a particular generated image. However, an alternative
setting is global concept attribution, which measures the influence of training samples on the model’s
learned distribution over a concept in general. Unlike local concept attribution, global concept
attribution can be naturally addressed by baseline methods such as DAS and D-TRAK through
set-level attribution, where utility gradients are computed by averaging across multiple generated
images.
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Set-level Attribution For a target concept ¢, we can define a set-level utility gradient as:
Lset = E]JON[)(J,"C) [L(I07 C)] (12)

This formulation estimates the expected loss over the model’s generative distribution conditioned on
concept ¢. Assuming L approximates p(z|c), this objective closely aligns with our concept attribution
utility definition in Section 3.1:

Po(c) = Eugmp(alo) [P(c|2)] (13

By averaging gradients over multiple samples from p(z|c), we obtain an estimate of how training
data influenced the model’s learned representation of concept ¢ overall, rather than its manifestation
in a single image.

Experimental Setup We evaluate set-level attribution across all three benchmarks (Toy, CelebA-
HQ, AbC) by adapting both Concept-TRAK and baseline methods to the global attribution setting:

* Toy & CelebA-HQ: For each target concept ¢, we fix that concept and randomize all other
attributes. We generate 256 images from p(x|c) using the trained diffusion model. For each
method, we compute the utility gradient as the average of individual gradients across all 256
samples.

* AbC: We use the benchmark-provided prompts (containing the special token) to generate
256 images. We then compute the average utility gradient across these samples.

We then rank training samples by their influence scores and evaluate whether the top-ranked samples
contain the target concept using Precision@ 10.

Results Tables 4, 5, and 6 present the results for global concept attribution across all benchmarks.

Table 4: Set-level attribution results on Toy dataset. All methods achieve strong performance on this
controlled dataset.

Concept Concept-TRAK DAS D-TRAK

Shape 1.00 1.00 1.00
Color 0.90 0.70 1.00
Average 0.95 0.85 1.00

Table 5: Set-level attribution results on CelebA-HQ. All methods achieve perfect performance when
attributing concepts across multiple generated images.

Concept Concept-TRAK DAS D-TRAK

Eyeglasses 1.00 1.00 1.00
Male 1.00 1.00 1.00
Smile 1.00 1.00 1.00
Average 1.00 1.00 1.00

The results demonstrate that Concept-TRAK achieves comparable or superior performance across all
benchmarks, confirming that our design choices transfer well to the global setting. Notably, while
baseline methods can perform reasonably in the global setting by averaging over many samples,
they fundamentally lack the capability to perform local concept attribution for individual images—a
critical limitation that Concept-TRAK addresses.

D.2 REAL-WORLD SCENARIOS

While our controlled benchmarks (Toy, CelebA-HQ, AbC) provide rigorous evaluation with ground-
truth labels, real-world applications of concept attribution often involve more challenging scenarios,
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Table 6: Set-level attribution results on AbC benchmark. Concept-TRAK achieves the best average
performance, with particular strength in style attribution.

Concept Concept-TRAK DAS D-TRAK

Object 0.89 0.98 0.95
Style 0.93 0.81 0.83
Average 0.91 0.895 0.89

including semantically similar concepts and complex compositional prompts. In this section, we
evaluate Concept-TRAK’s performance on such scenarios using a large-scale text-to-image model
(SD1.4v, Rombach et al. (2022)). Following AbC (Wang et al., 2023b), we use 100k subset of the
LAION dataset (Schuhmann et al., 2022) for data attribution.

Evaluation Protocol For real-world scenarios, establishing ground-truth attribution labels is infea-
sible, as we cannot definitively know which training samples influenced specific concepts in generated
images. However, we can perform a sanity-check evaluation by verifying whether retrieved training
samples actually contain the target concept. If a method retrieves training samples that do not contain
the concept being attributed, this indicates a clear failure of concept attribution.

We employ Qwen3-VL-8B (Yang et al., 2025), an open-source state-of-the-art vision-language model,
to automatically assess whether retrieved images contain the target concept. For each retrieved
training sample, we query the model: “Does this image contain {concept value}? Please answer with
only "yes’ or 'no”’ If the model responds “no”, we count it as an inaccurate attribution. We report
Precision@ 10, measuring the fraction of top-10 retrieved samples that contain the target concept.

For certain generated images, the actual number of training samples that contributed to a specific
concept may be fewer than 10. Therefore, the upper bound for precision is not necessarily 1.0. These
metrics should be interpreted as relative performance indicators comparing methods rather than
absolute measures of attribution quality.

