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ABSTRACT

Autoregressive models are widely used for tasks such as image and audio genera-
tion. The sampling process of these models, however, does not allow interruptions
and cannot adapt to real-time computational resources. This challenge impedes
the deployment of powerful autoregressive models, which involve a slow sampling
process that is sequential in nature and typically scales linearly with respect to
the data dimension. To address this difficulty, we propose a new family of autore-
gressive models that enables anytime sampling. Inspired by Principal Component
Analysis, we learn a structured representation space where dimensions are ordered
based on their importance with respect to reconstruction. Using an autoregressive
model in this latent space, we trade off sample quality for computational efficiency
by truncating the generation process before decoding into the original data space.
Experimentally, we demonstrate in several image and audio generation tasks that
sample quality degrades gracefully as we reduce the computational budget for
sampling. The approach suffers almost no loss in sample quality (measured by
FID) using only 60% to 80% of all latent dimensions for image data. Code is
available at https://github.com/Newbeeer/Anytime-Auto-Regressive-Model.

1 INTRODUCTION

Autoregressive models are a prominent approach to data generation, and have been widely used to
produce high quality samples of images (Oord et al., 2016b; Salimans et al., 2017; Menick & Kalch-
brenner, 2018), audio (Oord et al., 2016a), video (Kalchbrenner et al., 2017) and text (Kalchbrenner
et al., 2016; Radford et al., 2019). These models represent a joint distribution as a product of (simpler)
conditionals, and sampling requires iterating over all these conditional distributions in a certain order.
Due to the sequential nature of this process, the computational cost will grow at least linearly with
respect to the number of conditional distributions, which is typically equal to the data dimension. As
a result, the sampling process of autoregressive models can be slow and does not allow interruptions.

Although caching techniques have been developed to speed up generation (Ramachandran et al.,
2017; Guo et al., 2017), the high cost of sampling limits their applicability in many scenarios. For
example, when running on multiple devices with different computational resources, we may wish to
trade off sample quality for faster generation based on the computing power available on each device.
Currently, a separate model must be trained for each device (i.e., computational budget) in order to
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trade off sample quality for faster generation, and there is no way to control this trade-off on the fly
to accommodate instantaneous resource availability at time-of-deployment.

To address this difficulty, we consider the novel task of adaptive autoregressive generation under
computational constraints. We seek to build a single model that can automatically trade-off sample
quality versus computational cost via anytime sampling, i.e., where the sampling process may be
interrupted anytime (e.g., because of exhausted computational budget) to yield a complete sample
whose sample quality decays with the earliness of termination.

In particular, we take advantage of a generalization of Principal Components Analysis (PCA) pro-
posed by Rippel et al. (2014), which learns an ordered representations induced by a structured
application of dropout to the representations learned by an autoencoder. Such a representation
encodes raw data into a latent space where dimensions are sorted based on their importance for
reconstruction. Autoregressive modeling is then applied in the ordered representation space instead.
This approach enables a natural trade-off between quality and computation by truncating the length
of the representations: When running on devices with high computational capacity, we can afford
to generate the full representation and decode it to obtain a high quality sample; when on a tighter
computational budget, we can generate only the first few dimensions of the representation and decode
it to a sample whose quality degrades smoothly with truncation. Because decoding is usually fast and
the main computation bottleneck lies on the autoregressive part, the run-time grows proportionally
relative to the number of sampled latent dimensions.

Through experiments, we show that our autoregressive models are capable of trading off sample
quality and inference speed. When training autoregressive models on the latent space given by our
encoder, we witness little degradation of image sample quality using only around 60% to 80% of
all latent codes, as measured by Fréchet Inception Distance (Heusel et al., 2017) on CIFAR-10 and
CelebA. Compared to standard autoregressive models, our approach allows the sample quality to
degrade gracefully as we reduce the computational budget for sampling. We also observe that on
the VCTK audio dataset (Veaux et al., 2017), our autoregressive model is able to generate the low
frequency features first, then gradually refine the waveforms with higher frequency components as
we increase the number of sampled latent dimensions.

2 BACKGROUND

Autoregressive Models Autoregressive models define a probability distribution over data points
x ∈ RD by factorizing the joint probability distribution as a product of univariate conditional
distributions with the chain rule. Using pθ to denote the distribution of the model, we have:

pθ(x) =

D∏
i=1

pθ(xi | x1, · · · , xi−1) (1)

The model is trained by maximizing the likelihood:

L = Epd(x)[log pθ(x)], (2)

where pd(x) represents the data distribution.

Different autoregressive models adopt different orderings of input dimensions and parameterize
the conditional probability pθ(xi | x1, · · · , xi−1), i = 1, · · · , D in different ways. Most archi-
tectures over images order the variables x1, · · · , xD of image x in raster scan order (i.e., left-to-
right then top-to-bottom). Popular autoregressive architectures include MADE (Germain et al.,
2015), PixelCNN (Oord et al., 2016b; van den Oord et al., 2016; Salimans et al., 2017) and Trans-
former (Vaswani et al., 2017), where they respectively use masked linear layers, convolutional layers
and self-attention blocks to ensure that the output corresponding to pθ(xi | x1, · · · , xi−1) is oblivious
of xi, xi+1, · · · , xD.

Cost of Sampling During training, we can evaluate autoregressive models efficiently because
x1, · · · , xD are provided by data and all conditionals p(xi | x1, · · · , xi−1) can be computed in
parallel. In contrast, sampling from autoregressive models is an inherently sequential process and
cannot be easily accelerated by parallel computing: we first need to sample x1, after which we sample
x2 from pθ(x2 | x1) and so on—the i-th variable xi can only be obtained after we have already
computed x1, · · · , xi−1. Thus, the run-time of autoregressive generation grows at least linearly with
respect to the length of a sample. In practice, the sample length D can be more than hundreds of
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thousands for real-world image and audio data. This poses a major challenge to fast autoregressive
generation on a small computing budget.

