
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNABLE STABILITY-AWARE UNSTRUCTURED
GRID COARSENING USING GRAPH NEURAL NET-
WORKS FOR ACCELERATED PHYSICS SIMULATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient simulations of complex physical systems described by partial differen-
tial equations (PDE) require computational methods that can reduce the resource
demands without sacrificing the accuracy. Traditionally, this is achieved by “up-
scaling” the simulation grids or by aggregating cells based on a priori information.
Here, we introduce a novel framework based on graph neural networks (GNN)
for learnable self-supervised differentiable coarsening of unstructured computa-
tional grids. We leverage graph-based representation of the physical system and
offer a graph coarsening method which preserves the underlying physical proper-
ties together with the stability of the chosen numerical scheme. This is achieved
by minimizing the error between the output of the simulations using coarsened
and original graph. We demonstrate the approach on several example differen-
tial equations, modeling sub-surface flow and wave propagation. We demonstrate
that the model exhibits ability to maintain high fidelity in simulation outputs even
after 95% reduction on the nodes, significantly reducing computational overhead.
We also show that the model exhibits generalizability to unseen scenarios, thereby
outperforming the baselines. Thus, the developed approach demonstrates the abil-
ity to accelerate simulation without comprising accuracy and hence has potential
for accelerating physical simulations in various domains.

1 INTRODUCTION

Modeling fluid dynamics, particularly subsurface flow, remains a highly resource-intensive task
due to the detailed spatio-temporal resolutions required for accurate simulations, as well as the
non-linearity of the governing partial differential equations (PDEs) Gerritsen & Durlofsky (2005).
Such simulations are crucial for numerous engineering applications; however, their computa-
tional demands often become a bottleneck, especially when multiple parameter variations are ex-
plored Huyakorn (2012). Therefore, reducing computational cost without sacrificing accuracy is a
critical challenge in the field.

Traditionally, various methods, such as upscaling, have been employed to address this issue by
replacing fine grids with coarser ones, while adjusting equation coefficients (e.g., permeability,
porosity) to reflect the larger cells Qi & Hesketh (2005). While effective at reducing grid size,
these methods typically assume a homogeneous approximation within each coarse block, limiting
the ability to fully capture localized heterogeneity. More sophisticated upscaling methods solve
PDEs within each coarse block, yet the overarching principle remains: reducing grid size to save
computational time. Zhang et al. (2021); Farmer (2002)

Alternatively, reduced-order modeling (ROM) approaches focus on leveraging a subset of simulated
data to accelerate the remaining computation. One notable example is proper orthogonal decompo-
sition (POD), which utilizes dominant spatial eigenvectors for data approximation, akin to principle
component analysis Kerschen et al. (2005); Rowley (2005); Guo & Hesthaven (2019). Dynamic
mode decomposition (DMD) Kutz et al. (2016) is another recent method, utilizing both spatial and
temporal frequencies to model and predict fluid dynamics. This approach has been extended further
by learning operators that model the PDEs in the functional space Li et al. (2020); Kovachki et al.
(2021; 2023). While they have been effective for wide range of problems, the absence of a physics-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

based solver lead to: (i) divergence of errors for longer scale simulations, (ii) violation of physical
laws such as conservation of energy and momenta, and (iii) lack of interpretability of the learned
function. Burark et al. (2024); Azizzadenesheli et al. (2024)

Differentiable physics has emerged as a powerful framework for simulating and optimizing physical
systems by incorporating gradient-based methods into the simulation process. The key advantage of
this approach is that it allows for automatic differentiation (AD) at every step of the simulation Liang
& Lin (2020), making it possible to compute the partial derivatives of the output with respect to the
input. This has found applications not only in fluid dynamics but also in areas such as molecular
dynamics for optimizing particle positions or force fields Schoenholz & Cubuk (2020); Gangan et al.
(2024), and material structure design Dold & van Egmond (2023). However, integrating AD into
PDE solvers, where the current state depends on previous states, creates highly nested computational
graphs, which poses significant challenges for optimization Holl et al. (2020).

