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Abstract

We propose a reinforcement learning framework to automate the design of 2D transfer
functions for direct volume rendering of medical images. By training a reward model based
on human feedback, our approach enables an agent to extract transfer functions from
joint histograms without manual fine-tuning. Preliminary results demonstrate that the
developed method effectively captures human preferences, marking a significant step toward
automated, user-aligned 3D renderings for improved patient communication, diagnosis, and
treatment planning.
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1. Introduction

Direct volume rendering (DVR) uses transfer functions (TFs) to map volumetric data to
optical properties without prior surface extraction. Designing an effective TF is often
unintuitive, repetitive, and time consuming (Pfister et al., 2001). It requires expertise to
select features in 2D joint histograms (JHs) representing image characteristics. The manual
TF design demands adaptation to new data. Iterative approaches are limited by their focus
on opacity parameters and inability to incorporate neighboring information. Convolutional
neural networks often require labeled data (Kim et al., 2021). To overcome these challenges,
we propose a reinforcement learning from human feedback (RLHF) framework (Christiano
et al., 2017). Instead of defining objective functions, RLHF utilizes human preferences to
train an RL agent. In this work, we develop a reward model (RM) in an RLHF framework
to automate the generation of 2D TF. We adopt the RLHF pipeline proposed by Ziegler
et al. (2020), which includes three phases: the supervised fine-tuning of an agent, the
preference collection for a subsequent RM training, and the RL fine-tuning using proximal
policy optimization (PPO) (Schulman et al., 2017).
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Figure 1: RM training concept in an RL framework for generating 2D TFs.

2. Methods

In our RL framework, the environment’s state is defined as s = IJH, where IJH is the image
of the JH over the intensities and gradients of the original 2D slices of the input volume.
The agent’s action is to estimate suitable vertices of a polygon within this JH, used to
compute the 2D TF for DVR. The action is defined as a = [(xi, yi)]

T
i=1,...,n, where xi and yi

are the coordinates of the polygon’s vertices within the JH image with n = 4 to simplify
the initial action space. The RL framework is implemented as a one-shot learning method
allowing the agent to find the vertices of the polygon in a single time step per episode. The
RM predicts the quality of an action given the state, guiding the agent towards actions
that align the resulting 3D rendering with human visual preferences. Figure 1 illustrates
the concept and architecture of the RM. For offline training, we exclude the agent and use
a static dataset D containing predefined human-labeled and randomly generated actions.
The RM receives the JH image and the action as input. The JH image is processed through
convolutional layers, each with a dropout probability of p = 50% to extract image features,
while the action features are upscaled to maintain balance. Both features are concatenated
and further processed to predict the scalar reward r. The model is trained using human
feedback on rendering pairs generated from different actions. These are compared by human
inspectors expressing a preference, resulting in ac ≻ ar, where ac and ar represent the chosen
and rejected actions, respectively. Following the Bradley-Terry model (Bradley and Terry,
1952) for estimating score functions from pairwise preferences, the RM rψ aims to satisfy

pψ(ac ≻ ar|s) =
exp(rψ(s, ac))

exp(rψ(s, ac)) + exp(rψ(s, ar))
= σ(rψ(s, ac)− rψ(s, ar)), (1)

where σ is the sigmoid function. We train the RM using the cross-entropy loss function

LC = −ED [µc log pψ(ac ≻ ar) + µr log pψ(ar ≻ ac)] , (2)

where µ indicates the human inspector’s preference distribution over {c, r} introduced by
Christiano et al. (2017). We utilized a proprietary dataset containing 16 CBCT head images
focused on the cranial region, each with dimensions 547× 421× 547 and a pixel spacing of
0.2mm. Initial tests were performed on one image scene with 50 random and 10 predefined
actions based on manual TF designs indicating high-quality renderings. An additional 40
actions were generated by introducing small random shifts to the polygon vertices, resulting
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Figure 2: Calculated rewards by the trained RM. Corner points plotted for each vertex of
the polygon from the calculated 2D TF with embeddings derived from CP 4.

in 100 actions. Human inspectors compared 4000 rendering pairs generated from these
actions using a preference interface (3387 unambiguous and 613 ambiguous). The RM was
implemented in PyTorch (Paszke et al., 2019) and trained for 75 epochs with a batch size
of 128, using the Adam optimizer (Kingma and Ba, 2015) with the default learning rate.

3. Results and Discussion

Figure 2 shows the reward distribution (left) calculated for 20 000 uniformly distributed
random actions on the test scene, which has a high frequency of low rewards, sharply
declining toward higher rewards. This is the expected behavior of the RM since the majority
of actions would result in poor visualizations and only actions leading to preferred renderings
should increase the reward. Additionally a corner point plot (right) was created for each
vertex of the polygon defining the TF, modifying one vertex at a time while keeping others
fixed based on a high-quality rendering. They show the RM’s calculated reward for each
position in the JH. This plot indicates that only narrow ranges yield high rewards, showing
effective discrimination between good and poor actions. Increasing the number of actions
with smaller deviations in critical JH areas and collecting more human preferences could
enhance the RM’s precision. Expanding the dataset to include multiple scenes can improve
generalization. Gathering preferences from multiple users would further enhance objectivity.

4. Conclusion

We have taken an important step toward automating 2D TF generation for optimized
volume rendering by developing an RM trained on human feedback. The RM successfully
captures human visual preferences, validating its suitability for guiding an RL agent. Future
work will focus on training the RM on more data to develop the full RLHF pipeline.
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Appendix A. Additional Evaluation Visualization
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Figure 3: Example results from the RM with scores from highest to lowest.

Figure 3 shows the predicted rewards based on 12 additional labeled evaluation TFs. Poor
rendering results receive a low reward, while the reward is typically higher for renderings
with a clearer visual representation of the jaw. Despite the generally good assignments of
the rewards, there are still individual outliers. For example, the rendering in the second
row and first column still receives a comparatively high reward, despite some artifacts in
the dental area.
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