3 ANYTIME SAMPLING WITH ORDERED AUTOENCODERS

Our goal is to circumvent the non-interruption and linear time complexity of autoregressive models
by pushing the task of autoregressive modeling from the original data space (e.g., pixel space) into an
ordered representation space. In doing so, we develop a new class of autoregressive models where
premature truncation of the autoregressive sampling process leads to the generation of a lower quality
sample instead of an incomplete sample. In this section, we shall first describe the learning of the
ordered representation space via the use of an ordered autoencoder. We then describe how to achieve
anytime sampling with ordered autoencoders.

3.1 ORDERED AUTOENCODERS

Consider an autoencoder that encodes an input x ∈ RD to a code z ∈ RK . Let z = eθ(x) : RD →
RK be the encoder parameterized by θ and x′ = dφ(z) : RK → RD be the decoder parameterized
by φ. We define eθ(·)≤i : x ∈ RD 7→ (z1, z2, · · · , zi, 0, · · · , 0)T ∈ RK , which truncates the
representation to the first i dimensions of the encoding z = eθ(x), masking out the remainder of the
dimensions with a zero value. We define the ordered autoencoder objective as

1

N

N∑
i=1

1

K

K∑
j=1

‖xi − dφ(eθ(xi)≤j)‖22 . (3)

We note that Eq. (3) is equivalent to Rippel et al. (2014)’s nested dropout formulation using a uniform
sampling of possible truncations. Moreover, when the encoder/decoder pair is constrained to be a
pair of orthogonal matrices up to a transpose, then the optimal solution in Eq. (3) recovers PCA.

3.1.1 THEORETICAL ANALYSIS

Rippel et al. (2014)’s analysis of the ordered autoencoder is limited to linear/sigmoid encoder and
a linear decoder. In this section, we extend the analysis to general autoencoder architectures by
employing an information-theoretic framework to analyze the importance of the i-th latent code to
reconstruction for ordered autoencoders. We first reframe our problem from a probabilistic perspective.
In lieu of using deterministic autoencoders, we assume that both the encoder and decoder are stochastic
functions. In particular, we let qeθ (z | x) be a probability distribution over z ∈ RK conditioned on
input x, and similarly let pdφ(x | z) be the stochastic counterpart to dφ(z). We then use qeθ (z | x)≤i
to denote the distribution of (z1, z2, · · · , zi, 0, · · · , 0)T ∈ RK , where z ∼ qeθ (z | x), and let
pdφ(x | z)≤i represent the distribution of pdφ(x | (z1, z2, · · · , zi, 0, · · · , 0)T ∈ RK). We can modify
Eq. (3) to have the following form:

Ex∼pd(x),i∼U{1,K}Ez∼qeθ (z|x)≤i [− log pdφ(x|z)≤i], (4)

where U{1,K} denotes a uniform distribution over {1, 2, · · · ,K}, and pd(x) represents the data
distribution. We can choose both the encoder and decoder to be fully factorized Gaussian distributions
with a fixed variance σ2, then Eq. (13) can be simplified to

Epd(x)
[

1

K

K∑
i=1

Ez∼N (eθ(x)≤i;σ2)

[
1

2σ2
‖x− dφ(z)≤i‖22

]]
.

The stochastic encoder and decoder in this case will become deterministic when σ → 0, and the
above equation will yield the same encoder/decoder pair as Eq. (3) when σ → 0 and N →∞.

The optimal encoders and decoders that minimize Eq. (13) satisfy the following property.
Theorem 1. Let x denote the input random variable. Assuming both the encoder and decoder are
optimal in terms of minimizing Eq. (13), and ∀i ∈ 3, · · · ,K, zi−1 ⊥ zi | x, z≤i−2, we have

∀i ∈ {3, · · · ,K} : I(zi;x|z≤i−1) ≤ I(zi−1;x|z≤i−2),

where z≤i denotes (z1, z2, · · · , zi).
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Figure 1: (a) Spatial-wise quantization vs. channel-wise quantization. (b) Anytime sampling for
OVQ-VAE.

We defer the proof to Appendix A.1. The assumption zi−1 ⊥ zi | x, z≤i−2 holds whenever the
encoder qθ(z | x) is a factorized distribution, which is a common choice in variational autoen-
coders (Kingma & Welling, 2013), and we use I(a;b | c) to denote the mutual information between
random variables a and b conditioned on c. Intuitively, the above theorem states that for optimal
encoders and decoders that minimize Eq. (13), one can extract less additional information about
the raw input as the code gets longer. Therefore, there exists a natural ordering among different
dimensions of the code based on the additional information they can provide for reconstructing the
inputs.

3.2 ANYTIME SAMPLING

Once we have learned an ordered autoencoder, we then train an autoregressive model on the full length
codes in the ordered representation space, also referred to as ex-post density estimation (Ghosh et al.,
2020). For each input xi in a dataset x1, · · · ,xN , we feed it to the encoder to get zi = eθ(xi). The
resulting codes z1, z2, · · · , zN are used as training data. After training both the ordered autoencoder
and autoregressive model, we can perform anytime sampling on a large spectrum of computing
budgets. Suppose for example we can afford to generate T code dimensions from the autoregressive
model, denoted as z≤T ∈ RT . We can simply zero-pad it to get (z1, z2, · · · , zT , 0, · · · , 0)T ∈ RK
and decode it to get a complete sample. Unlike the autoregressive part, the decoder has access to
all dimensions of the latent code at the same time and can decode in parallel. The framework is
shown in Fig. 1(b). For the implementation, we use the ordered VQ-VAE (Section 4) as the ordered
autoencoder and the Transformer (Vaswani et al., 2017) as the autoregressive model. On modern
GPUs, the code length has minimal effect on the run-time of decoding, as long as the decoder is not
itself autoregressive (see empirical verifications in Section 5.2.2).