Recently, Shumilin et al. introduced an approach that employed grid coarsening for accelerated sim-
ulations through differentiable physics—the simulation and grid coarsening processes were made
fully differentiable, including the finite-volume solver. This allowed to optimize the placement of
points on unstructured grids by minimizing the misfit between coarse and fine grid simulations,
leveraging techniques such as automatic differentiation (AD), k-means clustering and differentiable
Voronoi tesselation. The method demonstrated the potential to reduce grid size while maintaining
simulation quality, tested across various PDEs, including parabolic and hyperbolic equations.

Building upon this foundation, we now propose a framework based on graph neural networks (GNN)
and graph pooling, which shifts the focus from optimizing point positions to a self-supervised learn-
able coarsening process. In contrast to the methodology proposed by Shumilin et al., where point
positions were optimized for each specific grid, the GNN-based approach learns a generalizable
coarsening strategy that can be applied to grids with varying numbers of points. This flexibility
allows the coarsening procedure to adapt to different simulation setups without the need for grid-
specific re-optimization, thus enhancing the scalability and applicability of the method.

The major contributions are as follows.

1. Learnable graph coarsening: We present a learnable, self-supervised GNN-based coarsening
framework. It allows to learn optimal coarsening strategies for the grids of different sizes.

2. Physics and stability losses: We use physics loss to ensure that the coarsened grid yields the
simualtions close to that of the ground truth respecting the governing PDE. We also propose a
built-in stability loss for maintaining stability of numerical scheme used for explicit solver.

3. Differentiable implicit numerical solver We develop the differentiable implicit numerical finite
volume solver that leverages differentiable Voronoi tesselation and extends the practical applica-
bility of the proposed framework.

2 PRELIMINARIES AND PROBLEM FORMULATION

In this section, we formally introduce the concepts central to our work and formulate the problem of
graph coarsening for physical simulations.

2.1 AUTODIFFERENTIATION

Automatic differentiation (AD) is a method for computing the gradients of a program’s output with
respect to its inputs Naumann (2012). Specifically, the computations are deconstructed into func-
tions at intermediate steps generating a computational graph to which the chain rule is applied to
obtain the instantaneous gradient. A key algorithm that utilizes AD is backpropagation, which effi-
ciently calculates the gradient of a loss function concerning the network’s weights. This significantly
simplifies and enhances the learning process of neural networks.

Computational graphs are fundamental in various fields, including physics, chemistry, biology, and
machine learning. They provide a structured representation of mathematical expressions and op-
erations through nodes and edges. Each node corresponds to a specific operation, while the edges
indicate the flow of data between nodes. This structure facilitates both forward and backward com-
putation, which is essential for optimization tasks in neural networks. By representing complex
functions as graphs, AD can efficiently compute gradients through backpropagation. There are a
number of frameworks for AD such as JAX Bradbury et al. (2018b) and PyTorch (Paszke et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2017). In our experiments, we use both PyTorch and JAX for explicit and implicit solvers, respec-
tively, as discussed later.

2.2 GNNS FOR GRAPH COARSENING

We use the notation G = (V, E , A,X) to denote a graph over a finite, non-empty node set V and
edge set E = {(u, v) | u, v ∈ V}. A represents the adjacency (edge weight) matrix corresponding
to the graph. X ∈ R|V|×d denotes node attributes encoded using d-dimensional feature vectors. We
denote the attributes of node v as xv .

Given graph G = (V, E , A,X), graph coarsening is the process of constructing a significantly
smaller graph G̃ = (Ṽ, Ẽ , Ã, X̃) with |Ṽ| ≪ |V| nodes, such that G̃ and G have similar proper-
ties. This process involves merging multiple nodes into supernodes along with their aggregated
features X̃ . Hence, we need to learn a surjective mapping π : V → Ṽ that associates nodes in the
original graph G to supernodes in G̃.

In the context of grid coarsening for physical simulations, we assume the dataset to be a set of
graph snapshots G = {G1, · · · ,GT }, where each snapshot Gt ∈ G shares the same topology, but
potentially varying node attributes, i.e., Gt = (V, E , A,Xt). Furthermore, For each node v ∈
V , we associate a time-dependent physical quantity ytv (e.g., pressure) as ground truth, which is
obtained from a physics-based simulation or experimental observations. The complete ground truth
information is denoted as Y = {y1, . . . ,yT }, where yt = {ytv | ∀v ∈ V}. However, when the
input graph is large spanning thousands of nodes and edges, physics-based simulations can become
prohibitively expensive. To address this, the GNN trained on G seeks to learn a coarsened graph
along with their feature to model the evolutionary dynamics of ytv as a function of the graph topology
and node attributes. Thus, we propose to coarsen the topology of the input graph G to G̃ such that
the output of the physics-based simulation on G̃ closely approximates the simulation output on the
original graph G1. Formal definition of problem is presented in Appendix A.

