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Abstract

Evaluating the in-context learning classification performance of language
models poses challenges due to small dataset sizes, extensive prompt-
selection using the validation set, and intentionally difficult tasks that lead
to near-random performance. The standard random baseline—the expected
accuracy of guessing labels uniformly at random—is stable when the evalu-
ation set is used only once or when the dataset is large. We account for the
common practice of validation set reuse and existing small datasets with a
stronger random baseline: the expected maximum accuracy across multiple
random classifiers. When choosing the best prompt demonstrations across
six quantized language models applied to 16 BIG-bench Lite tasks, more
than 20% of the few-shot results that exceed the standard baseline do not
exceed this stronger random baseline. When held-out test sets are available,
this stronger baseline is also a better predictor of held-out performance than
the standard baseline, avoiding unnecessary test set evaluations. This max-
imum random baseline provides an easily calculated drop-in replacement
for the standard baseline.

1 Introduction

One of the most exciting applications of contemporary large language models (LMs) is their
ability to perform complex tasks given only a small number of examples (Brown et al., 2020).
In-context learning (ICL), also called few-shot, performance has therefore become a critical
tool in LM evaluation (Liu et al., 2023), but the nature of few-shot tasks makes them hard to
contextualize. Because they are intended to evaluate specific abilities, datasets can be small
and idiosyncratic. ICL performance is extremely sensitive to small changes in formatting
and demonstrations (Zhao et al., 2021; Sclar et al., 2024). Finally, the fact that few-shot
datasets are intended to evaluate the outer bounds of LM performance means that they are
intentionally designed to be difficult (Suzgun et al., 2023). We study the implications of
these characteristics and argue for using a probabilistic baseline that better distinguishes
from random performance for small datasets and accounts for searches over prompts.

Downstream users want to find and deploy the best prompt (Mizrahi et al., 2024). But
ICL performance of LMs varies greatly across semantically equivalent prompt features like
the choice of demonstrations and their order (Zhao et al., 2021; Lu et al., 2022), instruction
phrasing (Mizrahi et al., 2024), and template formatting (Sclar et al., 2024; Voronov et al.,
2024). Because performance is both variable and unpredictable, standard ICL practice
involves searching over large numbers of potential prompts based on a validation set.
Researchers often report model performance as the maximum score on a validation set or
the corresponding performance of that prompt on an additional truly held-out test set to
avoid overfitting to the validation set (Brown et al., 2020; Perez et al., 2021). In this work we
show that we can better identify prompts that may be overfitting and avoid unneccessary
evaluations on test data.

In searching for the best prompts, the simplest and most common comparison is to a
random baseline. The standard random baseline for classification tasks is the expected
accuracy of guessing labels uniformly at random (Mitchell, 1997, inter alia). While universally
treated as a point estimate, the accuracy of any specific random classifier follows a binomial
distribution. For larger datasets, the variance of this distribution is tightly concentrated
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around the expectation, but variance can be considerably higher for the small datasets
typically used in the ICL setting. We introduce a stronger random baseline that accounts
for both variance and validation set reuse by asking a fairer question: if we are choosing
the best of t different prompts, why not compare that prompt’s accuracy to the best of t
different random classifiers? Figure 1 shows how these two random baselines can lead to
different conclusions on a fixed evaluation set. We also find that the maximum baseline can
provide a more accurate estimate of a prompt’s generalization to a held-out test set than the
standard baseline does. This can reduce premature usage of the test set.
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Figure 1: 200 different prompts for the
emoji movie task yield a spread of accuracies
for OLMo-7B (4-shot, quantized). The best
prompt has much higher accuracy than the
expected performance of a single random clas-
sifier. But its performance is worse than the
expected maximum accuracy among 200 dif-
ferent random classifiers.

Treating random performance as a distri-
bution has two key advantages. First, the
stronger random baseline can be calculated
in closed form as the expectation of the max-
imum order statistic of the binomial distri-
bution. When choosing the best prompt
from even as few as 10 options, this base-
line increases the threshold for beating “ran-
dom” performance by more than 7 points
of accuracy for a binary classification task
with 100 examples. Second, by using a fam-
ily of parametric distributions to represent
random performance rather than a point
estimate, we can also calculate a compa-
rable performance metric across multiple
datasets that takes into account factors like
the number of classification options, the
number of evaluated prompts, and the num-
ber of evaluated examples. We can then use
a tail probability to quantify what fraction
of random classifiers outperform a prompt.
This contextualization also applies in the
setting where evaluation data is used only
once.

