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ABSTRACT

Large language models (LLMs) have made significant advancements in code-
related tasks, yet many LLMs treat code as simple sequences, neglecting its struc-
tured nature. We introduce AST-T5, a novel pretraining paradigm that leverages
the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and
understanding. Using dynamic programming, our AST-Aware Segmentation re-
tains code structure, while our AST-Aware Span Corruption objective equips the
model to reconstruct various code structures. Unlike other models, AST-T5 avoids
intricate program analyses or architectural changes, so it integrates seamlessly
with any encoder-decoder Transformer. Evaluations show that AST-T5 consis-
tently outperforms similar-sized LMs across various code-related tasks. Structure-
awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing
CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in
exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model
are publicly available at https://anonymized.

1 INTRODUCTION

We have witnessed the transformative impact of large language models (LLMs) on various aspects of
artificial intelligence in recent years (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023),
especially in code generation and understanding (Feng et al., 2020; Wang et al., 2021; Rozière
et al., 2023). By pretraining on massive code corpora such as the GitHub corpus, LLMs learns rich
representations, thereby becoming powerful tools for various downstream applications, including
text-to-code generation (Chen et al., 2021a; Austin et al., 2021; Iyer et al., 2018), code-to-code
transpilation (Lu et al., 2021; Lachaux et al., 2020; Tufano et al., 2019), and code understanding
(mapping code to classification labels) (Zhou et al., 2019; Svajlenko et al., 2014).

Despite these impressive advances, most existing models interpret code as mere sequences of sub-
word tokens, overlooking its intrinsic structured nature. Prior research has shown that leveraging
the Abstract Syntax Tree (AST) of code can significantly improve performance on code-related
tasks (Guo et al., 2021; Tipirneni et al., 2023). Some studies also use code obfuscation during pre-
training to teach models about abstract code structures (Roziere et al., 2021; Wang et al., 2021).
However, these models often rely on computationally expensive processes like Control-Flow Anal-
ysis (CFA), obfuscation, or even actual code execution. Such dependency limits their scalability
and imposes stringent conditions like code executability. Consequently, these methods may struggle
with real-world code, especially in intricate languages like C/C++, where comprehensive analysis
remains elusive.

In this study, we propose AST-T5, a pretraining paradigm that leverages the Abstract Syntax Tree
(AST) structure of code. The key contribution in AST-T5 is a simple yet effective way to ex-
ploit code semantics, without the need to run expensive program analysis or execution. Using a
lightweight, multi-language parser called Tree-sitter1, our approach has broad applicability across
all syntactically well-defined programming languages. After we parse code into ASTs, we use a dy-
namic programming-based segmentation algorithm for AST-aware code segmentation to maintain
the structural integrity of the input code. Using our novel AST-Aware Span Corruption technique,
the model is pretrained to reconstruct various code structures, ranging from individual tokens to en-
tire function bodies. Together, our approach offers three key advantages: (1) enriched bidirectional

1https://tree-sitter.github.io/tree-sitter/
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def factorial(n):
  if n == 0:
    return 1
  else:
    return n * factorial(n - 1)
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  [Y]
    return n [Z] - 1 )
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Figure 1: Comparison of AST-Aware Subtree Corruption and Vanilla T5 using a Python factorial
function. Both methods replace masked spans with sentinel tokens (special tokens added to the vo-
cabulary, shown as [X], [Y], and [Z] in the figure), with output sequences containing the original
masked tokens. Inputs and targets are shown in byte-pair encoding (BPE); for instance, “facto-
rial” is encoded into “fact” and “##orial”. Unlike Vanilla T5, which masks random spans without
considering code structure, our approach specifically targets spans aligned with AST subtrees, like
expressions and statements.

encoding for improved code understanding, (2) the ability to coherently generate code structures,
and (3) a unified, structure-aware pretraining framework that boosts performance across a variety of
code-related tasks, particularly in code transpilation.

In addition, other than our specialized AST-aware masking approach, AST-T5 introduces no archi-
tecture changes or additional heads, and our pretraining objective remains the same as Vanilla T5.
This compatibility enables seamless integration of our model as a drop-in replacement for any T5
variant.

In our experiments, AST-T5 consistently outperforms baselines in code generation, transpilation,
and understanding tasks. Through controlled experiments, we empirically demonstrate that these
advancements are attributed to our AST-aware pretraining techniques. Notably, AST-T5 not only
outperforms similar-sized models like CodeT5 and CodeT5+ across various benchmarks but also re-
mains competitive with, or occasionally even exceeds, the performance of much larger models using
the HumanEval dataset. Furthermore, the inherent AST-awareness of AST-T5 offers unique advan-
tages in structure-sensitive tasks, such as code-to-code transpilation and Clone Detection, highlight-
ing its effectiveness at capturing the structural nuances of code.

