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Abstract

We explore online learning in episodic Markov decision processes on non-stationary
environments (changing losses and probability transitions). Our focus is on the Con-
cave Utility Reinforcement Learning problem (CURL), an extension of classical
RL for handling convex performance criteria in state-action distributions induced
by agent policies. While various machine learning problems can be written as
CURL, its non-linearity invalidates traditional Bellman equations. Despite recent
solutions to classical CURL, none address non-stationary MDPs. This paper intro-
duces MetaCURL, the first CURL algorithm for non-stationary MDPs. It employs
a meta-algorithm running multiple black-box algorithms instances over different
intervals, aggregating outputs via a sleeping expert framework. The key hurdle
is partial information due to MDP uncertainty. Under partial information on the
probability transitions (uncertainty and non-stationarity coming only from external
noise, independent of agent state-action pairs), the algorithm achieves optimal
dynamic regret without prior knowledge of MDP changes. Unlike approaches for
RL, MetaCURL handles adversarial losses. We believe our approach for managing
non-stationarity with experts can be of interest to the RL community.

1 Introduction

We consider the task of learning in an episodic Markov decision process (MDP) with a finite
state space X , a finite action space A, episodes of length N , and a probability transition kernel
p := (pn)n∈[N ] such that for all (x, a) ∈ X ×A, pn(·|x, a) ∈ SX . For any finite set B, we denote by
SB the simplex induced by this set, and by |B| its cardinality. For all d ∈ N we let [d] := {1, . . . , d}.
At each time step n, an agent in state xn chooses an action an ∼ πn(·|xn) by means of a policy,
and moves to the next state xn+1 ∼ pn+1(·|xn, an), inducing a state-action distribution sequence
µπ,p := (µπ,p

n )n∈[N ], where µπ,p
n ∈ SX×A for all n ∈ [N ].

In many applications of learning in episodic MDPs, an agent aims at finding an optimal policy π
maximizing/minimizing a concave/convex function F of its state-action distribution, known as the
Concave Utility Reinforcement Learning (CURL) problem:

min
π∈(SA)X×N

F (µπ,p). (1)

CURL extends reinforcement learning (RL) from linear to convex losses. Many machine learning
problems can be written in the CURL setting, including: RL, where for a loss function ℓ, F (µπ,p) =
⟨ℓ, µπ,p⟩; pure RL exploration [28], where F (µπ,p) = ⟨µπ,p, log(µπ,p)⟩; imitation learning [26, 35]
and apprenticeship learning [55, 1], where F (µπ,p) = Dg(µ

π,p, µ∗), withDg representing a Bregman
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divergence induced by a function g and µ∗ being a behavior to be imitated; certain instances of mean-
field control [7], where F (µπ,p) = ⟨ℓ(µπ,p), µπ,p⟩; mean-field games with potential rewards [34];
among others. The CURL problem alters the additive structure inherent in standard RL, invalidating
the classical Bellman equations, requiring the development of new algorithms.

Most of existing works on CURL focus on stationary environments [28, 57, 58, 5, 56, 25, 12, 11],
where both the objective function F and the probability transition kernel p remain the same across
episodes. However, in practical scenarios, environments are rarely stationary. The work of [39]
is the first to address online CURL with objective functions that can change arbitrarily between
episodes, also known as adversarial losses [19]. However, their work assumes stationary probability
kernels and presents results in terms of static regret (performance comparable to an optimal policy).
In non-stationary scenarios, it is more relevant to minimize dynamic regret—the gap between the
learner’s total loss and that of any policy sequence (see Eq. (5) for formal definition). In this work
we address this problem by introducing the first algorithm for CURL handling adversarial objective
functions and non-stationary probability transitions, achieving near-optimal dynamic regret.

High-level idea. Our approach, called MetaCURL, draws inspiration from the online learning
literature. In online learning [9], non-stationarity is often managed by running multiple black-box
algorithm instances from various starting points and dynamically selecting the best performer using an
"expert" algorithm. This strategy has demonstrated effectiveness in settings with complete information
[29, 59, 47, 33]. With MetaCURL, we extend this concept to decision-making in MDPs. Unlike
classical online learning, the main challenge faced is uncertainty. We assume that the probability
transition kernel in each episode has a known deterministic structure but is affected by an external
noise with unknown distribution, placing us in a setting with only partial information (see Section 2
for more details). The learner is then unable to observe the agent’s loss under policies other than the
one played.

MetaCURL is a general algorithm that can be applied with any black-box algorithm with low
dynamic regret in near-stationary environments. CURL approaches suitable as black-boxes rely
on parametric algorithms that would require prior knowledge of the MDP changes to tune their
learning rate. MetaCURL also addresses this challenge by simultaneously running multiple learning
rates and weighting them in direct proportion to their empirical performance. MetaCURL achieves
optimal regret of order Õ

(√
∆π∗T +min {

√
∆p

∞T , T 2/3(∆p)1/3}
)
, where ∆p

∞ and ∆p represent
the frequency and magnitude of changes of the probability transition kernel respectively, and ∆π∗

is the magnitude of changes of the policy sequence we compare ourselves with in dynamic regret
(see Eqs. (6) and (7) for formal definitions). MetaCURL does not require previous knowledge of
the degree of non-stationarity of the environment, and can handle adversarial losses. To ensure
completeness, we show that Greedy MD-CURL from [39] fulfills the requirements to serve as a
black-box algorithm. This is the first dynamic regret analysis for a CURL approach.

Comparisons. Without literature on non-stationary CURL, we review non-stationary RL approaches.
Most methods [24, 13, 45, 17, 20, 40, 21] typically rely on prior knowledge of the MDP’s non-
stationarity degree, while MetaCURL does not. Let ∆l

∞ and ∆l represent the frequency and
magnitude of change in the RL loss function, respectively1. Recently, [54] achieved a regret of
Õ
(
min {

√
(∆p

∞ +∆l
∞)T , T 2/3(∆p +∆l)1/3}

)
, a near-optimal result as demonstrated by [40],

without requiring prior knowledge of the environment’s variation. However, this regret bound is tied
to changes in loss functions, making it ineffective against adversarial losses. In contrast, rather than

Table 1: Comparisons of our results with the state-of-the-art in non-stationary RL. Here, ∆p
∞, ∆p

and ∆π∗
are defined in (6) and (7); and ∆l

∞ and ∆l measure the RL loss function variations1. We
introduce DT (∆∞,∆) := min {

√
∆∞T , T

2/3∆1/3}.

Algorithm Dynamic Regret in Õ RL CURL Adv.
losses

No prior
knowledge

Explo-
ration

MetaCURL (ours) DT (∆
p
∞,∆

p) +
√
∆π∗T ✓ ✓ ✓ ✓ ✗

SoTA in RL [54] DT (∆
p
∞ +∆l

∞,∆
p +∆l) ✓ ✗ ✗ ✓ ✓

1∆l := 1 +
∑T−1

t=1 ∆l
t and ∆l

∞ := 1 +
∑T−1

t=1 1{∆l
t ̸= ∆l

t+1}, where ∆l
t :=

∑N
n=1 maxx,a |ℓtn(x, a)−

ℓt+1
n (x, a)| and ℓtn(x, a) is the expected loss suffered by choosing action a in state x at step n of round t.
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depending on the magnitude of variation of the loss function, MetaCURL’s bound depends on the
magnitude of variation of the policy sequence we use for comparison in dynamic regret. This allows
it to handle adversarial losses, and to compare against policies with a more favorable bias-variance
trade-off, which may not align with the optimal policies for each loss. In addition, we improve
this dependency by paying it as

√
∆π∗T instead of (∆π∗

)1/3T 2/3. We summarize comparisons in
Table 1.

Other related works. The studies by [43, 42] examine the difference between optimizing the
objective over infinite trials and the expectation of the objective over a single trial, challenging the
traditional CURL formulation in Eq. (1). Here, we retain the classic formulation to align with existing
CURL research. Other works on RL with nonlinear objective functions are [46, 16] focusing on
rewards over trajectories rather than individual states. In addition to non-stationarity, there is a series
of works on RL with adversarial losses but stationary probability transitions, with results only on
static regret [48, 30, 18, 50, 32, 14]. Another line of research is known as corruption-robust RL. It
differs from non-stationary MDPs in that it assumes a ground-truth MDP and measures adversary
malice by the degree of ground-truth corruption [31, 38, 10, 60, 53].

Contributions. We resume our main contributions below:

• We introduce MetaCURL, the first algorithm for non-stationary CURL. Under the frame-
work described in Section 2, MetaCURL achieves the optimal dynamic regret bound of order
Õ
(√

∆π∗T +min {
√
∆p

∞T , T 2/3(∆p)1/3}
)
, without requiring previous knowledge of the degree

of non-stationarity of the MDP. MetaCURL handles full adversarial losses and improves the
dependency of the regret on the total variation of policies. MetaCURL is the first adaptation of
Learning with Expert Advice (LEA) to deal with uncertainty in non-stationary MDPs.

• We also establish the first dynamic regret upper bound for an online CURL algorithm in a nearly
stationary environment, which can serve as a black-box routine for MetaCURL.

Notations. Let ∥ · ∥1 be the L1 norm, and for all v := (vn)n∈[N ], such that vn ∈ RX×A we define
∥v∥∞,1 := sup1≤n≤N ∥vn∥1.

