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Abstract

It has been observed that machine learning models trained using stochastic gra-
dient descent (SGD) exhibit poor generalization to certain groups within and
outside the population from which training instances are sampled. This has serious
ramifications for the fairness, privacy, robustness, and out-of-distribution (OOD)
generalization of machine learning. Hence, we theoretically characterize the in-
herent generalization of SGD-learned overparameterized linear regression to intra-
and extra-population groups. We do this by proving an excess risk bound for an
arbitrary group in terms of the full eigenspectra of the data covariance matrices of
the group and population. We additionally provide a novel interpretation of the
bound in terms of how the group and population data distributions differ and the
group effective dimension of SGD, as well as connect these factors to real-world
challenges in practicing trustworthy machine learning. We further empirically
study our bound on simulated data.

1 Introduction

Much recent work has sought to better understand the inductive biases of stochastic gradient descent
(SGD), such as benign overfitting and implicit regularization in overparameterized settings [1, 2, 3].
However, this line of literature has overwhelmingly focused on bounding the excess risk of an
SGD-learned model over the entire population P from which training instances are sampled, and
has not investigated how SGD (e.g., its assumption that training data are IID) yields poor model
generalization to intra-population groups Gintra (i.e., subsets of the population) and extra-population
groups Gextra (i.e., instances that fall outside the population). We illustrate these concepts in Figure 1.

Establishing the theory behind this phenomenon is critical, as it provides provable guarantees about
the trustworthiness (e.g., fairness, privacy, robustness, and out-of-distribution generalization) of
SGD-learned models. As an example, let’s consider an automated candidate screening system that a
company trains on the qualifications data (e.g., number of years previously worked, relevant skills) of
a sample from the population P of past job applicants [4]. In the context of fairness, many works
have observed that for models trained using SGD, group-imbalanced data distributions translate
to generalization disparities [5, 6, 7, 8]. Hence, the candidate screening system may generalize
poorly for minoritized groups Gintra (i.e., not satisfy equalized odds [9]), which can yield hiring
discrimination. This phenomenon also has implications for privacy, as adversaries, against the desire
of a job applicant, can infer whether the applicant’s data were used to train the candidate screening
system, based on the system’s loss on the applicant [10]. When considering robustness, we may be
interested in how well the candidate screening system generalizes to a target group Gintra of applicants
when P is noisy or corrupted [11, 12]. Finally, in the context of out-of-distribution generalization,
models deployed in the real world often have to deal with data distributions that differ from the
training distribution [13]; for instance, the candidate screening system, if trained prior to a recession,
may generalize poorly to stellar job applicants Gextra who were laid off during the recession for
reasons beyond their control. Therefore, it is paramount to understand how SGD-learned models
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Figure 1: Euler diagram of a population P , an intra-population group Gintra, and an extra-
population group Gextra, as well as a visual depiction of their respective possible data distributions
DP ,DGintra ,DGextra (which are noticeably distinct).

generalize to extra-population groups [14], especially in terms of how the properties of the data
distributions for these groups differ from those of the training distribution.

Towards bolstering the theoretical foundations of trustworthy machine learning, we characterize
the inherent generalization of constant-stepsize SGD (with iterate averaging) to groups within and
outside the population from which training instances are sampled, for an arguably simple setting:
overparameterized linear regression. We extend the analysis of [1] to prove an excess risk bound for
an arbitrary group which can be decomposed into bias and variance factors that depend on the full
eigenspectra of the data covariance matrices of the group and population. We then re-express the
excess risk bound in terms of: 1) how the group and population data distributions diverge, 2) how
the distributions’ feature variances differ, and 3) the group effective dimension of SGD. We connect
these three components to real-world challenges in practicing trustworthy machine learning, such as
limited features and sample size disparities for minoritized groups. Finally, we empirically study our
bound on simulated data. As a whole, we set the stage for future research to extend our results to
deep neural networks and models trained with other variants of gradient descent (e.g., minibatch GD,
SGD with learning rate scheduling).

