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Abstract

Massively multilingual pretrained models yield001
state-of-the-art results in a wide range of cross-002
lingual natural language processing tasks. For003
machine translation, the de facto way to lever-004
age knowledge of pretrained models is fine-005
tuning on parallel data from one or multiple lan-006
guage pairs. Multilingual fine-tuning improves007
performance on medium- and low-resource lan-008
guages but requires modifying the entire model009
and can be prohibitively expensive. Train-010
ing either language-pair specific or language-011
agnostic adapters while keeping most of the012
pretrained model’s parameters frozen has been013
proposed as a lightweight alternative. However,014
the former do not learn useful cross-lingual rep-015
resentations for multiple language pairs, while016
the latter share parameters for all languages017
and potentially have to deal with negative in-018
terference. In this paper, we propose training019
language-family adapters on top of a pretrained020
multilingual model to facilitate cross-lingual021
transfer. Using language families, our model022
consistently outperforms other adapter-based023
approaches and is on par with multilingual fine-024
tuning, while being more efficient. We also025
demonstrate that language-family adapters pro-026
vide an effective method to translate to lan-027
guages unseen during pretraining and substan-028
tially outperform the baselines.1029

1 Introduction030

Recent work in multilingual natural language pro-031

cessing (NLP) has created models that reach com-032

petitive performance, while incorporating many033

languages into a single architecture (Devlin et al.,034

2019; Conneau et al., 2020). Because of its abil-035

ity to share cross-lingual representations, which036

largely benefits lower-resource languages, multi-037

lingual NMT is an attractive research field (Firat038

et al., 2016; Zoph et al., 2016; Johnson et al., 2017;039

1Our source code is attached and will be made publicly
available.

Ha et al., 2016). Multilingual models are also ap- 040

pealing because they are more efficient in terms 041

of the number of model parameters, enabling sim- 042

ple deployment (Aharoni et al., 2019). Massively 043

multilingual pretrained models can be used for mul- 044

tilingual neural machine translation (NMT), if they 045

are fine-tuned in a many-to-one (to map any of the 046

source languages into a target language, which is 047

usually English) or one-to-many (to translate a sin- 048

gle source language into multiple target languages) 049

fashion (Aharoni et al., 2019; Tang et al., 2020). 050

We identify some major challenges for massively 051

multilingual NMT models. Multilingually fine- 052

tuning pretrained models to create NMT systems 053

has recently been suggested (Tang et al., 2020), yet 054

it requires vast computational resources. There- 055

fore, previous work has focused on efficiently train- 056

ing multilingual NMT models. To fine-tune a pre- 057

trained multilingual model for NMT in an efficient 058

way, adapters (Rebuffi et al., 2017; Houlsby et al., 059

2019) have been proposed (Bapna and Firat, 2019). 060

Fine-tuning a different set of adapters on each lan- 061

guage pair, without updating the parameters of the 062

pretrained model, has been shown to improve re- 063

sults for high-resource languages. Low-resource 064

languages do not benefit from this approach though, 065

as adapters are trained with limited data. In a sim- 066

ilar vein, Stickland et al. (2021) fine-tune a pre- 067

trained model for multilingual NMT using a single 068

set of adapters, trained on all languages. Their ap- 069

proach manages to narrow the gap but still does not 070

perform on par with multilingual fine-tuning. 071

Another issue is that while many-to-one multilin- 072

gual NMT obtains high-quality translations, one-to- 073

many generally yields smaller improvements. This 074

showcases the difficulty of one-to-many translation, 075

which essentially tries to learn a conditional lan- 076

guage model and decode into multiple languages 077

(Arivazhagan et al., 2019; Tang et al., 2020). As 078

one-to-many translation forces different languages 079

into one joint representation space, their linguistic 080
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diversity is neglected. To better model the target081