D.2.1 SiMILAR CONCEPTS

A critical challenge in concept attribution is distinguishing between semantically similar concepts
that share visual features. We evaluate whether methods can correctly attribute training samples for
one concept without incorrectly retrieving samples from visually similar but distinct concepts.

Experimental setup We select five semantically similar big cat species: cat, tiger, jaguar, leopard,
and cheetah. For local attribution, we generate 8 images using prompts containing only the target
concept (e.g., “a photo of a cat”) with different random seeds. For each generated image, we perform
concept attribution and measure whether the top-10 retrieved samples contain the target concept
rather than similar concepts. For global attribution, we generate 256 images per concept and compute
set-level attribution by averaging utility gradients across all samples.

Results Tables 7 and 8 present the results for local and global attribution on similar concepts.

Table 7: Local attribution on semantically similar concepts (averaged across 8 seeds per concept).

Concept Concept-TRAK DAS D-TRAK TRAK

cat 0.925 0.000 0.000 0.000
tiger 0.662 0.000 0.000 0.000
jaguar 0.188 0.000 0.000 0.000
leopard 0.300 0.000 0.000 0.087
cheetah 0.325 0.000 0.000 0.000
Average 0.480 0.000 0.000 0.017
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Table 8: Global attribution on semantically similar concepts (averaged over 256 generated images per
concept).

Concept Concept-TRAK DAS D-TRAK TRAK

cat 1.000 1.000 1.000 0.900
tiger 1.000 0.800 0.800 0.800
jaguar 0.400 0.300 0.200 0.200
leopard 0.600 0.600 0.600 0.300
cheetah 0.500 0.300 0.300 0.300
Average 0.700 0.600 0.580 0.500

Top Influence

My Cat From @
Biting And
Attacking Me

Figure 7: Qualitative results for semantically similar concepts using Concept-TRAK.

For local attribution, baseline methods achieve near-zero precision, indicating complete failure. In
contrast, Concept-TRAK achieves 0.480 average precision, successfully retrieving concept-specific
training samples even for visually similar classes. The performance gap is particularly pronounced
for common concepts (cat: 0.925, tiger: 0.662) compared to rarer concepts (jaguar: 0.188). As shown
in Figure 7, for rare concepts like jaguar, Concept-TRAK sometimes retrieves training samples of
visually similar animals such as tigers with similar spotted patterns. This suggests that the model
may have learned the rare concept partially through transfer from similar visual features.

For global attribution, baseline methods show improved performance by averaging over many samples,
but Concept-TRAK still achieves the best results. This demonstrates that our method’s design choices
benefit both local and global attribution settings.

D.2.2 CoOMPOSITIONAL CONCEPTS

Real-world text-to-image generation often involves compositional prompts that combine multiple
concepts such as objects and styles. A key challenge is attributing training influence to each individual
concept within a compositionally generated image. We evaluate this capability at two difficulty levels.

Common Object and Style We generate images combining common objects with artistic styles
using prompts of the form “{object} in the style of {style}”. We use two objects (cat, dog) and two
styles (graffiti art, stained glass), generating 8 images per object-style combination for a total of 32
images. For each image, we perform separate concept attribution for the object and the style. For
global attribution baselines, we generate 256 images from each full prompt and perform set-level
attribution, then separately evaluate whether retrieved samples contain the object or style.
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Prompt Generated Image Top Influence

Cat in the style of
graffiti art
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Figure 8: Qualitative results for compositional concepts using Concept-TRAK.

As Table 9 shows, Concept-TRAK substantially outperforms baselines. For local attribution, baseline
methods completely fail, while Concept-TRAK achieves over 90% accuracy. For global attribution,
Concept-TRAK also performs better overall. Interestingly, baseline methods appear biased toward
style-based attribution, performing relatively well on global style attribution but completely failing
on object attribution. For qualitative results, please refer to Figure 8.

Table 9: Compositional attribution results for natural objects with artistic styles.

Attribution Type Concept-TRAK DAS D-TRAK TRAK

Local (Object) 0.934 0.025 0.025 0.034
Local (Style) 0.919 0.047 0.047 0.013
Global (Object) 1.000 0.000 0.000 0.125
Global (Style) 0.950 0.925 0.925 0.850

Unique Objects and Artist Styles. To increase difficulty, we use unique objects (Pikachu, Simpson)
and famous artist styles (Vincent van Gogh, Pablo Picasso) that require specific training data. We
generate 8 seeds per combination for a total of 32 images.

