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ABSTRACT

The scalability of Large Language Models (LLMs) to handle extremely long se-
quences is hindered by two foundational challenges: the quadratic computational
cost of self-attention and the generalization limitations of positional encodings
when extrapolating to contexts far beyond their training regime. These factors
create bottlenecks for both the efficiency and the effective context window of
current models. This paper introduces TransFourier, a novel architecture de-
signed to address these challenges. TransFourier completely replaces the masked
self-attention module with a parameter-efficient, O(L log L) Multi-Head Fourier
(MHF) module. Our core contributions are threefold: (1) We propose a model
that leverages the Fast Fourier Transform (FFT) for sequence information mixing,
inherently addressing the aforementioned computational and generalization bot-
tlenecks of attention. (2) We introduce a novel frequency-domain causal masking
technique, which elegantly enforces autoregressive capabilities through asymmet-
ric padding and truncation, overcoming a critical barrier that has historically lim-
ited Fourier-based models in generative tasks. (3) Our design is built entirely on
highly-optimized, standard deep learning operators (e.g., FFT and convolution),
obviating the need for hardware-specific custom CUDA kernels, unlike architec-
tures such as Mamba, thus ensuring broad accessibility and portability. Evalua-
tions on established academic benchmarks show that TransFourier is competitive
with mature Transformer and State Space Model (SSM) baselines of comparable
size. Given its strong scaling and architectural simplicity, TransFourier presents a
compelling and practical pathway toward developing the next generation of effi-
cient long-sequence models. The code is available in the supplementary materials.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., [2017) has become a foundational model for a wide
range of sequence modeling tasks. However, the remarkable success of this paradigm is built upon
self-attention mechanism that presents two fundamental limitations. The first is computational com-
plexity: the number of operations in self-attention scales quadratically with the input sequence
length L, i.e., O(L?). This scaling creates a significant computational bottleneck that makes pro-
cessing long sequences prohibitively expensive. The second limitation is its inherent permutation
equivariance; self-attention is insensitive to the order of tokens, which necessitates the introduction
of external positional encodings to provide the model with sequential information. These encodings,
whether absolute or relative, tend to tether the model’s performance to the context lengths seen dur-
ing training. When extrapolating to much longer contexts, this often leads to performance instability
and degradation, a phenomenon that effectively imposes a context window limit on the model.

One major line of research, the Enhancement Paradigm, aims to mitigate these issues by modifying
the attention framework. To address the computational cost, sparse attention methods like Long-
former (Beltagy et al.,2020) and BigBird (Zaheer et al., 2020) introduce fixed, sparse connectivity
patterns. While effective, these methods rely on heuristics and risk information loss. Concurrently,
sophisticated relative positional encodings like RoPE (Su et al.l [2024), ALiBi (Press et al.| |2022),
and YaRN (Peng et al., [2024)), which encode relative distances or apply distance-aware biases, have
dramatically improved length extrapolation. However, the growing complexity of these techniques
shows they are sophisticated compensations for a mechanism lacking a built-in sequence concept,
motivating the search for a more fundamental alternative.
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A more radical approach, the Replacement Paradigm, replaces the attention mechanism with more
efficient alternatives. State Space Models (SSMs), particularly the recent Mamba architecture (Gu &
Dao, 2023} |Dao & Gul 2024)), have emerged as a powerful contender. Mamba achieves linear-time
complexity and state-of-the-art performance, but its efficiency heavily relies on hardware-specific
custom CUDA kernels, hindering portability, modification, and broad adoption. Another prominent
direction within this paradigm leverages the Fourier Transform, offering an appealing O(L log L)
complexity for global token mixing (Lee-Thorp et al.,2022). However, these Fourier-based models
have historically struggled with generative tasks. Their primary flaw lies in the difficulty of enforc-
ing causality—a strict requirement for autoregressive decoding—within the frequency domain, a
challenge that has relegated them to encoder-only or non-autoregressive applications.

In this work, we argue that a solution can be found that is both algorithmically elegant and hardware-
agnostic. We introduce TransFourier, a novel architecture that directly confronts the foundational
issues of attention. By replacing the attention module with our Multi-Head Fourier module, Trans-
Fourier inherently resolves both the quadratic complexity and the need for positional encodings.
Furthermore, by developing a novel causal masking technique that operates purely in the frequency
domain, we overcome the critical causality barrier that has hindered previous Fourier-based models.
Our contributions are as follows:

* A Novel Autoregressive Fourier Module: We propose the Multi-Head Fourier (MHF)
module, which mixes token information via a gated element-wise product in the frequency
domain, directly replacing the attention layer in a Transformer.

* Frequency-Domain Causal Masking: We introduce a technique that enforces causality
entirely in the frequency domain using asymmetric padding and truncation. This addresses
a key obstacle that has hindered the application of Fourier models to generative tasks.