2 General framework: non-stationary CURL

When an agent plays a policy π := (πn)n∈[N ] in an episodic MDP with probability transition p,
it induces a state-action distribution sequence (also called the occupancy-measure [61]), which
we denote by µπ,p := (µπ,p

n )n∈[N ], with µπ,p
n ∈ SX×A. It can be calculated recursively for all

(x, a) ∈ X and n ∈ [N ] by taking µπ,p
0 (x, a) = µ0(x, a) fixed, and

µπ,p
n (x, a) =

∑
(x′,a′)∈X×A

µπ,p
n−1(x

′, a′)pn(x|x′, a′)πn(a|x). (2)

Offline CURL. The classic CURL optimization problem in Eq. (1) considers minimizing a function
F : (SX×A)

N → R, here defined as F (µ) :=
∑N

n=1 fn(µn) with fn a convex function over µn with
values in [0, 1], across all policies that induce µπ,p. Note that F is not convex on the policy π. To
convexify the problem, we define the set of state-action distributions satisfying the Bellman flow of a
MDP with transition kernel p as

Mp
µ0

:=

{
µ
∣∣ ∑

a′∈A
µn(x

′, a′) =
∑

x∈X ,a∈A
pn(x

′|x, a)µn−1(x, a) ,∀x′ ∈ X ,∀n ∈ [N ]

}
. (3)

For any µ ∈ Mp
µ0

, there exists a strategy π such that µπ,p = µ. It suffices to take πn(a|x) ∝ µn(x, a)
when the normalization factor is non-zero, and arbitrarily defined otherwise. There is thus an
equivalence between the CURL problem (optimization on policies) and a convex optimization
problem on state-action distributions satisfying the Bellman flow:

min
π∈(SA)X×N

F (µπ,p) ≡ min
µ∈Mp

µ0

F (µ). (4)

Online CURL. In this paper we consider the online CURL problem in a non-stationary setting. We
assume a finite-horizon scenario with T episodes. An oblivious adversary generates a sequence of
changing objective functions (F t)t∈[T ], with F t being fully communicated to the learner only at the
end of episode t. We assume F t is LF -Lipschitz with respect to the ∥ · ∥∞,1 norm for all t. The

3



probability transition kernel is also allowed to evolve over time and is denoted by pt at episode t.
The learner’s objective is then to calculate a sequence of strategies (πt)t∈[T ] minimizing a total
loss LT :=

∑T
t=1 F

t(µπt,pt

), while dealing with adversarial objective functions F t and changing
probability transition kernels pt. To measure the learner’s performance, we use the notion of dynamic
regret (the difference between the learner’s total loss and that of any policy sequence (πt,∗)t∈[T ]):

R[T ]

(
(πt,∗)t∈[T ]

)
:=
∑

t∈[T ] F
t(µπt,pt

)− F t(µπt,∗,pt

). (5)

Non-stationarity measures. We consider the following two non-stationary measures ∆p
∞ and ∆p on

the probability transition kernels that respectively measure abrupt and smooth variations:

∆p
∞ := 1+

T−1∑
t=1

1{pt ̸=pt+1}, ∆p := 1+

T−1∑
t=1

∆p
t , ∆p

t := max
n,x,a

∥ptn(·|x, a)−pt+1
n (·|x, a)∥1 . (6)

Regarding dynamic regret, we define for any sequence of policies (πt,∗)t∈[T ], its non-stationarity
measure as

∆π∗
:= 1 +

T−1∑
t=1

∆π∗

t , ∆π∗

t := max
n∈[N ],x∈X

∥πt,∗
n (·|x)− πt+1,∗

n (·|x)∥1 . (7)

Moreover, for any interval I ⊆ [T ], we write ∆p
I :=

∑
t∈I ∆

p
t and ∆π∗

I :=
∑

t∈I ∆
π∗

t .

Dynamic’s hypothesis. For each episode t, let (xt0, a
t
0) ∼ µ0(·), and for all time steps n ∈ [N ],

xtn+1 = gn(x
t
n, a

t
n, ϵ

t
n), (8)

where gn represents the deterministic part of the dynamics, and (ϵtn)n∈[N ] is a sequence of independent
external noises such that ϵtn ∼ htn(·), where htn is any centered distribution. Note that these dynamics
imply that the probability transition kernel can be written as ptn+1(x

′|x, a) = P
(
gn(x, a, ϵ

t
n) = x′

)
.

Different variants of this problem can be considered, depending on the prior information available
about the dynamics in Eq. (8). In this article we consider the case where gn is fixed and known by
the learner, but htn is unknown and can change (hence the source of uncertainty and non-stationarity
of the transitions). To the best of our knowledge, there are no black-box algorithms in the literature
that achieve sublinear regret for online CURL with adversarial losses without relying on model
assumptions. In using RL methods to CURL, we believe model-optimistic approaches like UCRL
(Upper Confidence RL [4]) could be adapted. However, these methods are computationally expensive,
as they require solving an additional optimization problem in every episode. The black-box algorithm
for CURL we consider from [39] provides closed-form solutions, which is more computationally
efficient, but requires the same dynamic assumption as in Eq. (8). Another class of RL methods is
policy optimization (PO), which directly optimizes the policy and often yields closed-form solutions,
leading to faster performance. Recent theoretical work [37] has shown that PO methods can achieve
near-optimal regret without model assumptions. However, these methods rely on RL’s Bellman
equations, which do not apply to CURL due to its non-linear nature. We believe that the MetaCURL
analysis could potentially be extended to the case where gn is unknown but belongs to a parametric
family. We leave this extension for future work.

This particular dynamic is also motivated by many real-world applications:

• Controlling a fleet of drones in a known environment, subject to external influences due to weather
conditions or human interventions.

• Addressing data center power management aiming to cut energy expenses while maintaining
service quality. Workload fluctuations cause dynamic job queue transitions, and volatile electricity
prices lead to varying operational costs. The probabilities of task processing by each server are
predetermined, but the probabilities of task arrival are uncertain [6].

• As renewable energy use increases and energy demand grows, balancing production and consump-
tion becomes harder. Certain devices, like electric vehicle batteries and water heaters, can serve as
flexible energy storage options. However, this requires electric grids to establish policies regulating
when these devices turn on or off to match a desired consumption profile. These profiles can
fluctuate daily due to changes in energy production levels. Despite knowing the devices’ physical
dynamics, household consumption habits remain unpredictable and constantly changing [51, 41].
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Outline. In this paper, we propose a novel approach to handle non-stationarity in MDPs, being the
first to propose a solution to CURL within this context. We begin in Section 3 by discussing the
idea behind our algorithm’s construction and the key challenges within our framework. Section 4
introduces MetaCURL, while Section 5 presents the main results of our regret analysis. The proofs’
specifics are provided in the appendix.

3 Main idea

A hypothetical learner who achieves optimal regret. Let m > 1. Assume a hypothetical learner
that could compute a sequence of restart times 1 = t1 < . . . < tm+1 = T + 1, where for each
i ∈ [m] we let Ii := [ti, ti+1 − 1], such that

∆p
Ii

≤ ∆p/m. (9)

Consider any algorithm that, when computing (πt)t∈I with learning rate λ for any interval I ⊆ [T ],
attains a dynamic regret relative to any sequence of policies (πt,∗)t∈I upper bounded by

RI

(
(πt,∗)t∈I

)
≤ c1λ|I|+ λ−1(c2∆

π∗

I + c3) + |I|∆p
I , (10)

where (cj)j∈[3] are constants that may depend on the MDP parameters, and on the interval size only
in logarithmic terms. This kind of regret bound holds for Greedy MD-CURL from [39] as we show
in Appendix G. Suppose the hypothetical learner could also access ∆π∗

to calculate the optimal
learning rate. Hence, playing such an algorithm for all horizon T with the optimal learning rate, the
learner would have a dynamic regret upper bounded by

R[T ]

(
(πt,∗)t∈[T ]

)
≤ 2
√
c1(c2∆π∗ + c3m)T + T∆pm−1.

Optimizing over m, the learner would obtain the optimal regret of order Õ
(√

∆π∗T +(∆p)1/3T 2/3
)
.

In the case where the MDP is piece-wise stationary, if the learner takes Ii such that ∆p
Ii

= 0, it
obtains a regret of order O(

√
∆π∗T +

√
∆p

∞T ), where ∆p
∞ is the number of times the probability

transitions of the MDP change over [T ].

A meta algorithm to learn restart times. In reality, the restart times of Eq. (9), and the optimal
learning rate, are unknown to the learner. Hence, we propose to build a meta aggregation algorithm to
learn both. Let E represent a parametric black-box algorithm with dynamic regret as in Eq. (10). We
introduce a meta algorithm M that, takes as input a finite set of learning rates Λ, and at each episode
t, initializes |Λ| instances of E , denoted as Et,λ for each λ ∈ Λ. Each Et,λ operates independently
within the interval [t, T ]. At time t, M combines the decisions from the active runs {Es,λ}s≤t,λ∈Λ

by weighted average. The idea is that at time t, some of the outputs of {Es,λ}s≤t,λ∈Λ are not based
on data prior to t′ < t, so if the environment changes at time t′, these outputs can be given a greater
weight by the meta algorithm, enabling it to adapt more quickly to the change. At the same time,
we expect a larger weight will be given to the empirically best learning rate. Let M(E ,Λ) be the
complete algorithm.
Remark 3.1. The meta-algorithm increases the computational complexity of the parametric black-
box algorithm by a factor of T × |Λ|, as it requires updating t× |Λ| instances at each episode t. By
strategically designing intervals to run the black-box algorithms, previous works on online learning
have reduced computational complexity to O(log(T )) [15, 29, 27]. Extending our analysis to these
intervals is straightforward, but it would complicate the presentation of the paper. Thus, we decided
to present our results using the naive choice of intervals. Also, in Section 5, we show that a learning
rate grid with |Λ| = log(T ) is sufficient to obtain the optimal regret.

Regret decomposition. Denote by πt,s,λ the policy output from Es,λ at episode t, for learning rate λ,
for all s ≤ t, and by πt the policy output by the meta algorithm M(E ,Λ) to be played by the learner.
The regret of M(E ,Λ) can be decomposed as the sum of the regret suffered by the meta algorithm
aggregation scheme, M, and the regret from the black-box algorithm, E , played with any learning
rate λ ∈ Λ. The dynamic regret, defined in Eq. (5), can be decomposed, for any set of intervals
Ii = [ti, ti+1 − 1], with 1 = t1 < . . . < tm+1 = T + 1, and for any learning rate λ ∈ Λ, as

R[T ]

(
(πt,∗)t∈[T ]

)
=

m∑
i=1

∑
t∈Ii

F t(µπt,pt

)− F t(µπt,ti,λ,pt

)︸ ︷︷ ︸
Meta algorithm regret

+

m∑
i=1

∑
t∈Ii

F t(µπt,ti,λ,pt

)− F t(µπt,∗,pt

)︸ ︷︷ ︸
Black-box regret on Ii

:= Rmeta
[T ] +Rblack-box

[T ]

(
(πt,∗)t∈[T ]

)
. (11)
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The black-box regret on Ii is exactly the standard regret for T = |Ii| with a learning rate of λ.
Hence, in order to prove low dynamic regret for M(E ,Λ) we have to: show that M incurs a low
dynamic regret in each interval Ii; find a black-box algorithm E for CURL that has dynamic regret
as in Eq. (10), and build a learning rate grid Λ allowing us to perform nearly as well as the optimal
learning rate.

4 MetaCURL Algorithm

We call our meta-algorithm M MetaCURL. It is based on sleeping experts, is parameter-free, and
achieves optimal regret. Its construction is described below.