languages, recent approaches propose exploiting082

both the unique and the shared features (Wang et al.,083

2018), reorganizing parameter-sharing (Sachan and084

Neubig, 2018), decoupling multilingual word en-085

codings (Wang et al., 2019a), or automatically clus-086

tering the languages to account for linguistic simi-087

larities (Tan et al., 2019).088

In this work, we propose using language-family089

adapters that enable efficient multilingual NMT for090

medium- and low-resource languages. Contrary to091

Stickland et al. (2021), we train a different set of092

adapters for each language family, to avoid negative093

transfer. Specifically, we train adapters for NMT094

on top of mBART-50 (Tang et al., 2020), a model095

pretrained on monolingual data of 50 languages.096

The adapters are trained using bi-text from each097

language family. Our method combines the advan-098

tages that adapters offer, due to their modularity,099

with the benefits of sharing information between100

similar languages. By taking into account linguistic101

families, we maximize positive cross-lingual trans-102

fer. This way, our model substantially outperforms103

all relevant baselines.104

Our main contributions are:105

• A novel, effective approach for multilingual106

translation which uses a multilingual pre-107

trained model (with monolingual data) and108

fine-tunes it for each language family using109

adapters (with parallel data). In the English-110

to-many setting which we examine, language-111

family adapters achieve a +1.9 BLEU im-112

provement over language-pair adapters, +1.1113

BLEU improvement over language-agnostic114

adapters and are on par with multilingual fine-115

tuning, while being more efficient.116

• We analyze the effect of our approach117

when adding new languages to mBART-50.118

LANG-FAMILY adapters improve translation119

by up to +2.7 BLEU compared to baselines.120

• We analyze the importance of script for group-121

ing languages. We also contrast grouping122

languages based on linguistic knowledge to123

grouping them using a combination of phy-124

logenetic, typological, statistical and lexical125

features and provide insights.126

• We propose inserting embedding-layer127

adapters to the Transformer to encode lexical128

information and conduct an ablation study to129

show that they contribute to better translation130

scores across all languages. 131

2 Background 132

2.1 Massively Multilingual Models 133

Multilingual masked language models have pushed 134

the start-of-the-art on cross-lingual language un- 135

derstanding by training a single model for many 136

languages (Devlin et al., 2019; Conneau and Lam- 137

ple, 2019; Conneau et al., 2020). Encoder-decoder 138

Transformer (Vaswani et al., 2017) models that are 139

pretrained using monolingual corpora from multi- 140

ple languages, such as mBART (Liu et al., 2020), 141

have also shown to outperform strong baselines in 142

NMT. Recently, mBART-50 (Tang et al., 2020) was 143

introduced, pretrained in 50 languages and multi- 144

lingually fine-tuned for NMT. However, while mul- 145

tilingual models are known to outperform strong 146

baselines and simplify model deployment, they are 147

susceptible to negative interference/transfer (Mc- 148

Cann et al., 2018; Arivazhagan et al., 2019; Wang 149

et al., 2019b; Conneau et al., 2020) and catastrophic 150

forgetting (Goodfellow et al., 2014) when the pa- 151

rameters of a multilingual model are shared across 152

a large number of languages. Negative transfer af- 153

fects the translation quality of high-resource (Con- 154

neau et al., 2020), but also low-resource languages 155

(Wang et al., 2020). We tackle this issue by train- 156

ing language-family adapters on top of mBART-50. 157

Our approach takes advantage of language families 158

and provides the flexibility necessary to decode 159

into multiple languages. Our approach performs 160

better than other adapter-based methods. It also 161

performs as well as multilingual fine-tuning, while 162

being more efficient. 163

2.2 Adapters for NMT 164

Adapters are parameter-efficient modules that are 165

typically added to a pretrained Transformer and 166

are fine-tuned on a downstream task, while the pre- 167

trained model is frozen. Bapna and Firat (2019) 168

add language-pair adapters to a pretrained multilin- 169

gual NMT model (one set for each language pair), 170

to recover performance for high-resource language 171

pairs. Stickland et al. (2021) start from a pretrained 172

model and train language-agnostic adapters (one 173

set for all language pairs) to efficiently fine-tune a 174

model for multilingual NMT. 175

Scaling language-agnostic adapters to a large 176

number of languages is problematic, as when they 177

are updated with data from multiple languages, 178

negative transfer can occur. In contrast, language- 179
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specific adapters do not face this problem, but at180

the same item do not allow any sharing between181

language pairs. Language-family adapters get the182

best of both worlds and our experimental results183

show that they lead to higher translation quality.184

2.3 Language Families185

Extensive work on cross-lingual transfer has186

demonstrated that leveraging one or more simi-187

lar languages can improve the performance of a188

low-resource language in several NLP tasks, such189

as part-of-speech or morphological tagging (Täck-190

ström et al., 2013; Cotterell and Heigold, 2017),191

entity linking (Tsai and Roth, 2016; Rijhwani et al.,192

2019), and machine translation (Zoph et al., 2016;193

Johnson et al., 2017; Neubig and Hu, 2018; Tan194

et al., 2019; Oncevay et al., 2020; Kong et al.,195

2021). Linguistic knowledge bases (Littell et al.,196

2017; Dryer and Haspelmath, 2013) study language197

variation and can provide insights to phenomena198

such as negative interference. However, they typi-199

cally are not used to train multilingual models. To200

properly model language variation, we cluster lan-201

guages together using families from WALS (Dryer202

and Haspelmath, 2013). By taking into account203

linguistic information, we are able to improve MT.204

3 Language-Family Adapters for NMT205

Fine-tuning a pretrained model for multilingual206

NMT provides a good performance, yet is com-207

putationally expensive, as all layers of the model208

need to be updated. A parameter-efficient alterna-209

tive suggests fine-tuning a pretrained multilingual210

model for NMT with data from all languages of in-211

terest using adapters (language-agnostic adapters),212

while keeping the pretrained model unchanged.213

However, as multiple languages share the same214

parameters in a single set of adapters, capacity is-215

sues arise. Languages are also grouped together,216

even though they might be different in terms of217

geographic location, script, syntax, typology, etc.218

As a result, linguistic diversity is not modeled ade-219

quately and translation quality degrades.220

In this paper, we address the limitations of221

previous methods by proposing language-family222

adapters for multilingual NMT. We exploit linguis-223

tic knowledge to enable cross-lingual transfer be-224

tween related languages and avoid negative inter-225

ference. To this end, language-family adapters are226

trained on a linguistic family on top of mBART-50,227

a pretrained multilingual model.228

Self-Attention

Adapter Layer

Feed Forward

Self-Attention

Encoder-decoder Attention

Feed Forward

Adapter Layer

Embed Adapter Layer Embed Adapter Layer

Input Embedding Output Embedding

Output SentenceSource Sentence

Positional 
Encoding

Positional 
Encoding

Nx Nx

Figure 1: Proposed adapter architecture inside a Trans-
former model. Adapter layers and the encoder-decoder
attention, shown in green, are trained for NMT. Figure
best viewed in color.

