

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONCEPT-TRAK: UNDERSTANDING HOW DIFFUSION MODELS LEARN CONCEPTS THROUGH CONCEPT-LEVEL ATTRIBUTION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 While diffusion models excel at image generation, their growing adoption raises
014 critical concerns about copyright issues and model transparency. Existing attribu-
015 tion methods identify training examples influencing an entire image, but fall short
016 in isolating contributions to specific elements, such as styles or objects, that are of
017 primary concern to stakeholders. To address this gap, we introduce *concept-level*
018 *attribution* through a novel method called *Concept-TRAK*, which extends influence
019 functions with a key innovation: specialized training and utility loss functions
020 designed to isolate concept-specific influences rather than overall reconstruction
021 quality. We evaluate Concept-TRAK on novel concept attribution benchmarks us-
022 ing Synthetic and CelebA-HQ datasets, as well as the established AbC benchmark,
023 showing substantial improvements over prior methods in concept-level attribution
024 scenarios.

025 1 INTRODUCTION

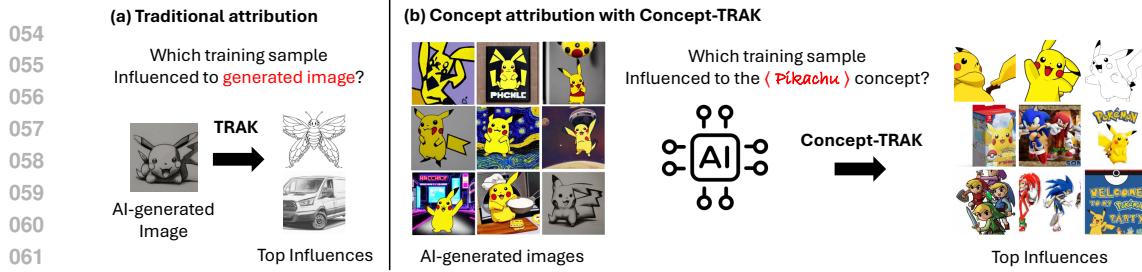
028 Diffusion models (Ho et al., 2020; Song et al., 2021a;b; Rombach et al., 2022; Ramesh et al., 2022;
029 Saharia et al., 2022) have achieved remarkable success in image generation, not merely through
030 generating high-fidelity images, but through their ability to learn and flexibly compose concepts from
031 training data (Rombach et al., 2022; Okawa et al., 2023).

032 This capability raises important questions about accountability and transparency. When models learn
033 and exploit specific concepts from training data, stakeholders need to understand which training
034 samples contributed to those concepts: whether for recognizing artistic contributions, ensuring
035 fair compensation, safety auditing, model debugging, or copyright compliance (Wen et al., 2024;
036 Somepalli et al., 2023b; Carlini et al., 2023; Somepalli et al., 2023a; GenLaw2024; Brittain, 2023).

037 To address these diverse needs, data attribution methods (Koh and Liang, 2017; Park et al., 2023a;
038 Ghorbani and Zou, 2019) have emerged as promising tools, estimating how much each training
039 example contributes to a generated output (Deng et al., 2023). These methods have proven valuable
040 for tasks such as data valuation (Jia et al., 2019a), curation (Min et al., 2025), and understanding
041 model behavior (Ruis et al., 2024). While recent work has begun exploring attribution methods
042 tailored for diffusion models (Zheng et al., 2024; Lin et al., 2025; Mlodzeniec et al., 2024; Wang
043 et al., 2024b), these approaches generally estimate contributions at the level of entire images. This
044 broad perspective poses a critical limitation: in many practical scenarios, stakeholders care about
045 specific concepts within an image, rather than the whole composition.

046 For example, consider an AI-generated image depicting an IP-protected character (e.g., Pikachu)
047 rendered in a pencil drawing style as shown in Figure 1(a). In such cases, copyright concerns
048 from IP holders (e.g., The Pokémon Company) would primarily focus on the character itself, not
049 the stylistic pencil rendering. Yet, traditional attribution methods, e.g., TRAK, identify training
050 samples that influenced the generation of the full image, failing to isolate those tied to particular
051 concepts. As Figure 1(a) demonstrates, these methods tend to retrieve stylistically similar images
052 (e.g., pencil-drawn objects) but miss the character that is actually subject to copyright protection.

053 To address this gap, we introduce **concept-level attribution**, which estimates each training example’s
contribution to specific semantic features such as styles, objects, or concepts. Building on this, we



propose *Concept-TRAK*, an extension of influence functions (Koh and Liang, 2017) that quantifies how training data affects the model’s ability to generate *individual concepts*. Our key insight is that effective concept attribution requires designing loss functions that capture concept-relevant directions rather than optimizing for overall reconstruction quality. Concept-TRAK achieves this through reward-based formulations that explicitly target concept-relevant influences. As shown in Figure 1(b), Concept-TRAK correctly identifies training samples responsible for the concept of *Pikachu*, rather than irrelevant stylistic cues.

To rigorously evaluate our method, we introduce novel concept-level attribution benchmarks on Synthetic and CelebA-HQ datasets. Concept-TRAK substantially outperforms baselines, especially for out-of-distribution samples with unseen concept combinations. Additionally, we evaluate on the established ABC benchmark (Wang et al., 2023b), a retrieval-based framework for text-to-image model data attribution, where Concept-TRAK significantly outperforms prior methods by accurately retrieving training examples that influence specific concepts. Finally, case studies on IP-protected content, unsafe concept detection, model debugging, and relational concept learning highlight Concept-TRAK’s practical utility for real-world applications and understanding concept learning in diffusion models.

2 BACKGROUND

2.1 DIFFUSION MODEL

Diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2021b; Ho et al., 2020) are a class of generative models that synthesize images through an iterative denoising process. Starting from a clean image x_0 , the forward process adds Gaussian noise to produce a sequence of increasingly noisy images x_t , following, $q(x_t | x_0) = \mathcal{N}(\sqrt{\alpha_t}x_0, (1 - \alpha_t)I)$, where α_t is a noise schedule controlling the level of corruption at timestep t .

A neural network $\epsilon_\theta(x_t, t)$ is trained to predict the added noise ϵ , enabling reconstruction of x_0 from x_t at noise level t . The training objective is called the denoising score matching (DSM) loss: $\mathcal{L}_{\text{DSM}}(x_0; \theta) = \mathbb{E}_{x_0, t, \epsilon}[\|\epsilon - \epsilon_\theta(x_t, t)\|_2^2]$, which encourages the model to approximate the gradient of the log-density (i.e., score function): $\epsilon_\theta(x_t, t) \propto \nabla \log p_t(x_t)$. For simplicity, we omit the timestep t in $\epsilon_\theta(x_t, t)$ when the context is clear.

Diffusion models can be extended to conditional generation by incorporating additional information c , such as a text prompt (Ho and Salimans, 2022; Nichol et al., 2021). In this setting, the model learns $\epsilon_\theta(x_t; c) \propto \nabla \log p_t(x_t | c)$, allowing it to generate images that are not only realistic but also aligned with the conditioning input.

2.2 DATA ATTRIBUTION

The goal of data attribution is to estimate the contribution of a training sample x^i to a model’s utility loss \mathcal{V} , e.g., a performance metric or objective function that quantifies how well the model performs (e.g., test loss) (Koh and Liang, 2017; Park et al., 2023a; Ghorbani and Zou, 2019). While

Leave-One-Out retraining provides exact attribution, it is computationally prohibitive for modern large-scale models.

To address this limitation, influence functions (Koh and Liang, 2017) efficiently approximate the effect of removing a training example x^i using gradient-based estimates. Given a model with parameters $\theta \in \mathbb{R}^d$ and training loss $\mathcal{L}(\cdot; \theta)$, the influence function is defined as:

$$\mathcal{I}(x_0^i, \mathcal{V}) \triangleq g_{\mathcal{V}}^{\top} \mathbf{H}^{-1} g_i.$$

Here, $g_i = \nabla_{\theta} \mathcal{L}(x_0^i; \theta)$ represents the gradient of the loss with respect to parameters θ for sample x_0^i , $g_{\mathcal{V}} = \nabla_{\theta} \mathcal{V}(\theta)$ is the gradient of utility loss \mathcal{V} , and $\mathbf{H} = \nabla_{\theta}^2 \mathcal{L}(D; \theta)$ denotes the Hessian matrix of the training loss computed over the entire training dataset $D = \{x_0^i\}_{i=1}^N$. However, computing influence functions remains computationally challenging, as each attribution query requires recomputing training gradients for the entire training set in addition to the expensive Hessian computation (Choe et al., 2024).

To address this, TRAK (Park et al., 2023a) proposes projecting gradients into a lower-dimensional space using a random projection matrix $P \in \mathbb{R}^{d \times k}$ with $k \ll d$:

$$\mathcal{I}(x_0^i, \mathcal{V}) \triangleq (P^{\top} g_{\mathcal{V}})^{\top} \mathbf{H}_P^{-1} P^{\top} g_i,$$

where $\mathbf{H}_P = P^{\top} \mathbf{H} P \in \mathbb{R}^{k \times k}$ is the projected Hessian. This enables efficient storage and reuse of gradient for multiple attribution queries.

2.3 DATA ATTRIBUTION FOR DIFFUSION MODELS

Prior work on diffusion models (Xie et al., 2024; Zheng et al., 2024; Lin et al., 2025) has primarily focused on whole-image attribution, typically using the same objective for both training and utility losses. These studies reveal that attribution performance is highly sensitive to the choice of loss function. In particular, the standard DSM loss introduces stochasticity via both the noise term ϵ and the perturbed input x_t , resulting in noisy gradient estimates that require extensive averaging to be reliable, making it suboptimal for attribution. To mitigate this, D-TRAK (Zheng et al., 2024) employs the squared ℓ_2 -norm $\|\epsilon_{\theta}\|_2^2$, and DAS (Lin et al., 2025) employs the squared ℓ_1 -norm $\|\epsilon_{\theta}\|_1^1$ to compute influence scores, achieving improved stability and accuracy.

These findings highlight that **choosing a robust loss function for gradient computation is essential for reliable attribution in diffusion models**. We extend this insight to the concept-level setting, which demands loss functions specifically designed to capture concept-specific influence.

3 METHOD

We present *Concept-TRAK*, a framework for quantifying the contribution of individual training samples to specific concepts learned by diffusion models. Unlike prior work that measures influence on entire generated images, our approach targets how training data affects the model’s ability to represent particular semantic concepts.

3.1 DEFINITION: CONCEPT-LEVEL ATTRIBUTION

We define concept-level attribution as measuring how training sample x_0^i influences the model’s ability to generate concept c_{target} . We quantify this through the expected concept presence:

$$p_{\theta}(c_{\text{target}}) = \mathbb{E}_{x_0 \sim p_{\text{sample}}(\cdot | c)} [p(c_{\text{target}} | x_0)],$$

where $p(c_{\text{target}} | x_0)$ represents the probability that concept c_{target} is present in image x_0 , and $p_{\text{sample}}(\cdot | c)$ represents the sampling distribution used for generation.