2 Related work

Imbalanced learning The tendency of machine learning models to overpredict the majority class
in the presence of class-imbalanced training samples [6, 15, 7, 16, 8, 17] and underperform for
minoritized groups [18, 19] has been extensively empirically and theoretically studied. Some papers
have theoretically investigated worst-case group generalization in the overparameterized regime
[20, 21]. However, these works have not examined how SGD in particular (e.g., its assumption that
training data are IID) causes poor generalization for a minoritized group, even in the arguably simple
case of overparameterized linear regression. We do so in terms of the data covariance matrices of the
group and population, rather than representation dimension or information, which affords greater
interpretability.

Inductive biases of SGD Theoretically analyzing the inductive biases of stochastic gradient descent
(e.g., implicit regularization, benign overfitting), especially in the overparameterized regime, is a
nascent area of research [2, 1, 3, 22, 23, 24] and strengthens our understanding of how deep learning
works. In this paper, we make novel contributions to learning theory by analyzing constant-stepsize
SGD with iterate averaging when training instances are sampled from a different distribution than the
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evaluation distribution. We do so by extending the analysis of [1], which only analyzes the excess
risk of SGD-learned linear regression over the entire population from which training instances are
sampled, and not over a particular group.

Fair machine learning Numerous works in fair machine learning have explored the implications
of generalization disparities among groups (known as equalized odds [9]) for model-induced harms
faced by minoritized groups [25, 5]. For example, in the case of automated loan approval, if white men
enjoy better model generalization, their loan applications will be less likely to be incorrectly rejected
compared to women and people of color. Prior research has also theoretically and empirically studied
worst-case group generalization in the context of fairness without demographics and distributionally
robust optimization [26, 27, 28]. In this work, motivated by the equalized odds framing of fairness,
we prove a group excess risk bound for overparameterized linear regression and contextualize the
bound in terms of real-world challenges in practicing fair machine learning.

3 Problem setup

We consider the linear regression problem minw LD (w), where LD (w) =
1
2E(x,y)∼D

[
(y − ⟨w, x⟩)2

]
. In this equation, x ∈ H is the feature vector (where dim(H)

can be but need not be ∞ to model the overparameterized regime, wherein d >> N ),
y ∈ R is the response, w ∈ H is the weight vector to be optimized, and D is the arbitrary
population distribution over x and y. Furthermore, suppose an arbitrary group m (within
or outside the population) has the arbitrary distribution Dm over x and y. Now, assume
the unique optimal parameters w∗

m for group m satisfy the first-order optimality condition
∇LDm

(w∗
m) = E(x,y)∼Dm

[(y − ⟨w∗
m, x⟩)x] = E(x,y)∼Dm

[ξx] = 0.

In this paper, we consider constant stepsize SGD with iterate averaging; at each iteration t, a training
instance (xt, yt) ∼ D is independently observed and the weight is updated as follows:

wt := wt−1 − γ (⟨wt−1, xt⟩ − yt)xt, t = 1, . . . , N

where γ > 0 is a constant stepsize, N is the number of samples observed, and the weights are initial-
ized as w0 ∈ H. Following [1], the final output is the average of the iterates w̄N := 1

N

∑N−1
t=0 wt.

4 Main result

We now introduce relevant notation and our assumptions (which are similar to those in [1]), as well
as state our main result.

Assumption 1 (Regularity conditions) For each group m, assume Hm := E(x,y)∼Dm

[
xxT

]
(i.e.,

the data covariance matrix1 of Dm) and E(x,y)∼Dm

[
y2
]

exist and are finite. Furthermore, assume
that tr (Hm) is finite (i.e., Hm is trace-class) and Hm is symmetric positive definite (PSD). Let
{λi(Hm)}∞i=1 be the eigenvalues of Hm sorted in non-increasing order.

Now, denote the population data covariance matrix H := E(x,y)∼D
[
xxT

]
, and assume that tr (H)

is finite and H is PSD. Let {λi(H)}∞i=1 be the eigenvalues of H sorted in non-increasing order.
Furthermore, suppose the eigendecomposition of H =

∑
i λiviv

T
i ; then, Hk:∞ :=

∑
i>k λiviv

T
i .

Similarly, the head of the identity matrix I0:k :=
∑k

i=1 viv
T
i . Additionally, let

{
λ(i)(H)

}∞
i=1

be the eigenvalues of H such that

{(
1−(1−γλ(i)(H))

N
)2

λ(i)(H)

}∞

i=1

is sorted in non-increasing order.