Table 10: Compositional attribution results for unique objects with artist styles.

Attribution Type Concept-TRAK DAS D-TRAK TRAK

Local (Object) 0.581 0.000 0.000 0.000
Local (Style) 0.581 0.000 0.000 0.000
Global (Object) 0.725 0.100 0.125 0.450
Global (Style) 0.775 0.475 0.475 0.075

As shown in Table 10, Concept-TRAK successfully attributes each concept independently compared
to the baseline method, even when multiple concepts are intertwined in a single image. Same as the
previous experiment, baseline methods show style bias in global attribution. This suggests that using
traditional data attribution methods conflates the overall visual aesthetic with style, while missing
object-specific contributions. Concept-TRAK achieves balanced performance on both concepts. For
qualitative results, please refer to Figure 9.
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Prompt Generated Image Top Influence

Pikachu in the style of
Pablo Picasso

Cat in the style of
Van Gogh
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Pablo Picasso
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Figure 9: Qualitative results for compositional concept attribution using Concept-TRAK.

D.2.3 COMPLEX CONCEPTS (QUALITATIVE)

Beyond quantitative evaluation, we showcase Concept-TRAK’s capability on complex, multi-concept
prompts commonly used in text-to-image model benchmarks. We select three challenging prompts:
“An astronaut riding a horse on Mars”, “A teddy bear on a skateboard in Times Square”, and “Avocado
chair”.

Prompt Generated Image Top Influence

( teddy bear )

A teddy bear
on a skateboard
in Times Square

( skateboard )

| ( Times Square

( astronaut )

An astronaut

riding on a horse { horse )
in Mars
(Mars )
An avocado (Anavecado ) § . . &
chair
- A0k, v 0T <

Figure 10: Qualitative results for complex multi-concept prompts using Concept-TRAK.

Figure 10 shows qualitative results for these prompts. For ‘“astronaut riding a horse on Mars,”
Concept-TRAK successfully retrieves astronaut images, horse images, and Mars landscape images
separately, demonstrating its ability to decompose spatially composed scenes. For “avocado chair,”
the method retrieves not just any chair images, but specifically round-shaped chairs that visually
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Figure 11: The target concept for each method is indicated in parentheses (Eyeglasses<>Bare
eyes/Female<+Male). A data attribution method succeeds when the top influential training samples
contain the same concept as the generated sample. (a) In-distribution case: Both baseline methods
and our approach successfully retrieve relevant training samples. (b) Out-of-distribution: Our
method accurately retrieves training samples for each individual concept (eyeglasses and male), while
baselines can only retrieve samples related to one concept due to image-level attribution limitations.

match the avocado-like form in the generated image. This demonstrates our local concept attribution
capturing fine-grained visual features. For novel concept combinations like “avocado chair,”

These qualitative results demonstrate Concept-TRAK’s practical utility for understanding how diffu-
sion models compose multiple concepts from training data, providing insights valuable for copyright
analysis, model debugging, and interpretability research.

D.3 CONTROLLED EVALUATION: CELEBA-HQ (QUALITATIVE)

In Figure 11, we present qualitative results for concept-level attribution on the CelebA-HQ dataset.
This replicates the trends observed in the synthetic dataset: in ID scenarios, images with the same
concept as the generated sample can be found through visual similarity alone, but OOD scenarios
require isolating individual concepts from compositionally novel outputs, where visual similarity
alone fails.

D.4 APPLICATIONS OF CONCEPT-LEVEL ATTRIBUTION

Our concept-level attribution method provides valuable insights across multiple domains, as shown
in Figure 12. For copyright protection, we trace training samples that influenced IP-protected
concepts like Mario and Mickey Mouse, addressing provenance concerns. In the realm of safety, our
method identifies training samples contributing to sensitive concepts, enabling targeted data curation
for responsible Al development. For model debugging, Concept-TRAK pinpoints sources of both
desirable features and problematic outputs, enhancing our understanding of prompt engineering.
Finally, for concept learning, our approach reveals how models acquire complex relational concepts
like “hug" and “shake hands.". These applications demonstrate how concept-level attribution provides
practical tools for addressing key challenges in generative Al development and governance. Note that
these experiments use global concept attribution.