Related work. Although there are numerous works investigating mesh coarsening, our approach
is distinct in that it integrates an explicit and implicit numerical and differentiable finite volume
solvers directly into the training loop without relying on surrogate models or approximations. For
instance, Graph Element Networks (GENs) introduced by Alet et al. (2019) approximate the so-
lution of PDEs using GNNs trained on high-resolution solutions. GENs adjust node positions or
densities to better capture the solution space but do not perform explicit graph coarsening through
node aggregation or clustering. Additionally, GENs focus on stationary PDEs or displacement pre-
diction and do not incorporate time dependence in their implementation, limiting their applicability
to dynamic simulations. Subsequently, Pfaff et al. (2020) proposed MeshGraphNets, which apply
remeshing techniques that may increase the number of cells and computational load rather than
coarsening the mesh. Their remesher coarsens the mesh by removing edges only when it does not
create invalid elements, based on a purely geometrical criterion involving the sizing field tensor pre-
dicted by the model. This approach is primarily applied to 2D manifolds embedded in 3D space,
such as flag or sphere scenarios, and relies on local curvature. In contrast, our method utilizes simu-
lation data misfit to cluster and aggregate nodes, resulting in a more physically informed coarsening
process applicable to general graphs. More recently, Li et al. (2024) developed a differentiable finite
volume method using GNNs within an encoder-decoder framework and employed a PDE loss for
training. However, their solver functions as a surrogate model, as they do not integrate the actual
physics solver into the optimization process. In our work, we incorporate explicit and implicit nu-
merical differentiable non-surrogate finite volume solvers directly into the training loop, enabling
end-to-end learning of coarsened graphs that accurately capture the dynamics of the original system.
This approach broadens the applicability of graph coarsening methods in physics-based simulations,
particularly for time-dependent and stiff PDEs.

In our approach we use a Graph Convolutional Network (Kipf & Welling, 2017) for producing a
learnable coarsening, its architecture is defined in Section 3.2.

1Since the topology is static, we ignore the timestamp when the discussion is centered on coarsening

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROPOSED METHODOLOGY

To demonstrate the applicability of our graph coarsening approach, we consider for several PDEs
and both the explicit and implicit solvers. We implement the solvers for the equation in both PyTorch
Paszke et al. (2019) and JAX Bradbury et al. (2018a). These implementation allow us to build the
computational graph and backpropagate through the physics calculations. To implement explicit
solvers we use PyTorch Geometric library Fey & Lenssen (2019) with Message Passing interface.

3.1 EQUATIONS AND DIFFERENTIABLE SOLVERS

Diffusion equation. The first example we consider is the diffusion equation as discussed below. Let
V be a polygonal domain. In general, the diffusion equation takes the following form:

∂u

∂t
− div(K∇u) = f, 0 < t < T, (1)

where u(x, y, t) is the unknown pressure, K(x, y) is the function for diffusion coefficient, f(x, y, t)
is the source/sink term. The above equation is completed with the initial condition u = u0(x, y) at
t = 0 and zero Neumann boundary conditions on the domain boundary.

Explicit Euler scheme. To obtain a numerical solution of Equation 1, we apply the finite volume
method for spatial discretization Eymard et al. (2000); Kuznetsov et al. (2007) and the forward Euler
scheme for temporal discretization. Let m be the number of time steps of size τ = T/m and Si,
i = 1 · · ·N , be arbitrary points in V . We form a Voronoi mesh using these points, and denote as Vi
the respective cells, |Vi| its area, as eij the edge separating adjacent cells Vi and Vj , |eij | its length,
hij distance between Voronoi cites of two adjacent cells Vi and Vj .