3.1 Adapter Architecture 229

Adapters are typically added to a pretrained model 230

in each Transformer layer. An adapter module uses 231

as input the output of the previous layer. Formally: 232

Let zi be the output of the i-th layer, of dimen- 233

sion h. We first apply a layer-normalization (Ba 234

et al., 2016), followed by a down-projection D 235

∈ Rh×d, a ReLU activation and an up-projection 236

U ∈ Rd×h, where d is the bottleneck dimension of 237

the adapter module and the only tunable parame- 238

ter. The up-projection is finally combined with a 239

residual connection (He et al., 2016) with zi: 240

Adapteri(zi) = U ReLU(D LN(zi)) + zi (1) 241

3.2 Model Architecture 242

We insert an adapter after each self-attention layer 243

in the encoder and after each feed-forward layer in 244

the decoder. We also add an adapter after the em- 245

bedding layer of both the encoder and the decoder. 246

This is different from Bapna and Firat (2019), who 247

added adapters only after the feed-forward layer 248

for both the encoder and the decoder. 249

To train language-family adapters for NMT, we 250

first freeze the pretrained encoder-decoder Trans- 251

former. We add adapters and fine-tune them on top 252

of the pretrained model, together with the encoder- 253

decoder attention layers (following Stickland et al. 254

(2021); Üstün et al. (2021)). We train the model 255

multilingually on each language family. Our pro- 256

posed model architecture is depicted in Figure 1. 257

Because we keep the token embeddings of 258

mBART-50 frozen, adding flexibility to the model 259

to encode lexical information of the languages of 260
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Language (code) Family Data Script

⋆Bulgarian (bg) Balto-Slavic 174k Cyrillic
Persian (fa) Indo-Iranian 151k Arabic

⋆Serbian (sr) Balto-Slavic 137k Cyrillic
Croatian (hr) Balto-Slavic 122k Latin
Ukrainian (uk) Balto-Slavic 108k Cyrillic
Indonesian (id) Austronesian 87k Latin

⋆Slovak (sk) Balto-Slavic 61k Latin
Macedonian (mk) Balto-Slavic 25k Cyrillic
Slovenian (sl) Balto-Slavic 20k Latin
Hindi (hi) Indo-Iranian 19k Devanagari
Marathi (mr) Indo-Iranian 10k Devanagari

⋆Kurdish (ku) Indo-Iranian 10k Arabic
⋆Bosnian (bs) Balto-Slavic 6k Cyrillic
⋆Malay (ms) Austronesian 5k Latin

Bengali (bn) Indo-Iranian 5k Bengali
⋆Belarusian (be) Balto-Slavic 5k Cyrillic
⋆Filipino (fil) Austronesian 3k Latin

Table 1: Languages that are used in the experiments. ⋆
indicates languages that are unseen from mBART-50,
i.e., they do not belong to the pretraining corpus.