2 RELATED WORK

Language Models for Code. Language models (LMs) extended their use from NLP to code un-
derstanding and generation. Encoder-only models generally excel in code understanding when fine-
tuned with classifiers (Feng et al., 2020), while decoder-only models are optimized for code gen-
eration through their autoregressive nature (Chen et al., 2021a; Fried et al., 2023; Nijkamp et al.,
2023). However, these models can falter outside their primary domains of expertise or require in-
creased resources for comparable outcomes. Our work focuses on encoder-decoder models, aiming
to efficiently balance performance in both understanding and generation tasks without excessive
computational demands.

Efforts Toward Unified Models. Extending NLP models like BART (Lewis et al., 2019) and
T5 (Raffel et al., 2020), several studies have developed encoder-decoder architectures, such as
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PLBART (Ahmad et al., 2021) and CodeT5 (Wang et al., 2021), to perform well in diverse code-
related tasks. Although these models show broader utility, they struggle with generating coherent,
executable code in complex scenarios like HumanEval (Chen et al., 2021a). CodeT5+ (Wang et al.,
2023) seeks to address this limitation through an intricate multi-task pretraining strategy across five
objectives. In contrast, our proposed model, AST-T5, uses a novel AST-Aware pretraining paradigm
to become a unified model capable of generating fluent code and maintaining superior performance
in code understanding tasks. Moreover, AST-T5 is more streamlined, because it only uses a single
pretraining objective.

Leveraging Code Structure in Pretraining. Code differs from natural language in two key as-
pects: its executability and strict structural syntax. Previous research leveraged execution traces for
improving model performance (Chen et al., 2018; 2021b; Shojaee et al., 2023), but this approach
faces scalability challenges when applied to large, web-crawled code datasets used in pretraining.
Regarding code’s structured nature, various studies have integrated syntactic elements into neural
network models. Li et al. (2018), Kim et al. (2021) and Zügner et al. (2021) add AST-Aware at-
tention mechanisms in their models, while Alon et al. (2020) and Rabinovich et al. (2017) focus on
modeling AST node expansion operations rather than traditional code tokens. In parallel, Guo et al.
(2021) and Allamanis et al. (2017) explore DFG-Aware attention mechanisms and Graph Neural
Networks (GNNs), to interpret code based on its Data Flow Graph (DFG). StructCoder (Tipirneni
et al., 2023) enriches the code input by appending AST and DFG as additional features. These meth-
ods, however, necessitate parsing or static analysis for downstream tasks, which is less feasible for
incomplete or incorrect code scenarios like bug fixing.

Our work, AST-T5, aligns with methods that utilize code structure only in pretraining, like
DOBF (Roziere et al., 2021) and CodeT5 (Wang et al., 2021), which obfuscate inputs to force
the model to grasp abstract structures. Our approach uniquely diverges by using AST-driven seg-
mentation and masking in T5 span corruption during pretraining. This novel approach offers a more
refined pretraining signal compared to structure-agnostic T5, equipping our model to proficiently
encode and generate semantically coherent code structures.

3 METHOD

In this section, we present AST-T5, a novel pretraining framework for code-based language models
that harnesses the power of Abstract Syntax Trees (ASTs). First, AST-T5 parses code into ASTs
to enable a deeper understanding of code structure. Leveraging this structure, we introduce AST-
Aware Segmentation, an algorithm designed to address Transformer token limits while retaining the
semantic coherence of the code. Second, we introduce AST-Aware Span Corruption, a masking
technique that pretrains AST-T5 to reconstruct code structures ranging from individual tokens to
entire function bodies, enhancing both its flexibility and structure-awareness.

3.1 PARSING CODE INTO ASTS

Unlike traditional language models on code that handle code as simple sequences of subword tokens,
AST-T5 leverages the Abstract Syntax Tree (AST) of code to gain semantic insights. For parsing
purposes, we assume the provided code is syntactically valid—a reasonable assumption for tasks like
code transpilation and understanding. Instead of the often computationally-intensive or infeasible
methods of Control-Flow Analysis (CFA) or code execution (Guo et al., 2021; Tipirneni et al., 2023),
our method only demands the code to be parsable. We use Tree-sitter, a multi-language parser, to
construct the ASTs, where each subtree represents a consecutive span of subword tokens, and every
leaf node represents an individual token.

3.2 OUR AST-AWARE SEGMENTATION

In this subsection, we describe our AST-Aware Segmentation method, which splits lengthy code
files into chunks in a structure-perserving manner.