4 ORDERED VQ-VAE

In this section, we apply the ordered autoencoder framework to the vector quantized variational
autoencoder (VQ-VAE) and its extension (van den Oord et al., 2017; Razavi et al., 2019). Since
these models are quantized autoencoders paired with a latent autoregressive model, they admit a
natural extension to ordered VQ-VAEs (OVQ-VAEs) under our framework—a new family of VQ-
VAE models capable of anytime sampling. Below, we begin by describing the VQ-VAE, and then
highlight two key design choices (ordered discrete codes and channel-wise quantization) critical for
OVQ-VAEs. We show that, with small changes of the original VQ-VAE, these two choices can be
applied straightforwardly.

4.1 VQ-VAE

To construct a VQ-VAE with code length of K discrete latent variables , the encoder must first
map the raw input x to a continuous representation ze = eθ(x) ∈ RK×D, before feeding it to a
vector-valued quantization function q : RK×D → {1, 2, · · · , C}K defined as

q(ze)j = arg min
i∈{1,··· ,C}

∥∥ei − zej
∥∥
2
,
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where q(ze)j ∈ {1, 2, · · · , C} denotes the j-th component of the vector-valued function q(ze),
zej ∈ RD denotes the j-th row of ze, and ei denotes the i-th row of the embedding matrix E ∈ EC×D.
Next, we view q(ze) as a sequence of indices and use them to look up embedding vectors from the
codebook E. This yields a latent representation zd ∈ RK×D, given by zdj = eq(ze)j , where zdj ∈ RD

denotes the j-th row of zd. Finally, we can decode zd to obtain the reconstruction dφ(zd). This
procedure can be viewed as a regular autoencoder with a non-differentiable nonlinear function that
maps each latent vector zej to 1-of-K embedding vectors ei.

During training, we use the straight-through gradient estimator (Bengio et al., 2013) to propagate
gradients through the quantization function, i.e., gradients are directly copied from the decoder input
zd to the encoder output ze. The loss function for training on a single data point x is given by∥∥dφ(zd)− x

∥∥2
2

+
∥∥sg[eθ(x)]− zd

∥∥2
F

+ β
∥∥eθ(x)− sg[zd]

∥∥2
F
, (5)

where sg stands for the stop_gradient operator, which is defined as identity function at forward
computation and has zero partial derivatives at backward propagation. β is a hyper-parameter ranging
from 0.1 to 2.0. The first term of Eq. (5) is the standard reconstruction loss, the second term is
for embedding learning while the third term is for training stability (van den Oord et al., 2017).
Samples from a VQ-VAE can be produced by first training an autoregressive model on its latent
space, followed by decoding samples from the autoregressive model into the raw data space.

4.2 ORDERED DISCRETE CODES

Since the VQ-VAE outputs a sequence of discrete latent codes q(ze), we wish to impose an ordering
that prioritizes the code dimensions based on importance to reconstruction. In analogy to Eq. (3),
we can modify the reconstruction error term in Eq. (5) to learn ordered latent representations. The
modified loss function is an order-inducing objective given by

1

K

K∑
i=1

[ ∥∥dφ(zd≤i)− x
∥∥2
2

+
∥∥sg[eθ(x)≤i]− zd≤i

∥∥2
F

+ β
∥∥eθ(x)≤i − sg[zd≤i]

∥∥2
F

]
, (6)

where eθ(x)≤i and zd≤i denote the results of keeping the top i rows of eθ(x) and zd and then masking
out the remainder rows with zero vectors. We uniformly sample the masking index i ∼ U{1,K}
to approximate the average in Eq. (6) when K is large. An alternative sampling distribution is the
geometric distribution (Rippel et al., 2014). In Appendix C.3, we show that OVQ-VAE is sensitive to
the choice of the parameter in geometric distribution. Because of the difficulty, Rippel et al. (2014)
applies additional tricks. This results in the learning of ordered discrete latent variables, which can
then be paired with a latent autoregressive model for anytime sampling.

4.3 CHANNEL-WISE QUANTIZATION

In Section 4.1, we assume the encoder output to be a K ×D matrix (i.e., ze ∈ RK×D). In practice,
the output can have various sizes depending on the encoder network, and we need to reshape it
to a two-dimensional matrix. For example, when encoding images, the encoder is typically a 2D
convolutional neural network (CNN) whose output is a 3D latent feature map of size L×H ×W .
Here L, H , and W stand for the channel, height, and width of the feature maps. We discuss below
how the reshaping procedure can significantly impact the performance of anytime sampling and
propose a reshaping procedure that facilitates high-performance anytime sampling.

Consider convolutional encoders on image data, where the output feature map has a size ofL×H×W .

Figure 2: MNIST (top) and CelebA (bottom) samples gen-
erated with 1/4 of the code length. Left: Spatial-wise quanti-
zation. Right: Channel-wise quantization.

The most common way of reshaping
this 3D feature map, as in van den
Oord et al. (2017), is to let H ×W be
the code length, and let the number of
channels L be the size of embedding
vectors, i.e., K = H ×W and D =
L. We call this pattern spatial-wise
quantization, as each spatial location
in the feature map corresponds to one
code dimension and will be quantized
separately. Since the code dimensions
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correspond to spatial locations of the
feature map, they encode local features due to a limited receptive field. This is detrimental to anytime
sampling, because early dimensions cannot capture the global information needed for reconstructing
the entire image. We demonstrate this in Fig. 2, which shows that OVQ-VAE with spatial-wise
quantization is only able to reconstruct the top rows of an image with 1/4 of the code length.

To address this issue, we propose channel-wise quantization, where each channel of the feature map
is viewed as one code dimension and quantized separately (see Fig. 1(a) for visual comparison of
spatial-wise and channel-wise quantization). Specifically, the code length is L (i.e., K = L), and
the size of the embedding vectors is H ×W (i.e., D = H ×W ). In this case, one code dimension
includes all spatial locations in the feature map and can capture global information better. As shown
in the right panel of Fig. 2, channel-wise quantization clearly outperforms spatial-wise quantization
for anytime sampling. We use channel-wise quantization in all subsequent experiments. Note that in
practice we can easily apply the channel-wise quantization on VQ-VAE by changing the code length
from H ×W to L, as shown in Fig. 1(a).

