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Abstract

Massively multilingual pretrained models yield
state-of-the-art results in a wide range of cross-
lingual natural language processing tasks. For
machine translation, the de facto way to lever-
age knowledge of pretrained models is fine-
tuning on parallel data from one or multiple lan-
guage pairs. Multilingual fine-tuning improves
performance on medium- and low-resource lan-
guages but requires modifying the entire model
and can be prohibitively expensive. Train-
ing either language-pair specific or language-
agnostic adapters while keeping most of the
pretrained model’s parameters frozen has been
proposed as a lightweight alternative. However,
the former do not learn useful cross-lingual rep-
resentations for multiple language pairs, while
the latter share parameters for all languages
and potentially have to deal with negative in-
terference. In this paper, we propose training
language-family adapters on top of a pretrained
multilingual model to facilitate cross-lingual
transfer. Using language families, our model
consistently outperforms other adapter-based
approaches and is on par with multilingual fine-
tuning, while being more efficient. We also
demonstrate that language-family adapters pro-
vide an effective method to translate to lan-
guages unseen during pretraining and substan-
tially outperform the baselines.'

1 Introduction

Recent work in multilingual natural language pro-
cessing (NLP) has created models that reach com-
petitive performance, while incorporating many
languages into a single architecture (Devlin et al.,
2019; Conneau et al., 2020). Because of its abil-
ity to share cross-lingual representations, which
largely benefits lower-resource languages, multi-
lingual NMT is an attractive research field (Firat
etal., 2016; Zoph et al., 2016; Johnson et al., 2017,

'Our source code is attached and will be made publicly
available.

Ha et al., 2016). Multilingual models are also ap-
pealing because they are more efficient in terms
of the number of model parameters, enabling sim-
ple deployment (Aharoni et al., 2019). Massively
multilingual pretrained models can be used for mul-
tilingual neural machine translation (NMT), if they
are fine-tuned in a many-to-one (to map any of the
source languages into a target language, which is
usually English) or one-to-many (to translate a sin-
gle source language into multiple target languages)
fashion (Aharoni et al., 2019; Tang et al., 2020).

We identify some major challenges for massively
multilingual NMT models. Multilingually fine-
tuning pretrained models to create NMT systems
has recently been suggested (Tang et al., 2020), yet
it requires vast computational resources. There-
fore, previous work has focused on efficiently train-
ing multilingual NMT models. To fine-tune a pre-
trained multilingual model for NMT in an efficient
way, adapters (Rebuffi et al., 2017; Houlsby et al.,
2019) have been proposed (Bapna and Firat, 2019).
Fine-tuning a different set of adapters on each lan-
guage pair, without updating the parameters of the
pretrained model, has been shown to improve re-
sults for high-resource languages. Low-resource
languages do not benefit from this approach though,
as adapters are trained with limited data. In a sim-
ilar vein, Stickland et al. (2021) fine-tune a pre-
trained model for multilingual NMT using a single
set of adapters, trained on all languages. Their ap-
proach manages to narrow the gap but still does not
perform on par with multilingual fine-tuning.

Another issue is that while many-to-one multilin-
gual NMT obtains high-quality translations, one-to-
many generally yields smaller improvements. This
showcases the difficulty of one-to-many translation,
which essentially tries to learn a conditional lan-
guage model and decode into multiple languages
(Arivazhagan et al., 2019; Tang et al., 2020). As
one-to-many translation forces different languages
into one joint representation space, their linguistic



diversity is neglected. To better model the target
languages, recent approaches propose exploiting
both the unique and the shared features (Wang et al.,
2018), reorganizing parameter-sharing (Sachan and
Neubig, 2018), decoupling multilingual word en-
codings (Wang et al., 2019a), or automatically clus-
tering the languages to account for linguistic simi-
larities (Tan et al., 2019).

In this work, we propose using language-family
adapters that enable efficient multilingual NMT for
medium- and low-resource languages. Contrary to
Stickland et al. (2021), we train a different set of
adapters for each language family, to avoid negative
transfer. Specifically, we train adapters for NMT
on top of mBART-50 (Tang et al., 2020), a model
pretrained on monolingual data of 50 languages.
The adapters are trained using bi-text from each
language family. Our method combines the advan-
tages that adapters offer, due to their modularity,
with the benefits of sharing information between
similar languages. By taking into account linguistic
families, we maximize positive cross-lingual trans-
fer. This way, our model substantially outperforms
all relevant baselines.

Our main contributions are:

* A novel, effective approach for multilingual
translation which uses a multilingual pre-
trained model (with monolingual data) and
fine-tunes it for each language family using
adapters (with parallel data). In the English-
to-many setting which we examine, language-
family adapters achieve a +1.9 BLEU im-
provement over language-pair adapters, +1.1
BLEU improvement over language-agnostic
adapters and are on par with multilingual fine-
tuning, while being more efficient.