Segmentation in language model pretraining is a critical yet often overlooked aspect. Trans-
former LMs impose token limits on input sequences, making segmentation essential for fitting these

3



Under review as a conference paper at ICLR 2024

class BinaryIndexedTree:
  def __init__(self, n):
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Figure 2: Comparison between Greedy Segmentation and AST-Aware Segmentation: For a 112-
token code example with max len set at 48, Greedy Segmentation places the first 48 tokens in
Block 1, the next 48 tokens in Block 2, and the remaining in Block 3, disrupting the structural
integrity of the code. In contrast, AST-Aware Segmentation uses a dynamic programming algo-
rithm to smartly partition the code, aligning with boundaries of member functions or major function
branches, thereby preserving the code’s structure. The accompanying AST, with some levels pruned
for clarity, corroborates that these segmentations indeed coincide with key subtree demarcations.

inputs within the max len constraint. A naive approach is Greedy Segmentation, where each chunk,
except the last, contains exactly max len tokens Figure 2 (Left). This strategy has been widely
adopted in previous works, such as CodeT5 (Wang et al., 2021).

Research in NLP by Liu et al. (2019) underscores that segmentation respecting sentence and docu-
ment boundaries outperforms the greedy strategy. Given programming language’s inherently struc-
tured nature, which is arguably more complex than natural language, a more sophisticated segmen-
tation approach is even more important. However, this area remains largely unexplored.

AST-Aware Segmentation is our novel approach designed to preserve the AST structure of code
during segmentation. Unlike Greedy Segmentation, which can indiscriminately fragment AST struc-
tures, our method strategically minimizes such disruptions. As illustrated in the example in Figure 2,
Greedy Segmentation leads to nine instances of AST breaks—between Block 1 and Block 2, it
breaks If, FuncDef, and ClassDef; between Block 2 and Block 3, it breaks Attr, BinaryExpr,
While, If, FuncDef, and ClassDef. In contrast, our AST-Aware approach results in only three
breaks: between Block 1 and Block 2, it breaks ClassDef, and between Block 2 and Block 3, it
breaks FuncDef and ClassDef.

To identify optimal partition boundaries, we use a dynamic programming (DP) algorithm:

1. We construct an array cost, where cost[i] denotes the number of AST-structure breaks
that would occur if partitioning happened right after token i. This array is populated by
traversing the AST and incrementing cost[l..r - 1] by 1 for each span [l, r] associated
with an AST subtree.

2. We define a 2-D array dp, where dp[k, i] represents the the minimum total number
of AST-structure breaks when k partitions are made for the first i tokens, ending the last
partition right after the i-th token. The state transition equation is:

dp[k, i] = cost[i] + min
i−max len≤j<i

dp[k − 1, j] (1)

3. While the naive DP algorithm has a quadratic time complexity O(n2) relative to the code
file length n, it can be optimized to O(n2/max len) by employing a monotonic queue for
sliding-window minimum calculations. This allows for efficient computation across most
code files. The pseudocode of the optimized dynamic programming algorithm is shown in
Algorithm 1. See Appendix A.2 for details about complexity calculations.
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4. The algorithm outputs the partition associated with dp[k min, n], where k min =
argmink(dp[k, n]), as the most optimal partition.

Algorithm 1 Dynamic Programming in AST-Aware Segmentation
1 # n: the length of the code file (number of tokens)
2 # m: the max number of segments; approximately n / max_len
3 for k in range(1, m + 1):
4 q = Queue() # double ended queue
5 for i in range(1, n + 1):
6 while q.nonempty() and q.left() < i - max_len:
7 q.pop_left() # pop indices before i - max_len
8 while q.nonempty() and dp[k - 1, q.right()] > dp[k - 1, i - 1]:
9 q.pop_right() # maintain monotonicity of values

10 q.push_right(i - 1) # Push i - 1
11 best_j = q.left() # guaranteed to have the smallest value
12 prev[k, i] = best_j
13 dp[k, i] = cost[i] + dp[k - 1, best_j]

In comparing AST-Aware Segmentation with Greedy Segmentation—using the example in Fig-
ure 2—we find that the former presents more coherent code segments to the model during pre-
training. Conversely, the latter introduces noisy partial expressions near partition boundaries. Con-
sequently, AST-Aware Segmentation not only optimizes the pretraining process but also reduces
the mismatch between pretraining and downstream tasks, which often involve complete function
definitions as inputs.

3.3 PRETRAINING WITH SPAN CORRUPTION

The pretraining task of AST-T5 is based on span corruption, a well-established method for pretrain-
ing Transformer encoder-decoder models (Raffel et al., 2020). In this approach, 15% of the input
tokens are randomly masked and replaced by unique “sentinel” tokens, distinct within each example.
Each unique sentinel token is associated with a specific ID and added to the model’s vocabulary.