* A Position-Encoding-Free Architecture: Our model obviates the need for explicit po-
sitional encoding because the Fourier Transform inherently captures position through its
sinusoidal basis functions. This design is theoretically advantageous for length extrapola-
tion.

* Solid Validation: On various public datasets, we demonstrate that TransFourier is a highly
competitive architecture, outperforming standard Transformers and posing a strong chal-
lenge to state-of-the-art SSMs, all while offering greater implementational simplicity.

2 RELATED WORK

To overcome the foundational limitations of the standard Transformer, several active lines of re-
search have emerged. These can be broadly categorized by their core strategy: improving existing
components like attention and positional encodings, or replacing them entirely with new architec-
tural primitives. In this section, we review the most prominent directions to situate our work.

2.1 SPARSE ATTENTION

To address the prohibitive O(L?) complexity of self-attention on long sequences, a significant body
of work has explored sparse attention patterns. Seminal models like Longformer (Beltagy et al.,
2020) introduced handcrafted sparsity by combining local windowed attention with a small num-
ber of global tokens. Other approaches have explored random patterns as part of a hybrid strategy
(Zaheer et al.| [2020), or employed adaptive, content-based sparsity through techniques like locality-
sensitive hashing in Reformer (Nikita et al.l 2020) and learned routing in Routing Transformer (Au-
rko et al., 2021). While these methods successfully lower the computational burden, they do so at a
cost. By design, they break the fully-connected graph of standard attention and often introduce new,
sensitive hyperparameters, potentially impeding model performance.

2.2 RELATIVE POSITIONAL ENCODINGS

To address the poor length generalization caused by positional encodings, a family of sophisticated
relative positional encodings (RPEs) has been developed. ALiBi (Press et al 2022)) introduces a
simple, static bias to attention scores based on token distance, demonstrating remarkable extrap-
olation capabilities. RoPE (Su et al.|, |2024) applies rotations to queries and keys in a way that
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makes attention scores sensitive only to relative positions. Subsequent work, such as YaRN (Peng
et al.,[2024), has further refined these rotational methods to achieve even more robust extrapolation.
Ultimately, while highly effective, these methods function as sophisticated patches to address the
symptoms of attention’s permutation equivariance, rather than providing a root solution.

2.3  STATE SPACE MODELS (SSMS)

A more radical approach is to replace the attention mechanism altogether with a new sequence
mixing primitive. SSMs have recently emerged as a powerful and efficient replacement for attention.
Foundational work like the Structured State Space model (S4) (Gu et al.| [2022b)) and Diagonal State
Space model (S4D) (Gu et al), 2022a) first demonstrated their potential for modeling long-range
dependencies by leveraging a formulation that could be efficiently computed in parallel as a global
convolution. Crucially, this approach was purely algorithmic and hardware-agnostic. However, the
time-invariant nature of S4’s state matrices limited its ability to perform content-aware reasoning
and select relevant information.

This limitation was addressed by successors like Mamba (Gu & Dao| 2023) and Mamba-2 (Dao
& Gu, 2024), which introduced selective, input-dependent state updates. This innovation dramat-
ically improved performance but came at a significant cost: the loss of the parallel convolutional
form. To maintain efficiency, Mamba relies on a hardware-aware sequential scan algorithm. This
dependency is the primary drawback of modern selective SSMs. Their impressive efficiency is not
purely algorithmic but a result of tight hardware-software co-design, requiring custom CUDA and
Triton kernels optimized for specific NVIDIA GPUs. This creates a significant barrier to entry,
hindering portability and complicating algorithmic modifications, in sharp contrast to the universal
compatibility of standard library operators.

2.4 FOURIER AND SPECTRAL METHODS

Another major line of research leverages the Fourier Transform and other spectral methods, moti-
vated by their ability to achieve global token mixing with an efficient O(L log L) complexity. These
works can be divided into two main categories: those that use spectral methods to enhance existing
architectures, and those that use them to completely replace attention.

2.4.1 SPECTRAL METHODS AS ENHANCEMENTS

This category of models integrates Fourier-based operators into an existing architecture, typically
a Transformer, to improve efficiency or performance. Fourier Transformer (He et al. [2023) and
FwNet-ECA (Mian et al.,2025) insert a Fourier block after attention layers to compress the sequence
representation, thereby reducing the computational load on subsequent layers. Others use spectral
mixing as a parallel path; for example, Vim-F (Zhang et al.,|2024) augments a Mamba block with a
parallel Fourier filtering module for vision tasks.

Some works use spectral methods to assist attention in other ways. FSAT (Zhuang et al.,|2022) uses a
Fourier-based convolution to efficiently predict a sparse attention mask. FourierNAT (Kiruluta et al.,
2025) employs a Fourier-mixing block in a decoder, but is limited to non-autoregressive generation,
as its global FFT operation violates causality. Finally, some works like FAN (Dong et al., 2024)
explore replacing activation functions in MLPs with trigonometric functions, addressing the feed-
forward network rather than the attention bottleneck. While these methods demonstrate the utility
of spectral biases, they do not fundamentally alter or remove the core attention mechanism.