interest is crucial, especially for low-resource, as261

well as unseen languages (languages that are not262

part of the pretraining corpus of mBART-50). Lex-263

ical cross-lingual information could be encoded264

by learning new embeddings for the languages we265

focus on (Artetxe et al., 2020). However, since266

token embeddings make up the majority of the pa-267

rameters of the pretrained model, this would make268

the approach computationally expensive. Instead,269

we propose adding an adapter after the embedding270

layer, in both the encoder and the decoder (embed271

adapter layer in Fig. 1). The adapter layer re-272

ceives as input the embedding-layer representation273

of each sequence and aims to capture token-level274

cross-lingual transformations. Our approach is in-275

spired by invertible adapters (Pfeiffer et al., 2020)276

and simplifies their structure. The vocabulary of277

mBART-50 (and the embedding layer) was created278

using a very large number of languages and scripts.279

This permits us to fine-tune the model to unseen280

languages. However, we note that expanding the281

model to scripts that do not exist in the vocabulary282

of mBART-50 is not possible with our approach.283

4 Experimental Setup284

Data. We use TED talks (Qi et al., 2018) as the bi-285

text for the 17 languages we fine-tune mBART-50286

on. We choose 17 languages, 9 of which are present287

during pretraining, while 8 are new to mBART-288

50. These languages belong to 3 language fami-289

lies, namely Balto-Slavic, Austronesian and Indo-290

Iranian. We report in Table 1 information about the291

amount of parallel data available for each language,292

as well as their scripts and family. 293

Baselines. We compare the proposed language- 294

family adapters with 1) multilingual fine-tuning 295

of mBART-50 (ML-FT), 2) fine-tuning with 296

language-pair adapters (LANG-PAIR), and 3) 297

fine-tuning with language-agnostic adapters 298

(LANG-AGNOSTIC). ML-FT trains all layers of 299

mBART-50 for NMT, using the data of all 17 lan- 300

guages. The second baseline, fine-tuning with 301

LANG-PAIR adapters, is similar to Bapna and Firat 302

(2019): a different set of adapters is trained for 303

each language pair on top of mBART-50, so no 304

parameters are shared for differing language pairs. 305

Finally, the third baseline fine-tunes using all data 306

with LANG-AGNOSTIC adapters (similar to Stick- 307

land et al. (2021)). This approach trains a single set 308

of adapters using parallel data from all languages. 309

Baselines 2), 3) and our proposed approach train 310

the same layers: adapters (as specified in §3.2) and 311

the encoder-decoder attention. Baseline 1) trains 312

all layers. 313

Training details. We start from the trained 314

mBART-50 model checkpoint2, which is publicly 315

available. We extend its embedding layers with 316

randomly initialized vectors for an extra set of 8 317

languages, unseen during pretraining. We reuse 318

the 250k sentencepiece (Kudo and Richardson, 319

2018) model of the original mBART and mBART- 320

50 models. We use the fairseq (Ott et al., 2019) 321

library for all experiments. We select the final 322

models using validation perplexity. We use beam 323

search with size 5 for decoding and evaluate BLEU 324

scores using SacreBLEU3 (Post, 2018). We also 325

compute CHRF (Popović, 2015) and COMET (Rei 326

et al., 2020) scores. For the latter, we rely on 327

the wmt-large-da-estimator-1719 pre- 328

trained model. Results using all metrics are re- 329

ported in Appendix A.4. 330

We freeze all layers of mBART, except for the 331

encoder-decoder attention. We add adapters and 332

fine-tune the model for NMT. We fine-tune the 333

LANG-FAMILY, LANG-AGNOSTIC adapters in a 334

multilingual, one-to-many (1 → xx) setup, us- 335

ing English as the source language. LANG-PAIR 336

adapters are fine-tuned bilingually for each lan- 337

guage pair. The adapters have a bottleneck dimen- 338

sion of 2048. We train each model for 130k up- 339

dates with a batch size of 1024 tokens per GPU, 340

using 2 NVIDIA-V100 GPUs. We evaluate models 341

2https://github.com/pytorch/fairseq/
3Signature “BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.1”
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en → xx
BALTO-SLAVIC AUSTRONESIAN INDO-IRANIAN

bg⋆ sr⋆ hr uk sk⋆ mk sl bs⋆ be⋆ id ms⋆ fil⋆ fa hi mr ku⋆ bn AVG

Fine-tuning all layers
ML-FT 35.2 25.0 30.7 23.2 23.7 27.5 20.7 28.9 12.0 35.0 24.0 13.3 18.3 18.1 10.1 4.3 9.6 21.2

Fine-tuning adapters + encoder-decoder attention
Lang-pair 35.5 24.2 30.3 22.5 23.6 23.9 19.3 22.1 8.9 33.4 20.6 10.9 17.4 19.9 9.9 0.2 9.5 19.5
Lang-agnostic 34.0 24.4 28.7 21.7 22.0 27.0 21.6 28.2 8.7 34.1 23.3 11.6 17.8 18.3 9.9 4.3 9.6 20.3
Lang-family 35.2 24.6 30.8 22.5 24.2 27.0 22.0 28.6 12.5 35.3 24.5 12.2 18.1 19.2 11.0 6.0 10.6 21.4

Table 2: Test set BLEU scores when translating out of English (en → xx). Languages are presented by decreasing
amount of parallel data per language family. LANG-PAIR stands for language-pair, LANG-AGNOSTIC for language-
agnostic, and LANG-FAMILY for language-family adapters. Languages denoted with ⋆ are unseen from mBART-50
during pretraining. Results in bold are significantly different (p < 0.01) when compared to the best adapter baseline.