More specifically, we consider two attribution scenarios (Figure 2):

- **Global attribution:** p_{sample} represents the model’s generative distribution (e.g., conditional sampling with CFG), measuring concept probability across all generations
- **Local attribution:** $p_{\text{sample}} = \delta(x_0 - x_0^{\text{test}})$, measuring how training data influences the specific manifestation of a concept in a particular generated image x_0^{test}

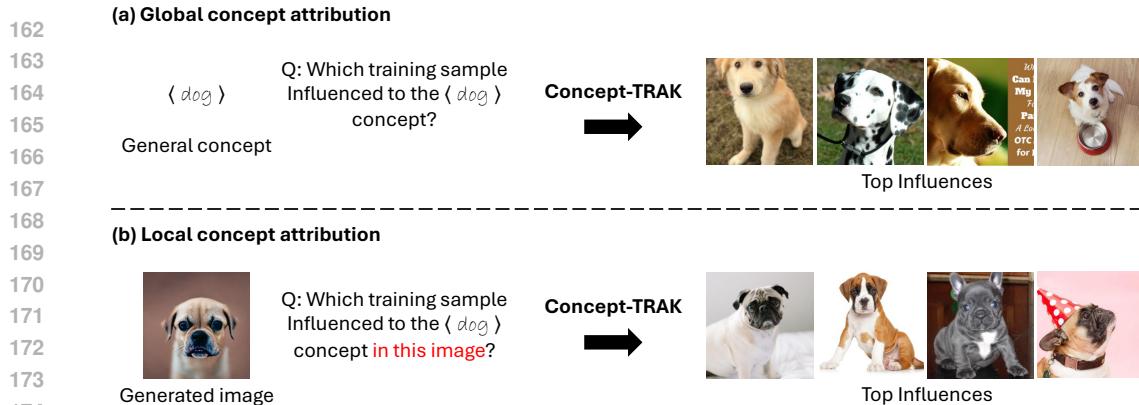


Figure 2: (a) Global concept attribution identifies training samples that influenced the learning of general concepts across all generations. (b) Local concept attribution identifies training samples that influenced the learning of specific concept manifestations appearing in a particular generated image. For example, when applying local concept attribution to the “dog” concept in a generated image of a bulldog-like dog, we can observe that it retrieves images similar to bulldogs, demonstrating more targeted attribution.

To approximate how training samples contribute to this concept probability, we employ influence function frameworks:

$$\mathcal{I}(x_0^i, c_{\text{target}}) = \nabla_{\theta} \mathcal{L}_{\text{concept}}^{\top}(c_{\text{target}}; \theta) \mathbf{H}^{-1} \nabla_{\theta} \mathcal{L}_{\text{train}}(x_0^i; \theta), \quad (1)$$

where $\mathcal{L}_{\text{concept}}(c_{\text{target}}; \theta)$ measures model performance for specific concept generation (i.e., our utility loss \mathcal{V}), and $\mathcal{L}_{\text{train}}(x_0^i; \theta)$ captures the training sample's contribution.

In this work, we focus on concepts c_{target} that can be specified as conditioning inputs (e.g., text prompts of “Pikachu”, “Mario”, or class index), enabling us to leverage existing conditional generation mechanisms for precise attribution. For general concept attribution including visual concepts, please refer to the Appendix C.

3.2 LOSS FUNCTION DESIGN

While the theoretical setup would be to use $p_\theta(c_{\text{target}})$ as the utility loss and the standard DSM loss for training loss, prior work has shown that attribution performance is highly sensitive to loss function design (Section 2.3). The key challenge lies in designing loss functions $\mathcal{L}_{\text{concept}}$ and $\mathcal{L}_{\text{train}}$ that provide robust, concept-relevant gradients rather than generic denoising signals.

Geometric Motivation Our approach is motivated by the hypothesis that meaningful concept directions correspond to tangent vectors of the diffusion model’s latent space, which we leverage to design concept-aware loss functions.

The latent variables of diffusion models x_t , lie on a lower-dimensional manifold (Chung et al., 2022b; Liu et al., 2022). Prior work has identified semantically rich structure within this manifold's tangent space, enabling concept-based editing approaches (Park et al., 2023b). Additionally, classifier-free guidance vector $\epsilon_\theta(x_t, c) - \epsilon_\theta(x_t)$, which contain rich concept information (Brack et al., 2023; Wang et al., 2023c), have been shown to operate effectively in the tangent space of the data manifold (Chung et al., 2024; Kwon et al., 2025).

Motivated by these findings, we hypothesize that concept-relevant directions can be more effectively captured by operating in the tangent space (Chung et al., 2022a; Park et al., 2023b; Wang et al., 2023c) rather than through standard denoising objectives.

Solution: Reward Optimization Our geometric motivation raises a practical question: how do we identify concept-relevant directions within the tangent space and incorporate them into loss functions? We propose that reward optimization provides this capability: reward gradients $\nabla_{x_t} R(x_t)$ serve

216 as concept-specific guidance directions that point toward concept-enhancing regions in the tangent
 217 space.
 218

219 Consider the reward optimization objective (Jaques et al., 2017; Rafailov et al., 2023):

$$220 \max_{p_\theta} \mathbb{E}_{x_0 \sim p_\theta(\cdot|c)} [R(x_0)] - \beta \mathcal{D}_{\text{KL}}(p_\theta(\cdot|c) \| p_{\text{sample}}(\cdot|c))$$

221 where $R(x_0)$ is a reward function, $p_\theta(\cdot|c)$ is our target model for reward optimization, and β controls
 222 regularization strength. While the sampling distribution $p_{\text{sample}}(\cdot|c)$ can vary in practice, we use
 223 $p_0(\cdot|c)$ in our derivation for theoretical clarity. (For general case, please refers to Appendix B.1)

224 The optimal solution is (Rafailov et al., 2023; Korbak et al., 2022):

$$225 p^*(x_0|c) \propto p_0(x_0|c) \exp(R(x_0)/\beta),$$

226 For diffusion models, we can extend this to intermediate timesteps by defining rewards on noisy
 227 latents $R(x_t)$ (Wallace et al., 2024).

228 **To analyze the gradient direction toward this reward-shaped distribution, we define a loss based on
 229 Explicit Score Matching (ESM) (Vincent, 2011; Huang et al., 2021):**

$$230 \mathcal{L}_{\text{ESM}}(x_0; \theta) = \mathbb{E}_{x_t \sim q(x_t|x_0)} [\|\nabla_{x_t} \log p(x_t|c) - \nabla_{x_t} \log p^*(x_t|c)\|_2^2].$$

231 For all subsequent loss functions, we assume $x_t \sim q(x_t|x_0)$ unless otherwise specified.

232 The score function of $p^*(x_t|c)$ decomposes as $\nabla_{x_t} \log p^*(x_t|c) = \nabla_{x_t} \log p_0(x_t|c) + 1/\beta \cdot \nabla_{x_t} R(x_t)$.
 233 Converting to diffusion model notation, this leads to our reward-based loss function:

$$234 \mathcal{L}_{\text{reward}}(x_0; \theta) = \mathbb{E}_{x_t} [\|\text{sg}[\epsilon_\theta(x_t; c) - 1/\beta \cdot \nabla_{x_t} R(x_t)] - \epsilon_\theta(x_t; c)\|_2^2]^1. \quad (2)$$

235 where $\text{sg}[\cdot]$ is stop-gradient operation, and β is a hyperparameter whose specific choice becomes
 236 irrelevant due to gradient normalization (Section 3.4).

237 Intuitively, Eq. (2) steers the model’s output in the direction of the reward gradient $\nabla_{x_t} R(x_t)$. We
 238 now instantiate this framework with concrete reward designs that ensure the gradients operate in the
 239 tangent space.

240 3.3 CONCEPT-TRAK

241 We now instantiate our reward-based framework by designing specific reward functions for concept
 242 attribution. Following Eq. (2), we replace the general reward $R(x_t)$ with two concept-specific rewards:
 243 one that increases the probability of generating training sample x_0^i , and another that increases the
 244 probability of concept c . These become our training and utility losses, respectively.

245 **Training Loss** To capture how training sample x_0^i influences the model’s generation, we define:

$$246 R_{\text{train}}(x_t) \triangleq \log p(x_0^i|\hat{x}_0),$$

247 where $\hat{x}_0 = \mathbb{E}[x_0|x_t]$ is the posterior mean predicted by diffusion model. This reward encourages the
 248 model to generate samples likely to have originated from x_0^i .

249 Following the approach from Diffusion Posterior Sampling (DPS) (Chung et al., 2022a), we assume
 250 Gaussian distributions for the training data, i.e., $p(x_0^i|x_0) \propto \exp(-\|x_0^i - x_0\|^2/\sigma_{\text{data}}^2)$, giving us
 251 $R_{\text{train}}(x_t) \propto -1/\sigma_{\text{data}} \cdot \|x_0^i - \hat{x}_0\|^2$. While DPS uses this for posterior sampling, we propose to use
 252 it for attribution by constructing a training loss. This gradient $\nabla_{x_t} \|\hat{x}_0 - x_0^i\|^2$ operates as tangent
 253 vectors on the data manifold (Chung et al., 2022a), aligning with our geometric framework.

254 Substituting this into our framework (Eq. (2)) gives us the training loss:

$$255 \mathcal{L}_{\text{train}}(x_0; \theta) = \mathbb{E}_{x_t} [\|\text{sg}[\epsilon_\theta(x_t; c) + \lambda_t \cdot \nabla_{x_t} \|\hat{x}_0 - x_0^i\|^2] - \epsilon_\theta(x_t; c)\|_2^2], \quad (3)$$

256 where $\lambda_t = 1/(\beta\sigma_{\text{data}})$ is a hyperparameter whose specific choice becomes irrelevant due to gradient
 257 normalization (Section 3.4).

258 While DSM loss has a similar goal of capturing how training samples influence generation, our
 259 train loss differs in how the learning signal is constructed. DSM provides reconstruction-driven
 260 signal, whereas our DPS-based reward explicitly yields tangent-space guidance vectors, which we
 261 empirically find more stable for concept-level attribution.

262 ¹Interestingly, this tangent space motivated formulation yields an equivalent loss to $\nabla\text{-DB}$ from the GFlowNet
 263 framework (Liu et al., 2025) under specific assumptions.

270 **Utility Loss** To measure concept presence, we define:

$$272 \quad R_{\text{concept}}(x_t) \triangleq \log p(c_{\text{target}}|x_t)$$

274 Maximizing this reward corresponds to maximizing a lower bound of our target concept probability
 275 $p_{\theta}(c_{\text{target}}) = \mathbb{E}_{x_0 \sim p_{\text{sample}}} [p_{\theta}(c_{\text{target}}|x_0)]$ (Appendix B.2). Here, p_{sample} determines the attribution scope:
 276 for global attribution, it represents the model’s generative distribution; for local attribution, $p_{\text{sample}} =$
 277 $\delta(x_0 - x_0^{\text{test}})$.

278 When c_{target} is a conditioning input, the reward gradient reduces to classifier-free guidance vectors
 279 $\epsilon_{\theta}(x_t; c_{\text{target}}) - \epsilon_{\theta}(x_t)$ (Ho and Salimans, 2022), which operate as concept-relevant tangent vectors
 280 (Chung et al., 2024; Brack et al., 2023). For concepts embedded within condition c , we use
 281 concept slider guidance $\epsilon_{\theta}(x_t; c) - \epsilon_{\theta}(x_t; c_-)$ (Gandikota et al., 2024) to measure the target concept’s
 282 contribution within the context, where c_- is the condition that removes the target concept (e.g., c :
 283 “pencil drawing of Pikachu”, c_- : “pencil drawing”).

284 Substituting this into our framework (Eq. (2)), the corresponding utility loss is:

$$285 \quad \mathcal{L}_{\text{concept}}(c_{\text{target}}; \theta) = \mathbb{E}_{x_0, x_t} [\|\text{sg}[\epsilon_{\theta}(x_t; c) + \lambda_c \cdot (\epsilon_{\theta}(x_t; c) - \epsilon_{\theta}(x_t; c_-))] - \epsilon_{\theta}(x_t; c)\|_2^2], \quad (4)$$

287 where λ_c is a scaling constant whose specific value does not impact on final attribution scores due to
 288 gradient normalization (Section 3.4).

290 **Concept-Level Influence Function** Having designed both training and utility losses to operate
 291 through reward gradients in the tangent space, we can now apply the influence function framework:

$$293 \quad \mathcal{I}(x_0^i, c_{\text{target}}) = \nabla_{\theta} \mathcal{L}_{\text{concept}}(c_{\text{target}}; \theta)^{\top} \mathbf{H}^{-1} \nabla_{\theta} \mathcal{L}_{\text{train}}(x_0^i; \theta) \quad (5)$$

294 This measures the alignment between the guidance direction induced by training sample x_0^i and
 295 the guidance direction representing target concept c_{target} . High alignment indicates that the training
 296 sample significantly contributed to the model’s ability to generate the concept.