2.4.2 SPECTRAL METHODS AS REPLACEMENTS

More ambitious approaches use Fourier-based modules to completely replace self-attention. The
seminal work in this area, FNet (Lee-Thorp et al., [2022)), showed that a parameter-free 2D Fourier
Transform could substitute for attention in a BERT-style encoder, retaining competitive performance
at a much higher speed. This concept was extended in vision models like GF-Net (Rao et al.
2021), which replaced attention with a learnable global filter in the frequency domain. This idea
of frequency-domain filtering was inspired by the Fourier Neural Operator (FNO) (Li et al.| [2021),
which applied it to solving differential equations. AFNO (Guibas et al., |2022) later adapted this
operator to be more efficient for high-resolution image tasks.
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Figure 1: Comparison of a standard Transformer model (left) and our proposed TransFourier model
(right). The core modification is the replacement of Masked Multi-Head Attention with our Multi-
Head Fourier (MHF) module and the removal of positional encodings.

While powerful, these replacement methods have faced two major challenges. First, most, including
FNet, GF-Net, AFNO, and DCT-Former (Scribano et al.} 2023) (which approximates attention via
DCT), are inherently non-causal and thus designed for encoder-only or vision applications. They
cannot be directly applied to autoregressive sequence generation. Second, the few attempts at au-
toregressive replacements, such as SPECTRE (Fein-Ashley et al.,[2025)), have resorted to processing
inputs in fixed-length sliding windows. This design reintroduces locality constraints, can fragment
long-range dependencies, and may cause signal distortion when padding shorter sequences. There-
fore, a truly causal, efficient, and hardware-agnostic Fourier-based replacement for attention remains
an open challenge—one that our work aims to address.

3 METHODOLOGY

3.1 OVERALL STRUCTURE

The design of TransFourier prioritizes simplicity and efficiency. We take a standard decoder-only
Transformer (e.g., GPT-2) as a blueprint and apply minimal modifications. As illustrated in Figure[T]
a TransFourier model is structurally very similar to a Transformer model, with two key differences:

1. We replace the Masked Multi-Head Self-Attention module with our proposed Multi-Head
Fourier (MHF) module.

2. We completely remove the Positional Encoding module.
This design allows TransFourier to easily leverage mature components from the existing Trans-

former ecosystem, such as the feed-forward network (FFN), layer normalization, and residual con-
nections.

3.2 MULTI-HEAD FOURIER (MHF) MODULE

The MHF module is the heart of TransFourier, responsible for performing global, causal information
mixing in O(L log L) complexity. Given an input z € REXEXP where B is the batch size, L is the
sequence length, and D is the model dimension, the forward pass proceeds as follows:
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Step 1: Injecting Local Inductive Bias with Causal Convolution. We first pass the input « through
a lightweight, depthwise causal 1D convolution. This convolution uses a small kernel (e.g., 3) and
left-sided padding (causal padding, e.g., 2) to ensure that the output at each timestep depends only
on current and past inputs. This step explicitly captures basic syntactic patterns (like n-grams),
compensating for the removal of explicit positional encodings and allowing the subsequent global
Fourier Transform to focus on longer-range semantic dependencies.

Step 2: Preparing Gated Signals. After layer normalization, we project the input signal xpom
into two parallel streams: a content stream z, which carries the semantic information to be mixed,
and a stream that will form our gate, x,. The content stream x, is generated by passing Znorm
through a single linear layer. To form the gate xg, Tyorm is passed through a linear layer and a SiLU
activation, followed crucially by a point-wise (kernel_size=1) 1D convolution. With its groups
parameter set to the number of heads (7heaq), it performs intra-head channel mixing. This enables
the dimensions within each head to collectively learn a shared representation, a critical step before
they are processed independently by the subsequent dimension-wise Fourier Transform.

Step 3: Causal Mixing in the Frequency Domain. This is the core innovation of our architec-
ture. By the Convolution Theorem, convolution in the time domain is equivalent to element-wise
multiplication in the frequency domain. To implement a causal convolution efficiently, we employ
a classic signal processing technique: we pad the input sequences (z, and ) to twice their length
(N = 2L) before applying the Fast Fourier Transform (FFT) to get Vi, and Giy, respectively. In this
expanded frequency space, we perform an element-wise product of Vi and Gy to get Xg. Here,
G acts as a dynamic filter, adaptively amplifying or suppressing specific frequency components in
Vir based on the input content.