* We analyze the effect of our approach
when adding new languages to mBART-50.
LANG-FAMILY adapters improve translation
by up to +2.7 BLEU compared to baselines.

* We analyze the importance of script for group-
ing languages. We also contrast grouping
languages based on linguistic knowledge to
grouping them using a combination of phy-
logenetic, typological, statistical and lexical
features and provide insights.

* We propose inserting embedding-layer
adapters to the Transformer to encode lexical
information and conduct an ablation study to
show that they contribute to better translation

scores across all languages.

2 Background
2.1 Massively Multilingual Models

Multilingual masked language models have pushed
the start-of-the-art on cross-lingual language un-
derstanding by training a single model for many
languages (Devlin et al., 2019; Conneau and Lam-
ple, 2019; Conneau et al., 2020). Encoder-decoder
Transformer (Vaswani et al., 2017) models that are
pretrained using monolingual corpora from multi-
ple languages, such as mBART (Liu et al., 2020),
have also shown to outperform strong baselines in
NMT. Recently, mBART-50 (Tang et al., 2020) was
introduced, pretrained in 50 languages and multi-
lingually fine-tuned for NMT. However, while mul-
tilingual models are known to outperform strong
baselines and simplify model deployment, they are
susceptible to negative interference/transfer (Mc-
Cann et al., 2018; Arivazhagan et al., 2019; Wang
etal.,2019b; Conneau et al., 2020) and catastrophic
forgetting (Goodfellow et al., 2014) when the pa-
rameters of a multilingual model are shared across
a large number of languages. Negative transfer af-
fects the translation quality of high-resource (Con-
neau et al., 2020), but also low-resource languages
(Wang et al., 2020). We tackle this issue by train-
ing language-family adapters on top of mBART-50.
Our approach takes advantage of language families
and provides the flexibility necessary to decode
into multiple languages. Our approach performs
better than other adapter-based methods. It also
performs as well as multilingual fine-tuning, while
being more efficient.

2.2 Adapters for NMT

Adapters are parameter-efficient modules that are
typically added to a pretrained Transformer and
are fine-tuned on a downstream task, while the pre-
trained model is frozen. Bapna and Firat (2019)
add language-pair adapters to a pretrained multilin-
gual NMT model (one set for each language pair),
to recover performance for high-resource language
pairs. Stickland et al. (2021) start from a pretrained
model and train language-agnostic adapters (one
set for all language pairs) to efficiently fine-tune a
model for multilingual NMT.

Scaling language-agnostic adapters to a large
number of languages is problematic, as when they
are updated with data from multiple languages,
negative transfer can occur. In contrast, language-



specific adapters do not face this problem, but at
the same item do not allow any sharing between
language pairs. Language-family adapters get the
best of both worlds and our experimental results
show that they lead to higher translation quality.

2.3 Language Families

Extensive work on cross-lingual transfer has
demonstrated that leveraging one or more simi-
lar languages can improve the performance of a
low-resource language in several NLP tasks, such
as part-of-speech or morphological tagging (Téack-
strom et al., 2013; Cotterell and Heigold, 2017),
entity linking (Tsai and Roth, 2016; Rijhwani et al.,
2019), and machine translation (Zoph et al., 2016;
Johnson et al., 2017; Neubig and Hu, 2018; Tan
et al., 2019; Oncevay et al., 2020; Kong et al.,
2021). Linguistic knowledge bases (Littell et al.,
2017; Dryer and Haspelmath, 2013) study language
variation and can provide insights to phenomena
such as negative interference. However, they typi-
cally are not used to train multilingual models. To
properly model language variation, we cluster lan-
guages together using families from WALS (Dryer
and Haspelmath, 2013). By taking into account
linguistic information, we are able to improve MT.

3 Language-Family Adapters for NMT

Fine-tuning a pretrained model for multilingual
NMT provides a good performance, yet is com-
putationally expensive, as all layers of the model
need to be updated. A parameter-efficient alterna-
tive suggests fine-tuning a pretrained multilingual
model for NMT with data from all languages of in-
terest using adapters (language-agnostic adapters),
while keeping the pretrained model unchanged.
However, as multiple languages share the same
parameters in a single set of adapters, capacity is-
sues arise. Languages are also grouped together,
even though they might be different in terms of
geographic location, script, syntax, typology, etc.
As aresult, linguistic diversity is not modeled ade-
quately and translation quality degrades.

In this paper, we address the limitations of
previous methods by proposing language-family
adapters for multilingual NMT. We exploit linguis-
tic knowledge to enable cross-lingual transfer be-
tween related languages and avoid negative inter-
ference. To this end, language-family adapters are
trained on a linguistic family on top of mBART-50,
a pretrained multilingual model.
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Figure 1: Proposed adapter architecture inside a Trans-
former model. Adapter layers and the encoder-decoder
attention, shown in green, are trained for NMT. Figure
best viewed in color.