During pretraining, the encoder processes the corrupted input sequence. The decoder’s objective is
to reconstruct the dropped-out tokens based on the encoder’s output representations. Specifically, the
target sequence consists of the masked spans of tokens, demarcated by their corresponding sentinel
tokens. This framework effectively trains the model to recover the original text from a corrupted
input. Figure 1 (Left) illustrates an example of the input-output pair for span corruption.

3.4 OUR AST-AWARE SUBTREE CORRUPTION

Algorithm 2 Subtree Selection in AST-Aware Subtree Corruption
1 def mask_subtree(t: ASTNode, m: int): # mask m tokens in subtree t
2 ordered_children = []
3 m_remaining = m # distribute m tokens among children of t
4 for child in t.children:
5 if child.size > theta: # a hyperparameter to control granularity
6 m_child = m * (child.size / t.size) # same mask ratio
7 mask_subtree(child, m_child) # mask recursively
8 m_remaining -= m_child
9 else:

10 ordered_children.append(child)
11 weighted_shuffle(ordered_children)
12 for child in ordered_children: # greedy allocation
13 m_child = min(m_remaining, child.size)
14 mask_subtree(child, m_child)
15 m_remaining -= m_child

AST-T5 augments the traditional span corruption paradigm by incorporating AST-awareness. Rather
than arbitrarily masking consecutive token spans, AST-T5 masks code spans corresponding to AST
subtrees, ranging from individual expressions to entire function bodies.
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Subtree Masking. We use a recursive algorithm, outlined in Algorithm 2, to traverse the AST and
select subtrees for masking. The algorithm aims to fulfill two goals:

1. Introduce sufficient randomness across training epochs to enhance generalization.
2. Control the masking granularity via a tunable hyperparameter θ (named theta in Algo-

rithm 2, Line 5).

The “mask quota” m denotes the number of tokens to be masked in a subtree rooted at node t. The
size of a subtree corresponds to the number of tokens it encompasses, derived from the cumulative
sizes of its children. For larger subtrees that exceed the size threshold θ, masking is applied recur-
sively (Lines 5-8). Meanwhile, smaller subtrees undergo a weighted shuffle, and the quota m is then
apportioned among t’s children in a greedy fashion according to the shuffled order (Lines 11-15).
The weights for shuffling are determined by a heuristic function on the size of each child, such that
masking probabilities are distributed uniformly across leaf nodes. To create a subtree mask for an
AST rooted at t with a mask ratio r (e.g., 15% or 25%), one can use mask subtree(t, ⌊|t| · r⌋).
The parameter θ controls the granularity of masking. For example, with θ = 5, the algorithm has a
high probability to mask individual tokens and short expressions. As θ increases to 20, the algorithm
is more likely to mask larger constructs such as statements. When θ = 100, the probability increases
for masking structures like loops or entire function bodies. To foster diverse training scenarios, θ is
randomly sampled within a predefined range (e.g., 5 to 100) for each training example. This allows
the pretraining framework to inherently accommodate tasks as varied as single-token completion to
full function body generation from a given signature.

The subtree masking strategy is the primary distinction between our AST-Aware Subtree Corruption
and the Vanilla T5 Span Corruption, as illustrated in Figure 1. While conventional T5 variants mask
random token spans, with an average span length of 3 (Raffel et al., 2020) and neglecting code
structures, our method targets the masking of AST subtrees, potentially encompassing up to 100
tokens. This equips AST-T5 for generation of various code structures coherently.

Pretraining Objective. Except for the strategy used to select masked tokens and the segmentation
strategy described in Section 3.2 , our approach adheres to the workflow described in Section 3.3.
Once subtrees are selected for masking and replaced with sentinel tokens, the encoder processes
this modified input. Subsequently, the decoder is tasked with reconstructing the original tokens
within the masked subtrees. A side-by-side comparison between our approach and the Vanilla Span
Corruption in T5 is presented in Figure 1.

4 EXPERIMENTAL SETUP

Model Architecture. AST-T5 has an architecture similar to T5BASE (Raffel et al., 2020), compris-
ing a 12-layer encoder and a 12-layer decoder, where each layer has 768 dimensions and 12 attention
heads. In total, the model has 226M parameters.

Pretraining. AST-T5 is pretrained on a mixed corpus consisting of code and natural language.
Code is sourced from “GitHub repositories” dataset on Google BigQuery, which includes all
code files from repositories with open-source licenses permitting redistribution. For NL, we use
Wikipedia and OpenWebText, following Liu et al. (2019). Our corpus consists of 408 GB of code
and 64 GB of text, smaller than the corpus used by CodeT5 (Wang et al., 2021) and CodeT5+ (Wang
et al., 2023). Detailed statistics are provided in Appendix A.3.