Our contributions are the following. First, we propose a maximum random baseline that
explicitly depends on validation set size and the number of evaluated prompts. We give a
simple method for computing this value by taking the expectation of the maximum order
statistic of the binomial distribution and show how this quantity varies with task parameters
and evaluation setup. Second, we examine quantized LM few-shot performance across the
BIG-bench Lite benchmark suite when choosing the best prompt demonstrations, finding in
our setting that more than 20% of results that exceed the standard baseline do not exceed the
maximum random baseline. Third, we show that when a truly held-out test set is available,
comparing maximum validation performance to the maximum random baseline, rather
than the standard random baseline, is better able to predict whether corresponding test
performance will also be above random. This can help prevent prematurely evaluating
with a held-out set, reducing the chance of overfitting to that held-out test set. The stronger
baseline can also allow researchers to use smaller validation sets more confidently. Finally,
the maximum random baseline can be easily calculated as a drop-in replacement for the
standard random baseline.1 High-quality evaluation datasets remain small, and prompt
variability leads to dataset reuse. Our baselines should account for this.

2 Related work

Robust model comparisons. Dodge et al. (2019) introduce expected maximum validation
accuracy to compare model accuracy for a given budget of hyperparameter evaluations. This
value can be estimated with low mean-squared error (Dodge et al., 2021). Our work casts the
number of validation set reuses as the resource of interest and asks a more basic question:

1Code is available at: https://github.com/gyauney/max-random-baseline
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is a given model even outperforming random guessing for a set budget of validation set
reuses? Other work also seeks to compare distributions of model performance (Dror et al.,
2019), but it does not do so against a random baseline. Card et al. (2020) find that many
common NLP evaluation datasets are too small to reliably compare models unless there
is a large improvement in performance. Bragg et al. (2021) advocate for larger few-shot
evaluations to reduce confidence intervals around reported performance. Our work finds
one more reason to prefer larger evaluation sets.

Overfitting to the evaluation set. Data reuse has been approached from many angles.
Some restrict access to the test set, either through submission systems (Wang et al., 2019a;b;
Alex et al., 2021; Bragg et al., 2021) or differential privacy (Dwork et al., 2015). Perez
et al. (2021) advocate for a true few-shot setting: model selection using cross-validation and
minimum description length on the training set, with only one held-out set evaluation.
While they compare selected prompts to randomly selected prompts, we instead compare
to classifiers that guess at random. Some works create held-out sets for ICL (Wei et al., 2022;
Nori et al., 2023), though this is not always standard practice. Rather than stipulate how to
access the validation set, our approach contextualizes the current practice of reusing the
validation set. Sometimes the prompt template with the best validation performance is
chosen for test set evaluation (Wei et al., 2022; Mizrahi et al., 2024). The stronger random
baseline does not apply to the test accuracy, but it does apply to the best validation accuracy.

Permutation tests for classification. Permutation tests have a long history for evaluating
the strength of association between features and labels by retraining classifiers on datasets
with shuffled labels (Golland et al., 2000; Ojala & Garriga, 2010), especially in low-data
medical tasks (Golland & Fischl, 2003). In contrast, our approach seeks to determine
improvement over a random classifier and—since the random performance distribution
is known—we do not need to retrain any classifiers. Hypothesis tests have also been
increasingly used in NLP to test whether one classifier reliably has better performance than
another (Dror et al., 2018; Zmigrod et al., 2022; Peyrard et al., 2021).

3 Random baselines

Consider a dataset with n validation examples and m possible labels.2 Then p = 1/m

is the probability of guessing one example’s label correctly uniformly at random.3 We
primarily consider how to contextualize accuracy in a setting with just one set of n examples
(generalization is discussed in Section 5.2). An experiment evaluates t different classifiers
(or prompts, or hyperparameter settings) and reports maximum accuracy.

Standard random baseline. Let h be a classifier that guesses labels uniformly at random
for each example. Let B(n, p) be the binomial distribution with n independent trials and
probability p of success on each trial. Let X be the number of correct guesses that h makes
when evaluated on all examples. X ∼ B(n, p) models the number of correct guesses, and:

acc(h) =
1
n

X

The expected accuracy of a random classifier is straightforward:

E
h
[acc(h)] = E

X∼B(n,p)

[
1
n

X
]
=

1
n
(np) = p (1)

Expected maximum random baseline. In this setup, we want a baseline comparable to
the classifier that achieves the maximum accuracy on the validation set out of t different
classifiers. The idea is to take the expected maximum performance among t random
classifiers. Let h1, . . . , ht be classifiers that guess answers independently and uniformly at

2Appendix A extends the baseline to datasets where m varies per example.
3Appendix A also shows this does not depend on the dataset having balanced labels.
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random, with corresponding independent numbers of correct guesses X1, . . . , Xt. Consider
the one with the highest performance:

hmax = argmax
i∈[t]

{acc(hi)}

The number of correct guesses Xmax by hmax is the tth order statistic (or sample maximum)
of the Xi, denoted X(t):

Xmax = max
i∈[t]

{Xi} = X(t) (2)

Recall the probability mass function f (k) = P(Xi = k) and distribution function F(k) =
P(Xi ≤ k) for all binomial random variables Xi:

f (k) =
(

n
k

)
pk(1 − p)n−k F(k) = I1−p(n − k, 1 + k) (3)

where I is the regularized incomplete beta function. Following the general method for order
statistics of discrete random variables (Casella & Berger, 2002), the probability mass function
for the tth order statistic, i.e. the sample maximum, is:

