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Abstract

Large language models (LLMs) are increasingly being used in materials science.
However, little attention has been given to benchmarking and standardized evalu-
ation for LLM-based materials property prediction, which hinders progress. We
present LLM4Mat-Bench, the largest benchmark to date for evaluating the perfor-
mance of LLMs in predicting the properties of crystalline materials. LLM4Mat-
Bench contains about 1.9M crystal structures in total, collected from 10 publicly
available materials data sources, and 45 distinct properties. LLM4Mat-Bench
features different input modalities: crystal composition, CIF, and crystal text
description, with 4.7M, 615.5M, and 3.1B tokens in total for each modality, respec-
tively. We use LLM4Mat-Bench to fine-tune models with different sizes, including
LLM-Prop and MatBERT, and provide zero-shot and few-shot prompts to evaluate
the property prediction capabilities of LLM-chat-like models, including Llama,
Gemma, and Mistral. The results highlight the challenges of general-purpose
LLMs in materials science and the need for task-specific predictive models and
task-specific instruction-tuned LLMs in materials property prediction 1.

1 Introduction

With the remarkable success of large language models (LLMs) in solving natural language tasks
[12, 31, 32, 1, 39] and different scientific tasks [26, 14, 40, 4, 15, 27], scientists have recently started
to leverage LLMs to tackle very important and challenging problems in materials science, including
predicting materials properties [35, 24, 44, 11, 30, 6] and discovering new materials [2, 19, 30, 6].

The learning capabilities of LLMs have the potential to revolutionize the field of materials science.
For example, recent research by Rubungo et al. [35] has demonstrated the exceptional performance
of LLMs in predicting the properties of crystalline materials based on textual descriptions of their
structures. In their study, they introduced a novel dataset, TextEdge, which comprises textual
descriptions of crystals and their corresponding properties. This dataset was used to fine-tune the
encoder component of the T5-small model for the task of materials property prediction. The findings
of Rubungo et al. [35] challenge the conventional practice of heavily relying on graph neural networks
and using solely either crystal composition or structure as input for property prediction. Their work
underscores the significance of further investigating the extent to which LLMs can be harnessed to

1The Benchmark and code can be found at: https://github.com/vertaix/LLM4Mat-Bench

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/vertaix/LLM4Mat-Bench


develop innovative techniques for accurately predicting the properties of crystalline materials, thereby
enhancing the materials discovery pipeline. Unfortunately, the proposed TextEdge dataset is limited
in scope, comprising approximately 145K samples and encompassing only three distinct properties.
Furthermore, its lack of diversity, being derived from a single data source (Materials Project [21]),
hinders its effectiveness in assessing the robustness of LLMs in materials property prediction.

In this work, we introduce LLM4Mat-Bench, a benchmark dataset collected to evaluate the perfor-
mance of LLMs in predicting the properties of crystalline materials. To the best of our knowledge,
LLM4Mat-Bench is the most extensive benchmark to date for assessing the efficacy of language
models in materials property prediction. The dataset comprises approximately two million samples,
sourced from ten publicly available materials sources, each containing between 10K and 1M structure
samples. LLM4Mat-Bench encompasses several tasks, including the prediction of electronic, elastic,
and thermodynamic properties based on a material’s composition, crystal information file (CIF), or
textual description of its structure. We use LLM4Mat-Bench to evaluate several LLMs of different
sizes, namely LLM-Prop [35] (35M parameters), MatBERT [41] (109.5M parameters), and Llama
2 [39] (7B parameters). And we provide fixed train-valid-test splits, along with carefully designed
zero-shot and few-shot prompts to ensure reproducibility. We anticipate that LLM4Mat-Bench will
significantly advance the application of LLMs in addressing critical challenges in materials science,
including property prediction and materials discovery.

2 LLM4Mat-Bench

2.1 Data Collection Process

We collected the data used to create LLM4Mat-Bench from 10 publicly available materials data
sources. In this section, we describe each data source and discuss how we accessed its data.

2.1.1 Data sources

hMOF [42] is a publicly available database2 consisting of about 160K Metal-Organic Frameworks
(MOFs), generated by Wilmer et al. using computational approaches. Materials Project (MP) [21] is
a database with around 150K materials, offering free API access3 for data retrieval, including CIF
files and material properties. The Open Quantum Materials Database (OQMD) [23] is a publicly
accessible database4 of 1.2M materials, containing DFT-calculated thermodynamic and structural
properties, created at Northwestern University. OMDB [3] is an organic materials database with
about 12K structures and related electronic band structure properties, freely available5. JARVIS-DFT
[8, 9] is a repository created by NIST researchers, containing around 75.9K material structures
with downloadable properties6. QMOF [33, 34] is a quantum-chemical property database of over
16K MOFs, accessible via GitHub7. JARVIS-QETB [17] is a NIST-created database8 of nearly one
million materials with tight-binding parameters for 65 elements. GNoME is a database of 381K
new stable materials discovered by Merchant et al. [28] using graph networks and DFT, available on
GitHub9. Cantor HEA [25] is a DFT dataset of formation energies for 84K alloy structures, available
on Zenodo10. SNUMAT is a database with around 10K experimentally synthesized materials and
DFT properties, accessible via API11.

2.1.2 Collecting crystal information files (CIFs) and materials property

Crystal structure files (CIFs), material compositions, and material properties were collected from
publicly accessible sources described in Section 2.1.1. Data collection was facilitated by APIs and

2https://mof.tech.northwestern.edu/
3https://next-gen.materialsproject.org/api
4https://www.oqmd.org/
5https://omdb.mathub.io/
6https://jarvis.nist.gov/jarvisdft
7https://github.com/Andrew-S-Rosen/QMOF
8https://jarvis.nist.gov/jarvisqetb/
9https://github.com/google-deepmind/materials_discovery/blob/main/DATASET.md

10https://doi.org/10.5281/zenodo.10854500
11https://www.snumat.com/apis
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direct download links provided by the respective databases. For databases such as Materials Project,
OMDB, SNUMAT, JARVIS-DFT, and JARVIS-QETB, user registration is required for access, while
databases like hMOF, QMOF, OQMD, and GNoME allow direct data access without registration.
From each source, we obtained CIFs and associated material properties. Although the Materials
Project and JARVIS-DFT databases offer a broader range of properties, we selected a subset—10 and
20 properties respectively—that adequately represents the data within our benchmark, based on the
number of data points available for each property. This selection was made to optimize computational
efficiency when training models across the 65 properties included in LLM4Mat-Bench.

2.1.3 Generating the textual description of crystal structure

LLMs perform better with textual input, and Rubungo et al. [35], Korolev and Protsenko [24], Qu
et al. [30] have demonstrated that LLMs can effectively learn the structural representation of a crystal
from its textual description, outperforming graph neural network (GNN)-based models that directly
utilize the crystal structure for property prediction. Crystal structures are typically described in
file formats such as Crystallographic Information File (CIF) which include predominantly numbers
describing lattice vectors and atomic coordinates and are less amenable to LLMs. Instead of directly
using these as inputs, we use Robocrystallographer [21] to deterministically generate texts that are
more descriptive of crystal structures from CIF files. Robocrystallographer was developed and has
been used by the Materials Project team to auto-generate texts for their database. Given a structure,
Robocrystallographer leverages predefined rules and existing libraries to extract chemical and struc-
tural information, including oxidation states, global structural descriptions (symmetry information,
prototype matching, structural fingerprint calculations etc.), and local structural descriptions (e.g.
bonding and neighbor analysis, connectivity). This method not only generate deterministic and
human-readable texts, but also ensures no data contamination in our fine-tuned LLMs, as the data
sources mentioned do not include these crystal text descriptions.