Now, the discretization of Equation 1 reads as follows,

D
uk+1 − uk

τ
+Auk = Dfk, k = 0 · · ·m− 1, (2)

where uk ∈ RN and fk ∈ RN are discrete pressure and source vectors, respectively, D is a diagonal
matrix of areas |Vi| and A ∈ RN×N is the finite-volume system matrix. It is a sparse symmetric
matrix with the following entries. If cells Vi and Vj are adjacent, then

Aij = −|eij |
hij

2KjKj

Ki +Kj
,

otherwise off-diagonal entries are zero, and the diagonal entry is equal to the negative sum of off-
diagonal entries.

Aii = −
N∑

j=1,j ̸=i

Aij .

Since the expressions for matrix entries are fairly simple we do not actually store the matrix, but
rather we compute the product Apk on-the-fly.

Implicit Euler scheme. The cell sizes in our method change dynamically and sometime cells with
a small areas emerge. This may cause the stability issues. To handle this we implement implicit
solvers known for their stability compared to the explicit ones. In case of implicit Euler scheme, we
use backward difference for ∂u/∂t. The equation 1 takes the form:

D
uk − uk−1

τ
+Auk = Dfk, k = 0 · · ·m− 1. (3)

We can only express uk implicitly by a matrix equation. The desired solution uk is obtained by
solving a system of linear equations (SLE):

[D + τA]uk = Duk−1 + τDfk, k = 0 · · ·m− 1. (4)

Traditionally standard SLE solvers are applied to solve Equation 4. However, standard SLE solvers
does not allow automatic differentiation by passing gradients. To incorporate a differentiable
version of SLE solver into our pipeline, we use JAX programming library. As a method of choice,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

n
od

es

clusters

PD
E

 s
ol

ve
r

u(
t)

time

u(t) at sensor 1 (fine grid)
u(t) at sensor 1 (coarsened grid)
u(t) at sensor 2 (fine grid)
u(t) at sensor 2 (coarsened grid)

geometrical
pooling

GNN

probabilistic
clustering

forward pass
backward pass
single non-diff. pass

sensor 1

sensor 2

Figure 1: The proposed graph coarsening framework. Graph convolution (represented by GNN)
predicts the cluster assignments which is used to aggregate the features and obtain a coarsened grid.
The GNN is trained by minimizing the error between the field quantity obtained from the simulations
using the coarse and the fine (ground truth) grids.
we leverage a sparse version of QR factorization because the matrix A is sparse. The sparsity of A
is supported by a property of the underlying Voronoi tessellation: for a cell in a Voronoi tessellation
the average number of neighbors is less than 6 (Lemma 2.3 from Aurenhammer et al. (2013)). This
statement implies that the matrix A has less than 6 plus one non-zero entries on average.

Wave equation. As a second example, we consider the simulation of the process of propagation of
sound waves in fluids, described by a linearized hyperbolic equation. We omit viscous forces, tem-
perature effects, and body forces. Finally, we get the standard linear wave equation for pressure p:

∂2u

∂t2
= c2∇2u,

where c is the speed of sound in the fluid, we accept c = 1 for simplicity. Using previously defined
notations for the elements of Voronoi tessellation, we apply the second order temporal discretization
combined with the finite volume spatial discretization:

D
uk+1 − 2uk + uk−1

τ2
+Auk = Dfk, k = 0 · · ·m− 1. (5)

Note that the matrix A in Eq. 5 is the same as that in Eq. 2. Euler explicit scheme is typically used
for the wave equation. Combining these equations and leveraging the forward Euler scheme we get
the following expression for uk+1:

uk+1 = −uk−1 + 2uk +D−1τ2Auk + τ2fk

To solve the second order equation, we apply two initial conditions: u(x, 0) = 0, and ∂u
∂t = ψ(x).

Further, we apply free boundary condition that allows pressure waves to move through the boundary.

3.2 GRAPH COARSENING PIPELINE

The overall framework employed in the present work is presented in Fig. 1. Our NN architecture
for coarsening consists of a one graph convolution layer followed by a point-wise MLP with two
fully connected layers and softmax at the end, which predicts the soft assignment matrix Sij for
probabilistic clustering. These assignments are used to aggregate node features, ensuring that the key
physical properties of the system are preserved in the coarsened representation. Notably, the features
of sources and sinks are kept intact during the coarsening process to maintain the integrity of the
flow dynamics. We set which nodes to keep as a hyperparameter. The motivation for this problem
comes from the field of proxy modeling and other engineering fields where model identification
needs to be performed based on limited sensor measurements. See Appendix C for more details.
Following this physics-based simulation is performed using the PDE solver to obtain the output

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

quantities based on the coarsened graph. To ensure numerical stability, we utilize max subtraction
for softmax stabilization. Finally, the model is trained by minimizing the error between the output
quantity obtained from the coarsened graph-based simulations with respect to those obtained from
the original simulations.