Each code file is first parsed into its AST using the Tree-Sitter multi-language parser, and then
tokenized with byte-level Byte-Pair Encoding (BPE) using a 64k BPE token vocabulary. Following
AST-Aware Segmentation, these files are partitioned into chunks of 1,024 tokens. Our model is
pretrained using the AST-Aware Subtree Corruption objective for 524 billion tokens (1,024 tokens
per sequence, 1,024 sequences per batch, and 500k steps). For each training example, we apply
AST-Aware Subtree Corruption of it is code, or apply Vanilla T5 Span Corruption of it is natural
language. For code, the threshold, θ, is uniformly sampled from 5 to 100. Pretraining uses PyTorch,
Fairseq2 and FlashAttention (Dao et al., 2022) and is conducted on 8 nodes, each with 8x NVIDIA
A100 40GB GPUs. Further pretraining hyperparameters are detailed in Appendix A.4.

2https://github.com/facebookresearch/fairseq
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Table 1: Performance comparison of various pretraining configurations for downstream tasks. Each
row represents a sequential modification applied to the model in the previous row. Metrics include
“Pass@1” rate for HumanEval, “Exact Match” rate for CONCODE, Bugs2Fix (for “Small” and
“Medium” code lengths splits), and Java-C# transpilation (both Java-to-C# and C#-to-Java). F1
score is used for Clone Detection, and Accuracy for Defect Detection, consistent with prior studies.

Generation Transpilation Understanding
Pretraining Config HumanEval Concode Bugs2Fix Java-C# Clone Defect Avg
T5 5.2 18.3 21.2/13.8 65.5/68.4 96.9 64.1 44.2
+ AST. Segmentation 7.2 20.2 22.5/15.1 66.3/69.3 98.3 65.9 45.7
+ AST. Subtree Corrupt 9.6 22.1 23.3/16.5 67.3/72.2 98.6 66.0 47.0
+ Mask 25% (AST-T5) 12.8 22.9 23.8/16.1 68.9/72.3 98.6 65.8 47.7
+ Mask 50% 13.0 22.0 21.9/15.0 66.5/70.1 97.1 64.2 46.2

Evaluation. We evaluate AST-T5 across three types of tasks: text-to-code generation, code-to-
code transpilation, and code understanding (classification). Our evaluation encompasses tasks from
the CodeXGLUE meta-benchmark (Lu et al., 2021) and also includes HumanEval (Chen et al.,
2021a) and MBPP (Austin et al., 2021). Details about the benchmarks are shown in Appendix A.5.

We finetune AST-T5 on the training datasets of all downstream tasks, adhering to the methodology
by Raffel et al. (2020). For the HumanEval task, which lacks its own training dataset, we use
CodeSearchNet (Husain et al., 2020), aligning with the approach of Wang et al. (2023). The prompt
templates for finetuning are constructed using the PromptSource framework (Bach et al., 2022). The
finetuning takes 50k steps, with the peak learning rate set at 10% of the pretraining learning rate.
All other hyperparameters from pretraining are retained without further adjustments, and we train
only one finetuned model. During inference, rank classification is employed for code understanding
tasks and beam search for generative tasks, following Sanh et al. (2021). We evaluate our model on
the test set using five prompt templates for each task and report the average performance.

Baselines. We first benchmark AST-T5 against our own T5 baselines to ensure a controlled com-
parison. All models share identical Transformer architectures, pretraining data, and computational
settings, differing only in the use of AST-Aware Segmentation and Subtree Corruption techniques
by AST-T5. This setup directly evaluates the efficacy of our proposed methods.

We further benchmark AST-T5 against other language models for code-related tasks. These include
decoder-only models such as the GPT variants (Brown et al., 2020; Chen et al., 2021a; Wang & Ko-
matsuzaki, 2021), PaLM (Chowdhery et al., 2022), InCoder (Fried et al., 2023), and LLaMa (Tou-
vron et al., 2023). We also compare with encoder-decoder models, including PLBART (Ahmad
et al., 2021), CodeT5 (Wang et al., 2021), StructCoder (Tipirneni et al., 2023), and CodeT5+ (Wang
et al., 2023). Notably, CodeT5BASE and CodeT5+ (220M) closely resemble our model in terms of
architecture and size, but AST-T5 distinguishes itself with its AST-Aware pretraining techniques.

5 EVALUATION RESULTS

In this section, we evaluate AST-T5 across multiple benchmarks. First, we analyze the contributions
of each component within our AST-aware pretraining framework through controlled experiments.
Next, we benchmark AST-T5 against existing models in prior work.