Table 1: LLM4Mat-Bench statistics.

Data source # Structure files # Structure-Description pairs # Tokens (Words) # Avg. subword tokens/Sample # Properties
Total Train Validation Test Composition Structure Description Composition Structure Description

OQMD [23] 1,008,266 964,403 771,522 96,440 96,441 964K 96M 244M 5.3 635.4 347.3 2
JARVIS-QETB [17] 829,576 623,989 499,191 62,399 62,399 624K 45M 90M 3.5 466.6 202.5 4
GNoME [28] 381,000 376,276 301,020 37,628 37,628 830K 78M 508M 9.7 1185.3 1711.3 6
Materials Project [21] 146,143 146,143 125,825 10,000 10,318 272K 37M 157M 6.8 1611.8 1467.3 10
hMOF [42] 133,524 132,743 106,194 13,274 13,275 449K 96M 581M 14.9 4583.9 5629.3 7
Cantor HEA [25] 84,024 84,019 67,215 8,402 8,402 84K 11M 251M 9.5 868.4 4988.6 4
JARVIS-DFT [8, 9] 75,965 75,965 60,772 7,596 7,597 76K 9M 25M 5.0 786.0 455.9 20
QMOF [33, 34] 16,340 7,656 6,124 766 766 8K 7M 22M 14.0 5876.4 3668.0 4
OMDB [3] 12,500 12,122 9,697 1,212 1,213 66K 8M 14M 14.8 4097.4 1496.6 1
SNUMAT 12 10,481 10,372 8,297 1,037 1,038 16K 2M 4M 5.9 1244.5 539.1 7

Total 2,697,779 1,978,985 1,592,315 193,357 193,313 4.7M 615.5M 3.1B 7.9 1559.7 1703.6 65

Table 2: Comparing the LLM4Mat-Bench with other existing benchmarks.

Benchmark # Data Sources # Distinct Properties # Properties/# Samples # Properties/Task Type Material Representations
<10k 10-100k 100k+ Regression Classification Composition Structure Description

MatBench [13] 6 10 7 3 3 10 3 ✓ ✓ ✗
TextEdge [35] 1 3 0 0 3 2 1 ✗ ✗ ✓
LLM4Mat-Bench (Ours) 10 45 5 31 29 60 5 ✓ ✓ ✓

2.2 Data Statistics

As Table 1 shows, LLM4Mat-Bench comprises 2,697,779 structure files, which, after pairing with
descriptions generated by Robocrystallographer and filtering out descriptions with fewer than five
words, result in 1,978,985 composition-structure-description pairs13. The reduction in sample count
is also due to Robocrystallographer’s inability to describe certain CIF files. The total samples for
each dataset in LLM4Mat-Bench are randomly split into 80%, 10%, and 10% for training, validation,
and testing, respectively. OQMD has the highest number of samples at 964,403, while QMOF has
the fewest with 7,656 samples. On average, each dataset in LLM4Mat-Bench contains approximately
200,000 samples.

In LLM4Mat-Bench, when combined, textual descriptions contain 3.1 billion tokens, crystal structures
615 million, and compositions 4.7 million14. OQMD leads in composition tokens (964K), while

13The total number of pairs were 2,433,688, after removing about 454703 duplicated pairs across datasets, it
resulted to 1,978,985 pairs.

14We used NLTK toolkit as a tokenizer to count the number of words/tokens.
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hMOF has the most description tokens (581M). For CIFs, both OQMD and hMOF have around 96M
tokens. On average, compositions have 8 subword tokens per sample, CIFs 1600, and descriptions
1700. hMOF averages the longest inputs for compositions (14.9) and descriptions (5629), while
QMOF leads in structures (5876.4)15. JARVIS-DFT has the most tasks with 20 properties, followed
by Materials Project with 10, and OMDB with one. Details on sample counts are in Section 3.2.

LLM4Mat-Bench provides the most comprehensive dataset compared to existing benchmarks, with
the largest number of samples, properties, and tasks, including 60 regression and 5 classification tasks
(see Table 2). It also offers more diverse material representations, incorporating chemical formulas,
crystal structures, and crystal text descriptions. In contrast, MatBench [13] and TextEdge [35] have
fewer tasks and less representation diversity, with MatBench lacking crystal text descriptions and
TextEdge missing material compositions and crystal structures.

2.3 Data Quality

Since Robocrystallographer generates crystal text descriptions in a deterministic manner following
predefined and well-validated rules [21], these texts should faithfully describe the crystal structures
used to generate them. Regarding the quality of labels, they are calculated from simulations and
are usually considered noise-free. Properties data except those from JARVIS-QETB and hMOF
are obtained from DFT, which is based on fundamental quantum mechanical equations. While
DFT calculations can still be performed with different levels of approximations and fidelity, the
DFT-calculated properties are usually considered to be highly reliable and are routinely used as
noise-free ground truths for ML models in the materials science community.

3 Results

3.1 Experimental Details

We conducted about 845 experiments, evaluating the performance of five models and three material
representations on each property for each data source. Consistent with standard practices in materials
science, we evaluated performance separately for each data source rather than combining samples
from different sources for the same property. This approach accounts for variations in techniques and
settings used by different data sources, which can result in discrepancies, such as differing band gaps
for the same material. Below, we will describe each material representation, model, and metric that
we used to conduct our experiments.

3.1.1 Material Representations

LLM4Mat-Bench includes three distinct materials representations: Composition, CIF, and Description
(see Table 6). The primary goal of using these diverse representations is to identify which best
enhances LLM performance in predicting material properties across different data sources.

Composition (Comp.) Material composition refers to the chemical formula of a material. Though
it only provides stoichiometric information, studies have shown it can still be a reliable material
representation for property prediction [13, 38]. For LLMs, it offers the advantage of being a short
sequence that usually fits within the model’s context window, making it efficient to train. To further
optimize efficiency, we set the longest sequence of material compositions from each data source as
the context window, rather than using the default 512 tokens for fine-tuning while the original length
is kept during inference.

CIF We represent the materials structure using CIF files, the conventional way of representing the
crystal structure in crystallography [20]. CIFs are commonly used for GNN-based models, but some
recent works have demonstrated that it can also work with LLMs [2, 16, 19].

Description (Descr.) As we outlined in Section 2.1.3, we also use textual descriptions of crystal
structures as representations for both atomic crystals and MOFs.

15We used Llama 2 tokenizer to count the number of subword tokens.
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3.1.2 Models

We benchmarked different LLM-based models with various sizes, and a GNN-based baseline. Herein,
We provide the details of each model.

CGCNN [43] is employed as a GNN baseline which is widely used in the materials science com-
munity16. We trained on LLM4Mat-Bench from scratch with optimal hyperparameters: 128 hidden
dimensions, batch size of 256, three message passing layers, 1e-2 learning rate, 8.0 radius cutoff, 12
nearest neighbors, and 500 training epochs, though extending to 1000 epochs improved performance
in some cases.

MatBERT [41] is a BERT-base model [12] with 109 million parameters, pretrained on two million
materials science articles. We fine-tuned MatBERT on LLM4Mat-Bench, following Rubungo et al.
[35], and achieved optimal performance with a 512-token input length, 64-sample batch size, 5e-5
learning rate, 0.5 dropout, and 100 epochs using the Adam optimizer and onecycle learning rate
scheduler [36]. Although training for 200 epochs improves performance, results are reported for 100
epochs due to computational constraints.