3.1 Adapter Architecture

Adapters are typically added to a pretrained model
in each Transformer layer. An adapter module uses
as input the output of the previous layer. Formally:
Let z; be the output of the i-th layer, of dimen-
sion h. We first apply a layer-normalization (Ba
et al., 2016), followed by a down-projection D
€ R"*4 aReLU activation and an up-projection
U € R%™" where d is the bottleneck dimension of
the adapter module and the only tunable parame-
ter. The up-projection is finally combined with a
residual connection (He et al., 2016) with z;:

Adapter;(z;) = U ReLU(D LN(z;)) + z; (1)

3.2 Model Architecture

We insert an adapter after each self-attention layer
in the encoder and after each feed-forward layer in
the decoder. We also add an adapter after the em-
bedding layer of both the encoder and the decoder.
This is different from Bapna and Firat (2019), who
added adapters only after the feed-forward layer
for both the encoder and the decoder.

To train language-family adapters for NMT, we
first freeze the pretrained encoder-decoder Trans-
former. We add adapters and fine-tune them on top
of the pretrained model, together with the encoder-
decoder attention layers (following Stickland et al.
(2021); Ustiin et al. (2021)). We train the model
multilingually on each language family. Our pro-
posed model architecture is depicted in Figure 1.

Because we keep the token embeddings of
mBART-50 frozen, adding flexibility to the model
to encode lexical information of the languages of



Language (code) Family Data Script
*Bulgarian (bg) Balto-Slavic 174k Cyrillic
Persian (fa) Indo-Iranian 151k Arabic
*Serbian (sr) Balto-Slavic 137k Cyrillic
Croatian (hr) Balto-Slavic 122k Latin
Ukrainian (uk) Balto-Slavic 108k Cyrillic
Indonesian (id) Austronesian 87k Latin
*Slovak (sk) Balto-Slavic 61k Latin
Macedonian (mk)  Balto-Slavic 25k Cyrillic
Slovenian (sl) Balto-Slavic 20k Latin
Hindi (hi) Indo-Iranian 19k  Devanagari
Marathi (mr) Indo-Iranian 10k  Devanagari
*Kurdish (ku) Indo-Iranian 10k Arabic
*Bosnian (bs) Balto-Slavic 6k Cyrillic
*Malay (ms) Austronesian 5k Latin
Bengali (bn) Indo-Iranian Sk Bengali
xBelarusian (be) Balto-Slavic Sk Cyrillic
*Filipino (fil) Austronesian 3k Latin

Table 1: Languages that are used in the experiments. *
indicates languages that are unseen from mBART-50,
i.e., they do not belong to the pretraining corpus.

interest is crucial, especially for low-resource, as
well as unseen languages (languages that are not
part of the pretraining corpus of mBART-50). Lex-
ical cross-lingual information could be encoded
by learning new embeddings for the languages we
focus on (Artetxe et al., 2020). However, since
token embeddings make up the majority of the pa-
rameters of the pretrained model, this would make
the approach computationally expensive. Instead,
we propose adding an adapter after the embedding
layer, in both the encoder and the decoder (embed
adapter layer in Fig. 1). The adapter layer re-
ceives as input the embedding-layer representation
of each sequence and aims to capture token-level
cross-lingual transformations. Our approach is in-
spired by invertible adapters (Pfeiffer et al., 2020)
and simplifies their structure. The vocabulary of
mBART-50 (and the embedding layer) was created
using a very large number of languages and scripts.
This permits us to fine-tune the model to unseen
languages. However, we note that expanding the
model to scripts that do not exist in the vocabulary
of mBART-50 is not possible with our approach.

4 Experimental Setup

Data. We use TED talks (Qi et al., 2018) as the bi-
text for the 17 languages we fine-tune mBART-50
on. We choose 17 languages, 9 of which are present
during pretraining, while 8 are new to mBART-
50. These languages belong to 3 language fami-
lies, namely Balto-Slavic, Austronesian and Indo-
Iranian. We report in Table 1 information about the
amount of parallel data available for each language,

as well as their scripts and family.

Baselines. We compare the proposed language-
family adapters with 1) multilingual fine-tuning
of mBART-50 (ML-FT), 2) fine-tuning with
language-pair adapters (LANG-PAIR), and 3)
fine-tuning with language-agnostic adapters
(LANG-AGNOSTIC). ML-FT trains all layers of
mBART-50 for NMT, using the data of all 17 lan-
guages. The second baseline, fine-tuning with
LANG-PAIR adapters, is similar to Bapna and Firat
(2019): a different set of adapters is trained for
each language pair on top of mBART-50, so no
parameters are shared for differing language pairs.
Finally, the third baseline fine-tunes using all data
with LANG-AGNOSTIC adapters (similar to Stick-
land et al. (2021)). This approach trains a single set
of adapters using parallel data from all languages.
Baselines 2), 3) and our proposed approach train
the same layers: adapters (as specified in §3.2) and
the encoder-decoder attention. Baseline 1) trains
all layers.