5 EXPERIMENTS

In our experiments, we focus on anytime sampling for autoregressive models trained on the latent
space of OVQ-VAEs, as shown in Fig. 1(b). We first verify that our learning objectives in Eq. (3),
Eq. (6) are effective at inducing ordered representations. Next, we demonstrate that our OVQ-VAE
models achieve comparable sample quality to regular VQ-VAEs on several image and audio datasets,
while additionally allowing a graceful trade-off between sample quality and computation time via
anytime sampling. Due to limits on space, we defer the results of audio generation to Appendix B
and provide additional experimental details, results and code links in Appendix E and G.

5.1 ORDERED VERSUS UNORDERED CODES

Our proposed ordered autoencoder framework learns an ordered encoding that is in contrast to
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Figure 3: Ordered vs. unordered codes on CIFAR-10.

the encoding learned by a standard au-
toencoder (which we shall refer to as
unordered). In addition to the theo-
retical analysis in Section 3.1.1, we
provide further empirical analysis to
characterize the difference between or-
dered and unordered codes. In particu-
lar, we compare the importance of the
i-th code—as measured by the reduc-
tion in reconstruction error ∆(i)—for
PCA, standard (unordered) VQ-VAE,
and ordered VQ-VAE. For VQ-VAE
and ordered VQ-VAE, we define the
reduction in reconstruction error ∆(i)
for a data point x as

∆x(i) ,
∥∥dφ(zd≤i−1)− x

∥∥2
F
−
∥∥dφ(zd≤i)− x

∥∥2
F

(7)

Averaging ∆x(i) over the entire dataset thus yields ∆(i). Similarly we define ∆(i) as the reduction
on reconstruction error of the entire dataset, when adding the i-th principal component for PCA.

Fig. 3(a) shows the ∆(i)’s of the three models on the CIFAR-10. Since PCA and ordered VQ-VAE
both learn an ordered encoding, their ∆(i)’s decay gradually as i increases. In contrast, the standard
VQ-VAE with an unordered encoding exhibits a highly irregular ∆(i), indicating no meaningful
ordering of the dimensions.

Fig. 3(b) further shows how the reconstruction error decreases as a function of the truncated code
length for the three models. Although unordered VQ-VAE and ordered VQ-VAE achieve similar
reconstruction errors for sufficiently large code lengths, it is evident that an ordered encoding achieves
significantly better reconstructions when the code length is aggressively truncated. When sufficiently
truncated, we observe even PCA outperforms unordered VQ-VAE despite the latter being a more
expressive model. In contrast, ordered VQ-VAE achieves superior reconstructions compared to PCA
and unordered VQ-VAE across all truncation lengths.
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We repeat the experiment on standard VAE to disentangle the specific implementations in VQ-VAE.
We observe that the order-inducing objective has consistent results on standard VAE (Appendix C.1).

5.2 IMAGE GENERATION

We test the performance of anytime sampling using OVQ-VAEs (Anytime + ordered) on several
image datasets. We compare our approach to two baselines. One is the original VQ-VAE model
proposed by van den Oord et al. (2017) without anytime sampling. The other is using anytime
sampling with unordered VQ-VAEs (Anytime + unordered), where the models have the same
architectures as ours but are trained by minimizing Eq. (5). We empirically verify that 1) we are
able to generate high quality image samples; 2) image quality degrades gracefully as we reduce the
sampled code length for anytime sampling; and 3) anytime sampling improves the inference speed
compared to naïve sampling of original VQ-VAEs.

We evaluate the model performance on the MNIST, CIFAR-10 (Krizhevsky, 2009) and CelebA (Liu
et al., 2014) datasets. For CelebA, the images are resized to 64× 64. All pixel values are scaled to
the range [0, 1]. We borrow the model architectures and optimizers from van den Oord et al. (2017).
The full code length and the codebook size are 16 and 126 for MNIST, 70 and 1000 for CIFAR-10,
and 100 and 500 for CelebA respectively. We train a Transformer (Vaswani et al., 2017) on our
VQ-VAEs, as opposed to the PixelCNN model used in van den Oord et al. (2017). PixelCNNs use
standard 2D convolutional layers to capture a bounded receptive field and model the conditional
dependence. Transformers apply attention mechanism and feed forward network to model the
conditional dependence of 1D sequence. Transformers are arguably more suitable for channel-wise
quantization, since there are no 2D spatial relations among different code dimensions that can be
leveraged by convolutional models (such as PixelCNNs). Our experiments on different autoregressive
models in Appendix C.2 further support the arguments.
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Figure 4: (a) FID scores for anytime sampling using various code lengths. (b) Inference speed of
anytime sampling with different code lengths.

5.2.1 IMAGE QUALITY

In Fig. 4(a), we report FID (Heusel et al., 2017) scores (lower is better) on CIFAR-10 and CelebA
when performing anytime sampling for ordered versus unordered VQ-VAE. FID (Fréchet Inception
Distance) score is the Fréchet distance between two multivariate Gaussians, whose means and
covariances are estimated from the 2048-dimensional activations of the Inception-v3 (Szegedy et al.,
2016) network for real and generated samples respectively. As a reference, we also report the FID
scores when using the original VQ-VAE model (with residual blocks and spatial-wise quantization)
sampled at the full code length (van den Oord et al., 2017). Our main finding is that OVQ-VAE
achieves a better FID score than unordered VQ-VAE at all fractional code lengths (ranging from
20% to 100%); in other words, OVQ-VAE achieves strictly superior anytime sampling performance
compared to unordered VQ-VAE on both CIFAR-10 and CelebA. On CIFAR-10 dataset, a better FID
score is achieved by OVQ-VAE even when sampling full codes. In Appendix C.4, we show that the
regularization effect of the ordered codes causes this phenomenon.