298 3.4 ADDITIONAL TECHNIQUES

300 **Deterministic Sampling via DDIM Inversion** To eliminate stochasticity from the forward diffusion
 301 process $x_t \sim q(x_t|x_0)$ for more stable attribution, we employ deterministic DDIM inversion to derive
 302 deterministic noisy latents $x_t^i = \text{DDIMInv}(x_0^i, 0 \rightarrow t)$ from training samples x_0^i . Combined with our
 303 loss functions, this approach removes all sources of randomness from gradient computation, resulting
 304 in more stable influence estimates through improved gradient fidelity.

306 **Global vs. Local Concept Attribution** The choice of sampling distribution p_{sample} in our utility
 307 loss (Eq. (4)) determines the attribution scope. We implement this distinction as follows: (1) Global
 308 attribution uses the full conditional distribution, sampling x_t via DDIM from noise. Local attribution
 309 constrains this to $p_{\text{sample}}(x_0) = \delta(x_0 - x_0^{\text{test}})$, requiring $x_0^{\text{test}} = x_0$. We enforce this constraint by
 310 sampling x_t via DDIM from noise that used for generating x_0^{test} .

312 **Gradient Normalization** Varying loss magnitudes across timesteps can cause certain gradients
 313 to dominate attribution results. To address this, we normalize each timestep gradient g_t to unit
 314 norm, $\bar{g}_t = g_t / \|g_t\|_2$, ensuring that no single timestep exerts disproportionate influence on the final
 315 attribution score. This normalization also makes our method invariant to hyperparameters such as β
 316 and σ_{data} in our framework, providing additional robustness.

317 **Gradient Projection** Following TRAK (Park et al., 2023a), we project gradients to lower-
 318 dimensional space ($k \ll d$) for computational efficiency. Moreover, we approximate the Hessian
 319 using the Fisher Information Matrix, which requires only negligible overhead given pre-computed
 320 training gradients.

322 We refer to the complete method incorporating reward optimization based loss function, deterministic
 323 sampling, and gradient normalization within the influence function framework Eq. (5) as **Concept-
 324 TRAK**. Further implementation details provided in Appendix E.

324 **4 EXPERIMENTS**

325

326 In this section, we evaluate *Concept-TRAK* across multiple concept attribution scenarios, comparing it
 327 against TRAK (Park et al., 2023a), D-TRAK (Zheng et al., 2024), DAS (Lin et al., 2025). For text-to-
 328 image (T2I) model, we additionally compare against an unlearning-based attribution method (Wang
 329 et al., 2024b). To evaluate concept-level attribution, we conduct two controlled evaluations on class-
 330 conditional diffusion models and evaluate on an established real-world T2I model data attribution
 331 benchmark (AbC, Wang et al. (2023b)). Note that standard Linear Datamodeling Score (LDS, Park
 332 et al. (2023a)) used in traditional data attribution is inapplicable to concept-level attribution evaluation
 333 (see Appendix A for detailed discussion).

334 **Scope of Experiments** Since baseline methods were
 335 not developed with concept-level attribution in mind, it
 336 is natural that they struggle under our evaluation. Our
 337 comparisons should therefore be viewed not as criti-
 338 cisms of prior methods, but as evidence that this newly
 339 defined task demands specialized approaches, highlight-
 340 ing the need for further research in this direction.

341 **In the main text, we focused on controlled evaluations**
 342 **on synthetic and CelebA-HQ datasets, and evaluation**
 343 **on the established AbC benchmark for T2I models. In**
 344 **the appendix, we provide extended analyses including:**
 345 **(1) set-level attribution as an alternative baseline (Ap-**
 346 **pendix D.1), (2) challenging real-world scenarios with**
 347 **semantically similar concepts (Appendix D.2.1) and**
 348 **complex compositional prompts (Appendix D.2.2), (3)**
 349 **qualitative case studies on diverse applications (Ap-**
 350 **pendix D.2.3, Appendix D.4).**

351

352 **4.1 CONTROLLED EVALUATION: SYNTHETIC DATASET**

353

354 Evaluating concept attribution requires knowing the ground truth source of each concept, which is
 355 unavailable in real datasets. To address this, we construct a controlled synthetic dataset with two
 356 binary concepts: color $\in \{\text{red, blue}\}$ and shape $\in \{\text{triangle, circle}\}$. We train a conditional diffusion
 357 model where each condition is encoded as concatenated one-hot vectors.

358 To comprehensively evaluate concept attribution methods, we design our dataset to enable testing in
 359 both in-distribution (ID) and out-of-distribution (OOD) scenarios (Figure 3(a)). We exclude $\{\text{red,}$
 360 $\text{triangle}\}$ combinations from training, creating ID cases where concept combinations were seen
 361 during training (e.g., blue circle) and OOD cases requiring novel concept combinations through
 362 generalization (e.g., red triangle). This setup allows us to understand how attribution methods behave
 363 when training data directly supports the generated output versus when the model must combine
 364 concepts in novel ways.

365 **Evaluation Protocol** We use Precision@10 to evaluate concept attribution. As illustrated in
 366 Figure 3(b), we generate a test image and perform concept attribution for a specific concept (e.g.,
 367 "shape"). We then check whether the top-ranked training samples contain the same target concept
 368 as the generated image. In this example, a training sample with a triangle is correct (\circ) while
 369 one with a circle is incorrect (\times). We generate 16 test images for each concept combination and
 370 report Precision@10 averaged across all test cases. Note that baseline methods perform standard
 371 data attribution on the generated image, while *Concept-TRAK* performs concept-specific attribution
 372 targeting individual concepts within that image, i.e., local concept attribution.

373 **Results** As shown in Table 1, *Concept-TRAK* maintains strong performance in both ID (1.00) and
 374 OOD (0.85) scenarios, while baseline methods exhibit a significant performance drop in the OOD
 375 setting (≤ 0.50). This gap underscores a fundamental distinction between attribution settings. In ID
 376 cases, image-based attribution methods can succeed for concept retrieval only by leveraging visual
 377 similarity, since there exists training samples that includes the same concept combinations as those in

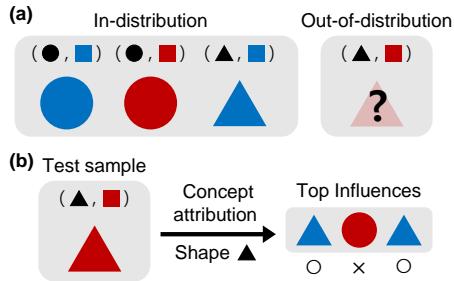


Figure 3: Experimental setup. (a) Train diffusion models on image-tuple pairs (shape, color), excluding all *red-triangle* combinations. (b) Generate ID/OOD samples and perform concept-level attribution; the prediction is correct if the top influential training samples contain the target concept.

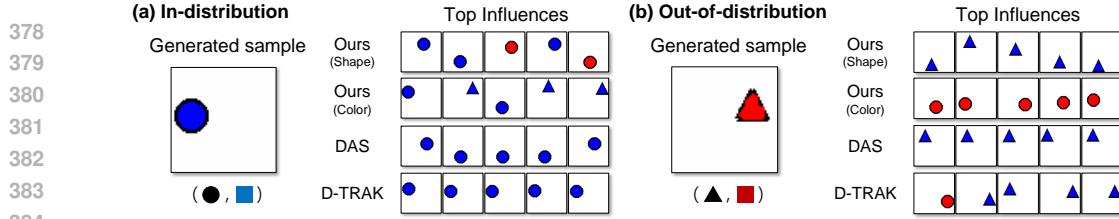


Figure 4: The target concept for each method is indicated in parentheses (Shape/Color). A data attribution method succeeds when the top influential training samples contain the same concept as the generated sample. (a) In-distribution case: Both baseline methods and our approach successfully retrieve relevant training samples. (b) Out-of-distribution: Our method accurately retrieves training samples for each individual concept (triangle for shape, red for color), while baselines can only retrieve samples related to one concept due to image-level attribution limitations.

Table 1: Precision@10 on synthetic dataset.

Method	In-distribution			Out-of-distribution		
	Shape	Color	Avg.	Shape	Color	Avg.
Ours	1.00	1.00	1.00	0.80	0.90	0.85
DAS	1.00	1.00	1.00	1.00	0.00	<u>0.50</u>
D-TRAK	1.00	1.00	1.00	1.00	0.00	<u>0.50</u>
TRAK	0.67	0.93	0.80	0.60	0.30	0.45

Table 2: Precision@10 on CelebA-HQ dataset.

Method	In-distribution			Out-of-distribution				
	Eyeglasses	Male	Smiling	Avg.	Eyeglasses	Male	Smiling	Avg.
Ours	0.97	0.93	0.87	0.92	1.00	1.00	0.90	0.97
DAS	0.99	0.99	0.90	0.96	0.70	0.60	0.70	<u>0.67</u>
D-TRAK	0.56	0.44	0.51	0.50	0.30	0.60	0.00	0.30
TRAK	0.86	0.96	0.71	0.84	0.60	0.70	0.50	0.60

the generated output (Figure 4(a)). In contrast, OOD cases contain no training samples with the exact target concept combination, requiring methods to isolate the contribution of individual concepts from compositionally novel outputs (Figure 4(b)).

4.2 CONTROLLED EVALUATION: CELEBA-HQ

We extend our evaluation to real images using CelebA-HQ with three binary concepts: eyeglasses, male, and smiling. We deliberately exclude all samples containing the combination {eyeglasses, male, smiling} from the training dataset, creating a more challenging OOD scenario where the model should compositionally combine three concepts. We follow the same Precision@10 evaluation protocol, generating 16 test images per available combination.

Results As shown in Table 2, Concept-TRAK achieves consistently strong performance in both ID (0.92) and OOD (0.97) scenarios. In contrast, DAS performs well in ID (0.96) but drops substantially in OOD settings (0.67). This difference reflects the distinct challenges of each setting: ID scenarios often benefit from image-level similarity, as retrieved samples visually resembling the generated image typically contain the target concept. However, OOD scenarios require isolating individual concepts from compositionally novel combinations, where image-level similarity is insufficient for accurate concept attribution (see qualitative results in Appendix D.3).

4.3 ATTRIBUTION BY CUSTOMIZATION (ABC)

We use the *Attribution by Customization* Benchmark (AbC) (Wang et al., 2023b), an established benchmark for T2I model data attribution. AbC evaluates attribution methods on models fine-tuned with exemplar images to learn new concepts via special tokens (V), measuring whether attribution method successfully retrieves the exemplars from generated images. This setup offers a rare source of ground truth: generated outputs are known to be directly influenced by the exemplars. While this setting lacks generality for large-scale training regimes, it remains the most reliable way to evaluate concept-level attribution in current T2I models.

Evaluation Protocol Following the setup in Wang et al. (2023b), we report Recall@10, i.e., the proportion of times the exemplar images are successfully retrieved from a pool containing the exemplars and 100K LAION images. While the original benchmark involves not only learning exemplar using special tokens but also fine-tuning the model’s parameter on the exemplar dataset,

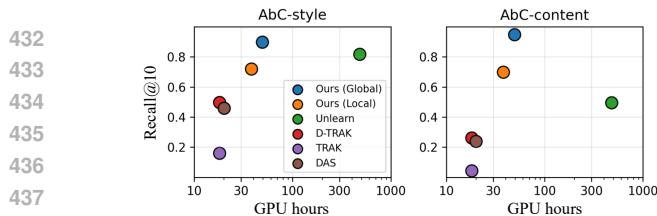


Figure 5: Recall@10 performance on AbC benchmark.

Figure 6: Qualitative results on the AbC benchmark. Correctly retrieved samples are highlighted with red boxes. Previous methods (Unlearn, D-TRAK) struggle with interference from style elements and retrieve unrelated images, while Ours (Global) successfully isolates target concepts $\langle V \rangle$.

real-world use cases more commonly involve investigating the concepts generated or utilized by a single pretrained model. To better reflect this, we adopt textual inversion (Gal et al., 2022) with a frozen base model (SD1.4v) (Rombach et al., 2022), which only trains with a special token $\langle V \rangle$, without parameter updates. Further implementation details are provided in the Appendix E.