Training details. We start from the trained
mBART-50 model checkpoint?, which is publicly
available. We extend its embedding layers with
randomly initialized vectors for an extra set of 8
languages, unseen during pretraining. We reuse
the 250k sentencepiece (Kudo and Richardson,
2018) model of the original mBART and mBART-
50 models. We use the fairseq (Ott et al., 2019)
library for all experiments. We select the final
models using validation perplexity. We use beam
search with size 5 for decoding and evaluate BLEU
scores using SacreBLEU? (Post, 2018). We also
compute CHRF (Popovi¢, 2015) and COMET (Rei
et al., 2020) scores. For the latter, we rely on
the wmt-large-da-estimator-1719 pre-
trained model. Results using all metrics are re-
ported in Appendix A.4.

We freeze all layers of mBART, except for the
encoder-decoder attention. We add adapters and
fine-tune the model for NMT. We fine-tune the
LANG-FAMILY, LANG-AGNOSTIC adapters in a
multilingual, one-to-many (1 — zx) setup, us-
ing English as the source language. LANG-PAIR
adapters are fine-tuned bilingually for each lan-
guage pair. The adapters have a bottleneck dimen-
sion of 2048. We train each model for 130k up-
dates with a batch size of 1024 tokens per GPU,
using 2 NVIDIA-V100 GPUs. We evaluate models

https://github.com/pytorch/fairseq/
3Signature “BLEU+c.mixed+#. 1+s.exp+tok.13a+v.1.5.1”
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en — xx

BALTO-SLAVIC
bg* s hr uk  sk*  mk sl bs*

AUSTRONESIAN INDO-IRANIAN

be* id ms* fil* fa hi mr ku* bn || AvG
Fine-tuning all layers
ML-FT | 352 250 307 232 237 275 207 289 120|350 240 133|183 181 101 43 9.6 || 212
Fine-tuning adapters + encoder-decoder attention
Lang-pair 355 242 303 225 236 239 193 221 89 | 334 206 109|174 199 99 02 95 19.5
Lang-agnostic | 34.0 244 287 21.7 220 270 21.6 282 87 | 341 233 116 | 17.8 183 99 43 9.6 || 203
Lang-family 352 246 308 225 242 270 220 286 125|353 245 122|181 192 11.0 6.0 10.6 | 214

Table 2: Test set BLEU scores when translating out of English (en — zx). Languages are presented by decreasing
amount of parallel data per language family. LANG-PAIR stands for language-pair, LANG-AGNOSTIC for language-
agnostic, and LANG-FAMILY for language-family adapters. Languages denoted with x are unseen from mBART-50
during pretraining. Results in bold are significantly different (p < 0.01) when compared to the best adapter baseline.

after 5k training steps. To balance high and low-
resource language pairs, we use temperature-based
sampling (Arivazhagan et al., 2019) with T = 5.
We use 0.1 dropout. We otherwise use the same
hyper-parameters as Tang et al. (2020) and report
them in Appendix A.2.

5 Results and Discussion

5.1

Table 2 shows translation results for 17 languages
in terms of BLEU, using parallel data to fine-tune
mBART-50 in the en — zx direction. We also
evaluate the models using CHRF and COMET and
report results in Appendix A.4.

Compared to fine-tuning with LANG-PAIR
adapters, our approach (LANG-FAMILY) largely
improves results, with an average +1.9 BLEU
performance boost (+3.2 CHRF, +13.0 COMET)
across all languages. This shows that cross-lingual
representations from similar languages are benefi-
cial to a multilingual model in a medium- or low-
resource setup. As the LANG-PAIR approach trains
a set of adapters on each language pair, it does not
take advantage of cross-lingual signal, which could
lead to a positive transfer. The effectiveness of our
approach is pronounced in low-resource languages,
where we observe up to +6.5 BLEU compared
to LANG-PAIR. Moreover, LANG-PAIR adapters
train 160M parameters for each language pair, or
2.7B parameters for the 17 languages examined.
This scales linearly with the number of languages
used, which makes this approach computationally
burdensome. Our model trains 160M parameters
per language family, or 480M in total, achieving
more efficient fine-tuning.