Step 4: Causal Reconstruction and Projection. We transform the multiplied spectrum X back
to the time domain using the inverse FFT (iFFT). The crucial step is to truncate the resulting se-
quence of length 2L back to the original length L. This complete ”pad-FFT-multiply-iFFT-truncate”
pipeline is mathematically equivalent to performing a causal convolution between x, and x, in the
time domain. This guarantees that the output at time ¢ depends strictly on inputs from 1,... ¢,
perfectly satisfying the requirements of an autoregressive model. Finally, a linear projection layer
integrates the mixed information and outputs it to the next layer.

To provide a concrete overview of the data flow within the MHF module, we present its forward
pass as pseudocode in Algorithm

3.3 ARCHITECTURAL PROPERTIES

Computational Complexity: The main computational cost of the MHF module comes from FFT
and iFFT, each with a complexity of O(L log L), a significant improvement over attention’s O(L?).

Implicit Positional Information: The basis functions of the Fourier Transform (sine and cosine
waves) inherently contain ordered frequency and phase information. Hence, the model can implicitly
perceive token positions without external positional encodings.

Infinite Context Capability: Since there are no parameters in the model tied to a maximum length
(such as a fixed-size positional encoding table or rotation angles calibrated for a specific length),
TransFourier can theoretically process sequences of any length. In practice, its context window is
limited only by hardware memory.

4 CONCEPTUAL ANALYSIS

In this section, we delve deeper into the architectural principles of TransFourier, providing a first-
principles comparison to attention, analyzing how our design overcomes the challenge in prior spec-
tral models, and showing how our method of data-dependent mixing fits in with the SSMs.

4.1 A FIRST-PRINCIPLES VIEW: ATTENTION AND FFT AS WEIGHTED SUMS

From first principles, both self-attention and the Fourier Transform can be understood as mecha-
nisms for token mixing via a weighted sum. This fundamental similarity provides the theoretical
grounding for why one can replace the other.
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In a single head of self-attention, the updated representation for the ¢-th token, r, is a weighted sum
of the value vectors v; from all N tokens in the context:

N-1
Ty = Z Qv (1
3=0

Here, the weights a;; are computed dynamically based on the query of the ¢-th token and the key of

the j-th token (ay; = softmax(q; - kJT /v/dy). These weights are data-dependent, forming a dense
N x N attention matrix.

To understand why the Fourier Transform can serve as an alternative, it is instructive to decon-
struct its definition from the same perspective. Let us consider the 1D Discrete Fourier Transform
(DFT). Given a sequence of input vectors vg, vy, . .., vn—1 (Where we analyze each dimension in-
dependently), the DFT produces a sequence of output vectors rg,71,...,7n—1. According to the
definition of Fourier Transform, the standard formula for the ¢-th output vector is:

N-1 N-1
_i2mys
ry = E vj-e N = E We;V; 2)
i=0 i=0

The Fourier Transform is analogous to self-attention as they share the same fundamental operation:
a complete mixing of token information via a weighted sum. In the Fourier Transform, the weights
are the complex exponentials, w;; = e~ 1%, This equivalence, underscored by the success of
Transformers, establishes the Fourier Transform as a powerful and highly efficient baseline for the
token mixing operation.

4.2 THE CAUSALITY DILEMMA IN AUTOREGRESSIVE SPECTRAL MODELS

The primary reason why previous attempts to replace attention with FFTs have struggled in gener-
ative models lies in the challenge of enforcing causality efficiently. An autoregressive model must
ensure that the prediction for token ¢ is generated using only information from tokens 0, . . . , t. Self-
attention elegantly solves this with a causal mask. The key is that the attention weights o;; are
explicitly computed as an intermediate matrix before the final weighted sum is performed. This
creates a crucial window of opportunity to intervene: the mask forcibly sets all weights where j > ¢
to zero, ensuring future tokens do not contribute to the output for token ¢. This is all performed in a
single, parallel forward pass, allowing for highly efficient training.

A naive application of the FFT does not afford this luxury. The Fast Fourier Transform is a highly
optimized algorithm that computes the full weighted sum (Eqn. |2)) directly from the input sequence.
There is no intermediate step where a modifiable matrix of explicit weights (w;;) is formed.
One cannot apply a mask to the Fourier basis functions 'midway’ through the computation;
the algorithm yields the final sum in what is essentially a single, atomic operation.

Since the weights themselves cannot be masked, the only way to enforce causality is to manipulate
the input sequence. To generate the correct output for token ¢, one must feed the FFT algorithm only
the causal portion of the sequence (vo, . . . , v¢) wWhile hide the portion after token ¢ (v¢41,...,vn—1).
This leads to a significant computational inefficiency during training. To get the outputs for all
N tokens in a sequence, one would need to perform N separate FFT computations of increasing
length. The total complexity for a single training step would approach O(N?log N), which is
significantly less efficient than the single pass of self-attention O(N?2). This computational dilemma
is the fundamental reason why most prior spectral models were confined to non-causal encoders or
processed inputs in fixed-length, non-causal chunks.