Results Our method achieves significantly higher Recall@10 while maintaining computational efficiency comparable to TRAK-based method, as shown in Figure 5. As illustrated in Figure 6, prior methods often fail to isolate the concept of interest $\langle V \rangle$ due to interference from style or other visual elements in the generated image. In contrast, Concept-TRAK effectively isolates and attributes the target concept $\langle V \rangle$, demonstrating superior performance in concept-level attribution. These results can be explained by the inherently compositional nature of T2I generation. In this AbC benchmark, a model is required to combine a learned concept $\langle V \rangle$ with diverse styles or objects to generate test samples. As we demonstrated from controlled evaluation, such compositional scenario makes precise concept attribution substantially more difficult for image-based attribution methods, thereby amplifying the performance gap observed with Concept-TRAK.

Ablation Study We conduct an ablation study using 48 samples from the AbC dataset to assess the impact of each design choice. Starting from the baseline TRAK with \mathcal{L}_{DSM} , adding concept-aware utility gradients (A), DPS-based training gradients (B), DDIM inversion (C), and gradient normalization (D) progressively improves performance, with our full method achieving 0.955 Recall@10.

5 RELATED WORK

Data Attribution Established data attribution methods include influence functions (Pruthi et al., 2020), which approximate leave-one-out retraining via gradients. TRAK and LoGra (Park et al., 2023a; Choe et al., 2024) improve scalability through random projections. Game-theoretic approaches like Data Shapley (Jia et al., 2019b; Ghorbani and Zou, 2019), based on Shapley values (Shapley et al., 1953), were initially limited by retraining costs, but recent work (Wang et al., 2023a; 2024a) improves efficiency by removing this requirement. Unlearning-based methods (Wang et al., 2024b) offer alternative trade-offs between efficiency and theoretical rigor.

Data Attribution for Diffusion Models Early diffusion attribution methods adapted influence functions (Pruthi et al., 2020; Park et al., 2023a), but were biased by timestep-dependent gradient norms. Xie et al. (2024) addressed this via a re-normalized formulation. Zheng et al. (2024) extended TRAK to diffusion models, exploiting its scalability. Lin et al. (2025) later proposed the Diffusion Attribution Score, which quantifies per-sample influence by directly comparing predicted distributions, yielding more precise attributions than loss-based approaches.

Table 3: Ablation study.

Config	Recall@10 (\uparrow)
TRAK (Base: \mathcal{L}_{DSM})	0.04
+ (Config A: $\mathcal{L}_{Reward-DPS}$)	0.261
+ (Config B: \mathcal{L}_{DPS})	0.335
+ (Config C: DDIMInv)	0.564
+ (Config D: Normalize)	0.955

486 6 CONCLUSION
487488 In this work, we offer an initial investigation into concept-level attribution, introducing Concept-
489 TRAK as a foundational framework. It introduces specialized reward-based training and utility
490 loss functions designed to isolate concept-specific influences. Concept-TRAK outperforms existing
491 methods on novel concept attribution benchmarks using the Synthetic and CelebA-HQ datasets, as
492 well as the AbC benchmark. We expect these contributions to inspire further research toward more
493 robust concept-level attribution benchmarks and methods for increasingly sophisticated generative
494 models.495 496 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS
497498 This work made use of large language models to assist with proofreading and improving the clarity
499 of the writing. All research ideas, theoretical development, experiments, and coding were carried out
500 solely by the authors.501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, and
543 Kristian Kersting. SegA: Instructing text-to-image models using semantic guidance. *Advances in
544 Neural Information Processing Systems*, 36:25365–25389, 2023.

545 Blake Brittain. Getty images lawsuit says stability ai misused photos to train
546 ai. *Reuters*, February 2023. URL [https://www.reuters.com/legal/
547 getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/](https://www.reuters.com/legal/getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/).

548 Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
549 Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *32nd
550 USENIX Security Symposium (USENIX Security 23)*, pages 5253–5270, 2023.

551 Sang Keun Choe, Hwijeon Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
552 Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
553 gpt? Ilm-scale data valuation with influence functions. *arXiv preprint arXiv:2405.13954*, 2024.

554 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
555 posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022a.

556 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
557 inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*,
558 35:25683–25696, 2022b.

559 Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye. Cfg++: Manifold-
560 constrained classifier free guidance for diffusion models. *arXiv preprint arXiv:2406.08070*, 2024.

561 Junwei Deng, Shiyuan Zhang, and Jiaqi Ma. Computational copyright: Towards a royalty model for
562 music generative ai. *arXiv preprint arXiv:2312.06646*, 2023.

563 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
564 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
565 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

566 Rohit Gandikota, Joanna Materzyńska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
567 sliders: Lora adaptors for precise control in diffusion models. In *European Conference on Computer
568 Vision*, pages 172–188. Springer, 2024.

569 GenLaw2024. 2nd workshop on generative ai and law (genlaw '24). <https://www.genlaw.org/2024-icml>, July 2024. Held at the International Conference on Machine Learning (ICML)
570 2024, Vienna, Austria.

571 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
572 In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, *Proceedings of the 36th International
573 Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*,
574 pages 2242–2251. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/ghorbani19c.html>.

575 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
576 Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
577 with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

578 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
579 2022.

580 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
581 Neural Information Processing Systems*, 33:6840–6851, 2020.

582 Yuzheng Hu, Pingbang Hu, Han Zhao, and Jiaqi Ma. Most influential subset selection: Challenges,
583 promises, and beyond. *Advances in Neural Information Processing Systems*, 37:119778–119810,
584 2024.

594 Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A variational perspective on diffusion-
 595 based generative models and score matching. In A. Beygelzimer, Y. Dauphin, P. Liang, and
 596 J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, 2021. URL
 597 <https://openreview.net/forum?id=bXehDYUjjXi>.

598 Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E. Turner,
 599 and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with
 600 KL-control. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International
 601 Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*,
 602 pages 1645–1654. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/jaques17a.html>.

603 Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
 604 Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
 605 algorithms. *arXiv preprint arXiv:1908.08619*, 2019a.

606 Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
 607 Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based on the
 608 shapley value. In Kamalika Chaudhuri and Masashi Sugiyama, editors, *Proceedings of the
 609 Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89 of
 610 *Proceedings of Machine Learning Research*, pages 1167–1176. PMLR, 16–18 Apr 2019b. URL
 611 <https://proceedings.mlr.press/v89/jia19a.html>.

612 Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
 613 You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanopt:
 614 Speedrunning the nanopt baseline, 2024. URL <https://github.com/KellerJordan/modded-nanopt>.

615 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 616 *International conference on machine learning*, pages 1885–1894. PMLR, 2017.

617 Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement
 618 learning and distribution matching for fine-tuning language models with no catastrophic for-
 619 getting. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
 620 *Advances in Neural Information Processing Systems*, volume 35, pages 16203–16220. Curran Asso-
 621 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/67496dfa96afddab795530cc7c69b57a-Paper-Conference.pdf.

622 Mingi Kwon, Shin seong Kim, Jaeseok Jeong, Yi Ting Hsiao, and Youngjung Uh. Tcfg: Tangential
 623 damping classifier-free guidance. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 624 and Pattern Recognition (CVPR)*, pages 2620–2629, June 2025.

625 Jinxu Lin, Linwei Tao, Minjing Dong, and Chang Xu. Diffusion attribution score: Evaluating
 626 training data influence in diffusion model. In *The Thirteenth International Conference on Learning
 627 Representations*, 2025. URL <https://openreview.net/forum?id=kuutidLf6R>.

628 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
 629 manifolds. In *International Conference on Learning Representations*, 2022.

630 Zhen Liu, Tim Z Xiao, , Weiyang Liu, Yoshua Bengio, and Dinghuai Zhang. Efficient diversity-
 631 preserving diffusion alignment via gradient-informed gflownets. In *ICLR*, 2025.

632 Taywon Min, Haeone Lee, Hanho Ryu, Yongchan Kwon, and Kimin Lee. Understanding impact of
 633 human feedback via influence functions. *arXiv preprint arXiv:2501.05790*, 2025.

634 Bruno Mlodzeniec, Runa Eschenhagen, Juhan Bae, Alexander Immer, David Krueger, and Richard
 635 Turner. Influence functions for scalable data attribution in diffusion models. *arXiv preprint
 636 arXiv:2410.13850*, 2024.

637 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 638 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 639 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

648 Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge
 649 multiplicatively: Exploring diffusion models on a synthetic task. *Advances in Neural Information*
 650 *Processing Systems*, 36:50173–50195, 2023.

651

652 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Mądry. Trak:
 653 attributing model behavior at scale. In *Proceedings of the 40th International Conference on*
 654 *Machine Learning*, pages 27074–27113, 2023a.

655

656 Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the
 657 latent space of diffusion models through the lens of riemannian geometry. *Advances in Neural*
 658 *Information Processing Systems*, 36:24129–24142, 2023b.

659

660 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
 661 influence by tracing gradient descent. *Advances in Neural Information Processing Systems*, 33:
 662 19920–19930, 2020.

663

664 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 665 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 666 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

667

668 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 669 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

670

671 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 672 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 673 ence on computer vision and pattern recognition*, pages 10684–10695, 2022.

674

675 Laura Ruis, Maximilian Mozes, Juhan Bae, Siddhartha Rao Kamalakara, Dwarak Talupuru, Acyr
 676 Locatelli, Robert Kirk, Tim Rocktäschel, Edward Grefenstette, and Max Bartolo. Procedural knowl-
 677 edge in pretraining drives reasoning in large language models. *arXiv preprint arXiv:2411.12580*,
 678 2024.

679

680 Seyedmorteza Sadat, Manuel Kansy, Otmar Hilliges, and Romann M Weber. No training, no problem:
 681 Rethinking classifier-free guidance for diffusion models. *arXiv preprint arXiv:2407.02687*, 2024.

682

683 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 684 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 685 text-to-image diffusion models with deep language understanding. *Advances in neural information*
 686 *processing systems*, 35:36479–36494, 2022.

687

688 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 689 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 690 open large-scale dataset for training next generation image-text models. *Advances in neural*
 691 *information processing systems*, 35:25278–25294, 2022.

692

693 Lloyd S Shapley et al. A value for n-person games. 1953.

694

695 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 696 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning*,
 697 pages 2256–2265. PMLR, 2015.

698

699 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
 700 art or digital forgery? investigating data replication in diffusion models. In *Proceedings of the*
 701 *IEEE/CVF conference on computer vision and pattern recognition*, pages 6048–6058, 2023a.

702

703 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
 704 standing and mitigating copying in diffusion models. *Advances in Neural Information Processing*
 705 *Systems*, 36:47783–47803, 2023b.

706

707 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 708 national Conference on Learning Representations*, 2021a.

702 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 703 Poole. Score-based generative modeling through stochastic differential equations. In *International
 704 Conference on Learning Representations*, 2021b.

705

706 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-
 707 tion*, 23(7):1661–1674, 2011.

708

709 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 710 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 711 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 712 and Pattern Recognition*, pages 8228–8238, 2024.

713

714 Jiachen T Wang, Yuqing Zhu, Yu-Xiang Wang, Ruoxi Jia, and Prateek Mittal. Threshold knn-shapley:
 715 A linear-time and privacy-friendly approach to data valuation. *arXiv preprint arXiv:2308.15709*,
 2023a.

716

717 Jiachen T Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training run. *arXiv
 718 preprint arXiv:2406.11011*, 2024a.

719

720 Sheng-Yu Wang, Alexei A Efros, Jun-Yan Zhu, and Richard Zhang. Evaluating data attribution for
 721 text-to-image models. In *Proceedings of the IEEE/CVF International Conference on Computer
 722 Vision*, pages 7192–7203, 2023b.

723

724 Sheng-Yu Wang, Aaron Hertzmann, Alexei Efros, Jun-Yan Zhu, and Richard Zhang. Data attribution
 725 for text-to-image models by unlearning synthesized images. *Advances in Neural Information
 726 Processing Systems*, 37:4235–4266, 2024b.

727

728 Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-based) text-
 729 controlled generative models. *Advances in Neural Information Processing Systems*, 36:35331–
 730 35349, 2023c.