E IMPLEMENTATION DETAILS

E.1 COMPUTATIONAL RESOURCES

All experiments were conducted on NVIDIA H100 GPUs with 80GB memory. To reduce computa-
tional costs, all experiments were performed using fp16 precision.

Influence function-based attribution methods consist of two computational stages: (1) a one-time
preprocessing cost of computing training gradients for all training samples, and (2) a lightweight
per-query step that computes utility gradients for each concept or query. For SD v1.4 (LAION-100K),
our concrete measurements are as follows:

23



Under review as a conference paper at ICLR 2026

(a) Identify IP-protected contents

—

( Mario)

(b) Detect Unsafe contents

( Nudity )

(c) Model debugging
(A

et INE (PN
\A@

(realistic hands, five fingers, gl nyper realistic hands )

( distorted hands, amputed fingers )

(d) Understand concept learning

?é . ‘r’

( shake hands )

(hug )

Figure 12: Applications of concept-level attribution across diverse tasks. (a) Identifying training
sources of IP-protected characters. (b) Detecting origins of sensitive content for safety governance.
(c) Tracing sources of desirable and problematic features for model debugging. (d) Revealing how
models acquire relational concept understanding.

Training gradient computation The TRAK baseline requires approximately 16 GPU hours, while
Concept-TRAK requires 32 GPU hours, due to additional operations including DDIM inversion, and
prompt-level guidance.

Per-concept attribution Once gradients are cached, the TRAK baseline requires 1 minute per
query, while Concept-TRAK requires 3 minutes per query.

E.2 SYNTHETIC DATASET

Data Generation We randomly sample shape and color attributes and place them at random positions
within the image canvas. Image resolution is 64 x64. We generate a total of 10,000 synthetic images
with this procedure.

Model Training We observe that dropping class conditions for classifier-free guidance severely
harms compositional generalization ability, so we avoid this practice. The model is trained using the
Muon optimizer. While Adam optimizer produces qualitatively similar results, we choose Muon for
its stability and significantly faster convergence. We train separate ResNet-based classifiers for each
concept and continue training until out-of-distribution (OOD) sample generation accuracy reaches
99%. Training hyperparameters follow Jordan et al. (2024): Muon learning rate of 1e-3 for 1000
epochs, with identical momentum and other hyperparameters. For non-matrix parameters, we use
Adam optimizer with learning rate le-4. We used LightningDiT, state-of-the-art a modernized DiT
architecture (Yao et al., 2024) for diffusion model.
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Test Sample Generation We generate images starting from random noise. Images are regenerated
until a separate classifier confirms they match the conditioned concept, with a maximum of 3
regeneration attempts per sample.

Gradient Computation Baseline methods: For each training sample, we sample 10 different
z; and compute gradients using each method’s respective loss function. Ours: For the training
loss computation, we apply DDIM inversion with guidance scale 2, which we find beneficial for
performance. Since we do not train null tokens, we apply CFG by sampling random conditions at each
step following ( ). We hypothesize that applying guidance during DDIM inversion
removes concept ¢ from xy and learns tangent vectors that restore this concept, thus positively
affecting concept attribution. More detailed analysis and improvements remain interesting future
work. For utility loss computation, we do not use CFG.

E.3 CELEBA-HQ DATASET

Data Preparation We use 30,000 images from CelebA-HQ dataset, excluding all samples con-
taining the combination {eyeglasses + male + smiling}. We resize all images to 64 x 64, to reduce
computation.

Model Training We follow the identical training recipe as the synthetic dataset. We train separate
ResNet-based classifiers for each concept and continue training until OOD sample generation accuracy
reaches 95%.

Test Sample Generation We generate images starting from random noise. Images are regenerated
until a separate classifier confirms they match the conditioned concept, with a maximum of 3
regeneration attempts per sample.

Gradient Computation We follow the identical gradient computation recipe as described for the
synthetic dataset.

E.4 ABC BENCHMARK

This subsection presents the detailed experimental setup for our evaluation of the AbC benchmark.

Benchmark Construction To address more realistic data attribution scenarios, we modify the
original AbC benchmark setup. Rather than fine-tuning model parameters on customization data, we
freeze the base model parameters and train only special tokens through textual inversion ( ,

). Following ( ), we create 20 special tokens corresponding to 20 customization
concepts. For each special token, we generate 20 images, resulting in 400 total generated images for
data attribution evaluation.

We perform textual inversion using the default hyperparameters provided by the diffusers library:
AdamW optimizer with learning rate 5.0 x 10~%, batch size 4, and training epochs 3000.