TransFourier resolves this dilemma through its equivalence to causal convolution. The “pad-FFT-
multiply-iFFT-truncate” procedure is a mathematically exact and parallelizable method for comput-
ing a causal output. This allows our model, like self-attention, to process the entire sequence in a
single forward pass during training while guaranteeing that causality is strictly maintained.

4.3 ACHIEVING DATA-DEPENDENT MIXING WITH ALGORITHMIC EFFICIENCY

A key factor in the performance of modern sequence models is their ability to perform data-
dependent or content-aware reasoning. The evolution from S4 to Mamba provides a clear illus-
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tration of this principle. S4, with its time-invariant state matrices, was algorithmically efficient and
could be computed as a parallel convolution. However, its data-independent nature limited its ex-
pressive power. Mamba’s core innovation was to introduce selective, input-dependent state updates,
dramatically improving performance. This improvement, however, came at the cost of breaking the
parallel convolutional structure, necessitating a hardware-aware sequential scan algorithm that relies
on custom, low-level optimizations.

TransFourier offers an alternative, more direct path to achieving data-dependent mixing while pre-
serving algorithmic efficiency. In our architecture, the effective “convolutional kernel” is the gate
stream x4, which is generated dynamically from the input z itself via a small neural network (Linear
— SiLU — Convl1d). This makes the mixing operation fully data-dependent.

Crucially, because this interaction is formulated as a multiplication in the frequency domain, it re-
mains equivalent to a convolution in the time domain. This formulation preserves the globally par-
allel computational structure that is inherent to convolutions and FFTs. Consequently, TransFourier
benefits from the expressive power of data-dependent mixing, much like Mamba, but without sacri-
ficing the hardware independence and universal parallelism of standard library operators. It achieves
content-aware reasoning through a purely algorithmic and elegant mechanism.

5 EXPERIMENTS

To validate the effectiveness and scalability of TransFourier, we conduct a series of pre-training
experiments and evaluate our models against strong, established baselines. Our experiments are
designed to assess three key aspects: (1) performance on standard common-sense reasoning bench-
marks compared to Transformer and SSM architectures, (2) scaling properties as model size in-
creases, and (3) qualitative and quantitative performance on long-context tasks.

5.1 EXPERIMENTAL SETUP

Dataset: We pre-train all models from scratch on the FineWeb-10B dataset (Penedo et al., [2024),
a high-quality, 10-billion-token corpus of English web text. This dataset is a filtered subset of
Common Crawl and has become a standard resource for training foundation models of this scale.

Baselines: We compare TransFourier against two strong architectural paradigms:

* Transformer: We use a standard GPT-2 model (Radford et al.|[2019), implemented via the
transformers library. This represents the canonical attention-based architecture.

» State Space Models (SSMs): We use Mamba (Gu & Dao, 2023) and Mamba-2 (Dao &
Gu, [2024) as our state-of-the-art SSM baselines, using the official mamba_ssm library.
These models represent the cutting edge in efficient, non-attentional sequence modeling.

Configurations: To analyze scaling properties, we train all four models (TransFourier, GPT-2,
Mamba, Mamba-2) at three different sizes, which we term “Mini”, ”Small”, and "Medium”. The
configurations are chosen to align with the models described in the GPT-3 paper (Brown et al.,
2020), ensuring a fair comparison of parameter efficiency. Specific hyperparameters are detailed in
Table|l] All models were trained on a node of 8 NVIDIA GeForce RTX 3090 GPUs (24GB).

Table 1: Hyperparameter configurations for the different model sizes used in our experiments.

Model Size  dyodel Nlayer  "head head

Mini 512 12 8 64
Small 768 12 12 64
Medium 1024 24 16 64

Training Details: We trained all models for 10B tokens with a context length of 1024. We employed
the AdamW optimizer with 8; = 0.9, 83 = 0.95, and a weight decay of 0.1. The training utilized a
global batch size of 0.5M tokens. The learning rate followed a cosine schedule, peaking at 9 x 10~4
after a linear warmup over the first 3.75% of training steps. We also applied gradient clipping with
anorm of 1.0. The gpt 2 tokenizer was used throughout all training and evaluation stages.
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5.2 EFFECTIVENESS AND SCALING ANALYSIS: LM-EVALUATION-HARNESS

We use the Im-evaluation-harness framework for standardized and reproducible evaluation.
We report performance on a suite of popular common-sense reasoning benchmarks: Hellaswag
(Zellers et al.}2019), ARC-Easy and ARC-Challenge (Clark et al.,[2018)), and Winogrande (Sak-
aguchi et al.|2020).