5.1 PRETRAINING PROCEDURE ANALYSIS

In this subsection, we analyze the key components that contribute to the pretraining of AST-T5 mod-
els. Holding the model architecture, pretraining datasets, and computational environment constant,
we sequentially add one component at a time to a T5 baseline trained on code, culminating in our
finalized AST-T5 model. Table 1 presents the experimental results. These results show that:

AST-Aware Segmentation enhances code language models. A comparison between the first two
rows of Table 1 shows that the model trained with AST-Aware Segmentation consistently outper-
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Table 2: Results of AST-T5 on downstream tasks compared with reported results of established
language models. Evaluation metrics align with those in Table 1. Our focus is primarily on models
with similar sizes as AST-T5, specifically the “Base” models (110M to 230M parameters), while
comparisons against larger models are depicted in Figure 3. Some models are either encoder-only
or decoder-only and are thus not suited for certain tasks. These results are labeled with “N/A” in
this table because they are not available in the literature.

Generation Transpilation Understanding
Model HumanEval Concode Bugs2Fix Java-C# Clone Defect
CodeBERT N/A N/A 16.4 / 5.2 59.0/58.8 96.5 62.1
GraphCodeBERT N/A N/A 17.3 / 9.1 59.4/58.8 97.1 N/A
PLBART N/A 18.8 19.2 / 9.0 64.6/65.0 97.2 63.2
CodeT5 N/A 22.3 21.6/14.0 65.9/66.9 97.2 65.8
CodeT5+BASE 12.0 N/A N/A N/A 95.2 66.1
StructCoder N/A 22.4 N/A 66.9/68.7 N/A N/A
AST-T5 (Ours) 12.8 22.9 23.8/16.1 68.9/72.3 98.6 65.8

forms the T5 baseline that uses Greedy Segmentation across all tasks. The advantage stems from
the fact that AST-Aware Segmentation produces less fragmented and thus less noisy training inputs
during pretraining. Given that most downstream tasks present coherent code structures, such as en-
tire function definitions, the consistency upheld by AST-Aware pretraining aligns better with these
structures, leading to improved generalization.

AST-Aware Span Corruption further boosts generation performance. A comparison between
the second and third rows of Table 1 reveals an improvement when shifting from Vanilla T5 Span
Corruption to our AST-Aware Subtree Corruption. This performance gain is especially notable in
generation and transpilation tasks. Such enhancements stem from the ability of AST-Aware Subtree
Corruption to guide the model in generating code with better coherence and structural integrity.

Increasing masking ratio improves generation performance. The typical span corruption mask
ratio in T5 is set at 15%. Increasing this ratio could potentially enhance the model’s generation
capabilities, albeit potentially at the expense of understanding tasks. Essentially, a mask ratio of
100% would emulate a GPT-like, decoder-only Transformer. However, in our experiments (last two
rows of Table 1), we observed that raising the mask ratio from 15% to 25% significantly improved
generation capabilities without noticeably compromising performance in understanding tasks. Fur-
ther analysis shows that increasing the masking ratio to 50% yields only a marginal improvement on
HumanEval (from 12.8 to 13.0), while adversely impacting transpilation and understanding tasks.
Thus, we settled on a 25% mask ratio for our AST-T5 model.

5.2 MAIN RESULTS

Table 2 shows AST-T5’s performance on downstream tasks compared with previously published
results of similarly sized models, specifically those within the “Base” scale (110M to 230M param-
eters). Figure 3 and Figure 4 extends this comparison, comparing AST-T5 with larger models using
the HumanEval benchmark and the MBPP benchmark, respectively. These results show that:

AST-T5 excels as a unified and parameter-efficient LM for various code-related tasks. While
comparable in size, AST-T5 consistently outperforms similar-sized models such as CodeT5 (Wang
et al., 2021) and CodeT5+ (Wang et al., 2023) in code generation, transpilation, and understanding.
Notably, while CodeT5 and CodeT5+ are models at the Base scale, they were evaluated across
different tasks. Our model, AST-T5, outperforms the best results of these two models across multiple
benchmarks at the same time. Moreover, Figure 3 highlights AST-T5’s competitiveness against
significantly larger models like GPT-J (Wang & Komatsuzaki, 2021) and LLaMa-7B (Touvron et al.,
2023) on the HumanEval benchmark, underscoring our model’s parameter efficiency.
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Figure 3: Visualization of AST-T5’s performance on HumanEval compared to models exceeding
230M parameters and thus not detailed in Table 2. Each point on the scatter plot represents a model.
The x-axis shows the parameter count in log-scale, while the y-axis shows the Pass@1 rate on
HumanEval in log-scale. Model open-source status is color-coded: blue for open-source and red
for proprietary.
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1Figure 4: Visualization of AST-T5’s performance on MBPP compared to other models. Each point
on the scatter plot represents a model.