Similarly, let
{
λ[i](H)

}∞
i=1

be the eigenvalues of H such that

{(
1−(1−γλ[i](H))

N
)2

λ2
[i]

(H)

}∞

i=1

is sorted

in non-increasing order.

1We refer to Hm as the data covariance matrix (following [1]), but it is in fact the raw second moment. We
do not assume E(x,y)∼Dm [x] = 0.
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We also define the following linear operators (which we assume to exist and be finite): I = I ⊗ I ,
M = E(x,y)∼D [x⊗ x⊗ x⊗ x] (where ⊗ is the tensor product), T = H ⊗ I + I ⊗H − γM. All
the results about these operators from Lemma 4.1 in [1] hold.

Assumption 2 (Fourth moment conditions) Assume that there exists a positive constant α > 0,
such that for any PSD matrix A, it holds that E(x,y)∼D

[
xxTAxxT

]
⪯ αtr (HA)H . This assumption

is satisfied for Gaussian distributions by α = 3, and it is further implied if the distribution over
H− 1

2x has sub-Gaussian tails (see Lemma A.1 in [1]).

Assumption 3 (Noise conditions) Suppose that Σ := E(x,y)∼D

[
(y − ⟨w∗

m, x⟩)2 xxT
]

(i.e., the

covariance matrix of the gradient noise at w∗
m

2) and σ2 :=
∥∥∥H− 1

2ΣH− 1
2

∥∥∥
2

exist and are finite. In

effect, Σ and σ2 capture how poorly w∗
m explains samples from the population distribution D. If w∗

m
is optimal for D, then σ2 reduces to additive noise.

Assumption 4 (Learning rate condition) Assume γ < 1
αtr(H) .

The excess risk of a trained model for group m quantifies how much worse the model performs for
group m than the optimal model for m (i.e., the model parameterized by w∗

m) does. In Theorem 1,
we present an excess risk bound of overparameterized linear regression with constant-stepsize SGD
(with iterate averaging) for group m in terms of the full eigenspectra of the data covariance matrices
of the group and population.

Under the assumptions above, we are ready for the statement of the main theorem:

Theorem 1 We can bound the excess risk Em for group m as:

Em = ED [LDm
(w̄N )]− LDm

(w∗
m) ≤ 2 · EffectiveBias + 2 · EffectiveVar,

where:

EffectiveBias ≤

{
λ1(Hm)∥w0−w∗

m∥2
2

γ2N2λ2
[1]

(H)
, λ[1](H) ≥ 1

γN

λ1 (Hm) ∥w0 − w∗
m∥22 , otherwise

EffectiveVar ≤
2α
Nγ

(
∥w0 − w∗

m∥2I0:k∗ +Nγ ∥w0 − w∗
m∥2Hk∗:∞

)
+ σ2

1− γαtr (H)

·

 1

N

∑
i∈δ

λi (Hm)

λ(i) (H)︸ ︷︷ ︸
head

+Nγ2
∑
i/∈δ

λi (Hm)λ(i) (H)︸ ︷︷ ︸
tail

 ,

where k∗ := max
{
k : λk(H) ≥ 1

γN

}
and δ :=

{
k : λ(k)(H) ≥ 1

γN

}
. It is easy to show that δ is

finite and ∀i, |(i)− i| ≤ k∗. Furthermore, as the bound suggests, to obtain a vanishing bound, we
need:

1. A sufficiently large sample from the population: λ[1](H) ≥ 1
γN .

2. The head to converge in N :
∑

i∈δ
λi(Hm)
λ(i)(H) = o(N).

3. The tail to converge in N :
∑

i/∈δ λi (Hm)λ(i) (H) = o(1/N).

We prove Theorem 1 in Section A. In the following section, we contextualize the group excess risk
bound through the lens of real-world challenges in practicing trustworthy machine learning.