731

732 Yuxin Wen, Yuchen Liu, Chen Chen, and Lingjuan Lyu. Detecting, explaining, and mitigating memo-
 733 rization in diffusion models. In *The Twelfth International Conference on Learning Representations*,
 734 2024. URL <https://openreview.net/forum?id=84n3UwkH7b>.

735

736 Tong Xie, Haoyu Li, Andrew Bai, and Cho-Jui Hsieh. Data attribution for diffusion models: Timestep-
 737 induced bias in influence estimation. *Transactions on Machine Learning Research*, 2024.

738

739 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 740 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 2025.

741

742 Jingfeng Yao, Cheng Wang, Wenyu Liu, and Xinggang Wang. Fasterdit: Towards faster diffu-
 743 sion transformers training without architecture modification. *Advances in Neural Information
 744 Processing Systems*, 37:56166–56189, 2024.

745

746 Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing properties of data attribu-
 747 tion on diffusion models. In *The Twelfth International Conference on Learning Representations*,
 748 2024.

749

750

751

752

753

754

755

756 **A DISCUSSIONS**
757758 **A.1 LDS BENCHMARK**
759760 Linear Datamodeling Score (LDS, Park et al. (2023a)) is the most widely used benchmark in data
761 attribution methods. LDS measures influence on specific utility losses through leave-K-out evaluation.
762 More specifically, it linearly approximates each data point’s impact on utility loss by measuring the
763 difference between models trained on randomly subsampled data versus the full dataset.764 While LDS is sometimes treated as a ground-truth proxy, it is unsuitable for our setting due to both
765 theoretical and practical limitations:766 **Structural limitation in class-conditional setting:** In datasets like CelebA-HQ, many attributes
767 (e.g., “eyeglasses”) appear in over half of the data. Under LDS’s standard protocol (removing the
768 top 50% most influential samples), many positive examples remain. Since conditional models can
769 reproduce a concept from even a small number of positives, the measured utility drop can be minimal,
770 systematically underestimating influence. This makes measuring each concept’s true impact nearly
771 impossible, arising from the violation of LDS’s linearity assumption (Hu et al., 2024). The influence
772 on class generation probability exhibits highly non-linear behavior, such as sharp increases after a
773 sufficient number of sample removals.774 **Computational infeasibility for text-to-image setting:** Running LDS requires retraining dozens of
775 models (often 64+) after removing large portions of the training set. For instance, training a single
776 T2I model on MS-COCO to reach qualitatively minimally meaningful generation already requires
777 ~ 8 GPU-days, making LDS prohibitively expensive.778 **Retrieval-based evaluation as an alternative:** Our retrieval-based evaluation avoids this prevalence
779 issue by directly checking whether the top-ranked training samples indeed contain the target concept,
780 without being confounded by leftover positives after partial data removal.782 **A.2 LIMITATIONS AND FUTURE WORK**
783784 Our research advances beyond traditional data attribution by identifying training samples that specifi-
785 cally contribute to particular concepts. While Concept-TRAK demonstrates superior performance
786 compared to existing methods on concept-level attribution tasks, our approach has limitations. As
787 illustrated in Figure 12(a) with the Simpsons example, our method occasionally retrieves stylistically
788 similar but conceptually distinct images (e.g., other cartoon characters rather than Simpsons-specific
789 content).790 We hypothesize that this limitation stems from the fundamental challenge of gradient estimation
791 in diffusion models. While our reward-optimization-based loss formulation and ddim inversion
792 successfully eliminate stochasticity from the standard diffusion loss computation and provide more
793 stable gradient estimates, perfect gradient estimation would theoretically require the true DSM
794 loss computed with infinite Monte Carlo samples over both the noise term ϵ and noisy latents x_t .
795 Our deterministic approximation, though significantly improved, cannot fully capture this infinite
796 sampling complexity. Consequently, some attribution errors persist.797 For concept-level attribution to serve as a reliable tool for addressing copyright concerns and en-
798 abling model debugging, further development is required in two key areas: (1) establishing more
799 sophisticated benchmarks that measure concept-level attribution performance across diverse concept
800 types and contexts, and (2) enhancing the precision and theoretical guarantees of concept-level
801 attribution methods. This work represents an initial investigation that introduces the concept-level
802 attribution problem and proposes Concept-TRAK as a foundational framework, and we anticipate that
803 these contributions will catalyze further research into more robust concept-level attribution methods
804 suitable for increasingly sophisticated generative models.806 **A.3 IMPACT STATEMENTS**
807808 While our work provides tools for analyzing training data and understanding diffusion models for
809 image generation without direct safety concerns, there exists potential for misuse by model developers
who might exploit our tools to learn unsafe or problematic concepts. We emphasize that our method

810 is intended for responsible model development and governance, including the identification and
 811 mitigation of harmful content in training datasets, and understanding the model’s behavior.
 812

813 B THEORETICAL DETAILS

814 B.1 CLASSIFIER-FREE GUIDANCE EXTENSION

817 We derive the reward optimization loss for the case where p_{sample} corresponds to classifier-free
 818 guidance sampling. Under certain assumptions, this yields loss gradients equivalent to Eq. (2) derived
 819 from p_0 in the main manuscript.

820 Consider the reward optimization objective with classifier-free guidance sampling:

$$822 \max_{p_\theta} \mathbb{E}_{x_0 \sim p_\theta(\cdot|c)} [R(x_0)] - \beta \mathcal{D}_{\text{KL}}(p_\theta(\cdot|c) \| p_{\text{sample}}(\cdot|c))$$

824 where $p_{\text{sample}}(\cdot|c)$ represents the classifier-free guidance distribution used in practice. The optimal
 825 solution follows the same form:

$$826 p^*(x_0|c) \propto p_{\text{sample}}(x_0|c) \exp(R(x_0)/\beta)$$

828 Following the same ESM derivation as the main text, we obtain the CFG-based reward loss:

$$829 \mathcal{L}_{\text{reward}}^{\text{CFG}}(x_0; \theta) = \mathbb{E}_{x_t} [\|\text{sg}[\epsilon_\theta^{\text{CFG}}(x_t; c) - 1/\beta \cdot \nabla_{x_t} R(x_t)] - \epsilon_\theta^{\text{CFG}}(x_t; c)\|_2^2]$$

830 where $\epsilon_\theta^{\text{CFG}}(x_t; c) = \epsilon_\theta(x_t) + \gamma(\epsilon_\theta(x_t; c) - \epsilon_\theta(x_t))$ is the CFG noise prediction.
 831

832 Expanding this expression:

$$833 \mathcal{L}_{\text{reward}}^{\text{CFG}}(x_0; \theta) = \mathbb{E}_{x_t} [\|\text{sg}[\epsilon_\theta(x_t) + \gamma(\epsilon_\theta(x_t; c) - \epsilon_\theta(x_t)) - 1/\beta \cdot \nabla_{x_t} R(x_t)] \\ 834 - (\epsilon_\theta(x_t) + \gamma(\epsilon_\theta(x_t; c) - \epsilon_\theta(x_t)))\|_2^2]$$

836 The gradient of this loss is:

$$838 \nabla_\theta \mathcal{L}_{\text{reward}}^{\text{CFG}}(x_0; \theta) = \mathbb{E}_{x_t} \left[\frac{1}{\beta} \nabla_{x_t} R(x_t) \nabla_\theta (\epsilon_\theta(x_t) + \gamma(\epsilon_\theta(x_t; c) - \epsilon_\theta(x_t))) \right]$$

840 Under the assumption that $\nabla_\theta \epsilon_\theta(x_t)$ contributes minimally to concept-specific attribution directions,
 841 this simplifies to:

$$843 \nabla_\theta \mathcal{L}_{\text{reward}}^{\text{CFG}}(x_0; \theta) \approx \mathbb{E}_{x_t} \left[\frac{\gamma}{\beta} \nabla_{x_t} R(x_t) \nabla_\theta \epsilon_\theta(x_t; c) \right]$$

845 This is equivalent to the gradient of Eq. (2) up to a constant factor, which becomes irrelevant under
 846 gradient normalization. While this assumption is strong, it may be justified since $\epsilon_\theta(x_t)$ captures
 847 general denoising patterns across the dataset, which could be largely independent of specific concept
 848 directions. The effectiveness of Eq. (2) in our experiments provides some empirical support for this
 849 approximation.

851 B.2 LOWER BOUND JUSTIFICATION FOR UTILITY LOSS

853 We provide the mathematical justification for why maximizing our reward function $R_{\text{concept}}(x_t) =$
 854 $\log p(c_{\text{target}}|x_t)$ corresponds to optimizing a lower bound of our target concept probability $p_\theta(c_{\text{target}}) =$
 855 $\mathbb{E}_{x_0 \sim p_{\text{sample}}} [p_\theta(c_{\text{target}}|x_0)]$.

856 Since $p_\theta(c_{\text{target}}|x_0)$ must be computed through the diffusion process, we have:

$$857 \log p_\theta(c_{\text{target}}) = \log \mathbb{E}_{x_0 \sim p_{\text{sample}}} [p_\theta(c_{\text{target}}|x_0)] \quad (6)$$

$$859 = \log \mathbb{E}_{x_0 \sim p_{\text{sample}}} [\mathbb{E}_{x_t \sim q(x_t|x_0)} [p_\theta(c_{\text{target}}|x_t)]] \quad (7)$$

$$860 \geq \mathbb{E}_{x_0 \sim p_{\text{sample}}, x_t \sim q(x_t|x_0)} [\log p_\theta(c_{\text{target}}|x_t)] \quad (8)$$

862 where the inequality follows from applying Jensen’s inequality twice (due to the concavity of
 863 \log). Therefore, maximizing $\mathbb{E}_{x_0, x_t} [\log p_\theta(c_{\text{target}}|x_t)]$ optimizes a lower bound of our target concept
 864 probability.

864

C OTHER TYPES OF REWARD

866 In this section, we show how to apply *Concept-TRAK* beyond textual concepts. We cover two
 867 scenarios: explicit differentiable reward models and implicit reward models defined by preference
 868 datasets.

870

C.1 EXTERNAL DIFFERENTIABLE REWARD MODELS

872 Suppose we have access to an explicit, differentiable classifier that can predict the probability of a
 873 specific concept: $\log p(c_{\text{target}}|x_0)$. Here, c_{target} can be any concept of interest—for example, visual
 874 features, image aesthetics, etc. If this concept classifier is trained only on clean images x_0 , then
 875 similar to our earlier approach, we define the reward model as $R(x_t) = \log p(c_{\text{target}}|\hat{x}_0)$, where
 876 $\hat{x}_0 = \mathbb{E}[x_0|x_t]$ is the posterior mean predicted by the diffusion model (Chung et al., 2022a).

877 This yields our utility loss based on external reward model:

$$878 \mathcal{L}_{\text{Reward-DPS}}(x_t; \theta) = \|\text{sg}[\epsilon_\theta(x_t) - 1/\beta \cdot \nabla_{x_t} \log p(c_{\text{target}}|\hat{x}_0)] - \epsilon_\theta(x_t)\|_2^2. \\ 879$$

880

C.2 PREFERENCE DATASETS

882 For scenarios where concepts are defined through preference data rather than explicit classifiers, we
 883 can adapt our framework to work with preference pairs. This is particularly useful when the desired
 884 concept is subjective (e.g., aesthetic quality, safety) or difficult to define through explicit labels.

885 Given preference pairs (x_0^+, x_0^-) where $x_0^+ \succ x_0^-$ indicates that x_0^+ is preferred over x_0^- , we need
 886 to define how a noisy latent x_t sampled from our diffusion process relates to these preferences.
 887 Following the intuition that we want to steer the denoising process toward preferred outcomes and
 888 away from non-preferred ones, we define the reward function as:

$$889 R(x_t; x_0^+, x_0^-) = \log p(x_0^+|\hat{x}_0) - \log p(x_0^-|\hat{x}_0), \quad (9)$$

890 where $\hat{x}_0 = E[x_0|x_t]$ is the posterior mean predicted from the current noisy latent x_t .