LLM-Prop is a model based on the encoder part of T5-small model [32] introduced by Rubungo et al.
[35], with 35 million parameters, smaller than MatBERT. It predicts material properties from the
textual descriptions of crystal structures. To adapt LLM-Prop on CIF, we employed xVal encoding
[18], where we parse an input sequence x to extract numerical values into a list xnum, replace them
with a [NUM] token to form xtext, and then embed xtext, followed by multiplying each [NUM]
embedding by its corresponding value in xnum to get hembed that we feed to the model. xVal encoding
ensures that the quantitative value of each number is reflected in the input embedding while reducing
the input length caused by the high volume of numerical values in CIF files, which extend the length of
the input sequence after tokenization. We fine-tuned LLM-Prop on LLM4Mat-Bench and optimizing
with a 1e-3 learning rate, 0.2 dropout, Adam optimizer, and onecycle learning rate scheduler for 100
epochs, with a 768-token input length, batch size of 64 for training, and 512 for inference. While
Rubungo et al. [35] recommended that training for 200 epochs and increasing the number of input
tokens improves the performance, we could not replicate this due to computational constraints.

Table 3: Prompt template. <material representation type> denotes “chemical formula", “cif
structure", or “structure description". <value> represents the input context (for example NaCl, etc.).
<property name> denotes the name of the property (for example band gap, etc.). <predicted value>
represents the property value generated by Llama 2 while <actual value_i> represents the ground
truth of the EXAMPLE_i. FINAL PROMPT and RESPONSE denote the input prompt to Llama 2
and its generated output, respectively.

Prompt Type Template

-

SYSTEM PROMPT:
«SYS»
You are a material scientist.
Look at the <material representation type> of the given crystalline material and predict its property.
The output must be in a json format. For example: {property_name:predicted_property_value}.
Answer as precise as possible and in as few words as possible.
«/SYS»

INPUT PROMPT:
<material representation type>: <value>
property name: <property name>.

0-shot FINAL PROMPT: <s>[INST] + SYSTEM PROMPT + INPUT PROMPT + [/INST]
RESPONSE: <property name>:<predicted value>

5-shot

EXAMPLE_1: ... EXAMPLE_5:
<material representation type>: <value_1> <material representation type>: <value_5>
property name: <property name>. property name: <property name>.
<property name>:<actual value_1> <property name>:<actual value_5>

FINAL PROMPT: <s>[INST] + SYSTEM PROMPT + EXAMPLE_1 + ... + EXAMPLE_5 + INPUT PROMPT + [/INST]
RESPONSE: <property name>:<predicted value>

Llama 2-7b-chat To assess the performance of conversational LLMs in materials property prediction,
we tested Llama 2-7b-chat (7 billion parameters) using our designed zero-shot and five-shot prompts
(see Table 3) without fine-tuning. For the CIF structure prompts, we removed "# generated using

16Although CGCNN is not state-of-the-art for some properties, it was faster compared to models like ALIGNN
[7] and DeeperGatGNN [29], making it suitable for our extensive experiments
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pymatgen" comment that is appended to each file. The maximum input length was set to 4000 tokens
while the output length was set to 256, with a batch size of 256 samples, temperature of 0.8, and top-K
sampling applied with K = 10. The details of other models that we compared with Llama 2 can be
found in Appendix C. For five-shot examples, we sampled from crystals with shorter structures and
descriptions to reduce the context length. We also made sure the property values for those examples
are diverse (for instance, they should not all have 0.0 eV as their bandgap values).

We trained all models using NVIDIA RTX A6000 GPUs. Training MatBERT with two GPUs on
about 300K data points and 100 epochs took about four days while for LLM-Prop took about 2.5
days. For CGCNN, it took about 7 hours training time on one GPU for 500 epochs. With one GPU,
Llama 2 took about a half day to generate the output of 40K samples with 256 tokens maximum
length each. We report the test set results averaged over five runs for predictive models and three runs
for generative models.

3.1.3 Evaluation Metrics

Following Choudhary and DeCost [7], we evaluated regression tasks using the ratio between the mean
absolute deviation (MAD) of the ground truth and the mean absolute error (MAE) of the predicted
properties. The MAD:MAE ratio ensures an unbiased model comparison between different properties
where the higher ratio the better. According to Choudhary and DeCost [7], a good predictive model
should have at least 5.0 ratio. MAD values represent the performance of a random guessing model
predicting the average value for each data point. To provide a comprehensive performance comparison
across datasets, we also reported the weighted average of MAD:MAE across all properties in each
dataset (Wtd. Avg. (MAD:MAE), see Equation 1).

For classification tasks, we reported the area under the ROC curve (AUC) for each task and provided
the weighted average across all properties (Wtd. Avg. AUC, see Equation 2).

Wtd. Avg. (MAD/MAE) =

∑m
i TestSizei × MADi

MAEi∑m
i TestSizei

(1)

Wtd. Avg. AUC =

∑m
i TestSizei × AUCi∑m

i TestSizei
, (2)

m denotes the number of regression properties in the dataset.

Table 4: The Wtd. Avg. (MAD:MAE) scores (the higher the better) for the regression tasks in the
LLM4Mat-Bench are reported. Bolded results indicate the best model for each input format, while
bolded results with blue background highlight the best model per each dataset. Inval. denotes

cases where the Llama model failed to generate outputs with a property value or had fewer than 10
valid predictions.

Input Model
Dataset

MP JARVIS-DFT GNoME hMOF Cantor HEA JARVIS-QETB OQMD QMOF SNUMAT OMDB
8 tasks 20 tasks 6 tasks 7 tasks 4 tasks 4 tasks 2 tasks 4 tasks 4 tasks 1 task

CIF CGCNN (baseline) 5.319 7.048 19.478 2.257 17.780 61.729 14.496 3.076 1.973 2.751

Comp.

Llama 2-7b-chat:0S 0.389 Inval. 0.164 0.174 0.034 0.188 0.105 0.303 0.940 0.885
Llama 2-7b-chat:5S 0.627 0.704 0.499 0.655 0.867 1.047 1.160 0.932 1.157 1.009
MatBERT-109M 5.317 4.103 12.834 1.430 6.769 11.952 5.772 2.049 1.828 1.554
LLM-Prop-35M 4.394 2.912 15.599 1.479 8.400 59.443 6.020 1.958 1.509 1.507

CIF

Llama 2-7b-chat:0S 0.392 0.216 6.746 0.214 0.022 0.278 0.028 0.119 0.682 0.159
Llama 2-7b-chat:5S Inval. Inval. Inval. Inval. Inval. 1.152 1.391 Inval. Inval. 0.930
MatBERT-109M 7.452 6.211 14.227 1.514 9.958 47.687 10.521 3.024 2.131 1.777
LLM-Prop-35M 8.554 6.756 16.032 1.623 15.728 97.919 11.041 3.076 1.829 1.777

Descr.

Llama 2-7b-chat:0S 0.437 0.247 0.336 0.193 0.069 0.264 0.106 0.152 0.883 0.155
Llama 2-7b-chat:5S 0.635 0.703 0.470 0.653 0.820 0.980 1.230 0.946 1.040 1.001
MatBERT-109M 7.651 6.083 15.558 1.558 9.976 46.586 11.027 3.055 2.152 1.847
LLM-Prop-35M 9.116 7.204 16.224 1.706 15.926 93.001 9.995 3.016 1.950 1.656

3.2 Discussion

Table 4 and 5, and Figure 1 and 2 show the main results. The detailed results on each dataset can be
found in Appendix E. The main observations are as follows:
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Table 5: The Wtd. Avg. AUC scores (the higher the better) for the classification tasks in the
LLM4Mat-Bench.