after 5k training steps. To balance high and low-342

resource language pairs, we use temperature-based343

sampling (Arivazhagan et al., 2019) with T = 5.344

We use 0.1 dropout. We otherwise use the same345

hyper-parameters as Tang et al. (2020) and report346

them in Appendix A.2.347

5 Results and Discussion348

5.1 Main results349

Table 2 shows translation results for 17 languages350

in terms of BLEU, using parallel data to fine-tune351

mBART-50 in the en → xx direction. We also352

evaluate the models using CHRF and COMET and353

report results in Appendix A.4.354

Compared to fine-tuning with LANG-PAIR355

adapters, our approach (LANG-FAMILY) largely356

improves results, with an average +1.9 BLEU357

performance boost (+3.2 CHRF, +13.0 COMET)358

across all languages. This shows that cross-lingual359

representations from similar languages are benefi-360

cial to a multilingual model in a medium- or low-361

resource setup. As the LANG-PAIR approach trains362

a set of adapters on each language pair, it does not363

take advantage of cross-lingual signal, which could364

lead to a positive transfer. The effectiveness of our365

approach is pronounced in low-resource languages,366

where we observe up to +6.5 BLEU compared367

to LANG-PAIR. Moreover, LANG-PAIR adapters368

train 160M parameters for each language pair, or369

2.7B parameters for the 17 languages examined.370

This scales linearly with the number of languages371

used, which makes this approach computationally372

burdensome. Our model trains 160M parameters373

per language family, or 480M in total, achieving374

more efficient fine-tuning.375

The most related baseline, LANG-AGNOSTIC,376

provides decent results, with a 20.3 average BLEU377

score across all language pairs, while it updates378

160M parameters. Since it trains adapters using379

all parallel data, it is nonetheless susceptible to 380

negative interference. Training a set of adapters 381

jointly on languages from different linguistic fam- 382

ilies hinders the decoding ability of the multilin- 383

gual model, as languages are fighting for model 384

capacity. A good parameter-performance trade- 385

off is achieved using LANG-FAMILY adapters, our 386

proposed approach. As we fine-tune a model on 387

multiple languages which are similar to each other 388

using adapters, our model combines family-specific 389

information and multilingual learning, achieving 390

21.4 BLEU, or a +1.1 improvement compared to 391

LANG-AGNOSTIC (+1 CHRF, +3.7 COMET). 392

Finally, ML-FT provides an average BLEU score 393

of 21.2 across all language pairs. This approach re- 394

quires training the entire mBART-50 model (680M 395

parameters) to parallel data of all 17 languages. 396

Language-family (LANG-FAMILY) adapters, our 397

proposed approach, is on par or even outperforms 398

ML-FT (on par in terms of BLEU and CHRF, +1 399

COMET), while being more computationally ef- 400

ficient. Although LANG-FAMILY adapters keep 401

the token embedding layer frozen, they manage 402

to adapt to both seen and unseen languages and 403

provide high-quality translations. 404

5.2 Performance according to language family 405

To evaluate the contribution of grouping languages 406

based on linguistic information, we compute the 407

difference of LANG-FAMILY adapters compared 408

to the LANG-PAIR baseline per language family 409

in terms of BLEU score. We show the results in 410

Figure 2a. The LANG-PAIR baseline is displayed 411

as the x-axis in Figures 2a, b. 412

Compared to the LANG-AGNOSTIC baseline, 413

LANG-FAMILY adapters boost the translation 414

scores for all language families (+1.2 BLEU for 415

Balto-Slavic, +1 for Indo-Iranian, +1 the Aus- 416

tronesian) by a similar degree. This is the case 417
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(a) Grouping based on language family.
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language-family adapters language-agnostic adapters

(b) Grouping based on “seen” (existing in the pretraining
corpus), or “unseen” language.

Figure 2: Average translation scores (BLEU) of language-family adapters for en → xx, (a) according to language
family and (b) based on whether the language is seen or unseen during pretraining. We show the difference versus
the language-pair adapters baseline (depicted as the x-axis).

because LANG-AGNOSTIC adapters, trained using418

parallel data from all languages, group dissimilar419

languages together and do not take into account420

language variation. Training adapters using lan-421

guages with common linguistic properties results422

in consistently improved translations.423

Compared to the LANG-PAIR baseline, Aus-424

tronesian LANG-FAMILY adapters provide an im-425

pressive +2.4 BLEU performance boost. This par-426

ticular language family largely benefits from shar-427

ing between similar languages, probably because428

mBART-50 has been exposed to just one Austrone-429

sian language during pretraining, namely Indone-430

sian (id). As a result, the model has a limited431

knowledge of how to encode Austronesian lan-432

guages. LANG-FAMILY (and, to a lesser extent,433

LANG-AGNOSTIC) adapters permit cross-lingual434

transfer between related languages and can pro-435

vide more accurate translations. There is also a436

clear, although less pronounced improvement for437

Balto-Slavic and Indo-Iranian languages, which is438

reasonable, as there are many languages from these439

families in the pretraining corpus of mBART-50.440

5.3 Performance on seen vs unseen languages441

We also evaluate the performance of language-442

family adapters on languages that are not included443

in the mBART-50 pretraining data (unseen), com-444

pared to results on languages that belong to its445

pretraining corpus (seen). We present the results446

in Figure 2b. We observe that LANG-FAMILY447

adapters boost the translation quality considerably448

(+2.7 BLEU) compared to the LANG-PAIR adapter449

baseline (depicted as the x-axis) on unseen lan-450

guages. As the pretrained model has no knowledge451

of these languages, LANG-FAMILY adapters pro- 452

vide useful cross-lingual signal. While the perfor- 453

mance of LANG-AGNOSTIC adapters is hindered 454

by negative transfer, sharing information between 455

languages is still preferable to training LANG-PAIR 456

adapters, as it leads to a better translation quality, 457

as shown by a +1.3 BLEU improvement. 458

LANG-FAMILY adapters that are fine-tuned on 459

seen languages yield a smaller but clear improve- 460

ment (+1.2 BLEU). LANG-AGNOSTIC adapters, 461

however, fail to learn multilingual representations 462

that would provide extra information to the model 463

for the languages of interest. Therefore, they per- 464

form on par with LANG-PAIR adapters. 465

Overall, fine-tuning with LANG-PAIR adapters 466

is the weakest baseline. This intuitively makes 467

sense, as LANG-PAIR adapters do not harness 468

linguistic similarities and encode each language 469

independently, with a different set of parame- 470

ters. On medium and low-resource language pairs 471

LANG-PAIR adapters are not expressive enough 472

due to data scarcity. 473

5.4 Performance based on dataset size 474

LANG-FAMILY adapters, our proposed approach, 475

outperforms LANG-AGNOSTIC, the most related 476

baseline by +1.1 on average on all language pairs. 477

We want to quantify the improvement based on the 478

parallel data size. Results for language pairs based 479

on their dataset sizes are displayed in Table 3. 480

Our method outperforms the baseline by a larger 481

margin in the extremely low-resource language 482

pairs (+1.4 BLEU points for languages with 3-10k 483

sentences) and the improvement becomes smaller, 484

when there are larger parallel sets available (+0.9 485
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BLEU points for language pairs with more than486