AST-T5 exhibits unique strengths in transpilation through AST-awareness. Table 2 highlights
AST-T5’s superior performance in code-to-code transpilation tasks, showcasing gains a substantial
gain of 2 to 5 points on Bugs2Fix and Java-C# transpilation. In transpilation, while surface-level
code can exhibit significant variability, the intrinsic AST structures of the source and target often
maintain a notable similarity. The capability of AST-T5 to exploit this structural similarity is crucial
to its effectiveness. The benefits of being structure-aware are further exemplified by AST-T5’s lead-
ing results in Clone Detection, where it surpasses CodeT5 by 3 points, because AST comparisons
yield more precise insights than direct code comparisons.

6 CONCLUSION AND FUTURE WORK

In this work, we present AST-T5, a novel pretraining paradigm that harnesses the power of Ab-
stract Syntax Trees (ASTs) to boost the performance of code-centric language models. Using two
structure-aware techniques, AST-T5 not only outperforms models of comparable size but also com-
petes favorably against some larger counterparts. The simplicity of AST-T5 lies in its singular
pretraining objective and its adaptability as a drop-in replacement for any encoder-decoder LM,
highlighting its potential for real-world deployments. Moving forward, we aim to explore the scala-
bility of AST-T5 by training larger models on more expansive datasets.
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Language-agnostic representation learning of source code from structure and context. March
2021. doi: 10.48550/arXiv.2103.11318. URL http://arxiv.org/abs/2103.11318.
arXiv:2103.11318 [cs].

13

http://arxiv.org/abs/2206.05239
http://arxiv.org/abs/2206.05239
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/
https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2305.07922
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/1909.03496
http://arxiv.org/abs/2103.11318


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 LIMITATIONS

AST-T5 is specifically designed to enhance code generation performance by exclusively masking
code within AST subtrees during pretraining. While this specialized approach is advantageous for
code generation tasks, it may result in suboptimal performance in natural language generation. Ac-
knowledging this limitation, future versions of AST-T5 could investigate strategies such as masking
docstrings and comments to broaden its applicability. This would potentially improve performance
across various tasks, including code summarization.

A.2 MORE ABOUT AST-AWARE SEGMENTATION

In Section 3.2, we use a dynamic programming algorithm to calculate the segmentation that results
in the least number of AST structure breaks. A naive implementation of the DP algorithm is shown
in Algorithm 3.

Algorithm 3 Dynamic Programming in AST-Aware Segmentation (Before Optimization)
1 for k in range(1, m + 1):
2 for i in range(1, n + 1):
3 best_j = i - max_len
4 for j in range(i - max_len + 1, i):
5 if dp[k - 1, j] < dp[k - 1, best_j]:
6 best_j = j
7 prev[k, i] = best_j
8 dp[k, i] = cost[i] + min_value

Denote the length of the code file (in tokens) by n. In the algorithm, m denotes the maximum number
of chunks that the file can be split into, which is approximately n/max len. So this implementation
has time complexity O(mn · max len) = O(n2), which is not feasible for longer code files. To
optimize this algorithm, we use a monotonic queue to compute the sliding-window minimum, as
described in Algorithm 1.

Each element is only pushed into and popped out of the monotonic queue once, so the time com-
plexity of the optimized algorithm is O(nm) = O(n2/max len), making the algorithm 1̃000x faster
when max len = 1024. This allows the algorithm to segment each code file with 100k tokens in
milliseconds.

A.3 PRETRAINING CORPORA

Our pretraining corpora consists of two parts: code and natural language, coming from three sources:

• GitHub (408 GB): The “GitHub repositories” public dataset available on Google Big-
Query 3. For pretraining, we use all code files in Python (70 GB), C/C++ (195 GB), Java
(105 GB), C# (38 GB) from each repo with an open-source license that explicitly permits
redistribution.

• Wikipedia (16 GB): A natural language corpus widely used for natural language pretrain-
ing.

• OpenWebText (38 GB): A natural language corpus used by Liu et al. (2019) to train lan-
guage models.

A.4 PRETRAINING HYPERPARAMETERS

Table 3 shows the pretraining hyperparameters for our proposed AST-T5 model.

3https://console.cloud.google.com/marketplace/details/github/github-repos
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Encoder Layers 12
Decoder Layers 12
Hidden Dimension 768
Peak Learning Rate 2e-4
Batch Size 1,024
Warm-Up Steps 10,000
Total Steps 500,000
Sequence Length 1,024
Mask Ratio 25%
Min Subtree Corruption Threshold θ 5
Max Subtree Corruption Threshold θ 100
Relative Position Encoding Buckets 32
Relative Position Encoding Max Distance 128
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.98)
Clip Norm 2.0
Dropout 0.1
Weight Decay 0.01

Table 3: Pretraining hyperparameters for our AST-T5 model.