4.1 Learning with expert advice

General setting. In Learning with Expert Advice (LEA), a learner makes sequential online predictions
u1, . . . , uT in a decision space U , over a series of T episodes, with the help of K experts [22,
36, 9]. For each round t, each expert k makes a prediction ut,k, and the learner combines the
experts’ predictions by computing a vector vt := (vt,1, . . . , vt,K) ∈ SK , and predicting the convex
combination of experts’ prediction ut :=

∑K
k=1 v

t,kut,k. The environment then reveals a convex
loss function ℓt : U → R. Each expert suffers a loss ℓt,k := ℓt(ut,k), and the learner suffers a loss
ℓ̂t := ℓt(ut). The learner’s objective is to keep the cumulative regret with respect to each expert as
low as possible. For each expert k, this quantity is defined as Reg[T ](k) :=

∑T
t=1 ℓ̂

t − ℓt,k.

Sleeping experts. In our case, each black-box algorithm is an expert that does not produce solutions
outside its active interval. This problem can be reduced to the sleeping expert problem [8, 23], where
experts are not required to provide solutions at every time step. Let It,k ∈ {0, 1} define a signal equal
to 1 if expert k is active at episode t and 0 otherwise. The algorithm knows (It,k)k∈[K] and assigns a
zero weight to sleeping experts (It,k = 0 implies vt,k = 0). We would like to have a guarantee with
respect to expert k ∈ [K] but only when it is active. Hence, we now aim to bound a cumulative regret
that depends on the signal It,k: Regsleep

[T ] (k) :=
∑T

t=1 I
t,k(ℓ̂t − ℓt,k). There is a generic reduction

from the sleeping expert framework to the general LEA setting [3, 2] (see Appendix A.1).

4.2 Meta-aggregation scheme

In every episode t, for every learning rate λ ∈ Λ and s ≤ t, an instance Es,λ of the black-box
algorithm acts as an expert computing a policy πt,s,λ. The meta algorithm aims to aggregate these
predictions using a sleeping expert approach based on the expert’s losses. However, within CURL’s
framework, the meta algorithm faces two challenges:

Uncertainty. At the episode’s end, the learner has full information about the objective function F t. If
the learner also knew pt, they could recursively calculate the corresponding state-action distribution
µπt,s,λ,pt

using Eq. (2) and observe the actual loss of each expert, denoted as F t(µπt,s,λ,pt

). However,
given that pt is unknown to the learner, the true loss remains unobservable. Consequently, the meta-
algorithm needs to create an estimator p̂t for pt and utilize it to estimate the losses. We propose a
method to compute an estimator p̂t in Subsection 4.3.

Convexity. As discussed in Section 2, the objective functions F t are not convex over the space
of polices. However, CURL is equivalent to a convex problem over the state-action distributions
satisfying the Bellman’s flow as shown in Eq. (4). Therefore, instead of aggregating policies, the
meta algorithm aggregates the associated state-action distributions using the probability estimator
p̂t and the recursive scheme at Eq. (2). We detail MetaCURL in Alg. 1 when employed with the
Exponentially Weighted Average forecaster (EWA) as the sleeping expert subroutine (we detail EWA
in Appendix A.2).

4.3 Building an estimator of pt

As discussed earlier, applying the learning with experts framework requires estimating the loss of
non-played expert policies, which depends on estimating the non-stationary transition probabilities p̂t.
Standard RL techniques for bounding the L1 norm between the empirical estimator p̂t and the true

6



Algorithm 1 MetaCURL with EWA
1: Input: number of episodes T , finite set of learning rates Λ, black-box algo. E , EWA learning

rate η =
√
8 log(T )T

2: Initialization: p̂1n(·|x, a) := 1
|X | for all n ∈ [N ], (x, a) ∈ X ×A

3: for t = 1, . . . , T do
4: Start |Λ| new instances of E denoted by Et,λ for all λ ∈ Λ, assign each of them a new weight

vt,t,λ = 1
|Λ|t , and normalize weight vectors vt,s,λ for s ∈ [t−1] such that vt := (vt,s,λ)s≤t,λ∈Λ

is a probability vector in Rt×Λ

5: For s ≤ t and λ ∈ Λ, Es,λ outputs πt,s,λ

6: Compute recursively µπt,s,λ,p̂t

using Eq. (2) for all s ≤ t and λ ∈ Λ

7: Aggregate the state-action distributions: µt :=
∑t

s=1

∑
λ∈Λ µ

πt,s,λ,p̂t

vt,s,λ

8: Retrieve πt from µt: for all n, (x, a),

πt
n(a|x) =

{
µt
n(x,a)∑

a′∈A µn(x,a′) , if µt
n(x, a) ̸= 0

1
|A| , if µt

n(x, a) = 0

9: Learner plays πt: Agent starts at (xt0, a
t
0) ∼ µ0(·)

10: for n = 1, . . . , N do
11: Environment draws new state xtn ∼ ptn(·|xtn−1, a

t
n−1)

12: Learner observes agent’s external noise εtn
13: Agent chooses an action atn ∼ πt

n(·|xtn)
14: end for
15: Objective function F t is exposed
16: Compute experts’ losses ℓt,s,λ := F t(µπt,s,λ,p̂t

), for all s ≤ t and λ ∈ Λ
17: Compute the new weight vector vt+1: for all s ≤ t and λ ∈ Λ,

vt+1,s,λ =
vt,s,λ exp (−ηℓt,s,λ)∑t

s′=1

∑
λ′∈Λ v

t,s′,λ′ exp (−ηℓt,s′,λ′)
(EWA update)

18: Use agent’s external noise trajectory (εtn)n∈[N ] to compute p̂t+1 as in Subsection 4.3
19: end for

dynamics pt [44, 49] are not applicable here due to non-stationarity. To address this, we introduce a
second layer of sleeping experts for each (n, x, a) ∈ [N ]×X ×A, where each expert provides an
empirical estimate of pt based on different intervals. We then propose a new loss function in Eq. (12)
and conduct a novel regret analysis in Prop. 5.2 to achieve the optimal regret rate.

In each episode t, the learner calculates independent samples xtn,x,a ∼ ptn(·|x, a) utilizing the external
noise sequence (εtn)n∈[N ] observed (just let xtn,x,a = gn−1(x, a, ε

t
n−1), see Eq. (8)). Each expert

outputs an empirical estimator of ptn(·|x, a) using samples across different intervals. We assume T
experts, with expert s active in interval [s, T ]. Expert s at episode t > s outputs:

p̂t,sn (x′|x, a) =
Ns:t−1

n,x,a (x
′)

(t− s)
, with Ns:t−1

n,x,a (x
′) :=

t−1∑
q=s

1{xq
n,x,a=x′}.

We let p̂tn(·|x, a) be the result of employing sleeping EWA with experts p̂t,sn (·|x, a), for s < t.
Typically, in density estimation with EWA, a logarithmic loss − log(·) is used. However, in this case
− log(·) can be unbounded, so we opt here for a smoothed logarithmic loss, given by, for all q ∈ SX ,

ℓt(q) :=
∑
x∈X

− log
(
q(x) +

1

|X |

)
1{x̃t

n,x,a=x}, where x̃tn,x,a ∼
(
ptn(·|x, a) +

1

|X |

)
/2. (12)

The definition of this non-standard loss is further clarified during the regret analysis in Sec-
tion 5. This loss function is 1-exp concave (see Lemma 4 of [52]), hence the cumulative
regret of EWA with respect to each expert s ∈ [T ], for all episodes τ ∈ [s, T ], satisfies
Regsleep

[s,τ ](s) =
∑τ

t=s ℓ
t(p̂tn(·|x, a))− ℓt(p̂t,sn (·|, x, a)) ≤ log(T ) (for more information on the regret
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bounds of EWA with exp-concave losses, see Appendix A.2). We describe the complete online
scheme to compute p̂t in Alg. 3 at Appendix B.

5 Regret analysis

This section presents the main result concerning MetaCURL’s regret analysis. Subsection 5.1 shows an
upper bound forRmeta when MetaCURL is played with EWA and p̂t is computed as in Subsection. 4.3.
Subsection 5.2 introduces a learning rate grid for MetaCURL when the black-box algorithm meets
the dynamic regret criteria in Eq. (10), providing an upper bound for Rblack-box. Given the dynamic
regret decomposition of Eq. (11), we see that the combination of these results leads to our main result,
the full proof of which can be found in appendix (F) :
Theorem 5.1 (Main result). Let δ ∈ (0, 1). Playing MetaCURL, with a parametric black-box
algorithm E with dynamic regret as in Eq. (10), with a learning rate grid Λ :=

{
2−j |j =

0, 1, 2, . . . , ⌈log2(T )/2⌉
}

, and with EWA as the sleeping expert subroutine, we obtain, with probabil-
ity at least 1− 2δ, for any sequence of policies (πt,∗)t∈[T ],

R[T ]

(
(πt,∗)t∈[T ]

)
≤ Õ

(√
∆π∗T +min

{√
T∆p

∞, T
2/3(∆p)1/3

})
.

5.1 Meta-algorithm analysis

Given the uncertainty in the probability transition, the meta regret term can be decomposed as follows:

Rmeta
[T ] =

T∑
t=1

F t(µπt,pt

)− F t(µπt,p̂t

)︸ ︷︷ ︸
Rp̂

[T ]
(πt) (p̂t estimation)

+

m∑
i=1

∑
t∈Ii

F t(µπt,p̂t

)− F t(µπt,ti,λ,p̂t

)︸ ︷︷ ︸
sleeping LEA regret

+

m∑
i=1

∑
t∈Ii

F t(µπt,ti,λ,p̂t

)− F t(µπt,ti,λ,pt

)︸ ︷︷ ︸∑m
i=1

∑
t∈Ii

Rp̂
Ii

(πt,ti,λ) (p̂t estimation)

.

(13)

Sleeping LEA regret. Referring to Thm. A.1 in Appendix A, using sleeping EWA as the sleeping
expert subroutine of MetaCURL, with signals It,s = 1 for active experts (s ≤ t), experts’ convex
losses ℓt,s,λ := F t(µπt,s,λ,p̂t

), and learner loss ℓ̂t := F t(µπt,p̂t

), yields, for any m ∈ [T ] and for
any set of intervals Ii = [ti, ti+1 − 1], with 1 = t1 < . . . < tm+1 = T + 1,

m∑
i=1

∑
t∈Ii

F t(µπt,p̂t

)− F t(µπt,ti,λ,p̂t

) =

m∑
i=1

Regsleep
Ii

(ti)

≤
m∑
i=1

√
|Ii|
2

log(T |Λ|) ≤
√
mT

2
log(T |Λ|).