100k sentences). Our method is well fit for low-487

resource languages, as it enables positive transfer.488

In low-resource setups, the translation model heav-489

ily relies on cross-lingual representations from sim-490

ilar language pairs to provide decent translations.491

Data Lang-family Lang-agnostic ∆BLEU

>100k 26.2 25.3 0.9
10k-100k 20.7 19.6 1.1
3-10k 20.7 19.6 1.4
All 21.4 20.3 1.1

Table 3: Difference of LANG-FAMILY adapters (our
approach) compared to LANG-AGNOSTIC in terms of
BLEU when grouping languages according to dataset
sizes.

5.5 Performance based on script492

When training multilingual models, a natural ques-493

tion that arises is whether script mismatch hinders494

cross-lingual transfer. We try to answer that by495

training language-family adapters in two distinct496

setups: one that takes into consideration script (by497

grouping together languages of the same-script498

language-family) and another that clusters related499

languages of different scripts together (language-500

family). We present the results in Figure 3.501

We first focus on Indo-Iranian languages. Hi502

and mr use the Devanagari script, while fa and503

ku use the Arabic script. For the Devanagari-script504

languages, BLEU scores greatly improve (by +6.6)505

when all Indo-Iranian languages are used, inde-506

pendent of their script. As the Devanagari Indo-507

Iranian languages are low-resource (30k parallel508

sentences), we hypothesize that the adapters are509

undertrained. However, using all Indo-Iranian lan-510

guages means we have more parallel data available511

(190k sentences). The pronounced improvement512

is probably due to the additional data provided.513

For the Arabic script Indo-Iranian languages, script514

does not play a crucial role. Since this language515

group is medium-resource (160k sentences), train-516

ing adapters using same-script languages performs517

comparably with training adapters on the whole518

language family.519

We then present results on Balto-Slavic lan-520

guages. Hr,sl,sk use the Latin script, while521

bg,sr,uk,mk,be use the Cyrillic script. For522

both subgroups of this language family, which are523

medium-resource (>100k of parallel data), using524

same-script languages to fine-tune the adapter mod-525

B
LE

U
 s

co
re

0.0

10.0

20.0

30.0

Devanagari  
Indo-Iranian  

30k

Arabic        
Indo-Iranian 

160k

Latin           
Balto-Slavic 

200k

Cyrillic          
Balto-Slavic 

460k

same-script language-family language-family

Figure 3: BLEU scores on Indo-Iranian and Balto-Slavic,
using either same-script language-family or language-
family adapters. From left to right on x-axis, we go from
low-resource to high-resource same-script families.

els again performs comparably to using all lan- 526

guages of this language family. 527

We find that only taking into consideration same- 528

script languages of a linguistic family is harmful 529

for the translation quality of a model, if there is 530

limited data available. When enough data is avail- 531

able, grouping together same-script languages is 532

on par or slightly worse than using all of the data 533

for a language family. 534

Unseen Language LANGRANK with K = 5

Bulgarian (bg) mk bg sr uk sl
Serbian (sr) hr sr sl be mk
Slovak (sk) sk hr sr fa bg
Bosnian (bs) hr sr bg sl uk
Belarusian (be) uk sr bg sl hr
Malay (ms) id fa bg ms sr
Kurdish (ku) ku fa bg uk hr

Table 4: Ranking of candidates for cross-lingual transfer
using LANGRANK.

bg sr sk bs be ms ku avg

LR 35.8 25.5 23.8 29.1 10.9 24.7 5.1 22.1
Family 35.2 24.6 24.2 28.6 12.5 24.5 6.0 22.2

Table 5: BLEU scores using adapters trained on
LANGRANK clusters (LR), compared to our approach,
that trains adapters using linguistic families (family).

5.6 Grouping languages using LANGRANK 535

For our main set of experiments, we used language 536

families from WALS. However, not all languages 537

in a single language family share the same linguis- 538
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en → xx
BALTO-SLAVIC AUSTRONESIAN INDO-IRANIAN
bg hr be id ms fil fa ku bn AVG-17

Ft enc-dec attention, add adapters after:
(1): self-att (enc), ffn (dec) 34.4 30.0 12.0 34.3 23.6 12.1 17.7 4.9 10.2 20.8
(2): self-att (enc), ffn (dec) + enc-dec emb 35.2 30.8 12.5 35.3 24.5 12.2 18.1 6.0 10.6 21.4

Table 6: Ablation of the proposed architecture for en → xx (BLEU scores). Self-att stands for the self-attention
layer, ffn for the feed-forward layer, emb for the token embedding layer, enc for the encoder and dec for the decoder.
Results in bold are significantly different (p < 0.01) when compared to model (1). We present results only for 3
languages per language family due to space constraints. Results on all languages can be found in Appendix A.5.