The GNN model for coarsening is trained using a two-stage loss function that balances stability
and physical fidelity (detailed in Sec. 3.4). For the latter, we use the so-called physics loss, which
compares the root mean squared error (RMSE) between the simulated dynamics on the coarsened
graph and the ground-truth fine-mesh simulation over time. The RMSE is computed based on the
time series data of key variables in the simulation.

When using an explicit solver, a warm-up period of 50 epochs is used by default, where only the sta-
bility loss is optimized. This stability loss leads to maximizing permissible timestep that ensures the
numerical scheme remains stable and does not diverge (see mathematical definition 8 below). After
the warm-up, the algorithm checks the stability condition described in Section 3.4 at each step. If
the condition is satisfied, both physics and stability losses are used for optimization. If not, only the
stability loss is applied. However, when an implicit solver is used, only the physics loss is applied, as
implicit schemes inherently have good stability properties. Additionally, gradient clipping is applied
to prevent exploding gradients, and the adjacency matrix and geometry are updated dynamically af-
ter each iteration to reflect the new node positions. All the codes used in the present work are avail-
able in: https://anonymous.4open.science/r/Learnable-coarsening-9434.
Currently, our framework is designed for 2D computational domains. The extension to 3D dif-
ferentiable Voronoi tessellations and handling of non-simplex grids is discussed in Appendix B.

Source and sink treatment in fluid flow simulations. In subsurface flow simulations, fluid move-
ment is primarily driven by wells that inject or extract fluids. These wells are often modeled as point
sources where the intensity of the source depends on the pressure difference between the wellbore
and the surrounding area. When discretized, the source term can be written as:

fki =

{
cα(pbh,α − pkα) if i = α,

0 otherwise,

where α represents the well’s location, cα is a coefficient depending on factors such as well size and
local permeability, and pbh,α is the pressure at the wellbore. As mentioned earlier, the source and
sink nodes are kept intact in our coarsening scheme. Further, the pressure values at these nodes are
used as the loss function for training the coarsening model (see Sec. 3.4).

3.3 FEATURE AGGREGATION

Note that an important aspect of coarsening is to learn the features of the coarsened graph. To this
extent, our learnable coarsening method aligns with the cluster centroid calculation scheme in soft k-
means clustering Dunn (1973); Bezdek (2013). In soft k-means, each point xi is assigned to cluster
j based on probabilistic membership. The cluster centroid cj is then updated as a weighted average:

cj =

∑N
i=1 Sijxi∑N
i=1 Sij

In our GNN-based approach, the soft assignment matrix S is learned directly by the neural network,
allowing Sij to adapt dynamically based on both the graph structure and physical properties.
In our case, the feature vector xi consists of the spatial coordinates x, y, and permeability k,
ensuring that the resulting coarse grid retains both geometric and physics information from the
fine grid. Furthermore, this aggregation scheme preserves the range of the original coordinates and
permeability, while maintaining the physical realism of the model.

3.4 LOSS FUNCTION

Our loss function is an aggregation of physics loss and stability loss. During optimization, we utilize
a multi-step approach where gradients are accumulated and updated across the entire simulation
rollout in time.

6

https://anonymous.4open.science/r/Learnable-coarsening-9434


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Physics Loss: Let ps(t) and p∗s(t) be the time series for modelled variable (in our case, pressure) at
a sensor point s modeled on initial grid S and coarsened grid S∗. The sensor point notation is the
same on both grids because these points remain untouched by the coarsening procedure. Let M be
the number of sinks and T be the number of timesteps. We define the physics loss based on the root
mean squared error (RMSE) between the pressure values simulated on both grids.