(14)

p̂t Estimation regret. In a scenario without uncertainty in the MDP’s probability transitions, the
meta-algorithm’s regret would simply be bounded by Eq. (14), the sleeping expert regret used as
a subroutine. However, given the presence of uncertainty, the main challenge in analyzing the
meta-regret comes from the regret terms associated with the estimator p̂t. We outline this analysis in
Prop. 5.2.

Proposition 5.2. Let δ ∈ (0, 1), C :=

√
1
2 log

(N |X ||A|2|X|T
δ

)
, and LF be the Lipschitz constant of

F t, with respect to the norm ∥ · ∥∞,1, for all t ∈ [T ]. With a probability of at least 1− δ, MetaCURL
obtains

Rp̂
[T ](π

t) :=

T∑
t=1

F t(µπt,pt

)− F t(µπt,p̂t

) ≤ 2LFN
2|X |

√
3|A|C2/3 log(T )1/3T 2/3(∆p)1/3.

For any m ∈ [T ] and for any set of intervals Ii = [ti, ti+1 − 1], with 1 = t1 < . . . < tm+1 = T + 1,
the same bound is valid for

∑m
i=1

∑
t∈Ii

Rp̂
Ii
(πt,ti,λ).
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Proof. The proof idea is based mainly on the formulation of p̂t described in Subsection 4.3. We
start by using the convexity of F t to linearize the expression, then we apply Holder’s inequality and
exploit the LF -Lipschitz property of F t to establish an upper bound based on the L1 norm difference
of the state-action distributions induced by the true probability transition and the estimator. Using
Lemma C.5 in Appendix C, we then obtain that

Rp̂
[T ] ≤ LF

T∑
t=1

N∑
n=1

n∑
j=1

∑
x,a

µπt,pt

j−1 (x, a)∥ptj(·|x, a)− p̂tj(·|x, a)∥1.

To use the results from Subsection 4.3, we first regularize pt and p̂t, for each (n, x, a), by averaging
each with the uniform distribution over X , that we denote by p0 := 1/|X |. As both probabilities are
now lower bounded, we can employ Pinsker’s inequality to convert the L1 norm into a KL divergence.
The sum over t ∈ [T ] of the KL divergence can then be decomposed as follows:

T∑
t=1

KL
(ptj(·|x, a) + p0

2

∣∣∣ p̂tj(·|x, a) + p0

2

)
=

m∑
i=1

∑
t∈Ii

KL
(ptj(·|x, a) + p0

2

∣∣∣ p̂t,tij (·|x, a) + p0

2

)
+

m∑
i=1

∑
t∈Ii

Ex̃t
j,x,a

[
log
(
p̂t,tij (x̃tj,x,a|x, a) + p0

)
− log

(
p̂tj(x̃

t
j,x,a|x, a) + p0

)]
,

where p̂t,tij (·|x, a) is the empirical estimate of ptj(·|x, a) calculated with the observed data from ti to
t− 1, and the expectation is over x̃tj,x,a ∼ (ptj(·|x, a) + p0)/2. The second term is the cumulative
regret of computing p̂t using EWA with loss as in Eq. (12), and is bounded by m log(T ). We finish
and give more details of the proof in Appendix D.

Prop. 5.2 together with Eq. (14) yields the main result of this subsection:

Proposition 5.3 (Meta regret bound). With the same assumptions as Prop. 5.2, for any m ∈ [T ], with
probability at least 1− 2δ,

Rmeta
[T ] ≤ 4LFN

2|X |
√
3|A|C2/3 log(T )1/3T 2/3(∆p)1/3 +

√
mT

2
log(T |Λ|).

5.2 Black-box algorithm analysis

Assuming E is a parametric black-box algorithm with dynamic regret satisfying Eq. (10) for any
learning rate λ > 0, we only need to address the selection of the λs grid and optimize across λ to
achieve our final bound on Rblack-box

[T ] .

Learning rate grid. The dynamic regret of Eq. (10) implies that any two λ that are a constant factor
of each other will guarantee the same upper-bound up to essentially the same constant factor. We
therefore choose an exponentially spaced grid

Λ :=
{
2−j |j = 0, 1, 2, . . . , ⌈log2(T )/2⌉

}
. (15)

The meta-algorithm aggregation scheme guarantees that the learner performs as well as the best
empirical learning rate. We thus obtain a bound on Rblack-box

[T ] , with its proof in Appendix E:

Proposition 5.4 (Black-box regret bound). Assume MetaCURL is played with a black-box algorithm
satisfying dynamic regret as in Eq. (10), with learning rate grid as in Eq. (15). Hence, for any
sequence of policies (πt,∗)t∈[T ],

Rblack-box
[T ]

(
(πt,∗)t∈[T ]

)
≤ N

(c2∆π∗
+ c3

c1

)
+ c1

√
T + 3

√
c1(c2∆π∗ + c3m)T +

T∆p

m
.

Greedy MD-CURL. Greedy MD-CURL, developed by [39], is a computationally efficient policy-
optimization algorithm known for achieving sublinear static regret in online CURL with adversarial
objective functions within a stationary MDP. In Thm. G.3 of Appendix G, we extend this analysis
showing that Greedy MD-CURL also achieves dynamic regret as in Eq. (10). To our knowledge, this
is the first dynamic regret result for a CURL algorithm. Hence, Greedy MD-CURL can be used as a
black-box for MetaCURL. We detail Greedy MD-CURL in Alg. 4 in Appendix G.
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6 Conclusion, discussion, and future work

In this paper, we present MetaCURL, the first algorithm for dealing with non-stationarity in CURL, a
setting covering many problems in the literature that modifies the standard linear RL configuration,
making typical RL techniques difficult to use. We also employ a novel approach to deal with non-
stationarity in MDPs using the learning with expert advice framework from the online learning
literature. The main difficulty in analyzing this method arises from uncertainty about probability
transitions. We overcome this problem by employing a second expert scheme, and show that
MetaCURL achieves near-optimal regret.

Compared to the RL literature, our approach is more efficient, deals with adversarial losses, and
has a better regret dependency concerning the varying losses, but to do so, we need to simplify
the assumptions about the dynamics (all uncertainty comes only from the external noise, that
is independent of the agent’s state-action). There seems to be a trade-off in RL: all algorithms
dealing with both non-stationarity and full exploration use UCRL-type approaches, and are thus
computationally expensive. We thus leave a question for future work: How can we effectively
manage non-stationarity and adversarial losses using efficient algorithms, all while addressing full
exploration?
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A Learning with expert advice

In this section, we take a closer look at the Learning with Expert Advice (LEA) framework. We
start by presenting, in Subsection A.1, a general reduction of the sleeping experts framework to
the standard framework. Thus, any LEA algorithm can be used as a sub-routine for MetaCURL.
In Section 5 of the main paper, we show a regret bound for MetaCURL using the Exponentially
Weighted Average Forecaster (EWA) algorithm [9], also known as Hedge. In Subsection A.2 we
present the main results of playing EWA with convex and exp-concave losses.

Setting. We recall the general setting of learning with expert advice (LEA) as presented in the main
paper: a learner makes sequential online predictions u1, . . . , uT in a decision space U , over a series of
T episodes, with the help of K experts. For each round t, each expert k makes a prediction ut,k, and
the learner combines the experts’ predictions by computing a vector vt := (vt,1, . . . , vt,K) ∈ SK , and
predicting ut :=

∑K
k=1 v

t,kut,k. The environment then reveals a convex loss function ℓt : U → R.
Each expert suffers a loss ℓt,k := ℓt(ut,k), and the learner suffers a loss ℓ̂t := ℓt(ut). The learner’s
objective is to keep the cumulative regret with respect to each expert as low as possible. For each
expert k, this quantity is defined as Reg[T ](k) :=

∑T
t=1 ℓ̂

t − ℓt,k.

A.1 Sleeping experts

The sleeping expert problem [8, 23] is a LEA framework where experts are not required to provide
solutions at every time step. Let It,k ∈ {0, 1} define a binary signal that equals 1 if expert k is
active at episode t and 0 otherwise. The algorithm knows (It,k)k∈[K] and assigns a zero weight
to sleeping experts. We would like to have a guarantee with respect to expert k ∈ [K] but only
when it is active. Hence, we now aim to bound a cumulative regret that depends on the signal
It,k: Regsleep

[T ] (k) :=
∑T

t=1 I
t,k(ℓ̂t − ℓt,k). We present a generic reduction from the sleeping expert

framework to the standard LEA framework [3, 2]:

Let, for all episodes t ∈ [T ],

ût :=

∑K
k=1 I

t,kvt,kut,k∑K
k=1 I

t,kvt,k
.

We play a standard LEA algorithm with modified outputs where, at episode t, expert k outputs

ũt,k :=

{
ut,k, if k is active at episode t
ût, if not.

A standard LEA algorithm gives an upper bound on the regret RegT (k) with respect to each expert k.
Using that

∑K
k=1 ũ

t,kvt,k = ût, we obtain that

Reg[T ](k) :=

T∑
t=1

ℓt
( K∑

k=1

ũt,kvt,k
)
− ℓt(ũt,k)

=

T∑
t=1

ℓt(ût)− ℓt(ũt,k)

=

T∑
t=1

It,k
(
ℓt(ût)− ℓt(ut,k)

)
=: Regsleep

[T ] (k).

Consequently, the cumulative regret with respect to each expert during the times it is active is upper
bounded by the standard regret of playing a LEA algorithm with the modified outputs.

A.2 Exponentially Weighted Average forecaster

The exponentially weighted average forecaster (EWA), also called Hedge, is a LEA algorithm that
chooses a weight that decreases exponentially fast with past errors. We present EWA in Alg. 2.
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Algorithm 2 EWA (Exponentially Weighted Average)
Input: [K] := {1, . . . ,K} a finite set of experts, v0 a prior over [K], a learning rate η > 0
for t ∈ {1, . . . , T} do

Observe loss function ℓt, compute the loss suffered by each expert ℓt,k := ℓt(ut,k) and suffer
loss ℓ̂t := ℓ

(∑K
k=1 v

t,kut,k
)

Update for all k ∈ [K] :

vt+1,k =
vt,k exp (−ηℓt,k)∑K

k′=1 v
t,k′ exp (−ηℓt,k′)

end for

We recall two results of playing EWA with convex losses, and with exp-concave losses, used in the
main paper:
Theorem A.1 (EWA with convex losses: Corollary 2.2 from [9]). If the ℓt losses are convex and take
value in [0, 1], then the regret of the learner playing EWA with any η > 0 satisfies, for any k ∈ [K],

Reg[T ](k) ≤
log(K)

η
+
Tη

8
.