In Fig. 5 (more in Appendix G.1), we visualize the sample quality degradation as a function of
fractional code length when sampling from the OVQ-VAE. We observe a consistent increase in
sample quality as we increased the fractional code length. In particular, we observe the model to
initially generate a global structure of an image and then gradually fill in local details. We further show
in Appendix F that, samples sharing the highest priority latent code have similar global structure.
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(a) MNIST (b) CIFAR-10 (c) CelebA

Figure 5: Anytime sampling with 0.25/0.5/0.75/1.0 (top to bottom) fractions of full code length on
MNIST (left), CIFAR-10 (middle) and CelebA (right) datasets.

Although our method was inspired by PCA, we encountered limited success when training an
autoregressive model on the PCA-represented data. Please refer to Appendix D for more details.

5.2.2 INFERENCE SPEED

We compare the inference speed of our approach vs. the original VQ-VAE model by the wall-clock
time needed for sampling. We also include the decoding time in our approach. We respectively
measure the time of generating 50000 and 100000 images on CIFAR-10 and CelebA datasets, with a
batch size of 100. All samples are produced on a single NVIDIA TITAN Xp GPU.

Fig. 4(b) shows that the time needed for anytime sampling increases almost linearly with respect
to the sampled code length. This supports our argument in Section 3.2 that the decoding time is
negligible compared to the autoregressive component. Indeed, the decoder took around 24 seconds to
generate all samples for CelebA, whereas the sampling time of the autoregressive model was around
610 seconds—over an order of magnitude larger. Moreover, since we can achieve roughly the highest
sample quality with only 60% of the full code length on CelebA, anytime sampling can save around
40% run-time compared to naïve sampling without hurting sample quality.

In addition, our method is faster than the original VQ-VAE even when sampling the full code length,
without compromising sample quality (cf ., Section 5.2.1). This is because the Transformer model
we used is sufficiently shallower than the Gated PixelCNN (van den Oord et al., 2016) model in the
original VQ-VAE paper. Compared to PixelCNN++ (Salimans et al., 2017), an autoregressive model
on the raw pixel space, the sampling speed of our method can be an order of magnitude faster since
our autoregressive models are trained on the latent space with much lower dimensionality.

6 RELATED WORK

Prior work has tackled the issue of slow autoregressive generation by improving implementations of
the generation algorithm. For example, the sampling speed of convolutional autoregressive models
can be improved substantially by caching hidden state computation (Ramachandran et al., 2017).
While such approaches provide substantial speedups in generation time, they are still at best linear
in the dimension of the sample space. van den Oord et al. (2018) improves the inference speed by
allowing parallel computing. Compared to our approach, they do not have the test-time adaptivity to
computational constraints. In contrast, we design methods that allow trade-offs between generation
speed and sample quality on-the-fly based on computational constraints. For example, running apps
can accommodate to the real-time computational resources without model re-training. In addition,
they can be combined together with our method without sacrificing sample quality. Specifically,
Ramachandran et al. (2017) leverages caches to speed up autoregressive sampling, which can be
directly applied to our autoregressive model on ordered codes without affecting sample quality.
van den Oord et al. (2018) proposes probability density distillation to distill autoregressive models
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into fast implicit generators. We can apply the same technique on our latent autoregressive model to
allow a similar speedup.

In order to enable anytime sampling, our method requires learning an ordered latent representation of
data by training ordered autoencoders. Rippel et al. (2014) proposes a generalization of Principal
Components Analysis to learn an ordered representation. Instead of the uniform distribution over
discrete codes in our method, they adopted a geometric distribution over continuous codes during the
training of the ordered autoencoders. Because of the difference they require additional tricks such as
unit sweeping and adaptive regularization coefficients to stabilize the training, while our method is
more stable and scalable. In addition, they only focus on fast retrieval and image compression. By
contrast, we further extend our approach to autoencoders with discrete latent codes (e.g., VQ-VAEs)
and explore their applications in anytime sampling for autoregressive models. Another work related to
our approach is hierarchical nonlinear PCA (Scholz & Vigário, 2002). We generalize their approach
to latent spaces of arbitrary dimensionality, and leverage Monte Carlo estimations to improve the
efficiency when learning very high dimensional latent representations. The denoising generative
models proposed by Song & Ermon (2019); Ho et al. (2020) progressively denoise images into better
quality, instead of modeling images from coarse to fine like our methods. This means that interrupting
the sampling procedure of diffusion models at an early time might lead to very noisy samples, but in
our case it will lead to images with corrector coarse structures and no noise which is arguably more
desirable.

A line of works draw connections between ordered latent codes and the linear autoencoders. Kunin
et al. (2019) proves that the principal directions can be deduced from the critical points of L2

regularized linear autoencoders, and Bao et al. (2020) further shows that linear autoencoders can
directly learn the ordered, axis-aligned principal components with non-uniform L2 regularization.

7 CONCLUSION

Sampling from autoregressive models is an expensive sequential process that can be intractable
when on a tight computing budget. To address this difficulty, we consider the novel task of adaptive
autoregressive sampling that can naturally trade-off computation with sample quality. Inspired by
PCA, we adopt ordered autoencoders, whose latent codes are prioritized based on their importance to
reconstruction. We show that it is possible to do anytime sampling for autoregressive models trained
on these ordered latent codes—we may stop the sequential sampling process at any step and still
obtain a complete sample of reasonable quality by decoding the partial codes.