2Recall that w∗
m are the optimal parameters for group m.
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4.1 Interpreting the group excess risk bound

In interpreting the bound for Em, we consider the case where the eigenspectrum of H rapidly decays
and thus focus on the head of the bound.3 We note that the head does not necessarily have a weaker
convergence criterion, as although the head is a finite sum, k∗ depends on N . Re-expressing the head
of the bound:∑
i∈δ

λi (Hm)

λ(i) (H)
= 2

∑
i∈δ

KL (pi||qi)︸ ︷︷ ︸
distributional difference

+

[∑
i∈δ

log λi (Hm)−
∑
i∈δ

log λ(i) (H)

]
︸ ︷︷ ︸

relative feature variance

+ |δ|︸︷︷︸
group effective dimension

,

where pi = N (0, λi (Hm)) and qi = N
(
0, λ(i) (H)

)
[29]. This result shows that the excess risk for

group m can be minimized (and thus generalization to group m can be improved) by:

1. Making the feature distributional difference between group m and the population smaller. This
result corroborates findings in the fairness literature that randomly oversampling or increasing training
data from minoritized groups (thereby boosting the representation of group m in the population) may
improve group generalization [19].
2. Minimizing the variance of feature values in group m relative to the variance of feature values
in the population. High relative feature variance can occur when group m has sparse or noisy data,
which poses a challenge in the real world because minoritized groups are often sidelined in data
collection [30] and their data may only be partially observed [31]. This finding is also consistent with
the literature on SGD’s implicit bias to rely less on high-variance features [8].

3. Reducing the group effective dimension of SGD. Recall that |δ| =
∣∣∣{k : λ(k)(H) ≥ 1

γN

}∣∣∣; there-
fore, |δ| can be reduced by: 1) reducing the learning rate γ, and 2) reducing the number of training
samples N .

While, theoretically, it seems that increasing the representation of minoritized groups in the training
data and better including them in data collection improves generalization to such groups, it is important
to not engage in predatory inclusion and exploitative data collection practices4. We further emphasize
that simply increasing the sheer number of samples, especially without analyzing the randomness or
validity of sampling strategies, does not imply increasing the representation of minoritized groups in
the training data [32]. Overall, we believe that one of the first steps of socially conscientious data
work is to consider how data collection practices reinforce and contribute to the power relations and
complex social inequality experienced by minoritized groups [33].

5 Empirical results

To investigate our group excess risk bound, we empirically examine how well our bound aligns with
the real group excess risk in a simulated setting, wherein we have control over D, Dm, and w∗

m. In
particular, we assume D := pDm + (1− p)Drest is a mixture distribution for p ∈ [0, 1]. If p << 0.5,
m could be considered a minoritized group, and the excess risk for group m would have implications
for fairness (Section 1). If p >> 0.5, Drest could be viewed as noise, so a model’s excess risk for
group m would offer insight into the robustness of the model (Section 1). p = 0 models a privacy-risk
or OOD setting, as Dm would be an extra-population group (Section 1). In our experiments, we
compare the group excess risk and our bound thereof for various values of p ∈ [0, 1]. Our code may be
found at: https://github.com/ArjunSubramonian/group-excess-risk-bound-sgd.git.

We mostly use the same experimental hyperparameters as [1]: N = 200, d = 2000 >> N (to
simulate overparameterization), α = 3, and γ = 0.99

αtr(H) . We assume Dm and Drest are well-
specified. That is, we generate (xm, ym) ∼ Dm as xm ∼ N (µm,Σm) and ym = ⟨w∗

m, xm⟩ + ϵm
(where ϵm ∼ N (0, 1)). Similarly, we generate (xrest, yrest) ∼ Drest as xrest ∼ N (µrest,Σrest) and
ym = ⟨w∗

rest, xrest⟩ (where w∗
rest are the optimal parameters for Drest). Inspired by [1] (Section

3We leave rigorously analyzing the tail of the bound as future work. If the eigenspectrum of H doesn’t decay
rapidly (i.e., there exist many high-variance features), then the variance error of the group excess risk will be
higher.