P
(

X(t) = k
)
= P

(
X(t) ≤ k

)
− P

(
X(t) < k

)
(4)

= P(X1 ≤ k ∧ . . . ∧ Xt ≤ k)− P(X1 < k ∧ . . . ∧ Xt < k) (5)

= P(X1 ≤ k)t − P(X1 < k)t (6)

= F(k)t −
(

F(k)− f (k)
)t (7)

We now have a closed form for the expected maximum accuracy out of t random classifiers:

E [acc (hmax)] = E
X1,...,Xt

[
1
n

Xmax

]
=

1
n

E
X1,...,Xt

[
X(t)

]
=

1
n

n

∑
k=0

kP
(

X(t) = k
)

(8)

=
1
n

n

∑
k=0

k

(
I1−p(n − k, 1 + k)t −

(
I1−p(n − k, 1 + k)−

(
n
k

)
pk(1 − p)n−k

)t
)

(9)

Tail probabilities against random baselines. For either kind of random baseline, it can be
useful to compare to the distribution of random performances rather than just the expected
accuracy. To get the probability that random classifiers outperform a given classifier h0, the
tail probabilities for the accuracy of h0 against both baselines are (details in Appendix A):

pstandard = P(acc (h) ≥ acc(h0)) pmax = P(acc (hmax) ≥ acc(h0)) (10)

= 1 − F
(
n acc(h0)− 1

)
= 1 − F

(
n acc(h0)− 1

)t (11)

4 Properties of the expected maximum random baseline

This section builds intuitions for the values of maximum random baselines and how they
are affected by experimental design parameters. The standard random baseline depends
only on the number of possible labels. In contrast, the expected maximum random baseline
depends on the number of validation examples n, the probability of guessing a label correctly
p, and the number of validation set evaluations t. Figure 2 shows the expected maximum
random accuracy on a binary classification task as a function of validation set evaluations t
and dataset size n.

Expected maximum random accuracy is higher for smaller n and larger t. For a given
dataset size n, expected maximum random accuracy increases as t increases. For a given
number of validation set evaluations t, smaller datasets have greater expected maximum
random accuracies. When there are fewer than several hundred examples in the validation
set, even a few evaluations of the validation set yields a maximum random baseline at
least 10% higher than the standard random baseline. For example, a dataset of n = 100
examples has an expected max accuracy of 0.575 after only t = 10 evaluations. But it
requires more than t = 10,000 evaluations to reach that expected max accuracy for a dataset
with n = 1,000.
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Figure 2: The expected maximum accuracy
achieved among t random classifiers on a bi-
nary classification dataset depends on t and
the size of the dataset.

Parameter extremes capture standard set-
tings. When t = 1 (only evaluating one
random classifier), the expected maximum
is simply the expectation of the binomial
distribution. The maximum random base-
line therefore subsumes the standard base-
line as a special case. When n is large,
the expected maximum random accuracy
is nearly the same as the standard random
baseline because the binomial distribution
is very concentrated around its expectation
with large n. The implication of this result
is that if an experiment has a large t, the
standard random baseline is only a good in-
dicator of random guessing if n is also large.
But while increasing n is always a good idea
theoretically, in practice it may not be feasi-
ble for the kind of diverse, fast-moving LM
tasks that are the key use case for ICL.

5 Experiments

We evaluate the extent to which the maximum random baseline recontextualizes in-context
learning performance. First, we study a deliberately simple and challenging setting of
prompt demonstration selection using validation data: do heavily quantized language
models outperform random baselines? We then move to a setting with a held-out dataset
and find that comparing maximum validation accuracy to the maximum random baseline
rather than the standard random baseline is more indicative of whether held-out accuracy
exceeds random chance. Finally, we use the maximum random baseline to re-evaluate
published results on prompt template selection and instruction selection.4

5.1 The standard random baseline overstates performance

Consider the task of choosing which demonstrations to include in a few-shot prompt. Prior
work has shown that choosing different examples can lead to drastic differences in accuracy
(Zhao et al., 2021). In this setting, we are going to report the accuracy of the prompt with the
highest validation accuracy. Our goal is to get the best validation accuracy possible, and we
have a budget of t = 200 different prompts to evaluate. Following Dodge et al. (2019), we
report the expected maximum validation accuracy achieved by any prompt as a function of
t, the number of evaluated prompts. We compare the best prompt’s accuracy to both the
standard random and maximum random baselines. See Appendix B for full details.