With both theoretical arguments and empirical evidence, we show that ordered autoencoders can
induce a valid ordering that facilitates anytime sampling. Experimentally, we test our approach on
several image and audio datasets by pairing an ordered VQ-VAE (a powerful autoencoder architecture)
and a Transformer (an expressive autoregressive model) on the latent space. We demonstrate that
our samples suffer almost no loss of quality (as measured by FID scores) for images when using
only 60% to 80% of all code dimensions, and the sample quality degrades gracefully as we gradually
reduce the code length.
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A PROOFS

A.1 PROOF FOR THEOREM 1

Proof. For simplicity we denote the distribution of the stochastic part (first i dimensions) of
qeθ (z|x)≤i as qeθ (z≤i|x), and similarly we denote pdφ(x|z)≤i as pdφ(x|z≤i). We first reformu-
late the objective

L = −Ex∼pd(x),i∼U{1,K}Ez∼qeθ (z|x)≤i [log pdφ(x|z)≤i]

=
−1

K

K∑
i=1

Ex∼pd(x)Ez∼qeθ (z|x)≤i [log pdφ(x|z)≤i]

=
−1

K

K∑
i=1

∫
pd(x)qeθ (z≤i|x) log pdφ(x|z≤i)dxdz≤i

≥ −1

K

K∑
i=1

∫
pd(x)qeθ (z≤i|x) log qeθ (x|z≤i)dxdz≤i (8)

The inequality (8) holds because KL-divergences are non-negative. Under the assumption of an
optimal decoder φ, we can achieve the equality in (8), in which case the objective equals

L =
−1

K

K∑
i=1

∫
qeθ (z≤i,x) log

qeθ (x, z≤i)

qeθ (z≤i)
dxdz≤i

We can define the following modified objective by adding the data entropy term, since it is a constant
independent of θ.

L =
−1

K

K∑
i=1

∫
qeθ (z≤i,x) log

qeθ (x, z≤i)

qeθ (z≤i)pd(x)
dxdz≤i

=
−1

K

K∑
i=1

I(x; z≤i) (9)

If there exists an integer i ∈ {2, · · · ,K} such that I(zi;x|z≤i−1) > I(zi−1;x|z≤i−2), we can
exchange the position of zi and zi−1 to increase the value of objective (9). By the chain rule of
mutual information we have:

I(x; zi, zi−1, z≤i−2) = I(zi−1, z≤i−2;x) + I(zi;x|z≤i−1)

= I(zi, z≤i−2;x) + I(zi−1;x|z≤i−2, zi).

When I(zi;x|z≤i−1) > I(zi−1;x|z≤i−2), we can show that I(x; zi, z≤i−2) > I(x; zi−1, z≤i−2):

I(x; zi, z≤i−2)− I(x; zi−1, z≤i−2)

= I(zi;x|z≤i−1)− I(zi−1;x|z≤i−2, zi)
> I(zi−1;x|z≤i−2)− I(zi−1;x|z≤i−2, zi)
= I(x, zi; zi−1|z≤i−2)− I(x; zi−1|z≤i−2, zi) (10)
= I(zi; zi−1|z≤i−2) ≥ 0, (11)

where Eq. (10) holds by the chain rule of mutual information: I(zi−1;x|z≤i−2) =
I(x, zi; zi−1|z≤i−2) − I(zi; zi−1|x, z≤i−2), and I(zi; zi−1|x, z≤i−2) = 0 by the conditional in-
dependence assumption zi ⊥ zi−1|x, z≤i−2. Hence if we exchange the position of zi and zi−1 of the
latent vector z, we can show that the new objective value after the position switch is strictly smaller
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than the original one:

−1

K

(
i−2∑
k=1

I(x; z≤k) + I(x; z≤i−2, zi) +

K∑
k=i

I(x; z≤i)

)

<
−1

K

(
i−2∑
k=1

I(x; z≤k) + I(x; z≤i−2, zi−1) +

K∑
k=i

I(x; z≤i)

)
(12)

=
−1

K

K∑
k=1

I(x; z≤k).

Inequality (12) holds by I(x; zi, z≤i−2) > I(x; zi−1, z≤i−2). From above we can conclude that if
the encoder is optimal, then the following inequalities must hold:

∀i ∈ {2, · · · ,K} : I(zi;x|z≤i−1) ≤ I(zi−1;x|z≤i−2).

Otherwise we can exchange the dimensions to make the objective Eq. (9) smaller, which contradicts
the optimally of encoder eθ.

B AUDIO GENERATION
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(a) Waveforms sampled from unordered VQ-VAE
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(b) Waveforms sampled from ordered VQ-VAE

Figure 6: Anytime sampling with 0.0625/0.25/1.0 (left to right) fractions of full code length on
VCTK dataset.

Our method can also be applied to audio data. We evaluate anytime autoregressive models on the
VCTK dataset (Veaux et al., 2017), which consists of speech recordings from 109 different speakers.
The original VQ-VAE uses an autoregressive decoder, which may cost more time than the latent
autoregressive model and thus cannot be accelerated by anytime sampling. Instead, we adopt a
non-autoregressive decoder inspired by the generator of WaveGan (Donahue et al., 2018). Same as
images, we train a Transformer model on the latent codes.

We compare waveforms sampled from ordered vs. unordered VQ-VAEs in Fig. 6, and provide links
to audio samples in Appendix G.2. By inspecting the waveforms and audio samples, we observe that
the generated waveform captures the correct global structure using as few as 6.25% of the full code
length, and gradually refines itself as more code dimensions are sampled. In contrast, audio samples
from the unordered VQ-VAE contain considerably more noise when using truncated codes.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ORDERED VERSUS UNORDERED CODES ON VAE

To better understand the effect of order-inducing objective, we disentangle the order-inducing
objective Eq. (6) with the specific implementation on VQ-VAE, such as stop_gradient operator
and quantization. We adopt a similar order-inducing objective on standard VAE:

Ex∼pd(x)

[
1

K

K∑
i=1

[Ez∼qeθ (z|x)≤i [− log pdφ(x|z)≤i] + KL(qeθ (z|x)≤i||p(z)≤i)]

]
, (13)

where qeθ (z | x)≤i denotes the distribution of (z1, z2, · · · , zi, 0, · · · , 0)T ∈ RK , z ∼ qeθ (z | x), and
pdφ(x | z)≤i represents the distribution of pdφ(x | (z1, z2, · · · , zi, 0, · · · , 0)T ∈ RK). We set the
prior p(z)≤i as the i dimensional unit normal distribution.