892 This formulation captures the likelihood that the current denoising trajectory will lead to the preferred
 893 sample x_0^+ versus the non-preferred sample x_0^- . Under our Gaussian assumption that $p(x^i|\hat{x}_0) \propto$
 894 $\exp(-\|\hat{x}_0 - x^i\|_2^2)$, we obtain:

$$895 R(x_t; x_0^+, x_0^-) \propto -\|\hat{x}_0 - x_0^+\|_2^2 + \|\hat{x}_0 - x_0^-\|_2^2 + \text{const} \quad (10)$$

896 Taking the gradient with respect to x_t :

$$897 \nabla_{x_t} R(x_t; x_0^+, x_0^-) = \nabla_{x_t} \|\hat{x}_0 - x_0^-\|_2^2 - \nabla_{x_t} \|\hat{x}_0 - x_0^+\|_2^2. \quad (11)$$

899 This gradient naturally encourages the denoising process to move toward preferred samples x_0^+
 900 (negative gradient term) and away from non-preferred samples x_0^- (positive gradient term), making it
 901 suitable for integration into our Reward-DPS framework.

902 The resulting utility loss becomes:

$$904 \mathcal{L}_{\text{Preference-DPS}}((x_0^+, x_0^-); \theta) = \mathbb{E}_{x_0, x_t} [\|\text{sg}[\epsilon_\theta(x_t) - 1/\beta \cdot \nabla_{x_t} R(x_t; x_0^+, x_0^-)] - \epsilon_\theta(x_t)\|_2^2] \\ 905 = \mathbb{E}_{x_0, x_t} [\|\text{sg}[\epsilon_\theta(x_t) + 1/\beta \cdot (\nabla_{x_t} \|\hat{x}_0 - x_0^-\|_2^2 - \nabla_{x_t} \|\hat{x}_0 - x_0^+\|_2^2)] - \epsilon_\theta(x_t)\|_2^2], \\ 906$$

907 enabling concept attribution with preference data without explicitly training a reward model.

908

D ADDITIONAL RESULTS

910

D.1 ADDITIONAL BASELINE: SET-LEVEL ATTRIBUTION

912 In the main paper, we focus our evaluation on *local concept attribution*, which measures the influence
 913 of training samples on a specific concept within a particular generated image. However, an alternative
 914 setting is *global concept attribution*, which measures the influence of training samples on the model’s
 915 learned distribution over a concept in general. Unlike local concept attribution, global concept
 916 attribution can be naturally addressed by baseline methods such as DAS and D-TRAK through
 917 set-level attribution, where utility gradients are computed by averaging across multiple generated
 918 images.

918 **Set-level Attribution** For a target concept c , we can define a set-level utility gradient as:
 919

$$920 \quad L_{\text{set}} = \mathbb{E}_{x_0 \sim p(x|c)}[L(x_0; c)] \quad (12)$$

921 This formulation estimates the expected loss over the model’s generative distribution conditioned on
 922 concept c . Assuming L approximates $p(x|c)$, this objective closely aligns with our concept attribution
 923 utility definition in Section 3.1:
 924

$$925 \quad p_{\theta}(c) = \mathbb{E}_{x_0 \sim p(x|c)}[p(c|x)] \quad (13)$$

926 By averaging gradients over multiple samples from $p(x|c)$, we obtain an estimate of how training
 927 data influenced the model’s learned representation of concept c overall, rather than its manifestation
 928 in a single image.
 929

930 **Experimental Setup** We evaluate set-level attribution across all three benchmarks (Toy, CelebA-
 931 HQ, AbC) by adapting both Concept-TRAK and baseline methods to the global attribution setting:
 932

- 933 • **Toy & CelebA-HQ:** For each target concept c , we fix that concept and randomize all other
 934 attributes. We generate 256 images from $p(x|c)$ using the trained diffusion model. For each
 935 method, we compute the utility gradient as the average of individual gradients across all 256
 936 samples.
- 937 • **AbC:** We use the benchmark-provided prompts (containing the special token) to generate
 938 256 images. We then compute the average utility gradient across these samples.
 939

940 We then rank training samples by their influence scores and evaluate whether the top-ranked samples
 941 contain the target concept using Precision@10.
 942

943 **Results** Tables 4, 5, and 6 present the results for global concept attribution across all benchmarks.
 944

945 Table 4: Set-level attribution results on Toy dataset. All methods achieve strong performance on this
 946 controlled dataset.
 947

948 Concept	949 Concept-TRAK	950 DAS	951 D-TRAK
949 Shape	1.00	1.00	1.00
950 Color	0.90	0.70	1.00
951 Average	0.95	0.85	1.00

953 Table 5: Set-level attribution results on CelebA-HQ. All methods achieve perfect performance when
 954 attributing concepts across multiple generated images.
 955

956 Concept	957 Concept-TRAK	958 DAS	959 D-TRAK
958 Eyeglasses	1.00	1.00	1.00
959 Male	1.00	1.00	1.00
960 Smile	1.00	1.00	1.00
961 Average	1.00	1.00	1.00

963 The results demonstrate that Concept-TRAK achieves comparable or superior performance across all
 964 benchmarks, confirming that our design choices transfer well to the global setting. Notably, while
 965 baseline methods can perform reasonably in the global setting by averaging over many samples,
 966 they fundamentally lack the capability to perform local concept attribution for individual images—a
 967 critical limitation that Concept-TRAK addresses.
 968

969 D.2 REAL-WORLD SCENARIOS

970 While our controlled benchmarks (Toy, CelebA-HQ, AbC) provide rigorous evaluation with ground-
 971 truth labels, real-world applications of concept attribution often involve more challenging scenarios,

972 Table 6: Set-level attribution results on AbC benchmark. Concept-TRAK achieves the best average
 973 performance, with particular strength in style attribution.

Concept	Concept-TRAK	DAS	D-TRAK
Object	0.89	0.98	0.95
Style	0.93	0.81	0.83
Average	0.91	0.895	0.89

982 including semantically similar concepts and complex compositional prompts. In this section, we
 983 evaluate Concept-TRAK’s performance on such scenarios using a large-scale text-to-image model
 984 (SD1.4v, Rombach et al. (2022)). Following AbC (Wang et al., 2023b), we use 100k subset of the
 985 LAION dataset (Schuhmann et al., 2022) for data attribution.

986 **Evaluation Protocol** For real-world scenarios, establishing ground-truth attribution labels is infea-
 987 sible, as we cannot definitively know which training samples influenced specific concepts in generated
 988 images. However, we can perform a sanity-check evaluation by verifying whether retrieved training
 989 samples actually contain the target concept. If a method retrieves training samples that do not contain
 990 the concept being attributed, this indicates a clear failure of concept attribution.

991 We employ Qwen3-VL-8B (Yang et al., 2025), an open-source state-of-the-art vision-language model,
 992 to automatically assess whether retrieved images contain the target concept. For each retrieved
 993 training sample, we query the model: “Does this image contain {concept value}? Please answer with
 994 only ‘yes’ or ‘no’” If the model responds “no”, we count it as an inaccurate attribution. We report
 995 Precision@10, measuring the fraction of top-10 retrieved samples that contain the target concept.

996 For certain generated images, the actual number of training samples that contributed to a specific
 997 concept may be fewer than 10. Therefore, the upper bound for precision is not necessarily 1.0. These
 998 metrics should be interpreted as relative performance indicators comparing methods rather than
 999 absolute measures of attribution quality.

1001 D.2.1 SIMILAR CONCEPTS

1003 A critical challenge in concept attribution is distinguishing between semantically similar concepts
 1004 that share visual features. We evaluate whether methods can correctly attribute training samples for
 1005 one concept without incorrectly retrieving samples from visually similar but distinct concepts.

1008 **Experimental setup** We select five semantically similar big cat species: cat, tiger, jaguar, leopard,
 1009 and cheetah. For local attribution, we generate 8 images using prompts containing only the target
 1010 concept (e.g., “a photo of a cat”) with different random seeds. For each generated image, we perform
 1011 concept attribution and measure whether the top-10 retrieved samples contain the target concept
 1012 rather than similar concepts. For global attribution, we generate 256 images per concept and compute
 1013 set-level attribution by averaging utility gradients across all samples.

1014 **Results** Tables 7 and 8 present the results for local and global attribution on similar concepts.

1016 Table 7: Local attribution on semantically similar concepts (averaged across 8 seeds per concept).

Concept	Concept-TRAK	DAS	D-TRAK	TRAK
cat	0.925	0.000	0.000	0.000
tiger	0.662	0.000	0.000	0.000
jaguar	0.188	0.000	0.000	0.000
leopard	0.300	0.000	0.000	0.087
cheetah	0.325	0.000	0.000	0.000
Average	0.480	0.000	0.000	0.017

Table 8: Global attribution on semantically similar concepts (averaged over 256 generated images per concept).

	Concept	Concept-TRAK	DAS	D-TRAK	TRAK
	cat	1.000	1.000	1.000	0.900
	tiger	1.000	0.800	0.800	0.800
	jaguar	0.400	0.300	0.200	0.200
	leopard	0.600	0.600	0.600	0.300
	cheetah	0.500	0.300	0.300	0.300
	Average	0.700	0.600	0.580	0.500

Figure 7: Qualitative results for semantically similar concepts using Concept-TRAK.

For local attribution, baseline methods achieve near-zero precision, indicating complete failure. In contrast, Concept-TRAK achieves 0.480 average precision, successfully retrieving concept-specific training samples even for visually similar classes. The performance gap is particularly pronounced for common concepts (cat: 0.925, tiger: 0.662) compared to rarer concepts (jaguar: 0.188). As shown in Figure 7, for rare concepts like jaguar, Concept-TRAK sometimes retrieves training samples of visually similar animals such as tigers with similar spotted patterns. This suggests that the model may have learned the rare concept partially through transfer from similar visual features.

For global attribution, baseline methods show improved performance by averaging over many samples, but Concept-TRAK still achieves the best results. This demonstrates that our method’s design choices benefit both local and global attribution settings.

D.2.2 COMPOSITIONAL CONCEPTS

Real-world text-to-image generation often involves compositional prompts that combine multiple concepts such as objects and styles. A key challenge is attributing training influence to each individual concept within a compositionally generated image. We evaluate this capability at two difficulty levels.

Common Object and Style We generate images combining common objects with artistic styles using prompts of the form “{object} in the style of {style}”. We use two objects (cat, dog) and two styles (graffiti art, stained glass), generating 8 images per object-style combination for a total of 32 images. For each image, we perform separate concept attribution for the object and the style. For global attribution baselines, we generate 256 images from each full prompt and perform set-level attribution, then separately evaluate whether retrieved samples contain the object or style.

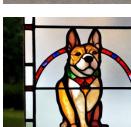
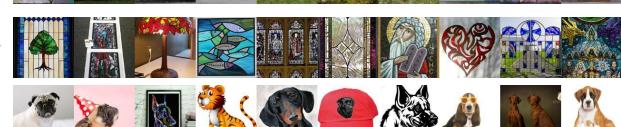
	Prompt	Generated Image	Top Influence
1080			
1081			
1082	Cat in the style of graffiti art		
1083			
1084			
1085			
1086	Cat in the style of stained glass		
1087			
1088			
1089			
1090	Dog in the style of graffiti art		
1091			
1092			
1093			
1094	Dog in the style of stained glass		
1095			
1096			
1097			
1098			
1099			

Figure 8: Qualitative results for compositional concepts using Concept-TRAK.

As Table 9 shows, Concept-TRAK substantially outperforms baselines. For local attribution, baseline methods completely fail, while Concept-TRAK achieves over 90% accuracy. For global attribution, Concept-TRAK also performs better overall. Interestingly, baseline methods appear biased toward style-based attribution, performing relatively well on global style attribution but completely failing on object attribution. For qualitative results, please refer to Figure 8.

Table 9: Compositional attribution results for natural objects with artistic styles.

Attribution Type	Concept-TRAK	DAS	D-TRAK	TRAK
Local (Object)	0.934	0.025	0.025	0.034
Local (Style)	0.919	0.047	0.047	0.013
Global (Object)	1.000	0.000	0.000	0.125
Global (Style)	0.950	0.925	0.925	0.850

Unique Objects and Artist Styles. To increase difficulty, we use unique objects (Pikachu, Simpson) and famous artist styles (Vincent van Gogh, Pablo Picasso) that require specific training data. We generate 8 seeds per combination for a total of 32 images.