Models and datasets. We evaluate six LMs at the 7B-parameter scale: Llama-2-7b (Touvron
et al., 2023), OLMo-7B (Groeneveld et al., 2024), Falcon-7b (Almazrouei et al., 2023), and
their instruction-tuned counterparts: Alpaca-7b (Taori et al., 2023), OLMo-7B-Instruct, and
Falcon-7b-instruct. We quantize the models to 4-bit for a particularly challenging setting
(Dettmers et al., 2023). We use 16 BIG-bench Lite multiple choice tasks with their standard
instruction templates (Srivastava et al., 2023). Our goal is to compare differences between
standard and maximum baselines due to the nature of different few-shot tasks. Because
we know analytically that the size of a validation set influences random baselines, we
reduce size as a confounding factor by subsampling tasks to have a maximum size of 200
examples.5 All baselines are calculated with respect to the size of the subsampled datasets.6

4Reproduction code is available at: https://github.com/gyauney/stronger-random-baselines
5Using smaller validation sets also results in substantial savings in computation when evaluating

hundreds of example combinations, an important consideration for practitioners.
6For the seven datasets with n < 200, there are only n possible demonstrations in the 1-shot setting.

In these cases we compare to the proper maximum random baseline with t = n instead of t = 200.
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Figure 3: OLMo-7B 1-, 2-, and 4-shot beats the standard random baseline (dashed line) on
four tasks in expected maximum validation accuracy. But accounting for validation set reuse
with the maximum random baseline (solid black line), the best accuracies across prompts
on the left two datasets are in fact no better than random.
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Figure 4: Expected maximum validation accuracy compared to the standard random and
maximum random baseline for base and instruction-tuned models on a single hard dataset.

Results for individual datasets. Figure 3 shows OLMo-7B performance for selected tasks.
The x-axis shows the number of prompts t evaluated on the validation set. As t increases,
the maximum random baseline also increases, sharply at first and then more gradually. For
emoji movie and known unknowns, the expected maximum 1-, 2-, and 4-shot accuracies across
multiple prompts are above the standard random baseline but below the maximum random
baseline. To further illustrate how the baselines disagree, we can use their distributions
to generate tail probabilities for the observed accuracies. In the middle row of panels, tail
probabilities with respect to the standard random distribution are near-zero in almost all
cases. The bottom row shows tail probabilities with respect to the maximum baseline:
here 1-, 2-, and 4-shot all have high tail probabilities. Contextualizing performance against
the maximum random baseline shows that these datasets are more challenging than they
appear. Performance is high enough on tasks like bbq lite json and hindu knowledge to be
above random no matter which baseline is used. In these cases, tail probabilities for both
baselines are near-zero. The maximum random baseline gives us additional confidence that
performance is in fact good.

Figure 4 compares base and instruction-tuned models on the emoji movie dataset. These
results show that the standard random baseline substantially underestimates the difficulty
of this dataset. Comparing instead to the maximum random baseline reveals that only
Llama-2-7b outperforms random guessing. While the instruction-tuned falcon-7b models
slightly outperform the standard random baseline, the standard tail probabilities show that
a significant percentage of random classifiers still have higher accuracy.

Aggregate results. Table 1 shows that out of 288 total experiments, maximum validation
accuracy exceeded the standard random baseline in 255, but maximum validation accuracy
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Base model Instruction-tuned
1-shot 2-shot 4-shot 1-shot 2-shot 4-shot

BIG-bench Lite dataset n L O F L O F L O F A O F A O F A O F Total

novel concepts 32 0
known unknowns 46 9
code line description 60 0
emoji movie 100 11
conceptual combinations 103 0
strange stories 174 0
hindu knowledge 175 0
bbq lite json 200 0
formal fallacies syllogisms negation 200 12
language identification 200 12
logical deduction 200 3
play dialog same or different 200 1
strategyqa 200 0
symbol interpretation 200 7
vitaminc fact verification 200 1
winowhy 200 0

Baseline disagreements per model 2 5 5 1 4 3 1 1 3 4 5 4 2 4 3 3 2 4
Total baseline disagreements 12 8 5 13 9 9 56
Total percentage flipped /( + ) 26% 19% 15% 28% 20% 23% 22%

Table 1: Agreement between the standard random baseline and maximum random baseline
when evaluating the maximum performance over t = 200 choices of prompt demonstrations
on BIG-bench Lite. : best prompt performed worse than both baselines. : best prompt
performed better than the standard random baseline but worse than the maximum random
baseline. : best prompt performed better than both baselines. n: number of examples. L:
Llama-2-7b, O: OLMo-7B, F: Falcon-7B, A: Alpaca-7b.

exceeded the maximum random baseline in 199. The baselines disagreed in 56 experiments.
This means that 22.0% of results that are above the standard baseline are not above the
maximum baseline. Among base models, there are fewer baseline disagreements as the
number of shots increases. Surprisingly, there are not fewer disagreements when moving
from base models to their instruction-tuned counterparts. Specific datasets are responsible
for many disagreements, the highest number of which come from formal fallacies and
language identification. For many datasets, both baselines agree for all evaluations. Full
per-dataset results are in Figures 9, 10, and 11 in Appendix E. Appendix C gives results for
non-quantized models.