The most related baseline, LANG-AGNOSTIC,
provides decent results, with a 20.3 average BLEU
score across all language pairs, while it updates
160M parameters. Since it trains adapters using

Main results

all parallel data, it is nonetheless susceptible to
negative interference. Training a set of adapters
jointly on languages from different linguistic fam-
ilies hinders the decoding ability of the multilin-
gual model, as languages are fighting for model
capacity. A good parameter-performance trade-
off is achieved using LANG-FAMILY adapters, our
proposed approach. As we fine-tune a model on
multiple languages which are similar to each other
using adapters, our model combines family-specific
information and multilingual learning, achieving
21.4 BLEU, or a +1.1 improvement compared to
LANG-AGNOSTIC (+1 CHRF, +3.7 COMET).

Finally, ML-FT provides an average BLEU score
of 21.2 across all language pairs. This approach re-
quires training the entire mBART-50 model (680M
parameters) to parallel data of all 17 languages.
Language-family (LANG-FAMILY) adapters, our
proposed approach, is on par or even outperforms
ML-FT (on par in terms of BLEU and CHRF, +1
COMET), while being more computationally ef-
ficient. Although LANG-FAMILY adapters keep
the token embedding layer frozen, they manage
to adapt to both seen and unseen languages and
provide high-quality translations.

5.2 Performance according to language family

To evaluate the contribution of grouping languages
based on linguistic information, we compute the
difference of LANG-FAMILY adapters compared
to the LANG-PAIR baseline per language family
in terms of BLEU score. We show the results in
Figure 2a. The LANG-PAIR baseline is displayed
as the x-axis in Figures 2a, b.

Compared to the LANG-AGNOSTIC baseline,
LANG-FAMILY adapters boost the translation
scores for all language families (+1.2 BLEU for
Balto-Slavic, +1 for Indo-Iranian, +1 the Aus-
tronesian) by a similar degree. This is the case
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Figure 2: Average translation scores (BLEU) of language-family adapters for en — xx, (a) according to language
family and (b) based on whether the language is seen or unseen during pretraining. We show the difference versus
the language-pair adapters baseline (depicted as the x-axis).

because LANG-AGNOSTIC adapters, trained using
parallel data from all languages, group dissimilar
languages together and do not take into account
language variation. Training adapters using lan-
guages with common linguistic properties results
in consistently improved translations.

Compared to the LANG-PAIR baseline, Aus-
tronesian LANG-FAMILY adapters provide an im-
pressive +2.4 BLEU performance boost. This par-
ticular language family largely benefits from shar-
ing between similar languages, probably because
mBART-50 has been exposed to just one Austrone-
sian language during pretraining, namely Indone-
sian (1d). As a result, the model has a limited
knowledge of how to encode Austronesian lan-
guages. LANG-FAMILY (and, to a lesser extent,
LANG-AGNOSTIC) adapters permit cross-lingual
transfer between related languages and can pro-
vide more accurate translations. There is also a
clear, although less pronounced improvement for
Balto-Slavic and Indo-Iranian languages, which is
reasonable, as there are many languages from these
families in the pretraining corpus of mBART-50.

5.3 Performance on seen vs unseen languages

We also evaluate the performance of language-
family adapters on languages that are not included
in the mBART-50 pretraining data (unseen), com-
pared to results on languages that belong to its
pretraining corpus (seen). We present the results
in Figure 2b. We observe that LANG-FAMILY
adapters boost the translation quality considerably
(+2.7 BLEU) compared to the LANG-PAIR adapter
baseline (depicted as the x-axis) on unseen lan-
guages. As the pretrained model has no knowledge

of these languages, LANG-FAMILY adapters pro-
vide useful cross-lingual signal. While the perfor-
mance of LANG-AGNOSTIC adapters is hindered
by negative transfer, sharing information between
languages is still preferable to training LANG-PAIR
adapters, as it leads to a better translation quality,
as shown by a +-1.3 BLEU improvement.

LANG-FAMILY adapters that are fine-tuned on
seen languages yield a smaller but clear improve-
ment (+1.2 BLEU). LANG-AGNOSTIC adapters,
however, fail to learn multilingual representations
that would provide extra information to the model
for the languages of interest. Therefore, they per-
form on par with LANG-PAIR adapters.

Overall, fine-tuning with LANG-PAIR adapters
is the weakest baseline. This intuitively makes
sense, as LANG-PAIR adapters do not harness
linguistic similarities and encode each language
independently, with a different set of parame-
ters. On medium and low-resource language pairs
LANG-PAIR adapters are not expressive enough
due to data scarcity.

5.4 Performance based on dataset size

LANG-FAMILY adapters, our proposed approach,
outperforms LANG-AGNOSTIC, the most related
baseline by +1.1 on average on all language pairs.
We want to quantify the improvement based on the
parallel data size. Results for language pairs based
on their dataset sizes are displayed in Table 3.

Our method outperforms the baseline by a larger
margin in the extremely low-resource language
pairs (+1.4 BLEU points for languages with 3-10k
sentences) and the improvement becomes smaller,
when there are larger parallel sets available (+0.9



BLEU points for language pairs with more than
100k sentences). Our method is well fit for low-
resource languages, as it enables positive transfer.
In low-resource setups, the translation model heav-
ily relies on cross-lingual representations from sim-
ilar language pairs to provide decent translations.