Input Model
Dataset

MP SNUMAT
2 tasks 3 tasks

CIF CGCNN (baseline) 0.846 0.722

Comp.

Llama 2-7b-chat:0S 0.491 Inval.
Llama 2-7b-chat:5S 0.507 0.466
MatBERT-109M 0.722 0.712
LLM-Prop-35M 0.691 0.716

CIF

Llama 2-7b-chat:0S 0.501 0.489
Llama 2-7b-chat:5S 0.502 0.474
MatBERT-109M 0.750 0.717
LLM-Prop-35M 0.738 0.660

Descr.

Llama 2-7b-chat:0S 0.500 Inval.
Llama 2-7b-chat:5S 0.502 0.568
MatBERT-109M 0.735 0.730
LLM-Prop-35M 0.742 0.735

MatBERT
LLM-Prop

Llama 2-7b-chat:0s
Llama 2-7b-chat:5s

baseline
#Avg. subword tokens/Sample
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Figure 1: The performance comparison across models for each material representation is presented.
The left y-axis shows the log-normalized performance of each LLM-based model relative to the
baseline (CGCNN), while the right y-axis (bar plots) displays the average subword tokens per sample
for each dataset. Datasets on the x-axis are ordered by increasing average subword tokens. Results
for Llama 2-7b-chat:0S and Llama 2-7b-chat:5S are missing in plots (a) and (b), respectively, due to
invalid outputs. Higher values in the line plots indicate better performance.

Small, task-specific predictive LLMs exhibit significantly better performance than larger,
generative general-purpose LLMs. This performance disparity is evident across both regression
(Table 4 and Figure 1) and classification tasks (Table 5) on all 10 datasets. Specifically, LLM-Prop and
MatBERT outperform Llama 2-7b-chat:0S and Llama 2-7b-chat:5S by a substantial margin, despite
being approximately 200 and 64 times smaller in size, respectively. In regression tasks, LLM-Prop
achieves the highest accuracy on 8 out of 10 datasets, with MatBERT leading on the remaining 2
datasets. For classification tasks, both LLM-Prop and MatBERT deliver the best performance on 1 out
of 2 datasets. LLM-Prop surpasses MatBERT by 1.8% on the SNUMAT dataset, whereas MatBERT
outperforms LLM-Prop by 0.8% on the other dataset. As anticipated, a modest enhancement in
average performance is observed across various datasets and input formats when the Llama 2-7b-chat
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Figure 2: The performance comparison across material representations for each LLM-based model is
shown. The y-axis represents the log-normalized Weighted Average (MAD/MAE) score for each
representation, while the x-axis displays randomly ordered datasets. In the (a) and (b) plots, some
Composition and Structure performance results are missing due to invalid outputs. A higher y-axis
value indicates better performance.
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Figure 3: The performance comparison of different chat-based LLM versions is presented with results
based on 5-shot prompts, averaged over three inference runs. Panels (a)–(c) and (d)–(f) show each
model’s accuracy in predicting band gaps and stability in the MP dataset, respectively, while panels
(g)–(i) and (j)–(l) depict the percentage of valid predictions for band gap and stability on the test set.

model is evaluated using 5-shot prompts rather than 0-shot prompts. Determining the optimal number
of examples required to achieve peak performance will be the focus of future work.

General-purpose generative LLMs hallucinate and often fail to generate valid property values.
As shown in Table 4, Table 5, Figure 2, and Appendix E, Llama 2-7b-chat model produces invalid
outputs on multiple tasks, where the expected property value is missing. This issue occurs less
frequently when the input is a description or chemical formula, but more commonly when the input
is a CIF file. One reason may be that descriptions and chemical formulas resemble natural language,
which LLMs can more easily interpret compared to CIF files. This may also indicate that when
the input modality during inference differs significantly from the modalities encountered during
pretraining, fine-tuning is necessary to achieve reasonable performance. Another key observation
is that Llama 2-7b-chat model often generates the same property value for different inputs (i.e.
hallucinates), contributing to its poor performance across multiple tasks. These findings highlight the
importance of caution when using general-purpose generative LLMs for materials property prediction
and emphasize the need for fine-tuned, task-specific LLM-based models.

Representing materials with their textual descriptions improves the performance of LLM-based
property predictors compared to other representations. We observe a significant performance
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improvement when the input is a description compared to when it is a CIF file or a chemical formula.
One of the possible reasons for this might be that LLMs are more adept at learning from natural
language data. On the other hand, although material compositions appear more natural to LLMs
compared to CIF files, they lack sufficient structural information. This is likely why LLMs with CIF
files as input significantly outperform those using chemical formulas.

More advanced, general-purpose generative LLMs do not necessarily yield better results in
predicting material properties. In Figure 3, we compare the performance of Llama 2-7b-chat-hf
model with advanced versions of Llama of comparable sizes when predicting material’s band gap and
its stability. Similar comparisons are also conducted for the Mistral [22] and Gemma [37] models.
The results indicate that, despite being trained on substantially larger and higher-quality datasets,
more advanced versions of generative LLMs show limited improvements in performance and validity
of predictions for material properties. For instance, Llama 3 and 3.1 8b models were trained on over
15 trillion tokens—around eight times more data than the 2 trillion tokens used for the Llama 2 7b
models. This finding highlights the ongoing challenges of leveraging LLMs in material property
prediction and underscores the need for further research to harness the potential of these robust
models in this domain.

The performance on energetic properties is consistently better across all datasets compared to
other properties. This is consistent with the trend observed in the community benchmarks such as
MatBench and JARVIS-Leaderboard, where energetic properties are among those that can be most
accurately predicted [13, 10]. This is not surprising because energy is known to be relatively well
predicted from e.g., compositions and atom coordination (bonding), which is inherently represented
in GNNs and also presented in text descriptions.

Task-specific predictive LLM-based models excel with shorter textual descriptions, while
CGCNN performs better on datasets with longer descriptions. While the focus on this work
is on LLMs, a comparison with a simple but widely used GNN-based baseline suggests room for
improvement in LLM-based property prediction. For regression tasks, LLM-Prop outperforms
CGCNN on only 4 out of 10 datasets (MP, JARVIS-DFT, JARVIS-QETB, and SNUMAT), and
MatBERT outperforms CGCNN on just 2 out of 10 datasets (MP and JARVIS-QETB). In contrast,
CGCNN achieves the best performance on 5 out of 10 datasets (GNoME, hMOF, Cantor HEA,
OQMD, and OMDB). Further analysis reveals that CGCNN tends to perform better than LLM-based
models on datasets with relatively longer textual descriptions, while LLM-based models excel on
datasets with shorter descriptions (see Table 1). The performance gain on shorter descriptions may
stem from LLM-based models’ ability to leverage more context from compact text, while CGCNN
consistently benefits from training on the entire crystal structure.

4 Conclusion

LLMs are increasingly being utilized in materials science, particularly for materials property pre-
diction and discovery. However, the absence of standardized evaluation benchmarks has impeded
progress in this field. We introduced LLM4Mat-Bench, a comprehensive benchmark dataset designed
to evaluate LLMs for predicting properties of atomic and molecular crystals and MOFs. Our results
demonstrate the limitations of general-purpose LLMs in this domain and underscore the necessity for
task-specific predictive models and instruction-tuned LLMs tailored for materials property prediction.
These findings emphasize the importance of using LLM4Mat-Bench to advance the development of
more effective LLMs in materials science.