5.2 Maximum random baseline predicts held-out accuracy

Now that we have shown that the standard and maximum random baselines differ in
many typical ICL settings, we turn to contextualizing held-out test set accuracy. Validation
accuracy is often used as a first step to select a model, followed by reporting the selected
model’s performance on an additional held-out test set. But, of course, the more we look at
the test set, the less useful it becomes. Here we show that the maximum random baseline
is a better predictor of whether test performance will exceed random guessing than the
standard random baseline and thus can avoid wasted test set evaluations.

Setup. Just as before, we choose the prompt with best performance on the validation
data and report: the maximum validation accuracy, the standard random baseline, and
the maximum random baseline. Given just the validation accuracy, we have to make a
decision: is this prompt’s test accuracy above or below random? Using the same models
and 16 BIG-bench Lite tasks as above, we randomly partition each task into a validation set
(75%) and a test set (25%). For a given model and task, we select the prompt from among
t = 200 prompts with the highest validation accuracy. This prompt’s validation accuracy is
compared to the standard random and the maximum random baselines.
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The prompt is said to outperform random on the corresponding held-out test set when
its test accuracy is above the standard random baseline (because there has been no test
set reuse). For each of 100 different splits of each dataset, we use validation accuracy to
predict whether test set accuracy is above the standard baseline. We are comparing two
“classifiers”: standard predicts true when validation accuracy is above standard random, and
max predicts true when validation accuracy is above the maximum random baseline. In
both cases it is possible that a low quality prompt could have high validation accuracy due
to random chance, so we do not expect perfect performance. Another reason we cannot
expect perfect performance on this task is that just knowing that validation performance is
above the standard random baseline means that performance is better than that of at least
half of the random classifiers, not that it outperforms all of them. But we can evaluate which
baseline gives us more insight into held-out accuracy.
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Figure 5: ROC and precision-recall curves
when using maximum validation accuracy to
predict whether held-out test accuracy will
be above random chance. standard and
maximum curves use binary predictions of
above or below the given random baseline.
The gray curve uses the distribution func-
tions for confidence scores.

Results. Evaluating all predictions across
all splits of datasets, the held-out accuracy
of the best prompt exceeds random 73% of
the time. Figure 5 shows that when pre-
dicting whether test performance is above
random from validation accuracy, standard
achieves an accuracy of 0.82, AUROC =
0.67, and AUPR = 0.81. max has a lower ac-
curacy of 0.79, but does better on AUROC =
0.80 and AUPR = 0.88. standard achieves
higher accuracy on this task at the expense
of many false positives—it often incorrectly
predicts that test performance will be above
random chance. In fact, the standard ran-
dom baseline does only slightly better in
this setting than simply predicting that
all test accuracies will be above random.
The maximum random baseline has higher
precision—when validation accuracy sur-
passes the maximum random baseline we
can be more confident that the corresponding held-out performance is above random. Re-
sults split by model and dataset are in Appendix D, as are different values of t for validation
set reuse. As the number of prompts t that are being searched over increases, the maximum
random baseline maintains a lower false positive rate even as the standard baseline’s false
positive rate increases (Figure 8, Appendix D).

We can additionally use each baseline’s distribution function as a measure of how likely
validation performance is to be above random. Instead of directly predicting above or
below random as compared to each baseline’s expected accuracy, we instead associate
each point with the percentage of random classifiers that the validation accuracy is above.
Both baselines produce the same rankings of likelihood above the baseline. This is because
the distribution function of the maximum order statistic of the binomial distribution is a
monotonic function of the distribution function of the binomial distribution (Equations 3, 6).
Both baselines therefore yield the same ROC and precision-recall curves (AUROC = 0.90,
AUPR = 0.96). The threshold for predicting above or below random performance is what
changes between baselines, leading to the difference shown in Figure 5. In both cases,
using the additional information provided by treating the random baselines as distributions
contextualizes performance better than point estimates alone.

5.3 Choosing instructions and template formatting

The maximum random baseline can recontextualize existing results. Mizrahi et al. (2024)
and Sclar et al. (2024) demonstrate that ICL performance is highly variable across instruction
paraphrases and template formatting, respectively. As they release maximum validation
accuracies and the number of prompts they evaluated, we are able to analyze the same
experiments from the perspective of comparison to random baselines.
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Mizrahi et al. (2024) report maximum validation accuracy across different instruction para-
phrases for tasks from BIG-bench Lite and BIG-bench Hard. For BIG-bench Hard, they
evaluate 11 models on 15 datasets and each time report the maximum validation accuracy
across t = 10 prompts. Out of 165 experiments, 152 outperform the standard random
baseline, and 147 outperform the maximum random baseline. 3.3% of results that exceed
the standard random baseline do not exceed the maximum random baseline. For BIG-bench
Lite, 9 models are evaluated on 13 datasets with 10 prompts each. Out of 117 experiments,
116 outperform the standard random baseline, and 109 outperform the maximum random
baseline. 6.0% of results that exceed the standard random baseline do not exceed the maxi-
mum random baseline. From the perspective of random baselines, these experiments are
relatively robust because the models perform very well and t is small.