In particular, with η =
√
8 log(K)/T , the upper bound becomes

√
(T/2) log(K).

Theorem A.2 (EWA with exp-concave losses: Thm. 3.2 from [9]). If the ℓt losses are η-exp concave,
then the regret of the learner playing EWA (with the same value of η) satisfies, for any k ∈ [K],

Reg[T ](k) ≤
log(K)

η
.
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B Algorithm for the online estimation of the probability kernel (p̂t estimator)

Algorithm 3 Online estimation of the probability kernel (p̂t estimator)
1: for t ∈ {1, . . . , T} do
2: Get agent’s external noise trajectory (εtn)n∈[N ] from MetaCURL
3: for (n, x, a) ∈ [N ]×X ×A do
4: Compute xtn,x,a = gn−1(x, a, ε

t
n−1)

5: Update the empirical estimations for s < t and x′ ∈ X :

p̂t,sn (x′|x, a) =
1{xt

n,x,a=x′}

t−s + (t−1−s)
t−s p̂t−1,s

n (x′|x, a)

6: Initialize a new estimator, p̂t,tn (x′|x, a) = 1{xt
n,x,a=x′} for all x′ ∈ X , assign it a new

weight vector vt,tn,x,a = 1
t , and normalize weight vectors vt,sn,x,a for s ∈ [t − 1] such that

vtn,x,a := (vt,sn,x,a)s≤t,λ∈Λ is a probability vector in Rt

7: Simulate a sample x̃tn,x,a from distribution
(
ptn(·|x, a) + 1

|X |
)
/2:

x̃tn,x,a =

{
xtn,x,a, with probability 1/2,

Uniformly over X , with probability 1/2,

and use it to build the loss function

ℓt(q) :=
∑
x∈X

− log
(
q(x) +

1

|X |

)
1{x̃t

n,x,a=x}

8: Update weights using EWA with loss ℓt: for all s ≤ t,

vt+1,s
n,x,a =

v̂t,sn,x,a exp
(
− ℓt(p̂t,sn (·|x, a))

)∑t
s′=1 v̂

t,s′
n,x,a exp

(
− ℓt(p̂t,s

′
n (·|x, a))

) (EWA update)

9: Compute p̂t+1
n (·|x, a) =

∑t
s=1 v

t+1,s
n,x,a p̂

t,s
n (·|x, a)

10: end for
11: Issue p̂t+1 to MetaCURL (line 18 of Alg. 1)
12: end for

C Auxiliary lemmas

We start with some auxiliary results. For t ∈ I := [ts+1, te] ⊆ [T ], we define the average probability
distribution for all n and (x, a) as

pt(x′|x, a) = 1

t− ts

t−1∑
s=ts

psn(x
′|x, a).

Lemma C.1. Let p̂t,ts be the empirical probability transition kernel computed with data from
episodes [ts, t− 1]. For any δ ∈ (0, 1), with probability 1− δ,

∥p̂t,tsn (·|x, a)− ptn(·|x, a)∥1 ≤

√
1

2(t− ts)
log

(
N |X ||A|2|X |T

δ

)
,

simultaneously for all n ∈ [N ], (x, a) ∈ X ×A, ts ∈ [T − 1], and t ∈ [ts + 1, T ].

Proof. For a fixed n ∈ [N ], (x, a) ∈ X ×A, and θ ∈ {−1, 1}|X |, we define for all s ∈ I ,

Y s
n,x,a,θ :=

∑
x′∈X

θ(x′)1{gn(x,a,εsn)=x′},

a Bernoulli random variable with mean value given by
∑

x′∈X θ(x
′)psn(x

′|x, a).
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The sequence of random variables given by
(
Y s
n,x,a,θ

)
s∈I

is independent, as we assume that the
external noises observed at each episode are all independent. Hence, by Hoeffding’s inequality we
get that, for all ξ > 0,

P
( t−1∑

s=ts

Y s
n,x,a,θ − E

[ t−1∑
s=ts

Y s
n,x,a,θ

]
≥ ξ

)
≤ exp

(−2ξ2

t− ts

)
.

Therefore, we have that

P
( ∑

x′∈X
θ(x′)

(
p̂t,tsn (x′|x, a)− ptn(x

′|x, a)
)
≥ ξ

)

= P
(

1

t− ts

[ t−1∑
s=ts

∑
x′∈X

θ(x′)1{gn(x,a,εsn)=x′} −
t−1∑
s=ts

θ(x′)psn(x
′|x, a)

]
≥ ξ

)

= P
(

1

t− ts

( t−1∑
s=ts

Y s
n,x,a,θ − E

[ t−1∑
s=ts

Y s
n,x,a,θ

])
≥ ξ

)
≤ exp

(
− 2ξ2(t− ts)

)
.

By applying an union bound on all n ∈ [N ], (x, a) ∈ X × A, and θ ∈ {−1, 1}|X | and noting that,
for any two probability distributions p, q ∈ ∆X , we have that

∥p− q∥1 = max
θ∈{−1,1}|X|

∑
x∈X

θ(x)(p(x)− q(x)),

we arrive at the final result.

Lemma C.2. Let t ∈ I := [ts + 1, te] ⊆ [T ]. For all n ∈ [N ], and (x, a) ∈ X ×A,

∥ptn(·|x, a)− ptn(·|x, a)∥1 ≤
t−1∑
j=ts

∆p
j ,

Proof. For t ∈ I , and for all n and (x, a) we have that

∥ptn(·|x, a)− ptn(·|x, a)∥1 =
∑
x′∈X

∣∣∣∣ptn(x′|x, a)− 1

t− ts

t−1∑
s=ts

psn(x
′|x, a)

∣∣∣∣
=
∑
x′∈X

1

t− ts

∣∣∣∣ t−1∑
s=ts

(
ptn(x

′|x, a)− psn(x
′|x, a)

)∣∣∣∣
≤ 1

t− ts

t−1∑
s=ts

t∑
j=s+1

∥pjn(·|x, a)− pj−1
n (·|x, a)∥1

=
1

t− ts

t−1∑
j=ts

(j − ts)∥pjn(·|x, a)− pj−1(·|x, a)∥1

≤
t−1∑
j=ts

∆p
j ,

where recall that we define ∆p
j := maxn,s,a ∥pj+1

n (·|x, a)− pjn(·|x, a)∥1.

Lemma C.3. Let p̂t,ts be the empirical probability transition kernel computed with data from
episodes [ts, t− 1]. For any δ ∈ (0, 1), with probability 1− δ,

∥ptn(·|x, a)− p̂t,tsn (·|x, a)∥1 ≤

√
1

2(t− ts)
log

(
N |X ||A|2|X |T

δ

)
+

t−1∑
j=ts

∆p
j ,

simultaneously for all n ∈ [N ], (x, a) ∈ X ×A, ts ∈ [T − 1], and t ∈ [ts + 1, T ].
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Proof. The result follows immediately from the triangular inequality and Lemmas C.1 and C.2.

Lemma C.4 (A version of the inverse of Pinsker’s inequality). Let p′, q′ be any distributions over
SX . Define

p :=
p′ + 1

|X |

2
, and q :=

q′ + 1
|X |

2
.

Therefore,

KL(p | q) ≤ 2|X |∥p− q∥21.

Proof. First, note that q is lower bounded by 1
2|X | , hence KL(p | q) is well defined. Also, by

convexity of the simplex, p, q ∈ SX , therefore

KL(p | q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
=
∑
x∈X

p(x) log

(
1 +

(p(x)
q(x)

− 1
))

≤
∑
x∈X

p(x)
(p(x)
q(x)

− 1
)

=
∑
x∈X

p(x)

q(x)

(
p(x)− q(x)

)
+
∑
x∈X

(
q(x)− p(x)

)
=
∑
x∈X

(
p(x)− q(x)

)2
q(x)

≤ 1

minx∈X q(x)
∥p− q∥21

≤ 2|X |∥p− q∥21.

Lemma C.5. For any strategy π ∈ (SA)
X×N , for any two probability kernels p = (pn)n∈[N ] and

q = (qn)n∈[N ] such that pn, qn : X ×A×X → [0, 1], and for all n ∈ [N ],

∥µπ,p
n − µπ,q

n ∥1 ≤
n−1∑
i=0

∑
x,a

µπ,p
i (x, a)∥pi+1(·|x, a)− qi+1(·|x, a)∥1.

Proof. From the definition of a state-action distribution sequence induced by a policy π in a MDP
with probability kernel p in Eq. (2), we have that for all (x, a) ∈ X ×A and n ∈ [N ],

µπ,p
n (x, a) =

∑
x′,a′

µπ,p
n−1(x

′, a′)pn(x|x′, a′)πn(a|x).
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Thus,

∥µπ,p
n − µπ,q

n ∥1 =
∑
x,a

∣∣µπ,p
n (x, a)− µπ,q

n (x, a)
∣∣

=
∑
x,a

∑
x′,a′

∣∣µπ,p
n−1(x

′, a′)pn(x|x′, a′)− µπ,q
n−1(x

′, a′)qn(x|x′, a′)
∣∣πn(a|x)

=
∑
x

∑
x′,a′

∣∣µπ,p
n−1(x

′, a′)pn(x|x′, a′)− µπ,q
n−1(x

′, a′)qn(x|x′, a′)
∣∣

=
∑
x

∑
x′,a′

∣∣µπ,p
n−1(x

′, a′)pn(x|x′, a′)− µπ,p
n−1(x

′, a′)qn(x|x′, a′)

+ µπ,p
n−1(x

′, a′)qn(x|x′, a′)− µπ,q
n−1(x

′, a′)qn(x|x′, a′)
∣∣

≤
∑
x′,a′

µπ,p
n−1(x

′, a′)∥pn(·|x′, a′)− qn(·|x′, a′)∥1 +
∑
x′,a′

∣∣µπ,p
n−1(x

′, a′)− µπ,q
n−1(x

′, a′)
∣∣

=
∑
x′,a′

µπ,p
n−1(x

′, a′)∥pn(·|x′, a′)− qn(·|x′, a′)∥1 + ∥µπ,p
n−1 − µπ,q

n−1∥1.