5 Limitations

Due to computational constraints and the number of experiments, we were unable to conduct thorough
hyperparameter searches for each property and dataset. The reported settings were optimized on the
MP dataset and then fixed for other datasets. For each model, we highlighted hyperparameter settings
that may improve performance (see Section 3.1.2). Additionally, we could not include results from
SOTA commercial LLMs such as GPT-4o17 or Claude 3.5 Sonnet18 due to budget constraints.

17https://openai.com/index/hello-gpt-4o/
18https://www.anthropic.com/news/claude-3-5-sonnet
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We also encountered issues with chat-based models, which sometimes failed to follow the output
format, producing invalid or incomplete outputs. Extracting property values was therefore challenging.
We believe further instruction-tuning chat-based models on the provided prompts could mitigate these
issues.

Furthermore, we did not include comparisons with dataset-specific retrieval-augmented generation
(RAG) models, such as the recently developed LLaMP [5], a RAG-based model tailored for interaction
with the MP dataset. Our work aims to provide a comprehensive benchmark and baseline results to
advance the evaluation of LLM-based methods for materials property prediction. Future work should
address these limitations.
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Appendices

A Materials Representations

Table 6: LLM4Mat-Bench material representations of Sodium Chloride (NaCl).

Crystal Information File (CIF)

# generated using pymatgen
data_NaCl
_symmetry_space_group_name_H -M ’P 1’
_cell_length_a 3.50219000
_cell_length_b 3.50219000
_cell_length_c 3.50219000
_cell_angle_alpha 90.00000000
_cell_angle_beta 90.00000000
_cell_angle_gamma 90.00000000
_symmetry_Int_Tables_number 1
_chemical_formula_structural NaCl
_chemical_formula_sum ’Na1 Cl1 ’
_cell_volume 42.95553287
_cell_formula_units_Z 1
loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 ’x, y, z’

loop_
_atom_type_symbol
_atom_type_oxidation_number
Na+ 1.0
Cl - -1.0

loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
Na+ Na0 1 0.00000000 0.00000000 0.00000000 1
Cl - Cl1 1 0.50000000 0.50000000 0.50000000 1

Description

NaCl is Tetraauricupride structured and crystallizes in the cubic Pm3m space group.
Na1+ is bonded in a body-centered cubic geometry to eight equivalent Cl1- atoms. All
Na-Cl bond lengths are 3.03 Å. Cl1- is bonded in a body-centered cubic geometry to
eight equivalent Na1+ atoms.
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B Statistics of All Properties in LLM4Mat-Bench

Table 7: Statistics of all datasets in LLM4Mat-Bench. It is important to note that we retain the naming
convention of each property from the original data source with the intent to provide the distribution
of properties in each dataset.

Property Task type # Samples/Data source
JARVIS-DFT Materials Project SNUMAT hMOF GNoME JARVIS-QETB Cantor HEA QMOF OQMD OMDB

Bandgap Regression - 145,302 - - 288,209 - - 16,340 1,007,324 12,500
Bandgap (OPT) Regression 75,965 - - - - - - - - -
Bandgap (MBJ) Regression 19,800 - - - - - - - - -
Bandgap GGA Regression - - 10,481 - - - - - - -
Bandgap HSE Regression - - 10,481 - - - - - - -
Bandgap GGA Optical Regression - - 10,481 - - - - - - -
Bandgap HSE Optical Regression - - 10,481 - - - - - - -
Indirect Bandgap Regression - - - - - 829,576 - - - -
Formation Energy Per Atom (FEPA) Regression 75,965 145,262 - - 384,871 829,576 84,024 - 1,008,266 -
Energy Per Atom (EPA) Regression - 145,262 - - - 829,576 84,024 - - -
Decomposition Energy Per Atom (DEPA) Regression - - - - 384,871 - - - - -
Energy Above Hull (Ehull) Regression 75,965 145,262 - - - - 84,024 - - -
Total Energy Regression 75,965 - - - 384,871 829,576 - 16,340 - -
Efermi Regression - 145,262 - - - - - - - -
Exfoliation Energy Regression 812 - - - - - - - - -
Bulk Modulus (Kv) Regression 23,823 - - - - - - - - -
Shear Modulus (Gv) Regression 23,823 - - - - - - - - -
SLME Regression 9,765 - - - - - - - - -
Spillage Regression 11,377 - - - - - - - - -
ϵx (OPT) Regression 52,158 - - - - - - - - -
ϵ (DFPT) Regression 4,704 - - - - - - - - -
Max. piezoelectri c strain coeff (dij) Regression 3,347 - - - - - - - - -
Max. piezo. stress coeff (eij) Regression 4,797 - - - - - - - - -
Max. EFG Regression 11,871 - - - - - - - - -
Avg. me Regression 17,643 - - - - - - - - -
Is Stable Classification - 145,262 - - - - - - - -
Is Gap Direct Classification - 145,262 - - - - - - - -
n-Seedbeck Regression 23,211 - - - - - - - - -
n-PF Regression 23,211 - - - - - - - - -
p-Seedbeck Regression 23,211 - - - - - - - - -
p-PF Regression 23,211 - - - - - - - - -
Density Regression - 145,262 - - 384,871 - - - - -
Density Atomic Regression - 145,262 - - - - - - - -
Volume Regression - 145,262 - - 384,871 - - - - -
Volume Per Atom (VPA) Regression - - - - - - 84,024 - - -
Is Direct Classification - - 10,481 - - - - - - -
Is Direct HSE Classification - - 10,481 - - - - - - -
SOC Classification - - 10,481 - - - - - - -
LCD Regression - - - 133,524 - - - 16,340 - -
PLD Regression - - - 133,524 - - - 16,340 - -
Max CO2 Regression - - - 133,524 - - - - - -
Min CO2 Regression - - - 133,524 - - - - - -
Void Fraction Regression - - - 133,524 - - - - - -
Surface Area m2g Regression - - - 133,524 - - - - - -
Surface Area m2cm3 Regression - - - 133,524 - - - - - -

C Chat-like Model Inference Details

Table 8: Hyperparameters used during inference. Temp. represents temperature.

Model Type Model Name Input Length Output Length Batch Size Temp. Top_K

Llama
Family

Llama 2-7b-chat-hf 4000 256 256 0.8 10
Llama 3-8b-Instruct 8000 256 256 0.8 10
Llama 3.1-8b-Instruct 98000 256 128 0.8 10
Llama 3.2-3b-Instruct 47000 256 128 0.8 10

Gemma
Family

Gemma 7b-it 4000 256 256 0.8 10
Gemma 1.1-7b-it 4000 256 256 0.8 10
Gemma 2-9b-it 3000 256 256 0.8 10

Mistral
Family

Mistral 7b-Instruct-v0.1 20000 256 256 0.8 10
Mistral 7b-Instruct-v0.2 20000 256 256 0.8 10
Mistral 7b-Instruct-v0.3 20000 256 256 0.8 10
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D Prompt Templates

INPUT PROMPT
<s>[INST] <<SYS>>
You are a material scientist. 
Look at the chemical formula  of the given crystalline material and predict its property.
The output must be in a json format. For example: {property_name:predicted_property_value}.
Answer as precise as possible and in as few words as possible.
<</SYS>>

chemical formula: NaCl
property name: Band gap. [/INST]

RESPONSE
{Band gap: 3.97 eV}

INPUT PROMPT
<s>[INST] <<SYS>>
You are a material scientist. 
Look at the chemical formula of the given crystalline material and predict its property.
The output must be in a json format. For example: {property_name:predicted_property_value}.
Answer as precise as possible and in as few words as possible.
<</SYS>>

chemical formula: Na3Bi(P2O7)2
property name: Band gap.
{Band gap: 0.0 eV}

chemical formula: SrCa7Ti2Mn6O23
property name: Band gap.
{Band gap: 0.0 eV}

chemical formula: LiLa4FeO8
property name: Band gap.
{Band gap: 0.46 eV}

chemical formula: CaLaTiMnO6
property name: Band gap.
{Band gap: 0.24 eV}

chemical formula: PmCu2In
property name: Band gap.
{Band gap: 0.0 eV}

chemical formula: NaCl 
property name: Band gap. [/INST]

RESPONSE
{Band gap: 3.97 eV}

Zero-shot Prompt: 0S

Five-shot Prompt: 5S

Figure 4: Prompt templates when the input is a chemical formula.