Data Lang-family Lang-agnostic =~ ABLEU
>100k 26.2 253 0.9
10k-100k 20.7 19.6 1.1
3-10k 20.7 19.6 1.4
All 21.4 20.3 1.1

Table 3: Difference of LANG-FAMILY adapters (our
approach) compared to LANG-AGNOSTIC in terms of
BLEU when grouping languages according to dataset
sizes.

5.5 Performance based on script

When training multilingual models, a natural ques-
tion that arises is whether script mismatch hinders
cross-lingual transfer. We try to answer that by
training language-family adapters in two distinct
setups: one that takes into consideration script (by
grouping together languages of the same-script
language-family) and another that clusters related
languages of different scripts together (language-
family). We present the results in Figure 3.

We first focus on Indo-Iranian languages. Hi
and mr use the Devanagari script, while fa and
ku use the Arabic script. For the Devanagari-script
languages, BLEU scores greatly improve (by +6.6)
when all Indo-Iranian languages are used, inde-
pendent of their script. As the Devanagari Indo-
Iranian languages are low-resource (30k parallel
sentences), we hypothesize that the adapters are
undertrained. However, using all Indo-Iranian lan-
guages means we have more parallel data available
(190k sentences). The pronounced improvement
is probably due to the additional data provided.
For the Arabic script Indo-Iranian languages, script
does not play a crucial role. Since this language
group is medium-resource (160k sentences), train-
ing adapters using same-script languages performs
comparably with training adapters on the whole
language family.

We then present results on Balto-Slavic lan-
guages. Hr,sl, sk use the Latin script, while
bg, sr, uk, mk, be use the Cyrillic script. For
both subgroups of this language family, which are
medium-resource (>100k of parallel data), using
same-script languages to fine-tune the adapter mod-

® same-script language-family = language-family

30.0
) 259
20.0
o
3 152
2]
o)
w100 1.5
m
0.0
Devanagari  Arabic Latin Cyrillic
Indo-Iranian Indo-Iranian Balto-Slavic Balto-Slavic
30k 160k 200k 460k

Figure 3: BLEU scores on Indo-Iranian and Balto-Slavic,
using either same-script language-family or language-
family adapters. From left to right on x-axis, we go from
low-resource to high-resource same-script families.

els again performs comparably to using all lan-
guages of this language family.

We find that only taking into consideration same-
script languages of a linguistic family is harmful
for the translation quality of a model, if there is
limited data available. When enough data is avail-
able, grouping together same-script languages is
on par or slightly worse than using all of the data
for a language family.

Unseen Language = LANGRANK with K =5

Bulgarian (bg) mk bg st uk sl
Serbian (sr) hr st sl be mk
Slovak (sk) sk hr sr fa bg
Bosnian (bs) hr st bg sl uk
Belarusian (be) uk sr  bg sl hr
Malay (ms) id fa bg ms sr
Kurdish (ku) ka fa bg uk  hr

Table 4: Ranking of candidates for cross-lingual transfer
using LANGRANK.

bg sr sk bs be ms ku avg

LR 358 255 238 291 109 247 51 221
Family 352 246 242 286 125 245 6.0 222

Table 5: BLEU scores using adapters trained on
LANGRANK clusters (LR), compared to our approach,
that trains adapters using linguistic families (family).

5.6 Grouping languages using LANGRANK

For our main set of experiments, we used language
families from WALS. However, not all languages
in a single language family share the same linguis-



BALTO-SLAVIC

en — xx

AUSTRONESIAN ‘ INDO-IRANIAN

bg hr be id ms fil fa ku bn | AVG-17

F't enc-dec attention, add adapters after:
(1): self-att (enc), ffn (dec) 344 30.0 12.0 | 343 23.6 121 | 17.7 49 102 20.8
(2): self-att (enc), ffn (dec) + enc-decemb | 35.2 30.8 12.5 | 353 245 122 | 181 6.0 10.6 214

Table 6: Ablation of the proposed architecture for en — xz (BLEU scores). Self-att stands for the self-attention
layer, ffn for the feed-forward layer, emb for the token embedding layer, enc for the encoder and dec for the decoder.
Results in bold are significantly different (p < 0.01) when compared to model (1). We present results only for 3
languages per language family due to space constraints. Results on all languages can be found in Appendix A.S.

tic properties (Ahmad et al., 2019). LANGRANK
(Lin et al., 2019) represents languages as a set of
attributes that include typological information and
corpus statistics and, for a given language, ranks
the languages that are most helpful for cross-lingual
transfer. They suggest that dataset size and word-
level overlap might be better indicators than lin-
guistic families for transfer learning in NMT.