Since for n = 0, ∥µπ,p
0 − µπ,q

0 ∥1 = 0, by induction we get that

∥µπ,p
n − µπ,q

n ∥1 ≤
n−1∑
i=0

∑
x′,a′

µπ,p
i (x′, a′)∥pi+1(·|x′, a′)− qi+1(·|x′, a′)∥1.

Lemma C.6. For any pair of strategies π, π′ ∈ (∆A)
X×N , for any probability kernel p = (pn)n∈[N ]

such that pn : X ×A×X → [0, 1], and for all n ∈ [N ],

∥µπ,p
n − µπ′,p

n ∥1 ≤
n∑

i=1

∑
x∈X

ρπ,pi (x)∥πi(·|x)− π′
i(·|x)∥1,

where ρπ,pi (x) :=
∑

a∈A µ
π,p
i (x, a) for all x ∈ X and i ∈ [N ].

Proof. Using the recursive relation from Eq. (2) of a state-action distribution induced by a policy π
in a MDP with probability transition p we have that

∥µπ,p
n − µπ′,p

n ∥1 =
∑
x,a

∣∣µπ,p
n (x, a)− µπ′,p

n (x, a)
∣∣

≤
∑
x,a

∑
x′,a′

∣∣µπ,p
n−1(x

′, a′)πn(a|x)− µπ′,p
n−1(x

′, a′)π′
n(a|x)

∣∣pn(x|x′, a′)
≤
∑
x,a

∑
x′,a′

µπ,p
n−1(x

′, a′)pn(x|x′, a′)
∣∣πn(a|x)− π′

n(a|x)
∣∣

+
∑
x,a

∑
x′,a′

π′
n(a|x)pn(x|x′, a′)

∣∣µπ,p
n−1(x

′, a′)− µπ′,p
n−1(x

′, a′)
∣∣

=
∑
x

ρπ,pn (x)∥πn(·|x)− π′
n(·|x)∥1 + ∥µπ,p

n−1 − µπ′,p
n−1∥1.

Since µ0 is fixed for each state-action distribution sequence, by induction we obtain that

∥µπ,p
n − µπ′,p

n ∥1 ≤
n∑

i=1

∑
x

ρπ,qi (x)∥πt
i(·|x)− πt−1

i (·|x)∥1,

completing the proof.
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D Proof of Prop. 5.2: Rp̂
[T ] regret analysis

Proof. Here, we set an upper bound on the term Rp̂
[T ] where we pay for errors in estimating pt by p̂t.

Rp̂
[T ] :=

T∑
t=1

F t(µπt,pt

)− F t(µπt,p̂t

) ≤
T∑

t=1

⟨∇F t(µπt,pt

), µπt,pt

− µπt,p̂t

⟩

≤ LF

T∑
t=1

N∑
n=1

∥µπt,pt

n − µπt,p̂t

n ∥1

≤ LF

T∑
t=1

N∑
n=1

n∑
j=1

∑
x,a

µπt,pt

j−1 (x, a)∥ptj(·|x, a)− p̂tj(·|x, a)∥1.

To obtain the first inequality, we use the convexity of F t for all t ∈ [T ], then we use Holder’s
inequality and the fact that F t is LF -Lipschitz, and for the last inequality we use Lemma C.5.

The difficulty in analyzing the L1 difference between pt and p̂t arises from the non-stationarity of pt.
To overcome this we want to use the scheme presented in Subsection 4.3. By Cauchy-Schwartz, we
get that

Rp̂
[T ] ≤ LF

√√√√√√√
T∑

t=1

N∑
n=1

n∑
j=1

∑
x,a

(µπt,pt

j−1 (x, a))2︸ ︷︷ ︸
≤TN2

T∑
t=1

N∑
n=1

n∑
j=1

∑
x,a

∥ptj(·|x, a)− p̂tj(·|x, a)∥21︸ ︷︷ ︸
(∗)

.
(16)

Analysis of the L1 norm. We start by analysing the sum over t ∈ [T ] of the L1 norm in term (∗).
For each n ∈ [N ], j ∈ [n] and (x, a) ∈ X ×A,

T∑
t=1

∥ptj(·|x, a)− p̂tj(·|x, a)∥21 = 4

T∑
t=1

∥∥∥∥∥p
t
j(·|x, a) + 1

|X |

2
−
(
p̂tj(·|x, a) + 1

|X |

2

)∥∥∥∥∥
2

1

≤ 8

T∑
t=1

KL

(
ptj(·|x, a) + 1

|X |

2

∣∣∣∣ p̂tj(·|x, a) + 1
|X |

2

)
,

where we apply Pinsker’s inequality.

Consider a sequence of episodes 1 = t1 < t2 < . . . < tm+1 = T + 1, with Ii := [ti, ti+1 − 1], such
that ∆p

Ii
≤ ∆p/m for all i ∈ [m]. Decomposing the KL sum over t ∈ [T ] as a sum on the intervals

Ii, we obtain that
T∑

t=1

KL

(
ptj(·|x, a) + 1

|X |

2

∣∣∣∣ p̂tj(·|x, a) + 1
|X |

2

)
=

m∑
i=1

∑
t∈Ii

KL

(
ptj(·|x, a) + 1

|X |

2

∣∣∣∣ p̂t,tij (·|x, a) + 1
|X |

2

)
︸ ︷︷ ︸

(i)

+

m∑
i=1

∑
t∈Ii

Ex̃t
j,x,a

[
log

(
p̂t,tij (x̃tj,x,a|x, a) + 1

|X |

2

)
− log

(
p̂tj(x̃

t
j,x,a|x, a) + 1

|X |

2

)]
︸ ︷︷ ︸

(ii)

,

where the expectation of the second term is with respect to x̃tj,x,a ∼
(
ptj(·|x, a) + 1

|X |

)
/2.

We analyse each term separately:

First, note that (ii) is the expectation over x̃tj,x,a of the cumulative regret of sleeping EWA on interval
Ii with respect to the expert ti using the loss function ℓt defined in Eq. (12). This term is upper
bounded by log(T ) (see Subection 4.3 of the main paper). From it we deduce that

(ii) ≤
m∑
i=1

log(T ) = m log(T ).
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Regarding term (i), we start by using the inverse of Pinsker’s inequality presented in Lemma C.4,

(i) ≤
m∑
i=1

∑
t∈Ii

2|X |

∥∥∥∥∥p
t
j(·|x, a) + 1

|X |

2
−
(
p̂t,tij (·|x, a) + 1

|X |

2

)∥∥∥∥∥
2

1

=

m∑
i=1

∑
t∈Ii

|X |
2

∥ptj(·|x, a)− p̂t,tij (·|x, a)∥21.

To simplify notations, from now on we let C :=

√
1
2 log

(
N |X ||A|2|X|T

δ

)
. Applying Lemma C.3,

we obtain that

m∑
i=1

∑
t∈Ii

|X |
2

∥ptj(·|x, a)− p̂t,tij (·|x, a)∥21

≤ |X |
2

m∑
i=1

∑
t∈Ii

[
C2

t− ti + 1
+

2C√
t− ti + 1

t−1∑
k=ti

∆p
k +

( t−1∑
k=ti

∆p
k

)2]

≤ |X |
2

m∑
i=1

[
C2 log(|Ii|) + 2C

√
|Ii|∆p

Ii
+ |Ii|(∆p

Ii
)2
]

≤ |X |
2

[
C2m log(T ) + 2C

√
T

∆p

√
m

+ T
(∆p)2

m2

]
.

Joining the upper bounds of (i) and (ii) we conclude that

T∑
t=1

∥ptj(·|x, a)− p̂tj(·|x, a)∥21 ≤ 8
(
(i) + (ii)

)
≤ 8
(
(C2 |X |

2
+ 1)m log(T ) + 2

|X |
2
C
√
T

∆p

√
m

+ T
|X |
2

(∆p)2

m2

)
.

Thus, for m =
(

2T∆p

C2 log(T )

)1/3
,

T∑
t=1

∥ptj(·|x, a)− p̂tj(·|x, a)∥21 ≤ 12|X |C4/3 log(T )2/3T 1/3(∆p)2/3. (17)

Back to the analysis of Rp̂
[T ]. Using the inequality in Eq. (17) to bound the L1 norm of (∗) on

Eq. (16), we obtain that

Rp̂
[T ] ≤ LFN

√
T

√√√√ N∑
n=1

n−1∑
j=1

∑
x,a

12|X |C4/3 log(T )2/3T 1/3(∆p)2/3

≤ 2LFN
2|X |

√
3|A|C2/3 log(T )1/3T 2/3(∆p)1/3,

concluding the proof.
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Note that for
∑m

i=1

∑
t∈Ii

Rp̂
Ii
(πt,ti,λ) (the third term of the meta-regret decomposition of Eq. (13)),

following the same procedure as above, we obtain that
m∑
i=1

∑
t∈Ii

F t(µπt,ti ,p̂t

)− F t(µπt,ti ,pt

)

≤
m∑
i=1

∑
t∈Ii

⟨∇F t(µπt,ti ,p̂t

), µπt,ti ,p̂t

− µπt,ti ,pt

⟩

≤ LF

m∑
i=1

∑
t∈Ii

∥µπt,ti ,p̂t

n − µπt,ti ,pt

n ∥1

≤ LF

m∑
i=1

∑
t∈Ii

N∑
n=1

n∑
j=1

∑
x,a

µπt,ti ,pt

j−1 (x, a)∥ptj(·|x, a)− p̂tj(·|x, a)∥1

≤ LF

√√√√√√√
m∑
i=1

∑
t∈Ii

N∑
n=1

n∑
j=1

∑
x,a

(µπt,ti ,pt

j−1 (x, a))2︸ ︷︷ ︸
≤TN2

T∑
t=1

N∑
n=1

n∑
j=1

∑
x,a

∥ptj(·|x, a)− p̂tj(·|x, a)∥21︸ ︷︷ ︸
independent of πt,ti

.

Since the second term is independent of πt,ti , the analysis is the same as before and we obtain the
same upper bound as for Rp̂

[T ](π
t).