We repeat the experiments on CIFAR-10 and observe similar experimental results between VQ-VAE
and standard VAE. Fig. 7(a) shows that the standard VAE has irregular ∆(i), while the ordered VAE
has much better ordering on latent codes. Fig. 7(b) further shows that the ordered VAE has better
reconstructions under different truncated code lengths. The experimental results are consistent with
Fig. 3(a) and Fig. 3(b)..
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Figure 7: Ordered versus unordered code on standard VAE.

C.2 ABLATION STUDY ON AUTOREGRESSIVE MODEL

We study the performance of different autoregressive model on ordered codes. We compare Trans-
former (Vaswani et al., 2017), PixelCNN (Oord et al., 2016b) and LSTM (Hochreiter & Schmidhuber,
1997). PixelCNN adopts standard 2D convolutional layers to model the conditional dependence. In
order to enlarge the receptive field, PixelCNN stacks many convolutional layers. Transformer applies
attention mechanism and feed forward network to model the conditional dependence of 1D sequences.
LSTM uses four different types of gates to improve the long-term modeling power of the recurrent
models on 1D sequences.

Transformer and LSTM can be naturally applied to the 1D channel-wise quantized codes. Since
PixelCNN operates on 2D data, we reshape the 1D codes into 2D tensors. More specifically, for
70-dimensional 1D codes on CIFAR-10, we firstly pad the codes into 81 dimensions then reshape it
into 9× 9 tensors. Fig. 8(a) shows the FID scores of different autoregressive model on CIFAR-10
dataset. The results show that PixelCNN has inferior performance in all cases except when used
with 0.2 fractions of full code length. This is because PixelCNN works well only when the input
has strong local spatial correlations, but there is no spatial correlation for channel-wise quantized
codes. In contrast, autoregressive models tailored for 1D sequences work better on channel-wise
dequantized codes, as they have uniformly better FID scores when using 0.4/0.6/0.8/1.0 fractions of
full code length.
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C.3 ABLATION STUDY ON SAMPLING DISTRIBUTION

We study the effect of different sampling distributions in order-inducing objective Eq. (6). We
compare the adopted uniform distribution with the geometric distribution used in Rippel et al. (2014)
on CIFAR-10, as shown in Fig. 8(b). We normalize the geometric distribution on finite indices with
length K, i.e. Pr(i = k) = (1−p)k−1p

1−(1−p)K , i ∈ {1, 2, . . . ,K}, and denote the normalized geometric
distribution as Geo(p). Note that when p→ 0, Geo(p) recovers the uniform distribution.

Fig. 8(c) shows that OVQ-VAEs trained with all the different distributions can trade off the quality
and computational budget. We find that OVQ-VAE is sensitive to the parameter of the geometric
distribution. The performance of OVQ-VAE with Geo(0.03) is marginally worse than the uniform
distribution. But when changing the distribution to Geo(0.1), the FID scores become much worse
with large code length (0.6/0.8/1.0 fractions of the full code length). Since for i ∼ Geo(p), Pr(i ≥
t) = (1−p)t−1(1− (1−p)K−t+1)/(1− (1−p)K) ≤ (1−p)t−1, which indicates that the geometric
distribution allocates exponentially smaller probability to code with higher index.
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Figure 8: (a): FID scores for different autoregressive models on ordered codes; (b): Different sampling
distribution for ordered codes; (c): FID scores for anytime sampling on different distributions.

C.4 ON THE REGULARIZATION EFFECT OF ORDERED CODES

Imposing an order on latent codes improves the inductive bias for the autoregressive model to learn the
codes. When using full codes on CIFAR-10 dataset, even though the OVQ-VAE has higher training
error than unordered VQ-VAE, a better FID score is achieved by the ordered model. This validates
the intuition that it is easier to model an image from coarse to fine. These results are corroborated by
lower FID scores for the anytime model with full length codes under different number of training
samples. As shown in Fig. 9(a), the ordered model has an increasingly larger FID improvement
over the unordered model when the dataset becomes increasingly smaller. These results indicate that
training on ordered codes has a regularization effect. We hypothesize that ordered codes capture the
inductive bias of coarse-to-fine image modeling better.

C.5 COMPARISON TO TALORED VQ-VAE

We compare the anytime sampling to the unordered VQ-VAE with tailored latent space (Tailored
VQ-VAE) on CIFAR-10. The Tailored VQ-VAE has a pre-specified latent size, using the same
computational budget as truncated codes of anytime sampling. For a fair comparison, we experiment
with transformers on the latent space of Tailored VQ-VAE. Fig. 9(b) shows that anytime sampling
always has better FID scores than Tailored VQ-VAE, except when the code is very short. We
hypothesize that the learning signals from training on the full length codes with OVQ-VAE improves
the quality when codes are shorter, thus demonstrating a FID improvement over the Tailored VQ-VAE.
Moreover, OVQ-VAE has the additional benefit of allowing anytime sampling when the computational
budget is not known in advance.
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D TRAIN AUTOREGRESSIVE MODEL ON PCA REPRESENTATION

An alternative way to induce order on the latent space is by projecting data onto the PCA representa-
tion. However, we encounter limited success in training the autoregressive model on the top of PCA
representation.

When training an autoregressive model on PCA-represented data, we observe inferior log-likelihoods.
We first prepare the data by uniformly dequantizing the discrete pixel values to continuous ones.
Then we project these continuous data into the PCA space by using the orthogonal projection matrix
composed of singular vectors of the data covariance matrix. Note that this projection preserves the
volume of the original pixel space since the projection matrix’s determinant is 1, so log-likelihoods of
a model trained on the raw continuous data space and the PCA projected space are comparable. We
report the bits/dim (lower is better), which is computed by dividing the negative log-likelihood (log
base 2) by the dimension of data. We train transformer models on the projected space and the raw data
space. Surprisingly, on MNIST, the transformer model obtains 1.22 bits/dim on the projected space
versus 0.80 bits/dim on the raw data, along with inferior sample quality. We hypothesize two reasons.
First, models have been tuned with respect to inputs that are unlike the PCA representation, but rather
on inputs such as raw pixel data. Second, PCA does not capture multiple data modalities well, unlike
OVQ-VAE. Moreover, autoregressive models typically do not perform well on continuous data. In
contrast, our Transformer model operates on discrete latent codes of the VQ-VAE.
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Figure 9: (a) FID scores for anytime sampling using various numbers of training samples. (b) FID
scores with different computational budgets.