Table [2| presents the main results across all models and benchmarks. Our proposed TransFourier
architecture demonstrates highly competitive performance. At all scales, TransFourier models con-
sistently outperform the GPT-2 baselines of equivalent size, highlighting the effectiveness of the
MHF module as a replacement for self-attention. Furthermore, TransFourier’s performance is on
par with, and in some cases exceeds, the strong Mamba and Mamba-2 baselines. This indicates that
our hardware-agnostic, FFT-based approach is a compelling alternative to specialized SSMs.

Table 2: Main performance comparison on common-sense reasoning benchmarks. We report accu-
racy (%) for all tasks. Bold numbers indicate the best performance within each parameter class.

Size Model Hellaswag ARC-e ARC-¢ Winogrande Average
GPT-2 28.44 43.27 23.89 48.22 35.96
Mini Mamba 30.00 43.39 25.09 50.20 37.17
Mamba-2 28.96 42.59 24.83 50.28 36.67
TransFourier (Ours) 29.27 43.48 23.12 49.49 36.34
GPT-2 30.78 47.01 24.74 49.96 38.12
Small Mamba 32.19 46.72 25.34 51.07 38.83
Mamba-2 31.04 45.88 25.43 50.91 38.32
TransFourier (Ours) 31.34 46.97 25.51 50.83 38.66
GPT-2 35.90 51.81 25.26 51.30 41.07
Medium Mamba 37.29 49.96 26.96 51.54 41.44
Mamba-2 36.82 50.29 26.19 51.93 41.31
TransFourier (Ours) 36.05 51.85 25.77 52.17 41.46

As shown in Table [2] TransFourier exhibits a smooth and predictable scaling trend. The consistent
increase in validation accuracy as model size increases demonstrates that our architecture is scalable
and benefits from increased parameter counts, similar to Transformers. This is a crucial property,
suggesting that TransFourier is a suitable candidate for training even larger models in the future.

5.3 LONG-CONTEXT EVALUATION: NEEDLE IN A HAYSTACK TEST

We conducted the Needle in a Haystack test (Kamradt, [2023)) with the standard NeedleHaystack
toolkit to evaluate the model’s long-context retrieval capabilities, a task where our position-
encoding-free architecture is theoretically advantageous. Our test setting involved models trained
with a context length of 1024. We then evaluated their ability to retrieve the “needle” from
“haystacks” of 1000 (interpolation) and 2000 (extrapolation) tokens, placing the needle at 10%,
50%, and 90% depth within the context.

Notably, the standard GPT-2 baseline could not complete this evaluation. Due to its fixed posi-
tional encodings, it raised an error and failed when processing sequences longer than its training
length, highlighting a fundamental architectural limitation of traditional Transformers. In contrast,
the models capable of extrapolation—TransFourier, Mamba, and Mamba-2—successfully processed
the longer sequences. However, across all scales and test configurations, they performed poorly,
achieving near-zero retrieval accuracy.

We hypothesize that this is not a failure of any specific architecture, but rather a consequence of the
relatively small model scale (< 500M parameters). It is widely observed that robust long-context
reasoning is an emergent capability that appears in much larger models. While our models did
not demonstrate this capability, the fact that they correctly processed contexts beyond their training
length (unlike GPT-2) and that state-of-the-art SSM baselines also failed the retrieval task under
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identical conditions suggests that larger-scale experiments are necessary to fully unlock and validate
the long-context potential of TransFourier.

5.4 ABLATION STUDY: THE ROLE OF THE FEED-FORWARD NETWORK

We select a SwiGLU-based feed-forward network (FFN) (Shazeer, [2020) for our architecture, as its
gating mechanism is conceptually consistent with the dynamic, input-dependent filtering principle
of our Multi-Head Fourier (MHF) module. To evaluate the impact of this choice, we conducted an
ablation study across all three model scales: Mini, Small, and Medium. For each scale, we trained a
counterpart model where the SwiGLU FFN was replaced with a standard MLP.

The results, presented in Table [3] show a consistent pattern across all scales. The SwiGLU-based
FFN provides a discernible but modest performance improvement over the standard MLP. This con-
sistent, small performance gap across different model sizes strongly suggests that the core effec-
tiveness of our model is primarily driven by the MHF module itself. This finding highlights the
robustness of the MHF module, which performs well even with a simpler FFN, thereby isolating the
MHF’s contribution as the main architectural innovation.

Table 3: Ablation study on the FFN in TransFourier models across different scales. We compare a
standard MLP against our proposed SwiGLU-based FFN. Results are reported as accuracy (%).