4https://slideslive.com/38955136/beyond-the-fairness-rhetoric-in-ml

5

https://github.com/ArjunSubramonian/group-excess-risk-bound-sgd.git
https://slideslive.com/38955136/beyond-the-fairness-rhetoric-in-ml


6), we consider two overparameterized linear regression settings (1 and 2) with different rates of
eigenspectrum decay for H and Hm that satisfy our assumptions from Section 4:

1. µrest[i] := 0, µm[i] := 0,Σrest := diag
(
{(i+ 1)−1 log(i+ 1)−2}di=1

)
,Σm := β1 × Σrest, N :=

β2 × 200

2. µrest[i] := 0, µm[i] := 0,Σrest := diag
(
{i−2}di=1

)
,Σm := β1 × Σrest, N := β2 × 200,

where β1 > 0 affects the distributional difference and relative feature variance and a smaller
β2 > 0 affects δ. Recall that H = pHm + (1 − p)Hrest, with Hm = Σm + µmµT

m and Hrest =
Σrest + µrestµ

T
rest = Σrest. For both settings 1 and 2, w∗

m[i] = i−1 and w∗
rest[i] = 2 × i−1. w0 is set

using the Kaiming Uniform method5. We choose sufficiently different w∗
m, w∗

rest to enlarge the total
variation distance between Dm and Drest, towards stress-testing our group excess risk bound.

To compute our group excess risk bound, we need to upper bound σ2. Σ =

pEDm

[
(y − ⟨w∗

m, x⟩)2 xxT
]

+ (1 − p)EDrest

[
(y − ⟨w∗

m, x⟩)2 xxT
]

= pHm + (1 −

p)EDrest

[
(⟨w∗

m, x⟩)2 xxT
]

= pHm + (1 − p)EDrest

[
xxT

(
w∗

mw∗
m

T
)
xxT

]
. By

Assumption 2, Σ ⪯ pHm + (1 − p)αtr
(
Hrestw

∗
mw∗

m
T
)
Hrest. Hence, σ2 ≤∥∥∥H− 1

2

(
pHm + (1− p)αw∗

m
THrestw

∗
mHrest

)
H− 1

2

∥∥∥
2
.

Our empirical results are displayed in Figure 2; please note that there is a dual y-axis. In all the plots,
the group excess risk decreases (i.e., generalization improves) when p increases, as Dm is (randomly)
sampled at a higher rate during training. This finding corroborates our commentary about fairness,
privacy, robustness, and OOD generalization. Furthermore, the plots demonstrate that our group
excess risk bound closely captures the trend of the true excess risk as p increases from 0 to 1. Now,
we contextualize our experiments in terms of our interpretation of the group excess risk bound from
Section 4.1:

• β1 : Holding β2 constant, reducing β1 from 1 to 0.5 (which increases the distributional difference)
appears to lower (rather than increase) the true excess risk and bound. This is because reducing β1

also reduces the relative feature variance.

• β2 : Holding β1 constant, in setting 2, reducing β2 from 1 to 0.5 (which shrinks the cardinality
of δ) seems to lower the true excess risk and bound. This can be attributed to fewer terms in the
summation and a smaller SGD group effective dimension. However, in setting 1, reducing β2 from
1 to 0.5 does not affect the true excess risk or lower bound, likely since in setting 1, the cardinality
of δ is not reduced as substantially as it is in setting 2.

6 Discussion and conclusion

In this paper, we characterize the inherent generalization of overparameterized linear regression with
constant-stepsize SGD (with iterate averaging) to groups within and outside the population from
which training instances are sampled. We do so by proving the excess risk bound for an arbitrary
group in terms of the full eigenspectra of the data covariance matrices of the group and population.
We additionally present a novel interpretation of the group excess risk bound through the lens of
real-world challenges in practicing trustworthy machine learning. Finally, we empirically study our
bound on simulated data.

This paper offers numerous promising future directions for research. We encourage proving a lower
bound on the group excess risk to determine if our upper bound is indeed tight (up to constant
factors). We also suggest proving group excess risk bounds for tail averaging and last-iterate SGD
with learning rate decay [1, 2], as well as minibatch GD. It would further be interesting to extend this
work to prove group excess risk bounds for logistic regression, 2-layer neural networks, and 1-layer
graph convolutional networks [34].

5https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
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Figure 2: True group excess risk and our bound thereof for p ∈ {0.0, 0.1, 0.2, . . . , 0.9, 1.0} for
settings 1 and 2. Each data point in the plots is averaged over 10 independent runs, and the true group
excess risk data points are approximated over 105 samples from Dm.
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A Proof of the main result

A.1 Bias-variance decomposition

Towards proving our main result, we first decompose the excess risk for group m into bias and
variance errors. We define the centered SGD iterate ηt := wt − w∗

m; similarly, η̄N := 1
N

∑N−1
t=0 ηt.