Sclar et al. (2024) use Thompson sampling to evaluate t = 320 different prompt templates
for Llama-2-70b on 53 different tasks from Super-NaturalInstructions (Wang et al., 2022)
that were sampled to have n = 1,000 examples. Using the most generous parameter settings
that make the maximum random baseline comparable to their setup, we find that 51 results
of maximum accuracy across prompt templates are above the standard random baseline,
and 46 are above the maximum random baseline. 9.8% of results that exceed the standard
random baseline do not exceed the maximum random baseline.

Overall, the maximum random baseline can make us more confident when maximum valida-
tion accuracies are above random performance while also identifying those model/dataset
pairs with especially weak performance.

6 Discussion and conclusion

If an experiment reports the maximum performance across multiple evaluations on a dataset,
the standard random baseline may significantly underestimate the probability of achieving
that performance by random guessing. In-context learning is particularly susceptible to this
danger because of its combination of small evaluation datasets, many prompt evaluations,
and difficult tasks. In such settings, the expected maximum accuracy across multiple random
classifiers is a stronger and more appropriate baseline. The baseline is easily calculated, and
we release code for a drop-in replacement baseline.

Using the maximum random baseline for calibrating performance on validation sets can
avoid inappropriate use of test sets. When a held-out test set is available, the maximum
baseline can better predict the generalization performance of the best-performing prompt
on the validation set when it is evaluated on a truly held-out test set. This can prevent
test-set overuse: if the best prompt doesn’t outperform the maximum random baseline
on the validation set, then do not evaluate on the test set yet. The maximum baseline can
gracefully account for dataset re-use in other ways, too. Even if an individual researcher
strictly uses a benchmark’s test set exactly once, benchmarks are re-used across studies
(Koch et al., 2021). The maximum baseline can contextualize results on re-used test sets.

The maximum random baseline highlights the need to report more standard information to
contextualize maximum accuracy across prompts. It is common to report validation size
n, and reporting the number of prompt evaluations t needed for this baseline is also good
practice. Of a random sample of 20 papers from EMNLP 2023 that study ICL, six report
using multiple prompts, three state that they report the maximum evaluation accuracy
over multiple prompts, and only one of these reports how many times the validation set
was used. We argue that reporting such parameters allows for proper contextualization of
results and should be a best practice.

We reiterate the many calls for larger evaluation sets (Card et al., 2020; Bragg et al., 2021),
this time to limit the variance of random guessing. But the reality of contemporary LM
evaluation is that researchers have limited time and budget for computation and dataset
development. Producing thousands of high-quality examples and evaluating many possible
prompts on them may not always be feasible (Liang et al., 2023; Polo et al., 2024). The
maximum random baseline proposed in this paper enables researchers to reduce validation
size and therefore computation and cost, while still avoiding falsely positive prompt settings.
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We leave it to future work to study the maximum random baseline across more models,
tasks, prompt variations, and scoring strategies, as well as extensions to metrics beyond
accuracy, such as F1. Future work can also study the rigorous specification of hypothesis
tests for deciding whether generalization performance is likely to exceed random guessing,
where dependence between classifiers poses a challenge for analysis. While we limit our
analysis to in-context learning with language models, the stronger random baseline applies
to any classification setting with evaluation set reuse.

Comparing a model’s performance on a new task to random baselines is the first test of
the model’s capabilities. Random baselines remain relevant even as model performance
increases across the board because increasingly difficult tasks are regularly constructed to
probe the limits of performance. Ultimately, validation datasets will continue to be reused,
especially given the variability of ICL performance. Baselines should account for this.
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A Additional details of the expected maximum random baseline

The probability of randomly guessing a correct answer does not depend on label balance.
Consider a random classifier h that guesses labels uniformly at random, independently
across examples. Given a labeled example (x, y), the probability that this random guesser
gets the correct label is 1/m, where m is the number of possible labels. It does not depend on
the dataset having balanced proportions of labels:

P
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h(x) = y

)
= P
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ℓ=0
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Extending to tasks with different numbers of labels per example. Some tasks allow
each example to have a different number of possible labels. For example, the BIG-bench
task logic grid puzzle has examples with 2 to 5 possible labels each. The number of correct
guesses is modeled by a Poisson binomial distribution, where each independent trial can
have a different probability of success, rather than a binomial distribution (Hong, 2013). The
maximum order statistic of the Poisson binomial distribution can be found by plugging in
its distribution function and probability mass function into equation 4. This extension is
implemented in our code, though we leave further study to future work.

Tail probabilities against random baselines. The tail probability for the accuracy of a
classifier h0 against the standard random baseline is:

pstandard = P(acc (h) ≥ acc(h0))

= 1 − P(acc (h) < acc(h0))

= 1 − P(n acc (h) < n acc(h0))

= 1 − P(X < n acc(h0))

= 1 − (F(n acc(h0))− f (n acc(h0)))

= 1 − F(n acc(h0)− 1)
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Figure 6: The expected maximum accuracy for various parameter settings. The leftmost plot
is the same as Figure 2 but with larger parameter ranges.
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Figure 7: Tail probabilities with respect to the expected maximum random baseline for vari-
ous accuracies and parameter settings. The top row (t = 1) corresponds to tail probabilities
for the standard random baseline. Contours are shown at every 0.1 interval, with the 0.5,
0.1, and 0.01 contours labeled. Plots have been smoothed for ease of visualization.