Table 10: Compositional attribution results for unique objects with artist styles.

Attribution Type	Concept-TRAK	DAS	D-TRAK	TRAK
Local (Object)	0.581	0.000	0.000	0.000
Local (Style)	0.581	0.000	0.000	0.000
Global (Object)	0.725	0.100	0.125	0.450
Global (Style)	0.775	0.475	0.475	0.075

As shown in Table 10, Concept-TRAK successfully attributes each concept independently compared to the baseline method, even when multiple concepts are intertwined in a single image. Same as the previous experiment, baseline methods show style bias in global attribution. This suggests that using traditional data attribution methods conflates the overall visual aesthetic with style, while missing object-specific contributions. Concept-TRAK achieves balanced performance on both concepts. For qualitative results, please refer to Figure 9.

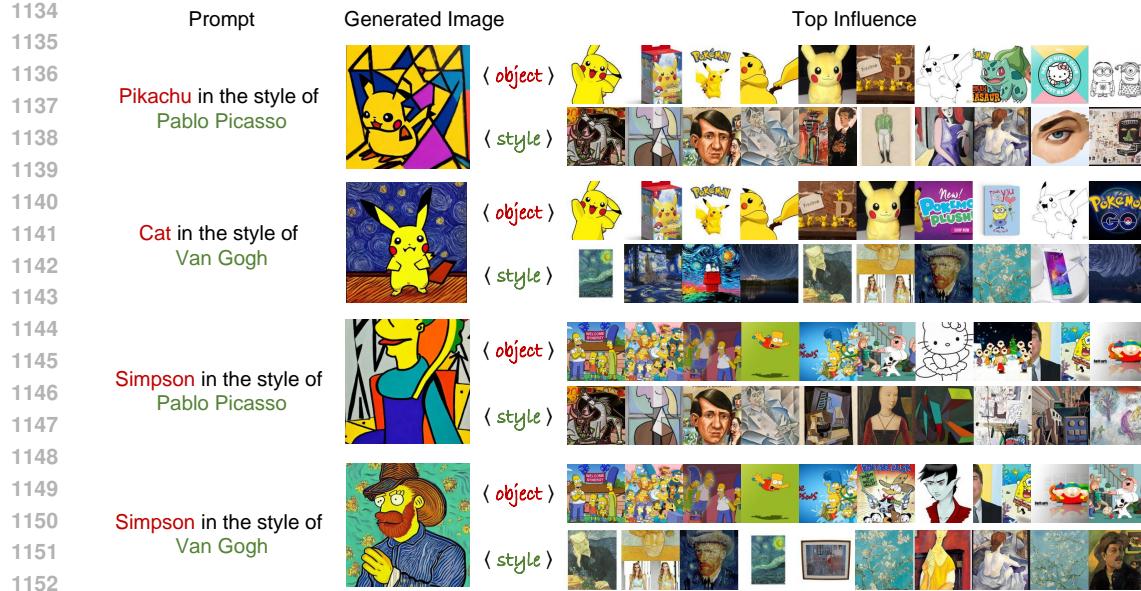


Figure 9: Qualitative results for compositional concept attribution using Concept-TRAK.

D.2.3 COMPLEX CONCEPTS (QUALITATIVE)

Beyond quantitative evaluation, we showcase Concept-TRAK’s capability on complex, multi-concept prompts commonly used in text-to-image model benchmarks. We select three challenging prompts: “An astronaut riding a horse on Mars”, “A teddy bear on a skateboard in Times Square”, and “Avocado chair”.

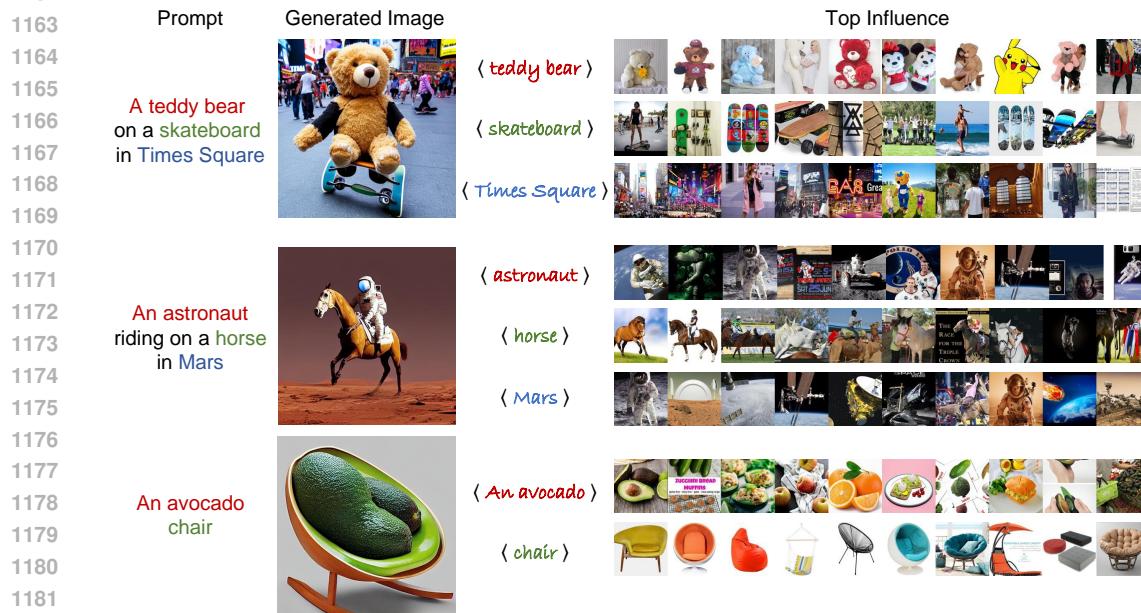


Figure 10: Qualitative results for complex multi-concept prompts using Concept-TRAK.

Figure 10 shows qualitative results for these prompts. For “astronaut riding a horse on Mars,” Concept-TRAK successfully retrieves astronaut images, horse images, and Mars landscape images separately, demonstrating its ability to decompose spatially composed scenes. For “avocado chair,” the method retrieves not just any chair images, but specifically round-shaped chairs that visually

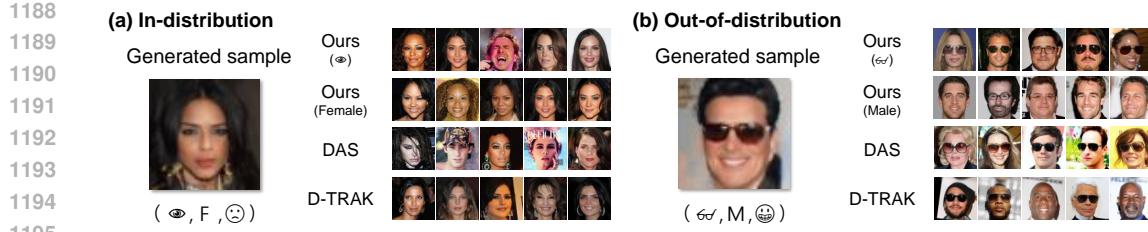


Figure 11: The target concept for each method is indicated in parentheses (Eyeglasses↔Bare eyes/Female↔Male). A data attribution method succeeds when the top influential training samples contain the same concept as the generated sample. (a) In-distribution case: Both baseline methods and our approach successfully retrieve relevant training samples. (b) Out-of-distribution: Our method accurately retrieves training samples for each individual concept (eyeglasses and male), while baselines can only retrieve samples related to one concept due to image-level attribution limitations.

match the avocado-like form in the generated image. This demonstrates our local concept attribution capturing fine-grained visual features. For novel concept combinations like “avocado chair,”

These qualitative results demonstrate Concept-TRAK’s practical utility for understanding how diffusion models compose multiple concepts from training data, providing insights valuable for copyright analysis, model debugging, and interpretability research.

D.3 CONTROLLED EVALUATION: CELEBA-HQ (QUALITATIVE)

In Figure 11, we present qualitative results for concept-level attribution on the CelebA-HQ dataset. This replicates the trends observed in the synthetic dataset: in ID scenarios, images with the same concept as the generated sample can be found through visual similarity alone, but OOD scenarios require isolating individual concepts from compositionally novel outputs, where visual similarity alone fails.

D.4 APPLICATIONS OF CONCEPT-LEVEL ATTRIBUTION

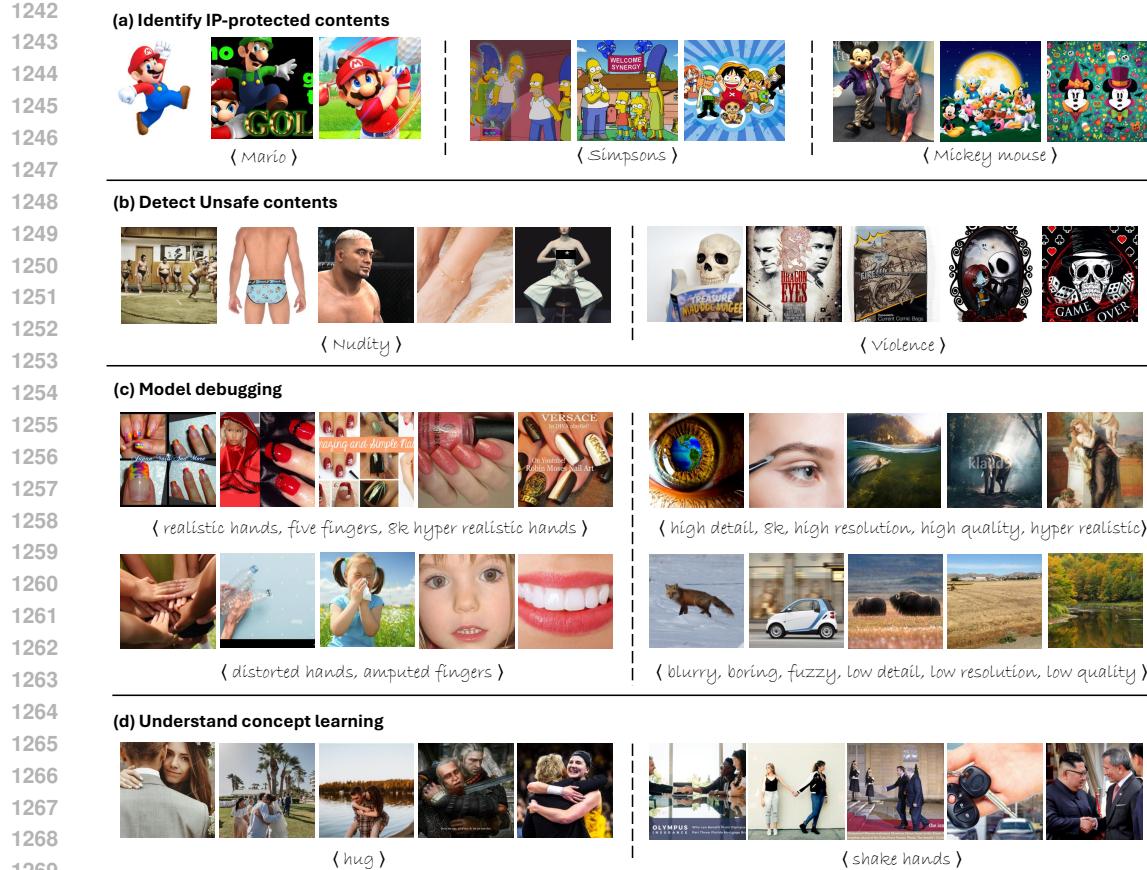
Our concept-level attribution method provides valuable insights across multiple domains, as shown in Figure 12. For **copyright protection**, we trace training samples that influenced IP-protected concepts like Mario and Mickey Mouse, addressing provenance concerns. In the realm of **safety**, our method identifies training samples contributing to sensitive concepts, enabling targeted data curation for responsible AI development. For **model debugging**, Concept-TRAK pinpoints sources of both desirable features and problematic outputs, enhancing our understanding of prompt engineering. Finally, for **concept learning**, our approach reveals how models acquire complex relational concepts like “hug” and “shake hands.”. These applications demonstrate how concept-level attribution provides practical tools for addressing key challenges in generative AI development and governance. Note that these experiments use global concept attribution.