We want to empirically assess whether using the
candidate languages indicated by LANGRANK for
each of the unseen languages is more helpful than
using linguistic families. We train LANG-FAMILY
adapters for each unseen language, with the group
of languages created using LANGRANK with K =
5, where K is the number of transfer languages. As
we see in Table 4, the unseen language itself is not
always predicted by the ranking model (e.g., be).
We nonetheless always use the unseen language to
train the respective adapter (e.g., for be, we use
be, uk, sr,bg, sl and hr).

We see in Table 5 that training adapters using
language groups computed by LANGRANK (de-
noted as LR) performs on par with our proposed
approach (denoted as family), which uses language
groups defined from linguistic families in WALS.
We note that features used by LANGRANK, such
as typology, are not available for many languages.
Training adapters according to the candidate lan-
guages that LANGRANK predicts also means that
a different set of adapters needs to be trained for
every language of interest. For these reasons, our
approach is more efficient and applicable to a wider
range of languages.

5.7 Embedding-layer adapter

When mBART-50 is fine-tuned for NMT, encoder
embeddings are tied to decoder embeddings. This
is usually the case for NMT models, as weight
tying reduces their size without harming their per-
formance (Press and Wolf, 2017). In our proposed
approach, the encoder and decoder embeddings are

also not updated during fine-tuning. We hypothe-
size that this hinders the translation ability of the
model, as it struggles to encode token-level rep-
resentations that would be fed to the encoder or
decoder and finally result in better decoding to the
target languages.

To encode useful lexical representations, we in-
troduce an adapter after the encoder embedding
layer, as well as after the decoder embedding layer.
We do not tie the adapter layers, since they only
add up a small number of parameters (5M each, i.e.,
0.7% of mBART-50 parameters). As we can see in
Table 6, we get consistent gains across almost all
language pairs by adding these adapters.

6 Conclusion

We have presented a novel approach for fine-tuning
a pretrained multilingual model for NMT using
language-family adapters. Our approach can be
used for multilingual NMT, combining the modu-
larity of adapters with effective cross-lingual trans-
fer between related languages. We have shown
that language-family adapters avoid negative trans-
fer and perform on par with multilingual fine-
tuning, while being more efficient. Moreover,
our model outperforms established baselines, such
as language-pair adapters and language-agnostic
adapters. Finally, for languages new to mBART-50,
our approach provides an effective way of lever-
aging shared cross-lingual information between
similar languages, largely improving translations
versus the baseline.

In the future, a more elaborate approach to en-
code lexical-level representations could further
boost the performance of language-family adapters.
We also hypothesize that the effectiveness of our
model could be leveraged for other cross-lingual
tasks, such as natural language inference, document
classification and question-answering.
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A Appendix
A.1 Dataset statistics

We present the statistics of all parallel data used in
our set of experiments in Table 7. We note that the
number of train, validation and test set presented
refers to sentences.

Language Source Train Valid  Test
Bulgarian (bg) TED 174k 4082 5060
Persian (fa) TED 151k 3930 4490
Serbian (sr) TED 137k 3798 4634
Croatian (hr) TED 122k 3333 4881
Ukrainian (uk) TED 108k 3060 3751
Indonesian (id) TED 87k 2677 3179
Slovak (sk) TED 61k 2271 2445
Macedonian (mk) TED 25k 640 438
Slovenian (sl) TED 20k 1068 1251
Hindi (hi) TED 19k 854 1243
Marathi (mr) TED 10k 767 1090
Kurdish (ku) TED 10k 265 766
Bosnian (bs) TED 6k 474 463
Malay (ms) TED 5k 539 260
Bengali (bn) TED 5k 896 216
Belarusian (be) TED 5k 248 664
Filipino (fil) TED2020 3k 338 338

Table 7: Dataset stats. We use data from TED (Qi et al.,
2018) and TED2020 (Reimers and Gurevych, 2020).

A.2 Hyperparameters

We list the hyperparameters we used to train
both our proposed model and the baselines in
Table 8. We do not tune the hyperparameters.
We note that the adapters were used for the
LANG-PAIR, LANG-AGNOSTIC baselines and the
LANG-FAMILY proposed approach (not for the
ML-FT baseline).

A.3 Average runtime and Parameters

We present in Table 9 the average runtime for our
proposed model and the baselines, as well as model
parameters that are updated during training. We
note that our proposed model has to run for each
language family, while the LANG-PAIR baseline
has to run for each language pair separately.