Model Configuration Hellaswag ARC-e ARC-c¢ Winogrande Average
TransFourier-Mini (MLP) 28.60 41.54 24.40 49.33 35.97
TransFourier-Mini (SwiGLU) 29.27 43.48 23.12 49.49 36.34
TransFourier-Small (MLP) 31.30 44.74 24.83 51.93 38.20
TransFourier-Small (SwiGLU) 31.34 46.97 25.51 50.83 38.66
TransFourier-Medium (MLP) 35.63 50.00 26.11 52.25 41.00
TransFourier-Medium (SwiGLU) 36.05 51.85 25.77 52.17 41.46

6 LIMITATIONS AND FUTURE WORK

Our primary experiments validate the architecture’s effectiveness up to a certain scale. To prove
its capability to support frontier models at the trillion-parameter level, much larger-scale training
experiments will be necessary. Furthermore, while the frequency domain offers some interpretabil-
ity (e.g., analyzing which frequencies are amplified by the gating mechanism), it is generally less
intuitive than attention maps. Developing better tools to visualize and understand information flow
in the frequency domain is a promising direction for future research. Other avenues include explor-
ing more sophisticated gating mechanisms and applying the architecture to multimodal data, where
Fourier methods have a rich history.

7 CONCLUSION

In this paper, we addressed the core bottlenecks of computation and context length in modern Large
Language Models by proposing TransFourier, a novel architecture. By replacing self-attention with
a Fourier-based gated mixing module and eliminating positional encodings entirely, TransFourier
reduces computational complexity from O(L?) to O(Llog L) while theoretically enabling infinite
context length. Our key technical innovation, a frequency-domain causal masking technique, ele-
gantly resolves the long-standing challenge of applying spectral methods to generative tasks.

Our model design adheres to principles of simplicity and generality, relying exclusively on standard,
optimized operators found in deep learning libraries, which ensures excellent portability and ease
of use. Experimental results show that TransFourier exhibits robust scaling properties and achieves
performance competitive with mainstream Transformer and SSM models on standard benchmarks.
In summary, TransFourier is more than just another efficient model variant; it is a simple, powerful,
and practical architectural foundation that opens a promising new path for the development of next-
generation long-context sequence models.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive details on our code, data, and
experimental setup. The complete source code for the TransFourier model and baselines used in
experiements (GPT-2, Mamba, Mamba-2), along with the scripts for pre-processing the FineWeb-
10B training data, is included in the supplementary materials. All datasets used for training and
evaluation are publicly available, with detailed descriptions provided in Section[5.1] Our evaluation
was conducted using the standard toolkit on unmodified benchmark datasets shown in Section
and Section[5.3] Furthermore, all model configurations, hyperparameters, and specific training pro-
cedures are detailed in Section and Table [l We believe these resources offer a complete and
clear basis for reproducing our findings.

REFERENCES

Roy Aurko, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. In Transactions of the Association for Computational Lin-
guistics (TACL), volume 9, pp. 53-68, 2021.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877—
1901, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
lenge. arXiv preprint arXiv:1803.05457, 2018.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In International Conference on Machine Learning, 2024.

Yihong Dong, Ge Li, Yongding Tao, Xue Jiang, Kechi Zhang, Jia Li, Jing Su, Jun Zhang, and
Jingjing Xu. FAN: Fourier analysis networks. arXiv preprint arXiv:2410.02675, 2024.

Jacob Fein-Ashley, Neelesh Gupta, Rajgopal Kannan, and Viktor Prasanna. SPECTRE: An
FFT-based efficient drop-in replacement to self-attention for long contexts. arXiv preprint
arXiv:2502.18394, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher R€. On the parameterization and initial-
ization of diagonal state space models. In Advances in Neural Information Processing Systems,
volume 35, pp. 35971-35983, 2022a.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations (ICLR), 2022b.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2022.

Ziwei He, Meng Yang, Minwei Feng, Jingcheng Yin, Xinbing Wang, Jingwen Leng, and Zhouhan
Lin. Fourier transformer: Fast long range modeling by removing sequence redundancy with FFT
operator. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 8954—
8966. Association for Computational Linguistics, 2023.

Greg Kamradt. Needle in a haystack - pressure testing LLMs. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack, 2023.

10


https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Under review as a conference paper at ICLR 2026

Andrew Kiruluta, Eric Lundy, and Andreas Lemos. FourierNAT: A fourier-mixing-based non-
autoregressive transformer for parallel sequence generation. arXiv preprint arXiv:2503.07630,
2025.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. FNet: Mixing tokens with
fourier transforms. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (NAACL), pp.
42964313, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations (ICLR), 2021.

Shengtian Mian, Ya Wang, Nannan Gu, Yuping Wang, and Xiaoqing Li. FwNet-ECA: A classifica-
tion model enhancing window attention with global receptive fields via fourier filtering operations.
arXiv preprint arXiv:2502.18094, 2025.

Kitaev Nikita, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations (ICLR), 2020.

