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ABSTRACT

Many problems can naturally be thought about recursively. However, neural net-
works fundamentally cannot reason this way on arbitrarily large problems. This is
because they do not have the memory to maintain state for the maximum recursion
depth required. Solving this issue would enable neural networks to reason like a
wide range of classical recursive algorithms (e.g., tree search in model-based RL).
To address this, we propose a neural architecture augmented with a stack that
learns to save and recall state as needed. We empirically demonstrate the utility of
this method on a recursive neural algorithmic reasoning task (learning depth-first
search) and show that our architecture leads to improved generalization.

1 INTRODUCTION & BACKGROUND

Reasoning recursively requires memory at least large enough to store as many states as the maximum
recursion depth of the problem. Since neural networks have a fixed size, they cannot reason this way
on arbitrarily large problems. This is problematic in Neural Algorithmic Reasoning (NAR), where
networks learn to execute algorithms by mimicking steps of algorithmic computation (Veličković &
Blundell, 2021; Xhonneux et al., 2021; Ibarz et al., 2022), because to execute a recursive algorithm,
the network must be able to reason correctly on arbitrarily large problem instances.

To address this fundamental issue, we introduce a neural architecture that incorporates a stack.
Inspired by call stacks in computer programs, our stack is used by the network to save or recall state.
This enables the network to execute algorithms with arbitrary recursion depth. We demonstrate
empirically that our approach is beneficial for neural algorithmic reasoning on depth-first search
(DFS)—a classic example of a recursive problem. Our architecture permits neural networks to
reason like a recursive algorithm, something that was previously not possible. By doing so, our
work is a step towards the goal of building generalist algorithmic learners that can compose basic
algorithms into pragmatic solutions (Xhonneux et al., 2021; Ibarz et al., 2022).

2 METHOD & EXPERIMENTS

We implement a stack to store and recall state from a neural network as described in Figure 1. The
hints1 describe the algorithmic computation state. In DFS, hints include a pointer to the current node
being explored, its predecessor, and whether each node has been visited. In theory, predicting hints
aligns the network with the reasoning process of the algorithm.

As the prototypical recursive algorithm, we choose depth-first search to demonstrate our method. We
modify the CLRS algorithmic reasoning benchmark (Veličković et al., 2022) to implement DFS with
hints based exactly on the variables of the algorithm defined in Cormen et al. (2009). We append the
stack operation to these hints. Our train, validation, and test sets consist of a mix of Erdős–Rényi (E-
R) graphs and random binary trees generated with particularly long chains to evaluate high recursion
depth. We use a Graph Neural Network (GNN) as the network component of our method. For
complete experimental details, see Appendix A and our implementation.2

∗These authors contributed equally.
1See Veličković et al. (2022) for a complete description.
2https://github.com/DJayalath/gnn-call-stack
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Figure 1: Augmenting a neural network with a stack. The input to the network is the state at the
top of the stack and the algorithm’s computation state (a set of hints). Inference. The network pre-
dicts the next stack element, stack operation, and next algorithm computation state. If the operation
is a push, the predicted next stack element is placed on the stack; if it is a pop, the current top stack
element is discarded and so is the next stack element prediction. Training. We supervise the stack
operation selection (and the rest of the algorithmic computation state) by sampling at steps in the
computation of the recursive algorithm. This forms the algorithmic computation state (hints) that
are predicted by the network and input to the next step.

Results. When we augmented the approach by Veličković et al. (2022) with a stack controlled by a
stack hint prediction, we achieved a mean accuracy of 89.1%± 3.0. Without the stack (and only the
stack hint prediction), the method achieved an accuracy of 60.7%±4.0. With neither augmentation,
the method by Veličković et al. (2022) achieved an accuracy of 64.0%± 1.2 using our experimental
setup.

3 DISCUSSION

We hypothesize that our network is learning to use the stack in the same way as a call stack, saving
and restoring state across time. Hence, our method enables reasoning recursively. The improve-
ment in accuracy is then a consequence of the network’s ability to reason like the DFS algorithm.
Moreover, we avoid the well-known memory bottleneck seen in Recurrent Neural Networks (RNNs)
caused by the fixed size of the hidden state in the network (Jurafsky & Martin, 2022, Chapter 9) as
we can store states and recall them without loss of information.