tic properties (Ahmad et al., 2019). LANGRANK539

(Lin et al., 2019) represents languages as a set of540

attributes that include typological information and541

corpus statistics and, for a given language, ranks542

the languages that are most helpful for cross-lingual543

transfer. They suggest that dataset size and word-544

level overlap might be better indicators than lin-545

guistic families for transfer learning in NMT.546

We want to empirically assess whether using the547

candidate languages indicated by LANGRANK for548

each of the unseen languages is more helpful than549

using linguistic families. We train LANG-FAMILY550

adapters for each unseen language, with the group551

of languages created using LANGRANK with K =552

5, where K is the number of transfer languages. As553

we see in Table 4, the unseen language itself is not554

always predicted by the ranking model (e.g., be).555

We nonetheless always use the unseen language to556

train the respective adapter (e.g., for be, we use557

be,uk,sr,bg,sl and hr).558

We see in Table 5 that training adapters using559

language groups computed by LANGRANK (de-560

noted as LR) performs on par with our proposed561

approach (denoted as family), which uses language562

groups defined from linguistic families in WALS.563

We note that features used by LANGRANK, such564

as typology, are not available for many languages.565

Training adapters according to the candidate lan-566

guages that LANGRANK predicts also means that567

a different set of adapters needs to be trained for568

every language of interest. For these reasons, our569

approach is more efficient and applicable to a wider570

range of languages.571

5.7 Embedding-layer adapter572

When mBART-50 is fine-tuned for NMT, encoder573

embeddings are tied to decoder embeddings. This574

is usually the case for NMT models, as weight575

tying reduces their size without harming their per-576

formance (Press and Wolf, 2017). In our proposed577

approach, the encoder and decoder embeddings are578

also not updated during fine-tuning. We hypothe- 579

size that this hinders the translation ability of the 580

model, as it struggles to encode token-level rep- 581

resentations that would be fed to the encoder or 582

decoder and finally result in better decoding to the 583

target languages. 584

To encode useful lexical representations, we in- 585

troduce an adapter after the encoder embedding 586

layer, as well as after the decoder embedding layer. 587

We do not tie the adapter layers, since they only 588

add up a small number of parameters (5M each, i.e., 589

0.7% of mBART-50 parameters). As we can see in 590

Table 6, we get consistent gains across almost all 591

language pairs by adding these adapters. 592

6 Conclusion 593

We have presented a novel approach for fine-tuning 594

a pretrained multilingual model for NMT using 595

language-family adapters. Our approach can be 596

used for multilingual NMT, combining the modu- 597

larity of adapters with effective cross-lingual trans- 598

fer between related languages. We have shown 599

that language-family adapters avoid negative trans- 600

fer and perform on par with multilingual fine- 601

tuning, while being more efficient. Moreover, 602

our model outperforms established baselines, such 603

as language-pair adapters and language-agnostic 604

adapters. Finally, for languages new to mBART-50, 605

our approach provides an effective way of lever- 606

aging shared cross-lingual information between 607

similar languages, largely improving translations 608

versus the baseline. 609

In the future, a more elaborate approach to en- 610

code lexical-level representations could further 611

boost the performance of language-family adapters. 612

We also hypothesize that the effectiveness of our 613

model could be leveraged for other cross-lingual 614

tasks, such as natural language inference, document 615

classification and question-answering. 616
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A Appendix876

A.1 Dataset statistics877

We present the statistics of all parallel data used in878

our set of experiments in Table 7. We note that the879

number of train, validation and test set presented880

refers to sentences.881

Language Source Train Valid Test

Bulgarian (bg) TED 174k 4082 5060
Persian (fa) TED 151k 3930 4490
Serbian (sr) TED 137k 3798 4634
Croatian (hr) TED 122k 3333 4881
Ukrainian (uk) TED 108k 3060 3751
Indonesian (id) TED 87k 2677 3179
Slovak (sk) TED 61k 2271 2445
Macedonian (mk) TED 25k 640 438
Slovenian (sl) TED 20k 1068 1251
Hindi (hi) TED 19k 854 1243
Marathi (mr) TED 10k 767 1090
Kurdish (ku) TED 10k 265 766
Bosnian (bs) TED 6k 474 463
Malay (ms) TED 5k 539 260
Bengali (bn) TED 5k 896 216
Belarusian (be) TED 5k 248 664
Filipino (fil) TED2020 3k 338 338

Table 7: Dataset stats. We use data from TED (Qi et al.,
2018) and TED2020 (Reimers and Gurevych, 2020).

A.2 Hyperparameters882

We list the hyperparameters we used to train883

both our proposed model and the baselines in884

Table 8. We do not tune the hyperparameters.885

We note that the adapters were used for the886

LANG-PAIR, LANG-AGNOSTIC baselines and the887

LANG-FAMILY proposed approach (not for the888

ML-FT baseline).889

A.3 Average runtime and Parameters890

We present in Table 9 the average runtime for our891

proposed model and the baselines, as well as model892

parameters that are updated during training. We893

note that our proposed model has to run for each894

language family, while the LANG-PAIR baseline895

has to run for each language pair separately.896

A.4 Evaluation of main results using 3 metrics897

We evaluate the translations of our model898

(LANG-FAMILY adapters) and all the baselines899

using additional metrics besides BLEU, namely900

COMET (Rei et al., 2020) and CHRF (Popović,901

2015). COMET leverages progress in cross-lingual902

language modeling, creating a multilingual ma-903

chine translation evaluation model that takes into904

account both the source input and a reference905

Hyperparameter Value

Checkpoint mbart50.pretrained
Architecture mbart_large
Optimizer Adam
β1, β2 0.9, 0.98
Weight decay 0.0
Label smoothing 0.2
Dropout 0.1
Attention dropout 0.1
Batch size 1024 tokens
Update frequency 2
Warmup updates 4k
Total number of updates 130k
Max learning rate 3e-05
Temperature sampling 5
Adapter dim. 2048

Table 8: Fairseq hyperparameters used for our set of
experiments.