 INPUT PROMPT
 <s>[INST] <<SYS>>
 You are a material scientist. 
 Look at the cif structure information of the given crystalline material and predict its property.
 The output must be in a json format. For example: {property_name:predicted_property_value}.
 Answer as precise as possible and in as few words as possible.
 <</SYS>>

 cif structure: data_Na3Bi(P2O7)2 _symmetry_space_group_name_H-M 'P 1' _cell_length...
 property name: Band gap.
 {Band gap: 0.0 eV}

 cif structure: data_SrCa7Ti2Mn6O23 _symmetry_space_group_name_H-M 'P 1' _cell_length..
 property name: Band gap.
 {Band gap: 0.0 eV}

 cif structure: data_LiLa4FeO8 _symmetry_space_group_name_H-M 'P 1' _cell_length...
 property name: Band gap.
 {Band gap: 0.46 eV}

 cif structure: data_CaLaTiMnO6 _symmetry_space_group_name_H-M 'P 1' _cell_length...
 property name: Band gap.
 {Band gap: 0.24 eV}

 cif structure: data_PmInCu2 _symmetry_space_group_name_H-M 'P 1' _cell_length...
 property name: Band gap.
 {Band gap: 0.0 eV}

 cif structure: data_NaCl _symmetry_space_group_name_H - M ’P 1 ’ _cell_length...
 property name: Band gap. [/INST]

 RESPONSE
 {Band gap: 3.97 eV}

Five-shot Prompt: 5S

 INPUT PROMPT
 <s>[INST] <<SYS>>
 You are a material scientist. 
 Look at the cif structure information of the given crystalline material and predict its property. 
 The output must be in a json format. For example: {property_name:predicted_property_value}. 
 Answer as precise as possible and in as few words as possible.
 <</SYS>>

 cif structure: data_NaCl _symmetry_space_group_name_H - M ’P 1 ’ _cell_length...
 property name: Band gap. [/INST]

 RESPONSE
 {Band gap: 3.97 eV}

Zero-shot Prompt: 0S

Figure 5: Prompt templates when the input is a CIF file.
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 INPUT PROMPT
 <s>[INST] <<SYS>>
 You are a material scientist. 
 Look at the structure description of the given crystalline material and predict its property.
 The output must be in a json format. For example: {property_name:predicted_property_value}.
 Answer as precise as possible and in as few words as possible.
 <</SYS>>

 structure description: Na3Bi(P2O7)2 crystallizes in the triclinic P-1 space group...
 property name: Band gap.
 {Band gap: 0.0 eV}

 structure description: SrCa7Ti2Mn6O23 crystallizes in the triclinic P1 space group...
 property name: Band gap.
 {Band gap: 0.0 eV}

 structure description: LiLa4FeO8 is (La,Ba)CuO4-derived structured and crystallizes in the...
 property name: Band gap.
 {Band gap: 0.46 eV}

 structure description: CaLaTiMnO6 is Orthorhombic Perovskite-derived structured and crysta...
 property name: Band gap.
 {Band gap: 0.24 eV}

 structure description: PmCu2In is Heusler structured and crystallizes in the trigonal R-3m...
 property name: Band gap.
 {Band gap: 0.0 eV}

 structure description: NaCl is Tetraauricupride structured and crystallizes in the cubic P m3m...
 property name: Band gap. [/INST]

 RESPONSE
 {Band gap: 3.97 eV}

Five-shot Prompt: 5S

 INPUT PROMPT
 <s>[INST] <<SYS>>
 You are a material scientist. 
 Look at the structure description of the given crystalline material and predict its property. 
 The output must be in a json format. For example: {property_name:predicted_property_value}. 
 Answer as precise as possible and in as few words as possible.
 <</SYS>>

 structure description: NaCl is Tetraauricupride structured and crystallizes in the cubic P m3m... 
 property name: Band gap. [/INST]

 RESPONSE
 {Band gap: 3.97 eV}

Zero-shot Prompt: 0S

Figure 6: Prompt templates when the input is a crystal structure description.
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E Result Details for Each Dataset

Table 9: Results for MP dataset. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better) while that of classification tasks (Is Stable and Is Gab Direct)
is evaluated in terms of AUC score. FEPA: Formation Energy Per Atom, EPA: Energy Per Atom.

Input Model FEPA Bandgap EPA Ehull Efermi Density Density Atomic Volume Is Stable Is Gab Direct
145.2K 145.3K 145.2K 145.2K 145.2K 145.2K 145.2K 145.2K 145.2K 145.2K

CIF CGCNN (baseline) 8.151 3.255 7.224 3.874 3.689 8.773 5.888 1.703 0.882 0.810

Comp.

Llama 2-7b-chat:0S 0.008 0.623 0.009 0.001 0.003 0.967 0.754 0.747 0.500 0.482
Llama 2-7b-chat:5S 0.33 1.217 0.239 0.132 0.706 0.899 0.724 0.771 0.502 0.512
MatBERT-109M 8.151 2.971 9.32 2.583 3.527 7.626 5.26 3.099 0.764 0.681
LLM-Prop-35M 7.482 2.345 7.437 2.006 3.159 6.682 3.523 2.521 0.746 0.636

CIF

Llama 2-7b-chat:0S 0.032 0.135 0.022 0.001 0.015 0.97 0.549 1.41 0.503 0.499
Llama 2-7b-chat:5S Inval. 1.111 0.289 Inval. 0.685 0.98 0.99 0.926 0.498 0.506
MatBERT-109M 11.017 3.423 13.244 3.808 4.435 10.426 6.686 6.58 0.790 0.710
LLM-Prop-35M 14.322 3.758 17.354 2.182 4.515 13.834 4.913 7.556 0.776 0.700

Descr.

Llama 2-7b-chat:0S 0.019 0.633 0.023 0.001 0.008 1.31 0.693 0.807 0.500 0.500
Llama 2-7b-chat:5S 0.394 1.061 0.297 0.247 0.684 0.916 0.782 0.704 0.500 0.504
MatBERT-109M 11.935 3.524 13.851 4.085 4.323 9.9 6.899 6.693 0.794 0.713
LLM-Prop-35M 15.913 3.931 18.412 2.74 4.598 14.388 4.063 8.888 0.794 0.690

Table 10: Results for JARVIS-DFT. he performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better). FEPA: Formation Energy Per Atom, Tot. En.: Total Energy,
Exf. En.: Exfoliation Energy.

Input Model FEPA Bandgap (OPT) Tot. En. Ehull Bandgap (MBJ) Kv Gv SLME Spillage ϵx (OPT)
75.9K 75.9K 75.9K 75.9K 19.8K 23.8K 23.8K 9.7K 11.3K 18.2K

CIF CGCNN (baseline) 13.615 4.797 22.906 1.573 4.497 3.715 2.337 1.862 1.271 2.425

Comp.