E Proof of Prop. 5.4: Rblack-box
[T ] regret analysis

Proof. Assume a Black-box algorithm satisfying the dynamic regret bound of Eq. (10), i.e., for any
interval I ⊆ [T ], with respect to any sequence of policies (πt,∗)t∈I , and for any learning rate λ,

RI

(
(πt,∗)t∈I

)
≤ c1λ|I|+

c2∆
π∗

I + c3
λ

+ |I|∆p
I . (18)

Consider any sequence of episodes 1 = t1 < t2 < . . . < tm+1 = T + 1, forming intervals
Ii := [ti, ti+1 − 1] for all i ∈ [m]. We can decompose the black-box regret over [T ] as

Rblack-box
[T ]

(
(πt,∗)t∈[T ]

)
=

m∑
i=1

∑
t∈Ii

F t(µπt,ti,λ,pt

)− F t(µπt,∗,pt

)

≤
m∑
i=1

c1λ|Ii|+
c2∆

π∗

Ii
+ c3

λ
+ |Ii|∆p

I

≤ c1λT +
c2∆

π∗
+ c3

λ
+
T∆p

m
.

In principle, we would like to select the optimal λ that optimizes this dynamic regret. However, as
∆π∗

may be unknown in advance, this is not possible. We show here that running MetaCURL with
the learning rate set Λ := {2−j |j = 0, 1, 2, . . . , ⌈[log2(T )/2⌉} ensures that the optimal empirical
learning rate is close to the true optimal one by a factor of 2 and that the learner always plays as well
as the optimal empirical learning rate.

Denote by λ∗ the optimal learning rate and λ̂∗ the empirical optimal learning rate in Λ. Note that

λ∗ =

√
c2∆π∗ + c3

c1T
.

We consider three different cases:

If λ∗ ≥ 1: this implies that c2∆
π∗

+c3
c1T

≥ 1. Therefore, we have that T ≤ c2∆
π∗

+c3
c1

. As we assume
f tn ∈ [0, 1] for all time steps n ∈ [N ] and episodes t ∈ [T ], then

Rblack-box
[T ]

(
(πt,∗)t∈[T ]

)
≤ NT +

T∆p

m
≤ N

(
c2∆

π∗
+ c3

c1

)
+
T∆p

m
.
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If λ∗ ≤ 1/
√
T : this implies that c2∆

π∗
+c3

c1
≤ 1. Therefore, taking λ̂∗ = 1/

√
T ∈ Λ, we have that

Rblack-box
[T ]

(
(πt,∗)t∈[T ]

)
≤ λc1T +

c1
λ

+
T∆p

m
≤ c1

√
T +

T∆p

m

If λ∗ ∈ [1/
√
T , 1]: in this case, given the construction of Λ, there is a λ̂∗ ∈ Λ such that

λ∗ ≤ λ̂∗ ≤ 2λ∗. Hence,

Rblack-box
[T ]

(
(πt,∗)t∈[T ]

)
≤ 3
√
c1(c2∆π∗ + c3m)T +

T∆p

m
.

Therefore, by taking λ = λ̂∗ in the analysis, we can ensure that

Rblack-box
[T ]

(
(πt,∗)t∈[T ]

)
=

m∑
i=1

∑
t∈Ii

F t(µπt,ti,λ,pt

)− F t(µπt,∗,pt

)

≤ N

(
c2∆

π∗
+ c3

c1

)
+ c1

√
T + 3

√
c1(c2∆π∗ + c3m)T +

T∆p

m
.

F Proof of Thm. 5.1: Main result

Joining the results from the meta-regret bound and the black-box regret bound, we get the main result
of the paper:

Theorem (Main result). Let δ ∈ (0, 1). Playing MetaCURL, with black-box algorithm with dynamic
regret as in Eq. (10), with a learning rate grid Λ :=

{
2−j |j = 0, 1, 2, . . . , ⌈1/2 log2(T )⌉

}
, and with

EWA as the sleeping expert subroutine, we obtain, with probability at least 1− 2δ, for any sequence
of policies (πt,∗)t∈[T ],

R[T ]

(
(πt,∗)t∈[T ]

)
≤ Õ

(√
∆π∗T +min

{√
T∆p

∞, T
2/3(∆p)1/3

})
.

Proof. Define a sequence of episodes 1 = t1 < t2 < . . . < tm+1 = T + 1, with Ii := [ti, ti+1 − 1],
such that ∆p

Ii
≤ ∆p/m for all i ∈ [m].

The dynamic regret of M(E ,Λ) with respect to any sequence of policies (πt,∗)t∈[T ], and any λ ∈ Λ,
can be decomposed as

R[T ]

(
(πt,∗)t∈[T ]

)
=

m∑
i=1

∑
t∈Ii

F t(µπt,pt

)− F t(µπt,ti,λ,pt

)︸ ︷︷ ︸
Meta algorithm regret

+

m∑
i=1

∑
t∈Ii

F t(µπt,ti,λ,pt

)− F t(µπt,∗,pt

)︸ ︷︷ ︸
Black-box regret on Ii

.

:= Rmeta
[T ] +Rblack-box

[T ]

(
(πt,∗)t∈[T ]

)
.

From Prop. 5.3, we have that with probability at least 1− 2δ, and C :=

√
1
2 log

(
N |X ||A|2|X|T

δ

)
,

Rmeta
[T ] ≤ 4LFN

2|X |
√
3|A|C2/3 log(T )1/3T 2/3(∆p)1/3 +

√
mT

2
log(T |Λ|).

In addition, for Λ :=
{
2−j |j = 0, 1, 2, . . . , ⌈1/2 log2(T )⌉

}
, and λ equal the best empirical learning

rate in Λ, Prop. 5.4 yields that, if the black-box algorithm has dynamic regret as in Eq. (10) for any
interval in T , then

Rblack-box
[T ]

(
(πt,∗)t∈[T ]

)
≤ N

(
c2∆

π∗
+ c3

c1

)
+ c1

√
T + 3

√
c1(c2∆π∗ + c3m)T +

T∆p

m
.
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Therefore, joining both results, we get that,

R[T ]

(
(πt,∗)t∈[T ]

)
≤ 4LFN

2|X |
√
3|A|C2/3 log(T )1/3T 2/3(∆p)1/3 +

√
mT

2
log(T log2(T ))

+N

(
c2∆

π∗
+ c3

c1

)
+ c1

√
T + 3

√
c1(c2∆π∗ + c3m)T +

T∆p

m
.

Thus, for m =
(

2
√
T∆p

γ

)2/3
, with γ :=

√
log(T log2(T ))

2 + 3
√
c1c3, we have that

R[T ]

(
(πt,∗)t∈[T ]

)
≤ T 2/3∆1/3

(
4LFN

2|X |
√

3|A|C2/3 log(T )1/3 + 2γ2/3
)

+N

(
c2∆

π∗
+ c3

c1

)
+ c1

√
T + 3

√
c1c2∆π∗T

= Õ
(√

∆π∗T +min
{√

T∆p
∞, T

2/3(∆p)1/3
})
.

G Greedy MD-CURL dynamic regret analysis

Here we introduce Greedy MD-CURL developed by [39], a computationally efficient policy-
optimization algorithm known for achieving sublinear static regret in online CURL with adversarial
objective functions within a stationary MDP. We begin by detailing Greedy MD-CURL as presented
in [39] in Alg. 4. We then provide a new analysis upper bounding the dynamic regret of Greedy
MD-CURL in a quasi-stationary interval valid for any learning rate λ. Hence, Greedy MD-CURL can
be used as a black-box for MetaCURL. This is the first dynamic regret analysis for a CURL approach.

Let Mp,∗
µ0

denote the subset of Mp
µ0

where the corresponding policies π are such that πn(a|x) ̸= 0
for all (x, a) ∈ X ×A, n ∈ [N ]. For any probability transition p, Γ : Mp

µ0
×Mp,∗

µ0
→ R such that,

for all µ ∈ Mp
µ0

with its associated policy π, and µ′ ∈ Mp,∗
µ0

with its associated policy π′, we have

Γ(µπ, µπ′
) :=

N∑
n=1

E(x,a)∼µπ
n(·)

[
log

(
πn(a|x)
π′
n(a|x)

)]
. (19)

This divergence Γ is a Bregman divergence (see Proposition 4.3 of [39]). Problem (20) implemented
with this Bregman divergence Γ has a closed form solution, as showed in [39].
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Algorithm 4 Greedy MD-CURL
1: Input: number of episodes T , initial sequence of policies π1 ∈ (SA)

X×N , initial state-action
distribution µ0, learning rate λ > 0, sequence of parameters (αt)t∈[T ].

2: Initialization: ∀(x, a), p̂1(·|x, a) = 1
|X | and µ1 = µ̃1 := µπ1,p̂1

3: for t = 1, . . . , T do
4: Agent starts at (xt0, a

t
0) ∼ µ0(·)

5: for n = 1, . . . , N do
6: Environment draws new state xtn ∼ pn(·|xtn−1, a

t
n−1)

7: Learner observes agent’s external noise εtn
8: Agent chooses an action atn ∼ πt

n(·|xtn)
9: end for

10: Update probability kernel estimate for all (x, a):
11:

p̂t+1
n (·|x, a) := 1

t
δgn(x,a,ϵtn) +

t− 1

t
p̂tn(·|x, a)

12: Compute policy for the next episode:
13:

µt+1 ∈ argmin
µ∈Mp̂t+1

µ0

{λ⟨∇F t(µt), µ⟩+ Γ(µ, µ̃t)} (20)

14: for all n ∈ [N ], (x, a) ∈ X ×A,

πt+1
n (a|x) = µt+1

n (x, a)∑
a′∈A µ

t+1
n (x, a′)

15: Compute π̃t+1 := (1− αt+1)π
t+1 + αt+1/|A|

16: Compute µ̃t+1 := µπ̃t+1,p̂t+1

as in Eq. (2)
17: end for
18: return (πt)t∈[T ]

G.1 Dynamic regret analysis of Greedy MD-CURL

Let us assume we analyze our regret in an interval I := [ts, te] ⊆ [T ]. We denote by RI the dynamic
regret of an instance of Greedy MD-CURL started at episode ts until the end of interval I at episode
te. We denote by πt the policy produced by this instance of Greedy MD-CURL at episode t ∈ I , pt
the true probability transition kernel, and

p̂tn(x
′|x, a) = 1

t− ts

t−1∑
s=ts

1{gn(x,a,εsn)=x′},

the empirical estimate of the probability kernel at episode t, with data from the beginning of the
interval I .