The final line follows because the binomial is a discrete distribution over integers, so
F(k) = F(k − 1) + f (k) if we define F(−1) = 0. By similar reasoning, we get the tail
probability with respect to the maximum random classifier:

pmax = P(acc (hmax) ≥ acc(h0))

= 1 − P
(

X(t) < n acc(h0)
)

= 1 −
(

F(n acc(h0)− 1)
)t

Additional plots. Figure 6 shows the expected maximum accuracy for various parameter
settings of n, the number of examples in the evaluation dataset, p, the probability of guessing
a correct answer on each example (one divided by the number of choices), and t, the number
of random classifiers. Figure 7 gives tail probabilities for the expected maximum accuracy
for various parameter settings. The top row (t = 1) corresponds to tail probabilities for the
standard random baseline.

Runtime. A naive implementation of the maximum random baseline depends mainly on
n, the number of examples in the dataset. The most expensive settings that we consider still
run in under 1 second for 10,000 examples.
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B Evaluation details

We evaluate models in the in-context learning setting, where the model is supplied with a
natural language prompt followed by demonstrations and a possible answer (Brown et al.,
2020). This is commonly referred to as the few-shot setting, though few-shot can refer to
other settings as well (Bragg et al., 2021).

Datasets. We use 16 datasets from BIG-bench Lite (Srivastava
et al., 2023): bbq lite json, code line description, conceptual combinations,
emoji movie, formal fallacies syllogisms negation, hindu knowledge, known unknowns,
language identification, logical deduction, novel concepts, play dialog same or different,
strange stories, strategyqa, symbol interpretation, vitaminc fact verification, winowhy. We
use these because within a dataset, they have the same or very similar numbers of labels
across examples. We begin with each full dataset, and for the tasks larger than n = 200
examples, we randomly sample 200 examples for evaluation and keep these fixed for all
experiments. Lists of which examples were sampled can be found in the supplementary
code.

Prompts and demonstrations. A prompt consists of a natural language instruction with
demonstrations in a given format. Each demonstration is an example along with its ground-
truth label. In our deliberately simple setting, we keep the demonstrations constant across
evaluation examples—a prompt refers to a fixed string with fixed demonstrations prepended
to validation examples. We use each multiple choice task’s standard instruction template
provided with BIG-bench. We evaluate 200 different prompts for each combination of model,
dataset, and number of demonstration shots. Demonstrations are chosen at random and
appended to each other with \n. All prompts with their chosen demonstrations can be
found in the code repository. For a given example with multiple choices, we select a model’s
answer as the label with the highest average log-likelihood per token (Holtzman et al., 2021).

For tasks with more than 200 examples, we sample 200 examples as a fixed set across
all parameter combinations. We choose demonstrations from the remaining unsampled
examples in the task. For the seven datasets with n < 200, there are only n possible
prompt demonstrations in the 1-shot setting. In these cases we compare to the proper
maximum random baseline with t = n instead of t = 200. For the same datasets, there
is a subtlety regarding dataset size. Because the demonstrations come from the pool of
available examples, the 1-shot, 2-shot, and 4-shot versions of the dataset differ by a few
examples. Normally this would not make much of a difference, but the maximum random
baseline depends on dataset size. For ease of visualization in Figures 3, 4, 9, 10, and 11,
we plot the maximum random baseline for the dataset’s full number of examples, which
is slightly weaker than each setting’s exact max random baseline (because the baseline
increases with smaller n). All baseline judgments in Table 1 are with respect to each setting’s
exact maximum random baseline.

Implementation details. All evaluations are implemented using NumPy (Harris et al., 2020)
and Hugging Face transformers (Wolf et al., 2020). We use bitsandbytes to quantize models
to NF4 4-bit with nested quantization and compute dtype bfloat16 (Dettmers et al., 2023). In
cases where we compared quantized models to non-quantized models, performance was
not consistently better or worse. We use an NVIDIA RTX A6000 with 48GB of RAM.
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C Results for non-quantized models

The main paper evaluates the performance of quantized models. Table 2 gives full equivalent
results for non-quantized models. In this setting, 15.8% of results that exceed the standard
baseline do not exceed the stronger random baseline.

D Held-out set evaluations

For the results in Section 5.2, Table 3 shows per-model results. The maximum random
baseline outperforms the standard baseline in AUROC and AUPR across all models on these
datasets. Table 4 shows per-dataset results.