Llama 2-7b-chat:0S 0.021 0.011 0.02 0.005 0.92 0.428 0.374 0.148 Inval. 0.18
Llama 2-7b-chat:5S 0.886 0.011 0.02 1.292 0.979 0.88 0.992 0.456 0.85 1.148
MatBERT-109M 6.808 4.083 9.21 2.786 3.755 2.906 1.928 1.801 1.243 2.017
LLM-Prop-35M 4.765 2.621 5.936 2.073 2.922 2.162 1.654 1.575 1.14 1.734

CIF

Llama 2-7b-chat:0S 0.023 0.011 0.02 0.002 0.193 0.278 0.358 0.186 0.702 0.781
Llama 2-7b-chat:5S 0.859 Inval. Inval. 1.173 1.054 0.874 0.91 0.486 0.916 1.253
MatBERT-109M 10.211 5.483 15.673 4.862 5.344 4.283 2.6 2.208 1.444 2.408
LLM-Prop-35M 12.996 3.331 22.058 2.648 4.93 4.121 2.409 2.175 1.37 2.135

Descr.

Llama 2-7b-chat:0S 0.007 0.011 0.02 0.004 0.94 0.498 0.382 0.07 0.135 0.647
Llama 2-7b-chat:5S 0.845 0.011 0.02 1.273 1.033 0.87 0.969 0.461 0.857 1.201
MatBERT-109M 10.211 5.33 15.141 4.691 5.01 4.252 2.623 2.178 1.452 2.384
LLM-Prop-35M 12.614 3.427 23.509 4.532 4.983 4.128 2.419 2.061 1.307 2.334

ϵ (DFPT) Max. Piezo. (dij) Max. Piezo. (eij) Max. EFG Exf. En. Avg. me n-Seebeck n-PF p-Seebeck p-PF
4.7K 3.3K 4.7K 11.8K 0.8K 17.6K 23.2K 23.2K 23.2K 23.2K

CIF CGCNN (baseline) 1.12 0.418 1.291 1.787 0.842 1.796 2.23 1.573 3.963 1.59

Comp.

Llama 2-7b-chat:0S 0.012 0.121 0.001 0.141 0.384 0.028 0.874 0.801 0.971 0.874
Llama 2-7b-chat:5S 1.416 1.289 1.305 0.765 0.512 0.535 1.008 1.04 0.93 0.568
MatBERT-109M 1.533 1.464 1.426 1.658 1.124 2.093 1.908 1.318 2.752 1.356
LLM-Prop-35M 1.454 1.447 1.573 1.38 1.042 1.658 1.725 1.145 2.233 1.285

CIF

Llama 2-7b-chat:0S 0.033 0.104 0.001 0.246 0.411 0.041 0.429 0.766 0.83 0.826
Llama 2-7b-chat:5S Inval. Inval. Inval. 0.796 0.51 Inval. 1.039 1.396 Inval. Inval.
MatBERT-109M 1.509 1.758 2.405 2.143 1.374 2.45 2.268 1.446 3.337 1.476
LLM-Prop-35M 1.578 2.103 2.405 1.936 1.044 1.796 1.955 1.332 2.503 1.399

Descr.

Llama 2-7b-chat:0S 0.08 0.266 0.001 0.138 0.285 0.019 0.769 0.793 0.825 0.829
Llama 2-7b-chat:5S 1.649 1.174 1.152 0.806 0.661 0.523 1.098 1.024 0.948 0.563
MatBERT-109M 1.534 1.807 2.556 2.081 1.36 2.597 2.241 1.432 3.26 1.565
LLM-Prop-35M 1.64 2.116 2.315 1.978 1.168 1.858 2.154 1.364 2.61 1.407

Table 11: Results for SNUMAT. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better) while that of classification tasks (Is Direct, Is Direct HSE,
and SOC) is evaluated in terms of AUC score.

Input Model Bandgap GGA Bandgap HSE Bandgap GGA Optical Bandgap HSE Optical Is Direct Is Direct HSE SOC
10.3K 10.3K 10.3K 10.3K 10.3K 10.3K 10.3K

CIF CGCNN (baseline) 2.075 2.257 1.727 1.835 0.691 0.675 0.800

Comp.

Llama 2-7b-chat:0S 0.797 0.948 1.156 0.859 0.503 0.484 Inval.
Llama 2-7b-chat:5S 1.267 1.327 0.862 1.174 0.475 0.468 0.455
MatBERT-109M 1.899 1.975 1.646 1.793 0.671 0.645 0.820
LLM-Prop-35M 1.533 1.621 1.392 1.491 0.647 0.624 0.829

CIF

Llama 2-7b-chat:0S 0.346 0.454 1.09 0.838 0.479 0.488 0.500
Llama 2-7b-chat:5S Inval. Inval. Inval. Inval. 0.494 0.500 0.427
MatBERT-109M 2.28 2.472 1.885 1.889 0.677 0.650 0.823
LLM-Prop-35M 1.23 2.401 1.786 1.9 0.661 0.664 0.656

Descr.

Llama 2-7b-chat:0S 0.802 0.941 1.013 0.779 0.499 0.509 Inval.
Llama 2-7b-chat:5S 0.774 1.315 0.901 1.172 0.594 0.623 0.486
MatBERT-109M 2.298 2.433 1.901 1.978 0.683 0.645 0.862
LLM-Prop-35M 2.251 2.142 1.84 1.569 0.681 0.657 0.866
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Table 12: Results for GNoME. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better). FEPA: Formation Energy Per Atom, DEPA: Decomposition
Energy Per Atom, Tot. En.: Total Energy.

Input Model FEPA Bandgap DEPA Tot. En. Volume Density
376.2K 282.7K 376.2K 282.7K 282.7K 282.7K

CIF CGCNN (baseline) 34.57 8.549 2.787 7.443 7.967 56.077

Comp.

Llama 2-7b-chat:0S 0.002 0.177 0.0 0.088 0.455 0.368
Llama 2-7b-chat:5S 0.194 0.086 0.255 0.765 1.006 0.865
MatBERT-109M 30.248 4.692 2.787 8.57 13.157 15.145
LLM-Prop-35M 25.472 3.735 1.858 21.624 16.556 25.615

CIF

Llama 2-7b-chat:0S 0.003 0.045 0.0 0.706 43.331 0.794
Llama 2-7b-chat:5S Inval. 0.087 Inval. Inval. 1.029 0.878
MatBERT-109M 24.199 9.16 3.716 15.309 16.691 16.467
LLM-Prop-35M 28.469 3.926 3.344 17.837 17.082 25.615

Descr.

Llama 2-7b-chat:0S 0.002 0.114 0.0 0.661 0.654 0.805
Llama 2-7b-chat:5S 0.192 0.086 0.106 0.75 1.006 0.891
MatBERT-109M 30.248 5.829 3.716 18.205 17.824 16.599
LLM-Prop-35M 28.469 5.27 3.716 17.02 17.02 25.936

Table 13: Results for hMOF. The performance on regression tasks is evaluated in terms of MAD:MAE
ratio (the higher the better).

Input Model Max CO2 Min CO2 LCD PLD Void Fraction Surface Area m2g Surface Area m2cm3
132.7K 132.7K 132.7K 132.7K 132.7K 132.7K 132.7K

CIF CGCNN (baseline) 1.719 1.617 1.989 1.757 2.912 3.765 2.039

Comp.