[1] (Equation 4.2) shows the bias-variance decomposition of the iterate:

ηt = ηbias
t + ηvar

t

ηbias
t =

(
I − γxtx

T
t

)
ηbias
t−1, η

bias
0 = η0

ηvar
t =

(
I − γxtx

T
t

)
ηvar
t−1 + γξtxt, η

var
0 = 0,

where ξt := yt − ⟨w∗
m, xt⟩ is the inherent noise. [1] (Equations 4.4 and 4.5) then proves the recursive

forms:

Bt := E(x,y)∼D
[
ηbias
t ⊗ ηbias

t

]
= (I − γT ) ◦Bt−1, B0 = η0 ⊗ η0

Ct := E(x,y)∼D [ηvar
t ⊗ ηvar

t ] = (I − γT ) ◦ Ct−1 + γ2Σ, C0 = 0,

where O ◦ A denotes an operator O applied to a symmetric matrix A. We also define η̄bias
N :=

1
N

∑N−1
t=0 ηbias

t and η̄var
N := 1

N

∑N−1
t=0 ηvar

t , and see that η̄t = η̄bias
t + η̄var

t .

Without loss of generality, we present a bias-variance decomposition of the excess risk for group m:

Em = ED [LDm
(w̄N )− LDm

(w∗
m)]

= ED

[
1

2
E(x,y)∼Dm

(
y − w̄T

Nx
)2 − 1

2
E(x,y)∼Dm

(
y − w∗

m
Tx
)2]

=
1

2
ED

[
E(x,y)∼Dm

(
(w∗

m − w̄N )
T
x+ ξ

)2
− E(x,y)∼Dm

ξ2
]

=
1

2
ED

[
E(x,y)∼Dm

[
(w̄N − w∗

m)
T
xxT (w̄N − w∗

m)− 2 (w̄N − w∗
m)

T
(ξx)

]]
=

1

2
ED

[
(w̄N − w∗

m)
T E(x,y)∼Dm

[
xxT

]
(w̄N − w∗

m)
]

=
1

2
⟨Hm,ED [η̄N ⊗ η̄N ]⟩

Then, by Lemma B.2 from [1] and Young’s inequality, ED [LDm
(w̄N )− LDm

(w∗
m)] ≤(√

bias +
√

var
)2

≤ 2 · bias + 2 · var, where bias := 1
2

〈
Hm,ED

[
η̄bias
N ⊗ η̄bias

N

]〉
and var :=

1
2 ⟨Hm,ED [η̄var

N ⊗ η̄var
N ]⟩. The bias and var errors provide a decomposition of a bound for Em.

A.2 Bounding the bias error

Now that we have decomposed a bound for Em into bias and variance errors, we will separately
bound these errors in terms of the full eigenspectra of the data covariance matrices of group m and
the population, and then combine these bounds to achieve the desired bound for Em. In Theorem 2,
we focus on the bias error.

Theorem 2 We can bound the bias error as:

bias ≤ αtr (B0,N )

Nγ (1− γαtr (H))

(
1

N

∑
i∈δ

λi (Hm)

λ(i) (H)
+Nγ2

∑
i/∈δ

λi (Hm)λ(i) (H)

)

+

{
λ1(Hm)∥w0−w∗

m∥2
2

γ2N2λ2
[1]

(H)
, λ[1](H) ≥ 1

γN

λ1 (Hm) ∥w0 − w∗
m∥22 , otherwise

,

where tr (B0,N ) ≤ 2
(
∥w0 − w∗

m∥2I0:k∗ +Nγ ∥w0 − w∗
m∥2Hk∗:∞

)
(where k∗ :=

max
{
k : λk(H) ≥ 1

γN

}
) and δ :=

{
k : λ(k)(H) ≥ 1

γN

}
.
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Proof of Theorem 2 [1] (Lemma B.3) shows that:

ED
[
η̄bias
N ⊗ η̄bias

N

]
⪯ 1

N2

N−1∑
t=0

N−1∑
k=t

(I − γH)
k−t ED

[
ηbias
t ⊗ ηbias

t

]
+ ED

[
ηbias
t ⊗ ηbias

t

]
(I − γH)

k−t

Because H and Hm are PSD, and H−1 commutes with (I − γH)
k−t:

bias =
1

2

〈
Hm,ED

[
η̄bias
N ⊗ η̄bias

N

]〉
≤ 1

2N2

N−1∑
t=0

N−1∑
k=t

〈
Hm, (I − γH)

k−t ED
[
ηbias
t ⊗ ηbias

t

]
+ ED

[
ηbias
t ⊗ ηbias

t

]
(I − γH)

k−t
〉

=
1

2N2

N−1∑
t=0

N−1∑
k=t

〈
(I − γH)

k−t
Hm +Hm (I − γH)

k−t
,ED

[
ηbias
t ⊗ ηbias

t

]〉
=

1

2γN2

N−1∑
t=0

〈
HmH−1

(
I − (I − γH)

N−t
)
+
(
I − (I − γH)

N−t
)
H−1Hm, Bt

〉
≤ 1

2γN2

〈
HmH−1

(
I − (I − γH)

N
)
+
(
I − (I − γH)

N
)
H−1Hm,

N−1∑
t=0

Bt

〉

[1] (Lemma B.10) shows that:
N−1∑
t=0

Bt ⪯
N−1∑
k=0

(I − γH)
k

(
γαtr (B0,N )

1− γαtr (H)
·H +B0

)
(I − γH)

k
,

where B0,N = B0 − (I − γH)
N
B0 (I − γH)

N . Furthermore, [1] (Lemma B.11)

shows that tr (B0,N ) ≤ 2
(
∥w0 − w∗

m∥2I0:k∗ +Nγ ∥w0 − w∗
m∥2Hk∗:∞

)
, where k∗ :=

max
{
k : λ(k)(H) ≥ 1

γN

}
. Therefore:

bias ≤ 1

2γN2

N−1∑
k=0

〈
HmH−1

(
I − (I − γH)

N
)
+
(
I − (I − γH)

N
)
H−1Hm,

(I − γH)
k

(
γαtr (B0,N )

1− γαtr (H)
·H +B0

)
(I − γH)

k 〉
≤ 1

2γN2

N−1∑
k=0

〈
HmH−1

(
I − (I − γH)

N
)
(I − γH)

k
,
γαtr (B0,N )

1− γαtr (H)
·H +B0

〉
+
〈
(I − γH)

k
(
I − (I − γH)

N
)
H−1Hm,

γαtr (B0,N )

1− γαtr (H)
·H +B0

〉
=

1

2γN2

N−1∑
k=0

〈
(I − γH)

k − (I − γH)
N+k

,
γαtr (B0,N )

1− γαtr (H)
·HHmH−1 +B0HmH−1

+H−1HmH · γαtr (B0,N )

1− γαtr (H)
+H−1HmB0

〉
,

where we use that (I − γH)
k ⪯ I . We now define the following terms:

I1 =
αtr (B0,N )

2N2 (1− γαtr (H))

N−1∑
k=0

〈
(I − γH)

k − (I − γH)
N+k

, HHmH−1
〉

I2 =
1

2γN2

N−1∑
k=0

〈
(I − γH)

k − (I − γH)
N+k

, B0HmH−1
〉
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We first focus on bounding I1. By von Neumann’s trace inequality, if two matrices A and B are PSD,
then tr (AB) ≤

∑
i λi(A)λi(B), where {λi(A)}∞i=1 and {λi(B)}∞i=1 are the eigenvalues of A and

B in non-increasing order, respectively [35]. Thus, leveraging the joint diagonalizability of H and
I − γH:

I1 =
αtr (B0,N )

2N2 (1− γαtr (H))

N−1∑
k=0

〈
(I − γH)

k
(
I − (I − γH)

N
)
, HHmH−1

〉
=

αtr (B0,N )

2γN2 (1− γαtr (H))

〈(
I − (I − γH)

N
)2

H−1, HHmH−1

〉
=

αtr (B0,N )

2γN2 (1− γαtr (H))

〈(
I − (I − γH)

N
)2

H−1, Hm

〉

≤ αtr (B0,N )

2γN2 (1− γαtr (H))

∑
i

(
1−

(
1− γλ(i) (H)

)N)2
λi (Hm)

λ(i) (H)

≤ αtr (B0,N )

2γN2 (1− γαtr (H))

∑
i

min
{
1, γ2N2λ2

(i) (H)
}
· λi(Hm)

λ(i) (H)

=
αtr (B0,N )

2Nγ (1− γαtr (H))

(
1

N

∑
i∈δ

λi (Hm)

λ(i) (H)
+Nγ2

∑
i/∈δ

λi (Hm)λ(i) (H)

)
,

where δ :=
{
k : λ(k)(H) ≥ 1

γN

}
. Because tr(H) is finite,

∑
i/∈δ λ(i)(H) converges.