E IMPLEMENTATION DETAILS

E.1 COMPUTATIONAL RESOURCES

All experiments were conducted on NVIDIA H100 GPUs with 80GB memory. To reduce computational costs, all experiments were performed using fp16 precision.

Influence function-based attribution methods consist of two computational stages: (1) a one-time preprocessing cost of computing training gradients for all training samples, and (2) a lightweight per-query step that computes utility gradients for each concept or query. For SD v1.4 (LAION-100K), our concrete measurements are as follows:



1270 Figure 12: Applications of concept-level attribution across diverse tasks. (a) Identifying training
 1271 sources of IP-protected characters. (b) Detecting origins of sensitive content for safety governance.
 1272 (c) Tracing sources of desirable and problematic features for model debugging. (d) Revealing how
 1273 models acquire relational concept understanding.

1274
 1275
 1276 **Training gradient computation** The TRAK baseline requires approximately 16 GPU hours, while
 1277 Concept-TRAK requires 32 GPU hours, due to additional operations including DDIM inversion, and
 1278 prompt-level guidance.

1280 **Per-concept attribution** Once gradients are cached, the TRAK baseline requires 1 minute per
 1281 query, while Concept-TRAK requires 3 minutes per query.

1283 E.2 SYNTHETIC DATASET

1285 **Data Generation** We randomly sample shape and color attributes and place them at random positions
 1286 within the image canvas. Image resolution is 64×64 . We generate a total of 10,000 synthetic images
 1287 with this procedure.

1288 **Model Training** We observe that dropping class conditions for classifier-free guidance severely
 1289 harms compositional generalization ability, so we avoid this practice. The model is trained using the
 1290 Muon optimizer. While Adam optimizer produces qualitatively similar results, we choose Muon for
 1291 its stability and significantly faster convergence. We train separate ResNet-based classifiers for each
 1292 concept and continue training until out-of-distribution (OOD) sample generation accuracy reaches
 1293 99%. Training hyperparameters follow [Jordan et al. \(2024\)](#): Muon learning rate of 1e-3 for 1000
 1294 epochs, with identical momentum and other hyperparameters. For non-matrix parameters, we use
 1295 Adam optimizer with learning rate 1e-4. We used LightningDiT, state-of-the-art a modernized DiT
 1296 architecture ([Yao et al., 2024](#)) for diffusion model.

1296 **Test Sample Generation** We generate images starting from random noise. Images are regenerated
 1297 until a separate classifier confirms they match the conditioned concept, with a maximum of 3
 1298 regeneration attempts per sample.

1299 **Gradient Computation** *Baseline methods*: For each training sample, we sample 10 different
 1300 x_t and compute gradients using each method’s respective loss function. *Ours*: For the training
 1301 loss computation, we apply DDIM inversion with guidance scale 2, which we find beneficial for
 1302 performance. Since we do not train null tokens, we apply CFG by sampling random conditions at each
 1303 step following [Sadat et al. \(2024\)](#). We hypothesize that applying guidance during DDIM inversion
 1304 removes concept c from x_0 and learns tangent vectors that restore this concept, thus positively
 1305 affecting concept attribution. More detailed analysis and improvements remain interesting future
 1306 work. For utility loss computation, we do not use CFG.

1307 E.3 CELEBA-HQ DATASET

1308 **Data Preparation** We use 30,000 images from CelebA-HQ dataset, excluding all samples con-
 1309 taining the combination {eyeglasses + male + smiling}. We resize all images to 64×64 , to reduce
 1310 computation.

1311 **Model Training** We follow the identical training recipe as the synthetic dataset. We train separate
 1312 ResNet-based classifiers for each concept and continue training until OOD sample generation accuracy
 1313 reaches 95%.

1314 **Test Sample Generation** We generate images starting from random noise. Images are regenerated
 1315 until a separate classifier confirms they match the conditioned concept, with a maximum of 3
 1316 regeneration attempts per sample.

1317 **Gradient Computation** We follow the identical gradient computation recipe as described for the
 1318 synthetic dataset.

1319 E.4 ABC BENCHMARK

1320 This subsection presents the detailed experimental setup for our evaluation of the AbC benchmark.

1321 **Benchmark Construction** To address more realistic data attribution scenarios, we modify the
 1322 original AbC benchmark setup. Rather than fine-tuning model parameters on customization data, we
 1323 freeze the base model parameters and train only special tokens through textual inversion ([Gal et al.,](#)
 1324 [2022](#)). Following [Wang et al. \(2023b\)](#), we create 20 special tokens corresponding to 20 customization
 1325 concepts. For each special token, we generate 20 images, resulting in 400 total generated images for
 1326 data attribution evaluation.

1327 We perform textual inversion using the default hyperparameters provided by the diffusers library:
 1328 AdamW optimizer with learning rate 5.0×10^{-4} , batch size 4, and training epochs 3000.

1329 **Baseline Methods** Both TRAK, D-TRAK, and DAS need to specify a regularization hyperparam-
 1330 eter λ . To be more specific, in TRAK ([Park et al., 2023a](#)), we approximate the inverted projected
 1331 Hessian as $\mathbf{H}_P^{-1} \approx (\mathbf{F}_P + \lambda I)^{-1}$, where $\mathbf{F}_P = \frac{1}{N} \sum_k G^T G$ and $G_{ij} = \nabla_{\theta_j} L(x_i; \theta)$. The regular-
 1332 ization λ is applied to make sure to $\mathbf{H}_P \approx \mathbf{F}_P + \lambda I$ is invertible in practice. On the other hand,
 1333 this regularization makes TRAK-based data attribution effectively ignore components with small
 1334 eigenvalues, significantly impacting attribution performance ([Choe et al., 2024](#)).

1335 Previous work recommends $\lambda^* = 0.1 \times \text{mean}(\text{eigenvalues}(\mathbf{F}_P))$ ([Grosse et al., 2023](#)). For a fair
 1336 comparison, we perform a hyperparameter sweep for TRAK, D-TRAK, DAS and ours across
 1337 $\lambda \in [\lambda^* \times 10^{-4}, \lambda^* \times 10^4]$ and report the best performance achieved.

1338 **Concept-TRAK Configuration** Our method focuses on measuring contributions to specific con-
 1339 cepts c . We use the synthetic image generation prompt as c^+ (e.g., “a tattoo of $\langle V \rangle$ snake”) and
 1340 remove only the special token to create c^- (e.g., “a tattoo of snake”). We used c^+ as the base prompt
 1341 c . We set the regularization parameter to the recommended value $\lambda^* = 0.1 \times \text{mean}(\text{eigenvalues}(\mathbf{F}_P))$
 1342 ([Grosse et al., 2023](#)) and use 1024 x_t from random trajectories sampled from DDIM sampler for
 1343 gradient computation.

1350 E.5 QUALITATIVE RESULTS
13511352 For the qualitative case studies presented in Appendix D.4, we maintain consistent experimental
1353 settings with the AbC benchmark evaluation. The regularization parameter is set to $\lambda = 0.1 \times$
1354 $\text{mean}(\text{eigenvalues}(\mathbf{F}_P))$ across all methods.1355 Below are the prompts used for each concept-level attribution task:
1356

1357 • IP-protected content:

1358 – Mario:

1359 $c = \text{"character, Mario"}$ 1360 $c_- = \text{"character"}$

1361 – Mickey Mouse:

1362 $c = \text{"character, Mickey Mouse"}$ 1363 $c_- = \text{"character"}$

1364 – Simpsons:

1365 $c = \text{"character, Simpsons"}$ 1366 $c_- = \text{"character"}$

1367 • Unsafe content:

1368 – Nudity:

1369 $c = \text{"person, nude, naked"}$ 1370 $c_- = \text{"person"}$

1371 – Violence:

1372 $c = \text{"zombie, bloody, violence, gore, horror, grotesque, skull, fear, death, creature"}$ 1373 $c_- = \text{"}$

1374 • Model debugging:

1375 – Distorted hands:

1376 $c = \text{"hands, distorted hands, amputated fingers"}$ 1377 $c_- = \text{"realistic hands, five fingers, 8k hyper realistic hands"}$

1378 – High quality images:

1379 $c = \text{"high detail, 8k, intricate, detailed, high resolution, high res, high quality, hyper realistic"}$ 1380 $c_- = \text{"blurry, boring, fuzzy, low detail, low resolution, low res, low quality"}$

1381 • Concept learning:

1382 – Hug:

1383 $c = \text{"people hug each other"}$ 1384 $c_- = \text{"people"}$

1385 – Shake hands:

1386 $c = \text{"people shake their hands"}$ 1387 $c_- = \text{"people"}$ 1388 **Note on Model debugging** For the model debugging study, we perform bidirectional attribution by
1389 swapping c and c_- to identify both positive and negative influences. This allows us to trace training
1390 samples that contribute to both problematic and desirable generation.
1391

1392

1393 F ALGORITHM
13941395 In this section, we provide detailed algorithms for computing training gradients using the train loss
1396 Eq. (3) (Algorithm 1) and utility gradients using utility loss Eq. (4) (Algorithm 2) used in *Concept-*
1397 *TRAK*. The key computational steps highlighted in red show the guidance terms that distinguish our
1398 approach from standard methods.

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422

Algorithm 1 Train loss $\mathcal{L}_{\text{train}}$

Require: $x_0^i, N, \{\bar{\alpha}_t\}_{t=0}^T$
 1: **for** $n = 1$ **to** N **do**
 2: $x_t^i \leftarrow \text{DDIMinv}(x_0^i, 0 \rightarrow \frac{nT}{N}), t \leftarrow \frac{nT}{N}$
 3: $\hat{x}_0^i \leftarrow \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t^i - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t^i))$
 4: $\delta_{\text{DPS}} \leftarrow -\nabla_{x_t} \|\hat{x}_0^i - x_0^i\|_2^2$
 5: $\tilde{\epsilon}_\theta(x_t^i) \leftarrow \text{sg}[\epsilon_\theta(x_t^i) - \delta_{\text{DPS}}]$
 6: $\mathcal{L}_{\text{DPS}} \leftarrow \|\tilde{\epsilon}_\theta(x_t^i) - \epsilon_\theta(x_t^i)\|_2^2$
 7: $g_n \leftarrow \nabla_\theta \mathcal{L}_{\text{DPS}}$
 8: **end for**
 9: $g \leftarrow \frac{1}{N} \sum_{n=1}^N g_n / \|g_n\|_2$
 10: **return** g

1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

Algorithm 2 Utility loss $\mathcal{L}_{\text{concept}}$

Require: $N, \{\bar{\alpha}_t\}_{t=0}^T, \{\eta_t\}_{t=0}^T$
 1: **for** $n = 1$ **to** N **do**
 2: **if** local attribution **then**
 3: $x_T \leftarrow \text{Noise used to generate } x_0^{\text{test}}$
 4: **else**
 5: $x_T \sim \mathcal{N}(0, I)$
 6: **end if**
 7: $t \sim \text{Uniform}(0, T)$
 8: $x_t \leftarrow \text{DDIM}(x_T \rightarrow t)$
 9: $\hat{x}_0 \leftarrow \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t))$
 10: $\delta_{\text{Reward-DPS}} \leftarrow \nabla_{x_t} R(x_t)$
 11: $\tilde{\epsilon}_\theta(x_t) \leftarrow \text{sg}[\epsilon_\theta(x_t) - \delta_{\text{Reward-DPS}}]$
 12: $\mathcal{L}_{\text{Reward-DPS}} \leftarrow \|\tilde{\epsilon}_\theta(x_t) - \epsilon_\theta(x_t)\|_2^2$
 13: $g_n \leftarrow \nabla_\theta \mathcal{L}_{\text{Reward-DPS}}$
 14: **end for**
 15: $g \leftarrow \frac{1}{N} \sum_{n=1}^N g_n / \|g_n\|_2$
 16: **return** g