Our method resembles that of an RNN or Long Short-Term Memory (LSTM). However, it is im-
portant to note the difference. We are able to store the exact past hidden state for an arbitrarily long
time and learn to recall it when required. To do so, we must supervise the network’s prediction of
stack operations. This is trivial for recursive algorithms since call stack usage is well-defined.

4 CONCLUSION & FUTURE WORK

We proposed augmenting a neural network with a stack based on the hypothesis that it allows the
network to generalize better than previous work on recursive reasoning tasks. We showed that this
is indeed the case for neural algorithmic reasoning with depth-first search. This method could be
further generalized beyond recursive reasoning to general recursive problems by learning to use a
stack without intermediate supervision (e.g., using reinforcement learning). Nevertheless, since the
call graph of a recursive algorithm is precisely a depth-first search, we believe that our solution
can be applied to reason like any recursive algorithm where this execution path can be known in
advance. Our work has enlarged the class of algorithms that we can precisely reason about with
neural networks.
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A EXPERIMENT SETUP

We follow the general training setup employed by Ibarz et al. (2022) in their single task experiments.
Like Veličković et al. (2022), we apply teacher forcing by replacing the predicted computation
state of the last time step with the ground truth with 50% probability during training. Crucially, in
contrast to the mentioned previous work on NAR, we do not pass a regular hidden state. As compute
limits us to relatively small training graphs, it is otherwise easy to overfit to these graphs using this
hidden state instead of the stack. Whereas the hidden state would not be able to capture sufficient
information for larger graphs, it is easier to learn its usage at the start of training when the stack
operations have not yet been learned and we cannot rely on the correct stack element to be present
at each time step. Commands to reproduce our results are given in the accompanying repository.
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A.1 DFS IMPLEMENTATION

Note that the original specification of DFS for NAR by Veličković et al. (2022) requires prediction
of all node-level features (e.g., the parents of all nodes) at once. This inevitably leads to the memory
bottleneck issue described in Section 3. Therefore, we collect the output over different time steps,
similar to what an RNN would do. We collect the mapping from all nodes to their parents by
taking the predicted current node at each time step and overwriting its parent with the predicted
parent. Previous work did not exhibit this memory issue as they passed node-level computation
states between the time steps. The reason this works in this particular case is that the specific
representation of the hints (in terms of nodes) bounds the depth of the call stack in the case of DFS.
However, this does not allow learning recursive reasoning. In order to avoid this issue, we modified
most of these computation states to be graph-level so that we did not have global information that
avoids the need for a call stack.

A.2 GRAPH GENERATION

Following Ibarz et al. (2022), we generate graphs on the fly. However, we observe that their random
E-R graphs often only require a low recursion depth. Therefore, we substitute 15% of the generated
graphs with random binary trees. We use graphs of size 4, 8, 16, 24, and 32 for training whereas
only graphs of size 32 are used for validation (with early stopping) and testing.

A.3 GRAPH-LEVEL CALLSTACK

In our concrete implementation of the general method in Section 2, we employ a Message-Passing
Neural Network (MPNN). To utilize a graph-level call stack, we construct a stack element by max-
pooling node embeddings.

A.4 HYPERPARAMETERS

Table 1: Parameter values in our network configurations.
Parameter Value

GNN Architecture MPNN (Gilmer et al., 2017)
Epochs 15000

Node pooling operation max
Hidden state dimension 128

Stack embedding dimension 64
Activation ReLU

B ABLATION

In Figure 2, we perform an ablation where we compare the training curves of three configurations.
Adding a hint for the stack operation and allowing the network to learn a stack as described in
Section 2 leads to a significant improvement in test accuracy. Only learning the additional stack
operation hint but not using a stack does not yield a similar improvement. This indicates that the
crucial element is the stack memory itself rather than an inductive bias induced by the new hint.
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Figure 2: A call stack is advantageous for learning DFS. We show the means of three runs with
different random seeds. The shaded area shows the standard deviation. “with call stack” describes
our contribution which is the incorporation of a call stack with a stack operation hint as described
in Figure 1. “only stack operation hint” is the same but without inputting the stack elements to the
network (i.e., we still predict the stack operations, but do not make use of the stack itself). “neither”
removes both the stack and the stack operation hint, leaving only the hints based on the variables of
the algorithm.
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