Llama 2-7b-chat:0S 0.011 0.002 0.009 0.008 0.5 0.454 0.233
Llama 2-7b-chat:5S 0.679 0.058 0.949 1.026 0.945 0.567 0.366
MatBERT-109M 1.335 1.41 1.435 1.378 1.57 1.517 1.367
LLM-Prop-35M 1.41 1.392 1.432 1.468 1.672 1.657 1.321

CIF

Llama 2-7b-chat:0S 0.017 0.003 0.016 0.011 0.549 0.54 0.359
Llama 2-7b-chat:5S Inval. Inval. 0.951 1.067 Inval. Inval. Inval.
MatBERT-109M 1.421 1.428 1.544 1.482 1.641 1.622 1.461
LLM-Prop-35M 1.564 1.41 1.753 1.435 1.9 1.926 1.374

Descr.

Llama 2-7b-chat:0S 0.129 0.014 0.026 0.006 0.382 0.497 0.299
Llama 2-7b-chat:5S 0.684 0.058 0.955 1.006 0.931 0.571 0.37
MatBERT-109M 1.438 1.466 1.602 1.511 1.719 1.697 1.475
LLM-Prop-35M 1.659 1.486 1.623 1.789 1.736 2.144 1.508

Table 14: Results for Cantor HEA. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better). FEPA: Formation Energy Per Atom, EPA:Energy Per Atom,
VPA:Volume Per Atom.

Input Model FEPA EPA Ehull VPA
84.0K 84.0K 84.0K 84.0K

CIF CGCNN (baseline) 9.036 49.521 9.697 2.869

Comp.

Llama 2-7b-chat:0S 0.005 0.098 0.003 0.031
Llama 2-7b-chat:5S 0.896 0.658 0.928 0.986
MatBERT-109M 3.286 16.17 5.134 2.489
LLM-Prop-35M 3.286 22.638 5.134 2.543

CIF

Llama 2-7b-chat:0S 0.001 0.084 0.0 0.004
Llama 2-7b-chat:5S Inval. Inval. Inval. Inval.
MatBERT-109M 7.229 17.607 9.187 5.809
LLM-Prop-35M 8.341 36.015 11.636 6.919

Descr.

Llama 2-7b-chat:0S 0.001 0.101 0.164 0.011
Llama 2-7b-chat:5S 0.797 0.615 0.938 0.93
MatBERT-109M 7.229 17.607 9.187 5.881
LLM-Prop-35M 8.341 36.015 11.636 7.713
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Table 15: Results for QMOF. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better). Tot. En.: Total Energy.

Input Model Bandgap Tot. En. LCD PLD
7.6K 7.6K 7.6K 7.6K

CIF CGCNN (baseline) 2.431 1.489 4.068 4.317

Comp.

Llama 2-7b-chat:0S 0.901 0.26 0.045 0.009
Llama 2-7b-chat:5S 0.648 0.754 1.241 1.086
MatBERT-109M 1.823 1.695 2.329 2.349
LLM-Prop-35M 1.759 1.621 2.293 2.157

CIF

Llama 2-7b-chat:0S 0.201 0.244 0.02 0.011
Llama 2-7b-chat:5S Inval. Inval. Inval. Inval.
MatBERT-109M 1.994 4.378 2.908 2.818
LLM-Prop-35M 2.166 4.323 2.947 2.87

Descr.

Llama 2-7b-chat:0S 0.358 0.217 0.025 0.006
Llama 2-7b-chat:5S 0.777 0.713 1.125 1.17
MatBERT-109M 2.166 4.133 2.981 2.941
LLM-Prop-35M 2.091 4.312 2.831 2.829

Table 16: Results for JARVIS-QETB. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better). FEPA: Formation Energy Per Atom, EPA:Energy Per Atom,
Tot. En.: Total Energy, Ind. Bandgap: Indirect Bandgap.

Input Model FEPA EPA Tot. En. Ind. Bandgap
623.9K 623.9K 623.9K 623.9K

CIF CGCNN (baseline) 1.964 228.201 11.218 5.534

Comp.

Llama 2-7b-chat:0S 0.003 0.369 0.172 0.21
Llama 2-7b-chat:5S 0.812 1.037 1.032 1.306
MatBERT-109M 1.431 37.979 8.19 0.21
LLM-Prop-35M 2.846 211.757 21.309 1.861

CIF

Llama 2-7b-chat:0S 0.003 0.412 0.656 0.04
Llama 2-7b-chat:5S 0.8 1.024 1.076 1.71
MatBERT-109M 24.72 135.156 26.094 4.779
LLM-Prop-35M 23.346 318.291 48.192 1.845

Descr.

Llama 2-7b-chat:0S 0.003 0.408 0.484 0.16
Llama 2-7b-chat:5S 0.85 1.015 1.035 1.021
MatBERT-109M 26.265 122.884 29.409 7.788
LLM-Prop-35M 22.513 312.218 35.43 1.845
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Table 17: Results for OQMD. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better). FEPA: Formation Energy Per Atom.

Input Model FEPA Bandgap
963.5K 963.5K

CIF CGCNN (baseline) 22.291 6.701

Comp.

Llama 2-7b-chat:0S 0.019 0.192
Llama 2-7b-chat:5S 1.013 1.306
MatBERT-109M 7.662 3.883
LLM-Prop-35M 9.195 2.845

CIF

Llama 2-7b-chat:0S 0.009 0.047
Llama 2-7b-chat:5S 1.051 1.731
MatBERT-109M 13.879 7.163
LLM-Prop-35M 18.861 3.22

Descr.

Llama 2-7b-chat:0S 0.025 0.187
Llama 2-7b-chat:5S 0.991 1.468
MatBERT-109M 15.012 7.041
LLM-Prop-35M 16.346 3.644

Table 18: Results for OMDB. The performance on regression tasks is evaluated in terms of
MAD:MAE ratio (the higher the better).

Input Model Bandgap
12.1K

CIF CGCNN (baseline) 2.751

Comp.

Llama 2-7b-chat:0S 0.886
Llama 2-7b-chat:5S 1.009
MatBERT-109M 1.554
LLM-Prop-35M 1.507

CIF

Llama 2-7b-chat:0S 0.159
Llama 2-7b-chat:5S 0.930
MatBERT-109M 1.777
LLM-Prop-35M 1.777

Descr.

Llama 2-7b-chat:0S 0.155
Llama 2-7b-chat:5S 1.002
MatBERT-109M 1.847
LLM-Prop-35M 1.656
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is the lack of standardized evaluation benchmarks and datasets
for advancing the application of LLMs in predicting material properties. To address this,
we introduced LLM4Mat-Bench, a benchmark dataset for evaluating LLM performance in
predicting the properties of atomic and molecular crystals, as well as MOFs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work does not contain any theoretical assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discussed the experimental details required to reproduce the results in
Section 3.1 and we will publicly release the proposed benchmark and the code used to
perform the experiments in our camera-ready version.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We commit to publicly release the proposed benchmark dataset and the code
used to perform the experiments in our camera-ready version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discussed the experimental details required to reproduce the results in
Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results details are discussed in Section 3.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the details regarding the computer resources required to reproduce
the results in Section 3.1.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The positive impacts of our work on advancing new materials discovery are
discussed in Sections 1 and 4. We did not identify any negative societal impacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The collected datasets do not pose any risks since they are from publicly
trusted databases and are commonly used in materials sience community.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The collected data is from publicly available materials databases, and the
licensing remains with their respective owners.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided the details of the datasets included in our benchmark in Section
2.1.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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