A.4 Evaluation of main results using 3 metrics

We evaluate the translations of our model
(LANG-FAMILY adapters) and all the baselines
using additional metrics besides BLEU, namely
COMET (Rei et al., 2020) and CHRF (Popovid,
2015). COMET leverages progress in cross-lingual
language modeling, creating a multilingual ma-
chine translation evaluation model that takes into
account both the source input and a reference
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Hyperparameter Value
Checkpoint mbart50.pretrained
Architecture mbart_large
Optimizer Adam
B, Ba 0.9,0.98
Weight decay 0.0
Label smoothing 0.2
Dropout 0.1
Attention dropout 0.1
Batch size 1024 tokens
Update frequency 2
Warmup updates 4k
Total number of updates 130k
Max learning rate 3e-05
Temperature sampling 5
Adapter dim. 2048

Table 8: Fairseq hyperparameters used for our set of
experiments.

Approach Runtime Parameters
LANG-FAMILY (ours) 20 160M
LANG-AGNOSTIC 36 160M
LANG-PAIR 10 160M
ML-FT 40 680M

Table 9: Average runtime per approach (hours) and
trainable parameters.

translation in the target language. We rely on
wmt-large—-da-estimator—-1719. COMET
scores are not bounded between O and 1; higher
scores signify better translations. CHRF uses char-
acter n-grams (instead of word n-grams in BLEU)
to compare the translated output with the reference
and, compared to BLEU, it can better match mor-
phological variants of words. Our results are sum-
marized in Table 10. We see that both CHRF and
COMET correlate with BLEU in our experiments.

A.5 Full results of ablation study

We report in Table 11 the results of the ablation
study on all 17 languages.



ML-FT LANG-PAIR LANG-AGNOSTIC LANG-FAMILY (ours)

Lang. Family BLEU CHRF COMET | BLEU CHRF COMET | BLEU CHRF COMET | BLEU CHRF COMET
bg 352 58.7 64.9 35.5 58.7 67.9 34.0 56.9 60.2 35.2 58.0 65.9
Sy 25.0 443 67.0 24.2 42.4 64.2 24.4 435 67.8 24.6 43.8 69.0
hr 30.7 55.9 74.3 30.3 54.7 75.3 28.7 55.1 71.5 30.8 55.7 78.5
BALTO- uk 232 45.7 482 22.5 44.8 48.0 21.7 452 48.8 22.5 45.9 50.7
SLAVIC sk 23.7 47.1 554 23.6 46.7 55.0 22.0 457 50.8 24.2 47.3 58.1
mk 27.5 527 54.0 23.9 48.3 41.2 27.0 524 554 27.0 53.1 58.5
sl 20.7 44.8 43.9 19.3 42.0 33.9 21.6 44.9 47.8 22.0 45.8 52.0
bs 28.9 53.8 72.9 22.1 45.7 39.0 28.2 523 74.2 28.6 53.7 76.5
be 12.0 32.0 -8.4 8.9 26.8 -54.6 8.7 27.4 -42.6 12.5 30.2 -29.3
id 35.0 58.9 61.2 33.4 58.1 61.4 34.1 59.0 61.8 353 59.1 61.9
AUSTRONESIAN  ms 24.0 50.0 513 20.6 46.3 27.0 233 49.1 48.8 24.5 49.9 52.0
fil 13.3 38.8 -24.8 10.9 35.8 -33.6 11.6 37.9 -24.1 12.2 38.2 -26.1
fa 18.3 40.0 37.8 17.4 38.8 37.8 17.8 39.2 383 18.1 39.1 36.5
hi 18.1 37.8 14.1 19.9 37.0 15.2 18.3 37.5 10.0 19.2 38.6 10.7
INDO- mr 10.1 293 -21.1 9.9 28.0 -25.2 9.9 28.6 -22.3 11.0 29.9 -16.0
IRANIAN ku 4.3 24.4 -37.2 0.2 9.4 -94.1 4.3 24.2 -41.8 6.0 25.9 -33.8
bn 9.6 31.3 -19.7 9.5 28.5 -29.4 9.6 29.7 -22.2 10.6 315 -14.4
AVG | 212 43.9 314 | 195 40.7 194 | 203 429 287 | 214 439 324

Table 10: Test set BLEU, CHRF and COMET scores when translating out of English. Languages are presented
by decreasing amount of parallel data per language family. LANG-PAIR stands for language-pair adapters,
LANG-AGNOSTIC for language-agnostic, while LANG-FAMILY for language-family adapters. Best results on
average are indicated with bold.

en — xx
Austronesian Indo-Iranian

Balto-Slavic
id ms fil fa hi mr  ku bn

bg st hr uk sk mk sl bs be AVG

Ft enc-dec attention, add adapters after:
(1): self-att (enc), ffn (dec) | 344 242 30.0 21.6 235 267 21.1 275 120|343 236 121|177 196 109 49 102 | 208
(2): (1) + enc-dec emb 352 246 308 225 242 270 220 286 125|353 245 122|181 192 11.0 6.0 10.6 | 214

Table 11: Full results for Table 6 in the main paper. Ablation of the proposed model architecture (LANG-FAMILY
adapters) for en — zzx.
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