We define and decompose the dynamic regret RI with respect to any sequence of policies (πt,∗)t∈I

into three terms as follows:

RI

(
(πt,∗)t∈I

)
:=
∑
t∈I

F t(µπt,pt

)− F t(µπ∗,t,pt

) =
∑
t∈I

F t(µπt,pt

)− F t(µπt,p̂t

)︸ ︷︷ ︸
RMDP

I (πt)

+
∑
t∈I

F t(µπt,p̂t

)− F t(µπ∗,t,p̂t

)︸ ︷︷ ︸
Rpolicy

I

(
(πt,∗)t∈I

)
+
∑
t∈I

F t(µπt,∗,p̂t

)− F t(µπt,∗,pt

)︸ ︷︷ ︸
RMDP

I (πt,∗)

.
(21)

The terms RMDP
I (πt) and RMDP

I (πt,∗) pay for our lack of knowledge of the true MDP, forcing us to
use its empirical estimate. The term Rpolicy

I corresponds to the loss incurred in calculating the policy
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by solving the optimization problem given in Eq. (20). Below, we present the first analysis of the
dynamic regret for a CURL algorithm. We consider each term separately.

G.1.1 RMDP
I analysis

In Section 2 we assume that the deterministic part of the dynamics, given by gn in equation (8) for
each time step n, is known in advance. The source of uncertainty and non-stationarity in the MDP
comes only from the external noise dynamics, that is independent of the agent’s state-action pair.
Therefore, we do not need to explore in this setting, so the analysis of the two terms RMDP

I (πt) and
RMDP

I (πt,∗) are the same.

Proposition G.1. With probability at least 1− δ,

RMDP
I (πt) ≤ LFN

2

√
1

2
log

(
N |X ||A|2|X |T

δ

)√
|I|+ |I|∆p

I ,

for all intervals I ∈ [T ]. The same result is valid for RMDP
I (πt,∗).

Proof. We start by using the convexity of F t, Holder’s inequality, that F t is LF -Lipschitz, and
Lemma C.5 to obtain that

RMDP
I (πt) ≤ LF

te∑
t=ts

N∑
n=1

n∑
j=1

∑
x,a

µπi,t,pt

j−1 (x, a)∥ptj(·|x, a)− p̂tj(·|x, a)∥1. (22)

Applying Lemmas C.1 and C.2, we have that for any δ ∈ (0, 1), with probability 1− δ,

∥ptj(·|x, a)− p̂tj(·|x, a)∥1 ≤ ∥ptj(·|x, a)− ptj(·|x, a)∥1 + ∥ptj(·|x, a)− p̂tj(·|x, a)∥1

≤

√
1

2(t− ts)
log

(
N |X ||A|2|X |T

δ

)
+

t−1∑
k=ts

∆p
k.

Using this to continue the upper bound of Eq. (22), we conclude our proof:

RMDP
I (πt) ≤ LFN

2
te∑

t=ts

(√
1

2(t− ts)
log

(
N |X ||A|2|X |T

δ

)
+

t−1∑
k=ts

∆p
k

)

≤ LFN
2

√
1

2
log

(
N |X ||A|2|X |T

δ

)√
|I|+ |I|∆p

I .

G.1.2 Rpolicy
I analysis

Proposition G.2. Let b be a constant defined as

b := 8N2 + 2N2 log(|A|) log(|I|)
(
1 + log(|I|)

)
+ 2N log(|I|) +N log(|A|).

Then, Greedy MD-CURL obtains, for any sequence of policies (πt,∗)t∈I , and for any learning rate
λ > 0,

Rpolicy
I

(
(πt,∗)t∈I

)
≤ λL2

F |I|+
N2

λ
∆π∗

I + b
1

λ
.

Proof. We adapt the proof of Prop. 5.7 of [39] that upper bounds the static regret incurred when
solving the optimization Problem (20), for a proof that upper bounds the dynamic regret. The main
difference is that, in the case of static regret, we compare ourselves to the same policy throughout the
interval, whereas in the case of dynamic regret, at each episode we compare ourselves to a different
policy given by πt,∗. Consequently, the analysis remains the same as in [39] for all terms that do not
depend on πt,∗, but requires a new analysis in terms that do depend on it.
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To simplify notation, we take ℓt := ∇F t(µπt,p̂t

) and µt := µπt,p̂t

. We can use the same reasoning
as in appendix D.5 of [39] to show that

Rpolicy
I ≤ 1

λ

∑
t∈I

[
λ⟨ℓt, µt − µt+1⟩ − Γ(µt+1, µ̃t)

]
︸ ︷︷ ︸

A

+
1

λ

∑
t∈I

[
Γ(µπt,∗,p̂t+1

, µ̃t)− Γ(µπt,∗,p̂t+1

, µt+1)
]

︸ ︷︷ ︸
B

.

Since the A term does not depend on πt,∗, its analysis follows directly from [39], and is given by

A ≤ λL2
F |I|+

1

2λ

∑
t∈I

(
2N

t− ts
+ 2Nαt

)2

, (23)

where LF is the Lipschitz constant of F t and αt is an input parameter of Greedy MD-CURL.

We then proceed to analyze term B. Again, following the procedure of appendix D.5 of [39], we
obtain that

B =

T∑
t=1

Γ(µπt,∗,p̂t+1

, µ̃t)− Γ(µπt−1,∗,p̂t

, µ̃t)︸ ︷︷ ︸
(i)

+

T∑
t=1

Γ(µπt−1,∗,p̂t

, µ̃t)− Γ(µπt−1,∗,p̂t

, µt)︸ ︷︷ ︸
(ii)

+

T∑
t=1

Γ(µπt−1,∗,p̂t

, µt)− Γ(µπt,∗,p̂t+1

, µt+1)︸ ︷︷ ︸
(iii)

.

Let ψ : (SX×A)
N → R denote the function inducing the Bregman divergence Γ of Eq. (19). [39]

further shows that:

• (i) ≤ −ψ(µπti−1,∗,p̂ti
) +N

∑
t∈I log

(
|A|
αt

)
∥µπt−1,∗,p̂t − µπt,∗,p̂t+1∥∞,1

• (ii) ≤ 2N
∑

t∈I αt, and this upper bound is found independently of πt,∗

• (iii) ≤ Γ(µπt−1,∗,p̂t

, µt).

Lemma D.6 of [39] shows that,

−ψ(µπti−1,∗,p̂ti
) + Γ(µπti−1,∗,p̂ti

, µti) ≤ N log(|A|).

Only term (i), which involves ∥µπ∗,t−1,p̂t − µπ∗,t,p̂t+1∥∞,1, depends on the sequence (πt,∗)t∈[T ],
requiring then a new analysis. For this purpose, we rely on the following two results:

• From Lemma 5.6 of [39], we have that, for all strategies π,

∥µπ,p̂t

− µπ,p̂t+1

∥∞,1 ≤ 2N

t− ts
.

• From auxiliary Lemma C.6 proved in Appendix C we have that

∥µπ∗,t−1,p̂t+1

n − µπt,∗,p̂t+1

n ∥1 ≤
n∑

i=1

∑
x∈X

ρπ
t−1,∗

i (x)∥πt,∗
i (·|x)− πt−1,∗

i ∥1 ≤ N∆π∗

t .

Therefore, using the triangular inequality and the two results above, we obtain that

∥µπ∗,t−1,p̂t

− µπt,∗,p̂t+1

∥∞,1 ≤ ∥µπt−1,∗,p̂t

− µπt−1,∗,p̂t+1

∥∞,1 + ∥µπt−1,∗,p̂t+1

− µπt,∗,p̂t+1

∥∞,1

≤ 2N

t
+N∆π∗

t .

Therefore, the bound on term B is given by

B ≤ 1

λ

[
N
∑
t∈I

log
( |A|
αt

)( 2N

t− ts
+N∆π∗

t

)
+ 2N

∑
t∈I

αt +N log(|A|)
]
. (24)
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Final step: joining all results

Joining the upper bounds on term A from Eq. (23) and on term B from Eq. (24), we have that

Rpolicy
I

(
(πt,∗)t∈I

)
≤ A+B

≤ λL2
F |I|+

1

2λ

∑
t∈I

(
2N

t− ts
+ 2Nαt

)2

+
1

λ

[
N
∑
t∈I

log
( |A|
αt

)( 2N

t− ts
+N∆π∗

t

)
+ 2N

∑
t∈I

αt +N log(|A|)
]
.

If we take the learning rate as αt = 1/t, then, for all λ > 0,

Rpolicy
I

(
(πt,∗)t ∈ I

)
≤ λL2

F |I|+
N2

λ
∆π∗

I

+
1

λ

[
8N2 + 2N2 log(|A|) log(|I|)

(
1 + log(|I|)

)
+ 2N log(|I|) +N log(|A|)

]
= λL2

F |I|+
N2∆π∗

I + b

λ
,

where b := 8N2 + 2N2 log(|A|) log(|I|)
(
1 + log(|I|)

)
+ 2N log(|I|) +N log(|A|).

G.2 Final Greedy MD-CURL regret analysis

Replacing the bounds of Prop. G.1 and G.2 in Eq. (21) yields the final upper bound of Greedy MD-
CURL’s dynamic regret for any interval I ⊆ T with respect to any sequence of policies (πt,∗)t∈I :
Theorem G.3 (Dynamic regret of Greedy MD-CURL). Let b be a constant defined as

b := 8N2 + 2N2 log(|A|) log(|I|)
(
1 + log(|I|)

)
+ 2N log(|I|) +N log(|A|).

Let δ ∈ (0, 1). With probability at least 1− 2δ, for any interval I ⊆ [T ], for any sequence of policies
(πt,∗)t∈I , for any learning rate λ > 0, and for αt := 1/t, Greedy MD-CURL obtains

RI

(
(πt,∗)t∈I

)
≤ λL2

F |I|+
N2∆π∗

I + b

λ
+ 2FN2

√
1

2
log

(
N |X ||A|2|X |T

δ

)√
|I|+ 2|I|∆p

I

Hence, Greedy MD-CURL meets the requisite dynamic regret bound from Eq. (10) to serve as a
black-box algorithm for MetaCURL achieving optimal dynamic regret.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the main results are in the paper, and all proofs are carefully stated in
the Appendix. All auxiliary results used to obtain the main results are also included in the
Appendix. A proof sketch is provided for the main results in the main paper. All results are
properly referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This is a theoretical paper, with no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a theoretical paper, with no experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theoretical paper, with no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theoretical paper, with no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theoretical paper, with no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The results presented in this paper are largely theoretical. The framework
provided in this paper is very general and could be applied to any reinforcement learning or
concave utility reinforcement learning problem in a tabular MDP. Therefore, as with any
reinforcement learning algorithm, it is possible that the algorithms developed from the ideas
presented in this paper could be applied in contexts that have negative societal impacts, or in
contexts where the reward function has a negative negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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