E EXTRA IMPLEMENTATION DETAILS

Our code is released via the anonymous link https://anonymous.4open.science/r/3946e9c8-8f98-4836-
abc1-0f711244476d/ and included in the supplementary material as well. Below we introduce more
details on network architectures and the training processes.

E.1 NETWORKS

For MNIST dataset, the encoder has 3 convolutional layers with filter size (4,4,3) and stride (2,2,1)
respectively. For CelebA and CIFAR-10 datasets, the encoder has 4 convolutional layers with filter
size (4,4,4,3) and stride (2,2,2,1) respectively. The decoders for dataset above are the counterpart of
the corresponding encoders. For VCTK dataset, we use a encoder that has 5 convolutional layers
with a filter size of 25 and stride of 4. The activation functions are chosen to be LeakyRelu-0.2. We
adopt a decoder architecture which has 4 convolutional and upsampling layers. The architecture is
the same with the generator architecture in Donahue et al. (2018), except for the number of layers.

For all the datasets, we use a 6-layer Transformer decoder with an embedding size of 512, latent size
of 2048, and dropout rate of 0.1. We use 8 heads in multi-head self-attention layers.
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E.2 IMAGE GENERATION

The FID scores are computed using the official code from TTUR (Heusel et al., 2017)1 authors.
We compute FID scores on CIFAR-10 and CelebA based on a total of 50000 samples and 100000
samples respectively.

We pre-train the VQ-VAE models with full code lengths for 200 epochs. Then we train the VQ-VAE
models with the new objective Eq. (6) for 200 more epochs. We use the Adam optimizer with learning
rate 1.0× 10−3 for training. We train the autoregressive model for 50 epochs on both MNIST and
CIFAR-10, and 100 epochs on CelebA. We use the Adam optimizer with a learning rate of 2.0×10−3

for the Transformer decoder. We select the checkpoint with the smallest validation loss on every
epoch. The batch size is fixed to be 128 during all training processes.

E.3 AUDIO GENERATION

We randomly subsample all the data points in VCTK dataset to make all audios have the same
length (15360). The VQ-VAE models are pre-trained with full code length for 20 epochs, and then
fine-tuned with our objective Eq. (6) for 20 more epochs. We use the Adam optimizer with learning
rate 2.0× 10−4 for training the VQ-VAE model. We train the Transformer for 50 epochs on VCTK,
use the Adam optimizer with a learning rate of 2.0×10−3. We select the checkpoint with the smallest
validation loss on every epoch. The batch size is fixed to be 8 for the VQ-VAE model and 128 for the
Transformer during training.

F SAMPLES ON THE SAME PRIORITY CODE

As further illustration of the ordered encoding, we show in Fig. 10 the result of full code length
sampling when the first (highest priority) discrete latent code is fixed. The fixing of the first latent
code causes anytime sampling to produce a wide variety of samples that share high-level global
similarities.

Figure 10: Samples sharing the highest priority latent code.

G EXTRA SAMPLES

G.1 IMAGE SAMPLES

We show extended samples from ordered VQ-VAEs in Fig. 11, Fig. 12 and Fig. 13. For comparison,
we also provide samples from unordered VQ-VAEs in Fig. 14, Fig. 15 and Fig. 16.

G.2 AUDIO SAMPLES

We include the audio samples that are sampled from our anytime sampler in the supplementary
material. The audio / audio_baseline directory contains 90 samples from ordered / unordered
VQ-VAEs respectively. The fractions of full code length (0.0625, 0.25 and 1.0) used for generation
are included in the names of .wav files.

1https://github.com/bioinf-jku/TTUR
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(a) 0.25 fractions of full code length

(b) 0.5 fractions of full code length

(c) 0.75 fractions of full code length

(d) 1.0 fractions of full code length

Figure 11: Anytime sampling with 0.25/0.5/0.75/1.0 (top to bottom) fractions of full code length
from ordered VQ-VAEs on MNIST.
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(a) 0.25 fractions of full code length

(b) 0.5 fractions of full code length

(c) 0.75 fractions of full code length

(d) 1.0 fractions of full code length

Figure 12: Anytime sampling with 0.25/0.5/0.75/1.0 (top to bottom) fractions of full code length
from ordered VQ-VAEs on CIFAR-10.
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(a) 0.25 fractions of full code length

(b) 0.5 fractions of full code length

(c) 0.75 fractions of full code length

(d) 1.0 fractions of full code length

Figure 13: Anytime sampling with 0.25/0.5/0.75/1.0 (top to bottom) fractions of full code length
from ordered VQ-VAEs on CelebA.
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(a) 0.25 fractions of full code length

(b) 0.5 fractions of full code length

(c) 0.75 fractions of full code length

(d) 1.0 fractions of full code length

Figure 14: Anytime sampling with 0.25/0.5/0.75/1.0 (top to bottom) fractions of full code length
from unordered VQ-VAEs on MNIST.
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(a) 0.25 fractions of full code length

(b) 0.5 fractions of full code length

(c) 0.75 fractions of full code length

(d) 1.0 fractions of full code length

Figure 15: Anytime sampling with 0.25/0.5/0.75/1.0 (top to bottom) fractions of full code length
from unordered VQ-VAEs on CIFAR-10.
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(a) 0.25 fractions of full code length

(b) 0.5 fractions of full code length

(c) 0.75 fractions of full code length

(d) 1.0 fractions of full code length

Figure 16: Anytime sampling with 0.25/0.5/0.75/1.0 (top to bottom) fractions of full code length
from unordered VQ-VAEs on CelebA.
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