Guilherme Penedo, Hynek Kydli¢ek, Anton Lozhkov, Margaret Mitchell, Colin A. Raffel, Leandro
Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting the web for the finest text data
at scale. In Advances in Neural Information Processing Systems, volume 37, pp. 30811-30849.
Curran Associates, Inc., 2024.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context window
extension of large language models. In International Conference on Learning Representations,
2024.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. In International Conference on Learning Representations,
2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019. OpenAl Technical Report.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. In Advances in Neural Information Processing Systems, pp. 980-993, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An adver-
sarial Winograd schema challenge at scale. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 8732-8740, 2020.

Carmelo Scribano, Giorgia Franchini, Marco Prato, and Marko Bertogna. DCT-former: Efficient
self-attention with discrete cosine transform. Journal of Scientific Computing, 94(3):67, 2023.

Noam Shazeer. GLU variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, pp. 5998-6008, 2017.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, et al. Big bird: Transformers for longer sequences. In Advances in Neural
Information Processing Systems, volume 33, pp. 17283-17297, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, volume 1, pp. 4791-4800. Association for Computational Lin-
guistics, 2019.

11



Under review as a conference paper at ICLR 2026

Juntao Zhang, Shaogeng Liu, Kun Bian, You Zhou, Pei Zhang, Wenbo An, Jun Zhou, and Kun Shao.
Vim-F: Visual state space model benefiting from learning in the frequency domain. arXiv preprint
arXiv:2405.18679, 2024.

Yimeng Zhuang, Jing Zhang, and Mei Tu. Long-range sequence modeling with predictable sparse
attention. In Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics, volume 1, pp. 234-243, 2022.

A APPENDIX - ALGORITHM

To clarify the operational flow of our proposed Multi-Head Fourier (MHF) module, we present
its forward pass in Algorithm |1} This algorithm details how causal convolution is integrated with
frequency-domain mixing to model sequence data.

Algorithm 1 The Multi-Head Fourier (MHF) Module Forward Pass

Input: Input sequence x € RBXExD
Parameters: All model weights 6
Output: Output sequence y € REXLxD

1: Inject local inductive bias with causal convolution. Left-padding (pad=2) for causality.

2: x < Convld(z, kernel_size = 3, groups = D)

3: Znorm < LayerNorm(z)

4: Prepare content stream (z,) and gate stream (z,).

5: @y « Linear(znom)

6: x, < Convld(SiLU(Linear(znom)), kernel_size = 1, groups = h)

7: Perform causal mixing in frequency domain.

8 N+ 2x1L Set padded length for causal convolution via FFT
9: Vi < RFFT(zy,n = N,dim = 1) Pad and transform content stream
10: G < RFFT(zg,n = N,dim = 1) Pad and transform gate stream
11: Xe < Vi © Gege Element-wise product in frequency domain

12: Zmixed ¢ IRFFT(Xg,n = N,dim = 1) Transform mixed spectrum back to sequence domain
13: Truncate to enforce causality and project to output

14: Teaysal ¢ Tmixed[s, : Ly 3] Truncate to original sequence length L
15: y « Linear(Zcausal)

16: return y

In Algorithm[T} the notation follows standard deep learning conventions. We denote the batch size as
B, the input sequence length as L, and the model’s hidden dimension as D. The number of parallel
heads within the MHF module is denoted by h, where the dimension of each head Dy, = D/h.

A key implementation detail involves the Conv1d layers used in lines 2 and 6. Standard deep
learning libraries typically expect 1D convolutional inputs in the format (N, C, L), where N is
the batch size, C' is the number of channels, and L is the sequence length. Therefore, to ensure
the convolution is applied along the sequence length dimension, we first permute the input tensor
from its shape RBXEXD to REXPXL  Following the convolution, the output is permuted back to
RB*LXD to ensure dimensional consistency for subsequent operations.

B APPENDIX - STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Throughout the preparation of this manuscript, we utilized a large language model (LLM) as a
general-purpose assistant. The LLM’s role was primarily that of a collaborative tool for language
refinement, structural organization, and formatting, under the direct guidance and critical supervi-
sion of the human authors.

The specific uses of the LLM in the writing process include:

* Language Refinement: The LLM assisted in iteratively refining sentence structure, word
choice, and overall tone to align with standard academic English. This process involved

12
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numerous cycles of author-led prompting, critical review, and editing to ensure the final
text accurately reflected our intended meaning and technical nuances.

* Figure, Table, Pseudocode and Citations Formatting: It was used to generate LaTex
code to insert figures and tables uploaded by authors. It was also used to convert a PyTorch
code implementation of our MHF module into a LaTeX pseudocode algorithm for clarity.
Besides, it helped with formatting citations in BibTeX and resolving LaTeX typesetting
queries.

It is important to clarify that all core research ideas, the TransFourier architecture design, the con-
ceptual analyses, and the experimental framework are the original intellectual contributions of the
human authors. The LLM did not contribute to the research ideation. The authors retained full in-
tellectual control throughout the process, directed all revisions, and assume complete responsibility
for the scientific validity and final content of this manuscript.
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