Similarly, tr(Hm) is finite, so
∑

i/∈δ λi(Hm) converges. Therefore, by Abel’s Lemma,∑
i/∈δ λi (Hm)λ(i) (H) converges. It is easy to show that

∑
i/∈δ λi (Hm)λ(i) (H) converges simi-

larly to
∑

i/∈δ λi (Hm)λi (H) because ∀i, |(i)− i| ≤ k∗.

Now, we bound I2. Because B0 = (w0 − w∗
m) (w0 − w∗

m)
T , the largest and only non-zero eigenvalue

of B0 is λ1(B0) = ∥w0 − w∗
m∥22. Therefore:

I2 =
1

2γ2N2

〈(
I − (I − γH)

N
)2

H−2, B0Hm

〉
≤ 1

2γ2N2
·
λ1 (Hm) ∥w0 − w∗

m∥22
λ2
[1] (H)

·

{
1, λ[1](H) ≥ 1

γN

γ2N2λ2
[1] (H) , otherwise

=

{
λ1(Hm)∥w0−w∗

m∥2
2

2γ2N2λ2
[1]

(H)
, λ[1](H) ≥ 1

γN

1
2λ1 (Hm) ∥w0 − w∗

m∥22 , otherwise
.

Now that we have bounds for I1 and I2, leveraging the joint diagonalizability of H and I − γH:

bias ≤ αtr (B0,N )

Nγ (1− γαtr (H))

(
1

N

∑
i∈δ

λi (Hm)

λ(i) (H)
+Nγ2

∑
i/∈δ

λi (Hm)λ(i) (H)

)

+

{
λ1(Hm)∥w0−w∗

m∥2
2

γ2N2λ2
[1]

(H)
, λ[1](H) ≥ 1

γN

λ1 (Hm) ∥w0 − w∗
m∥22 , otherwise

.

Thus, we have successfully bounded the bias error in terms of the full eigenspectra of the data
covariance matrices of group m and the population.

A.3 Bounding the variance error

Proceeding in our journey to prove Theorem 1, we will bound the variance error.
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Theorem 3 We can bound the variance error as:

var ≤ σ2

1− γαtr (H)

(
1

N

∑
i∈δ

λi (Hm)

λ(i) (H)
+Nγ2

∑
i/∈δ

λi (Hm)λ(i) (H)

)

Similar to for the bias error:

var ≤ 1

2γN2

N−1∑
t=0

〈
HmH−1

(
I − (I − γH)

N−t
)
+
(
I − (I − γH)

N−t
)
H−1Hm, Ct

〉
[1] (Lemma B.5) shows Ct ⪯ γσ2

1−γαtr(H)

(
I − (I − γH)

t
)

. Therefore, similar to for the bias error:

var ≤ σ2

2N2 (1− γαtr (H))

N−1∑
t=0

〈
HmH−1

(
I − (I − γH)

N−t
)
+
(
I − (I − γH)

N−t
)
H−1Hm,

I − (I − γH)
t 〉

=
σ2

2N2 (1− γαtr (H))

〈
N−1∑
t=0

(
I − (I − γH)

N−t
)(

I − (I − γH)
t
)
, HmH−1 +H−1Hm

〉

≤ σ2

2N (1− γαtr (H))

〈(
I − (I − γH)

N
)2

, HmH−1 +H−1Hm

〉
≤ σ2

1− γαtr (H)

(
1

N

∑
i∈δ

λi (Hm)

λ(i) (H)
+Nγ2

∑
i/∈δ

λi (Hm)λ(i) (H)

)

Having appropriately bounded both the bias and variance errors, we have proved Theorem 1.
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