Base model Instruction-tuned
1-shot 2-shot 4-shot 1-shot 2-shot 4-shot

BIG-bench Lite dataset n L O F L O F L O F A O F A O F A O F Total

novel concepts 32 0
known unknowns 46 4
code line description 60 0
emoji movie 100 7
conceptual combinations 103 0
strange stories 174 1
hindu knowledge 175 0
bbq lite json 200 2
formal fallacies syllogisms negation 200 11
language identification 200 7
logical deduction 200 0
play dialog same or different 200 1
strategyqa 200 0
symbol interpretation 200 7
vitaminc fact verification 200 0
winowhy 200 0

Baseline disagreements per model 1 4 5 1 2 1 1 3 1 1 2 4 2 1 5 3 0 3
Total baseline disagreements 10 4 5 7 8 6 40
Total percentage flipped /( + ) 21% 10% 14% 15% 17% 15% 16%

Table 2: Non-quantized model results. Agreement between the standard random baseline
and maximum random baseline when evaluating the maximum performance over t = 200
choices of prompt demonstrations on BIG-bench Lite. : best prompt performed worse
than both baselines. : best prompt performed better than the standard random baseline
but worse than the maximum random baseline. : best prompt performed better than both
baselines. n: number of examples. L: Llama-2-7b, O: OLMo-7B, F: Falcon-7B, A: Alpaca-7b.

Accuracy Precision Recall AUROC AUPR
Model Standard Max Standard Max Standard Max Standard Max Standard Max

Llama-2-7b, Base model (77%) 0.92 0.87 0.91 0.95 0.99 0.88 0.82 0.85 0.91 0.93
OLMo-7B, Base model (72%) 0.79 0.73 0.79 0.89 0.97 0.72 0.64 0.74 0.79 0.84
Falcon-7b, Base model (67%) 0.79 0.77 0.77 0.90 0.98 0.74 0.69 0.79 0.77 0.84
Alpaca-7b, Instruction-tuned (84%) 0.83 0.87 0.84 0.96 0.99 0.88 0.50 0.84 0.84 0.94
OLMo-7B, Instruction-tuned (72%) 0.78 0.72 0.78 0.88 0.97 0.71 0.63 0.73 0.78 0.83
Falcon-7b, Instruction-tuned (68%) 0.79 0.80 0.77 0.91 0.98 0.77 0.67 0.81 0.77 0.86

Total (73%) 0.82 0.79 0.81 0.92 0.98 0.79 0.67 0.80 0.81 0.88

Table 3: Per-model results when using whether maximum validation accuracy is above each
baseline to predict whether held-out test accuracy will be above random chance. Percentages
in parentheses indicate the proportion of trials where the best prompt’s test accuracy was
above random chance.
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AUROC AUPR
BIG-bench Lite dataset Standard Max Standard Max

code line description (100%) 0.50 0.50 1.00 1.00
bbq lite json (94%) 0.67 0.78 0.96 0.97
hindu knowledge (100%) 0.50 0.50 1.00 1.00
novel concepts (93%) 0.50 0.46 0.93 0.92
emoji movie (62%) 0.50 0.53 0.62 0.64
vitaminc fact verification (83%) 0.96 0.94 0.98 0.98
conceptual combinations (81%) 0.50 0.55 0.81 0.83
formal fallacies syllogisms negation (37%) 0.58 0.51 0.41 0.37
known unknowns (59%) 0.49 0.57 0.59 0.63
logical deduction (81%) 0.50 0.48 0.81 0.80
play dialog same or different (59%) 0.98 0.95 0.97 0.95
strange stories (69%) 0.65 0.80 0.77 0.86
symbol interpretation (17%) 0.78 0.50 0.33 0.17
winowhy (100%) n/a n/a 1.00 1.00
strategyqa (93%) 0.50 0.50 0.93 0.93

Total (73%) 0.67 0.80 0.81 0.88

Table 4: Per-dataset results when using validation accuracy to predict whether held-out test
accuracy will be above random chance. Percentages in parentheses indicate the proportion
of trials where the best prompt’s test accuracy was above random chance.
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Figure 8: ROC curves for multiple values of t when comparing maximum validation
accuracy to baselines to predict whether held-out performance is above random guessing.
The final panel is what is shown on the left side of Figure 5.
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E Full results

This section provides full BIG-bench Lite results for Llama-2-7b and Alpaca-7b in Figure 9,
OLMo-7B and OLMo-7B-Instruct in Figure 10, and Falcon-7b and Falcon-7b-instruct in
Figure 11. We report expected maximum validation accuracy, as in Section 5.
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Figure 9: Full BIG-bench Lite results for Llama-2-7b and Alpaca-7b.
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Figure 10: Full BIG-bench Lite results for OLMo-7B and OLMo-7B-Instruct.
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Figure 11: Full BIG-bench Lite results for Falcon-7b and Falcon-7b-instruct.

20


	Introduction
	Related work
	Random baselines
	Properties of the expected maximum random baseline
	Experiments
	The standard random baseline overstates performance
	Maximum random baseline predicts held-out accuracy
	Choosing instructions and template formatting

	Discussion and conclusion
	Additional details of the expected maximum random baseline
	Evaluation details
	Results for non-quantized models
	Held-out set evaluations
	Full results