Approach Runtime Parameters

LANG-FAMILY (ours) 20 160M
LANG-AGNOSTIC 36 160M
LANG-PAIR 10 160M
ML-FT 40 680M

Table 9: Average runtime per approach (hours) and
trainable parameters.

translation in the target language. We rely on 906

wmt-large-da-estimator-1719. COMET 907

scores are not bounded between 0 and 1; higher 908

scores signify better translations. CHRF uses char- 909

acter n-grams (instead of word n-grams in BLEU) 910

to compare the translated output with the reference 911

and, compared to BLEU, it can better match mor- 912

phological variants of words. Our results are sum- 913

marized in Table 10. We see that both CHRF and 914

COMET correlate with BLEU in our experiments. 915

A.5 Full results of ablation study 916

We report in Table 11 the results of the ablation 917

study on all 17 languages. 918
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ML-FT LANG-PAIR LANG-AGNOSTIC LANG-FAMILY (ours)
Lang. Family BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET

bg 35.2 58.7 64.9 35.5 58.7 67.9 34.0 56.9 60.2 35.2 58.0 65.9
sr 25.0 44.3 67.0 24.2 42.4 64.2 24.4 43.5 67.8 24.6 43.8 69.0
hr 30.7 55.9 74.3 30.3 54.7 75.3 28.7 55.1 77.5 30.8 55.7 78.5

BALTO- uk 23.2 45.7 48.2 22.5 44.8 48.0 21.7 45.2 48.8 22.5 45.9 50.7
SLAVIC sk 23.7 47.7 55.4 23.6 46.7 55.0 22.0 45.7 50.8 24.2 47.3 58.1

mk 27.5 52.7 54.0 23.9 48.3 41.2 27.0 52.4 55.4 27.0 53.1 58.5
sl 20.7 44.8 43.9 19.3 42.0 33.9 21.6 44.9 47.8 22.0 45.8 52.0
bs 28.9 53.8 72.9 22.1 45.7 39.0 28.2 52.3 74.2 28.6 53.7 76.5
be 12.0 32.0 -8.4 8.9 26.8 -54.6 8.7 27.4 -42.6 12.5 30.2 -29.3

id 35.0 58.9 61.2 33.4 58.1 61.4 34.1 59.0 61.8 35.3 59.1 61.9
AUSTRONESIAN ms 24.0 50.0 51.3 20.6 46.3 27.0 23.3 49.1 48.8 24.5 49.9 52.0

fil 13.3 38.8 -24.8 10.9 35.8 -33.6 11.6 37.9 -24.1 12.2 38.2 -26.1

fa 18.3 40.0 37.8 17.4 38.8 37.8 17.8 39.2 38.3 18.1 39.1 36.5
hi 18.1 37.8 14.1 19.9 37.0 15.2 18.3 37.5 10.0 19.2 38.6 10.7

INDO- mr 10.1 29.3 -21.1 9.9 28.0 -25.2 9.9 28.6 -22.3 11.0 29.9 -16.0
IRANIAN ku 4.3 24.4 -37.2 0.2 9.4 -94.1 4.3 24.2 -41.8 6.0 25.9 -33.8

bn 9.6 31.3 -19.7 9.5 28.5 -29.4 9.6 29.7 -22.2 10.6 31.5 -14.4

AVG 21.2 43.9 31.4 19.5 40.7 19.4 20.3 42.9 28.7 21.4 43.9 32.4

Table 10: Test set BLEU, CHRF and COMET scores when translating out of English. Languages are presented
by decreasing amount of parallel data per language family. LANG-PAIR stands for language-pair adapters,
LANG-AGNOSTIC for language-agnostic, while LANG-FAMILY for language-family adapters. Best results on
average are indicated with bold.

en → xx
Balto-Slavic Austronesian Indo-Iranian

bg sr hr uk sk mk sl bs be id ms fil fa hi mr ku bn AVG

Ft enc-dec attention, add adapters after:
(1): self-att (enc), ffn (dec) 34.4 24.2 30.0 21.6 23.5 26.7 21.1 27.5 12.0 34.3 23.6 12.1 17.7 19.6 10.9 4.9 10.2 20.8
(2): (1) + enc-dec emb 35.2 24.6 30.8 22.5 24.2 27.0 22.0 28.6 12.5 35.3 24.5 12.2 18.1 19.2 11.0 6.0 10.6 21.4

Table 11: Full results for Table 6 in the main paper. Ablation of the proposed model architecture (LANG-FAMILY
adapters) for en → xx.
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