Baseline Methods Both TRAK, D-TRAK, and DAS need to specify a regularization hyperparam-
eter A. To be more specific, in TRAK ( , ), we approximate the inverted projected
Hessian as Hp' ~ (Fp + \I)~!, where Fp = + 3, GTG and G;; = Vg, L(z;;0). The regular-
ization A is applied to make sure to Hp ~ Fp + AI is invertible in practice. On the other hand,
this regularization makes TRAK-based data attribution effectively ignore components with small
eigenvalues, significantly impacting attribution performance ( ,

Previous work recommends \* = 0.1 x mean(eigenvalues(Fp)) ( , ). For a fair
comparison, we perform a hyperparameter sweep for TRAK, D-TRAK, DAS and ours across
A € [A* x 107%, \* x 10%] and report the best performance achieved.

Concept-TRAK Configuration Our method focuses on measuring contributions to specific con-
cepts c. We use the synthetic image generation prompt as ¢ (e.g., “a tattoo of (V') snake”) and
remove only the special token to create ¢~ (e.g., “a tattoo of snake”). We used cT as the base prompt
c. We set the regularization parameter to the recommended value A* = 0.1 x mean(eigenvalues(Fp))
( , ) and use 1024 x; from random trajectories sampled from DDIM sampler for
gradient computation.
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E.5 QUALITATIVE RESULTS

For the qualitative case studies presented in Appendix D.4, we maintain consistent experimental
settings with the AbC benchmark evaluation. The regularization parameter is set to A = 0.1 x
mean(eigenvalues(Fp)) across all methods.

Below are the prompts used for each concept-level attribution task:

* IP-protected content:

— Mario:
¢ "character, Mario"
c_ = "character"
— Mickey Mouse:
¢ = "character, Mickey Mouse"
c_ = "character"
— Simpsons:
¢ = "character, Simpsons"
c_ = "character"

¢ Unsafe content:

— Nudity:
¢ = "person, nude, naked"
c_ ="person"
— Violence:
¢ = "zombie, bloody, violence, gore, horror, grotesque,
skull, fear, death, creature"
c_=nmn

* Model debugging:

— Distorted hands:
¢ = "hands, distorted hands, amputated fingers"
¢c_ = "realistic hands, five fingers, 8k hyper realistic
hands"

— High quality images:
c = "high detail, 8k, intricate, detailed, high
resolution, high res, high quality, hyper realistic"
c_ = "blurry, boring, fuzzy, low detail, low

resolution, low res, low quality"

¢ Concept learning:

— Hug:
¢ = "people hug each other"
c_ = "people”
— Shake hands:
¢ = "people shake their hands"
c_ = "people"

Note on Model debugging For the model debugging study, we perform bidirectional attribution by
swapping c and c_ to identify both positive and negative influences. This allows us to trace training
samples that contribute to both problematic and desirable generation.

F ALGORITHM

In this section, we provide detailed algorithms for computing training gradients using the train loss
Eq. (3) (Algorithm 1) and utility gradients using utility loss Eq. (4) (Algorithm 2) used in Concept-
TRAK. The key computational steps highlighted in red show the guidance terms that distinguish our
approach from standard methods.
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Algorithm 1 Train loss Lirin

Algorithm 2 Utility loss Lconcept

Require: x}, N, {a;},
1: forn=1to N do

2 2} + DDIMinv(z},0 — L), ¢ + 2
3: &l \/% (zi — VT =g eo(al)
4: dpps = —Vg, ||i"f) - r(IJ Hg
5: €o(x}) « sgleo(x}) — dpps]
6:  Lpps < |[éa(x}) — eo(})]I3
7 gn < VoLpps
8: end for
N
9: g+ Xz 9n/llgnll2
10: return g

Require: N, {a}/ o, {m}i—o

1: forn=1to N do

2 if local attribution then

3 xp < Noise used to generate x§™
4: else

5: T ~ N(O, I)

6: end if

7 t ~ Uniform(0, T")

8: x¢ < DDIM(zp — t)

9: To \/% (l't —V1—- 69(1’,5))
10: 6Rcwurd-DPS — vil‘,t R(lt)
11: €o(xt) < sgleg(xt) — OReward-DPS)
12: ERewardePS — ||€9(xt) - Ee(iﬂt)H%
13: 9n Vo LReward-DPS
14: end for
150 g < & 30y gn/llgnll2
16: return g
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