Table 4: Overview of our evaluation benchmarks detailing test set size, task type, and evaluation
metric for each task. For MBPP, we follow Nijkamp et al. (2023) and evaluate our model on the
entire “sanitized” subset without few-shot prompts. For evaluation metrics, “Pass@1” indicates code
execution on unit-tests provided in the benchmark using a single generated code per example, with
reported pass rates. “Exact Match” evaluates textual equivalence without execution by comparing
two canonicalized code pieces. We omit “BLEU scores” because high BLEU values (> 50) can
still correspond to unexecutable or significantly flawed code (Lu et al., 2021), which is not useful in
real-world applications. We also discuss evaluation results using the CodeBLEU (Ren et al., 2020)
metric in Appendix A.7.

Size Type Metric
HumanEval 164 Text-to-Code Generation Pass@1
MBPP 427 Text-to-Code Generation Pass@1
Concode 2,000 Text-to-Code Generation Exact Match
Bugs2Fix 12,379 Code-to-Code Transpilation Exact Match
Java-C# 1,000 Code-to-Code Transpilation Exact Match
BigCloneBench 415,416 Code Understanding F1
Defect Detection 27,318 Code Understanding Accuracy

A.5 EVALUATION BENCHMARKS

We evaluate AST-T5 across three types of tasks: text-to-code generation, code-to-code tran-
spilation, and code understanding (classification). Our evaluation encompasses tasks from the
CodeXGLUE meta-benchmark (Lu et al., 2021) and also includes HumanEval (Chen et al., 2021a)
and MBPP (Austin et al., 2021). Specifically, for text-to-code generation, we assess performance
using HumanEval, MBPP, and Concode (Iyer et al., 2018); for transpilation, we use CodeXGLUE
Java-C# and Bugs2Fix (Tufano et al., 2019) for evaluation; and for understanding, we use Big-
CloneBench (Svajlenko et al., 2014) and the Defect Detection task proposed by Zhou et al. (2019).
Detailed metrics and statistics of these datasets are provided in Table 4.

A.6 EVALUATION RESULTS ON MULTI-LINGUAL CODE GENERATION

Table 5 presents a comparative analysis of our AST-T5 model on Python and Java subsets of the
multi-lingual HumanEval and MBXP benchmarks (Athiwaratkun et al., 2023). This analysis in-
cludes models such as BLOOM (BigScience, 2021), OPT (Zhang et al., 2022), and various con-
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Table 5: Results of AST-T5 on multi-lingual HumanEval and MBXP compared with reported results
of established language models. The evaluation metric is Pass@1.

#Params HumanEval MBXP
Python Java Python Java

CodeGen-multi 350M 7.3 5.0 7.5 8.2
CodeGen-mono 350M 10.3 3.1 14.6 1.9
AST-T5 (Ours) 226M 12.8 10.6 11.3 9.8
BLOOM 7.1B 7.9 8.1 7.0 7.8
OPT 13B 0.6 0.6 1.4 1.4
CodeGen-multi 2B 11.0 11.2 18.8 19.5
CodeGen-mono 2B 20.7 5.0 31.7 16.7
CodeGen-multi 6B 15.2 10.6 22.5 21.7
CodeGen-mono 6B 19.5 8.7 37.2 19.8
CodeGen-multi 16B 17.1 16.2 24.2 28.0
CodeGen-mono 16B 22.6 22.4 40.6 26.8

Table 6: Results of AST-T5 on CONCODE with reported results of established language models.
The evaluation metric is exact match score and CodeBLEU.

EM CodeBLEU
GPT-2 17.4 29.7
CodeGPT-2 18.3 32.7
CodeGPT-adapted 20.1 36.0
PLBART 18.8 38.5
CodeT5-Small 21.6 41.4
CodeT5-Base 22.3 43.2
AST-T5 (Ours) 22.9 45.0

figurations of CodeGen (Nijkamp et al., 2023), as reported in Athiwaratkun et al. (2023). Our
results show AST-T5’s superior performance across all benchmarks compared to the CodeGen-
multi-350M. Notably, although CodeGen-mono-350M, tailored for Python, surpasses AST-T5 in
the MBPP benchmark, it significantly underperforms in the Java subset. Furthermore, AST-T5,
having 226M parameters, outperforms larger counterparts like BLOOM-7.1B and OPT-13B.

A.7 EVALUATION RESULTS IN CODEBLEU

Table 6 presents the performance of various models on the Concode dataset using the CodeBLEU
metric, as reported in (Wang et al., 2021). CodeBLEU, specifically designed for evaluating code
synthesis, computes a weighted average of three scores: textual match (BLEU), AST match, and
Data Flow Graph (DFG) match. Our findings show a clear correlation between CodeBLEU and
exact match scores.
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