Lphysics =
1

T

T∑
t=1

√√√√ 1

M

M∑
s=1

(ps(t)− p∗s(t))
2 (6)

Stability loss and stability of the numerical scheme: The sufficient condition for stability of the
forward Euler scheme takes the following form,

τ ≤ Vmin

C Kmax
. (7)

where Vmin is the smallest cell area,Kmax is the largest permeability, andC is a dimensionless con-
stant, which depends on the geometry and topology of the grid. It can be further shown that C ≥ 4.

The stability inequality motivates us to introduce a stability loss, a loss function that promotes grids
with weaker restrictions on τ ,

Lstability = − 4

C

nVmin

|V |
. (8)

We added the negative sign to the right-hand side of equation 7 and made the factors dimension-
less. We neglected the contribution of K since the maximum permeability does not change during
coarsening. Also notice 4/C ≤ 1 and nVmin/|V | ≤ 1. In our implementation, the actual stability
loss is computed as a sigmoid function applied to the scaled stability loss: sigmoid weight ×
stability loss. This ensures that the stability loss is bounded between 0 and 1, preventing
extreme gradients during optimization. The sigmoid weight parameter controls the strength of
the stability constraint, balancing its influence in the overall optimization.

A geometrical interpretation could be given to this loss function: it discourages optimization to
design pathological grids, e.g. grids where one cell has too many neighbors or grids where cells’
areas differ significantly.

4 EXPERIMENTS AND ANALYSIS

Here, we consider several scenarios for evaluating our coarsening pipeline as outlined below. Note
that the visualization of the permeability fields in the datasets and the details of the hyper-parameters
are provided in Appendices D and I, respectively.

4.1 BASELINES

Note that machine learning based grid coarsening for PDEs, being a recent approach, has limited
number of existing methods. To evaluate our approach, we use two baselines described in Shumilin
et al., as follows.

• k-means + averaging, consisting of k-means clustering of the nodes and averaging of the perme-
abilities and node positions within the clusters;

• Shumilin et al., which is based on the global optimization of the nodes positions referred further
in text as the competing approach.

• METIS Karypis & Kumar (1998), well-known software tool designed for partitioning graphs
and meshes. METIS aims to generate blocks that are uniform in size and shape, minimizing the
number of connections between different partitions.

It is worth noting that the competing approach has one major drawback—the necessity of costly
global optimization in every modeling task. We hypothesize that: (i) the competing approach may
yield better results but much worse generalizability, as the present approach may be applied in infer-
ence mode to unseen data under some limitations, (ii) our approach may produce even better results
in some cases due to more flexible averaging procedure. These are explored in the experiments later.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of ps for different degrees of reduction for loop scenario for: a) k-means +
averaging approach. b) method from Shumilin et al.. c) our method.

4.2 ”LOOP” SCENARIO

As a first scenario, we use the configuration loop, as in Shumilin et al.. This scenario represents
an evenly spaced point cloud S (N = 312) where the discrete permeability field K has values 0.1,
1 (see Appendix D). For the simulations, we use the following parameters: m = 103, τ = 10−4,
pbh,src = 100 Pa, csrc = 1.0m3/s. Then, we compare psink for 0 < t < T for the four scenarios:
r = {1.0, 0.10, 0.075, 0.05}. We set a [0, 1]2 boundary.

Figure 2: The result shows our method is
comparable to Shumilin et al.. This allows
us to coarsen without compromising the
modeling quality.

Note that in the present experiment, we choose dif-
ferent degrees of reduction, defined as r = n/N ,
to coarsen this grid. Here, n and N represents
the number of nodes in the coarsened and original
grid, respectively. An r-value of 1 refers to the
ground truth grid. Then, the coarsened grids are
used with the explicit FV solver to obtain the sim-
ulated p(x, y, t) at the sink point. This results in a
pressure series vector ps ∈ Rm. The performance is
compared with method from Shumilin et al., which
optimizes the locations of grid points, and k-means
+ averaging as described in the Sec. 4.1. The results
of the experiment are shown in Fig. 3. The results
show that our method has a quality comparable to
that of Shumilin et al.. The comparison of RMSE
for this experiment is presented on the Fig. 2.

We also use a comparison with the coarsening algorithm from METIS. If we let fine-scale transmis-
sibilities measure connection strengths between cells for the edge-cut minimization algorithm, the
software tries to construct a block without crossing large permeability contrasts. The results of the
experiment demonstrated in Appendix K It can be seen from the results that the result obtained by
our algorithm is much more accurate than when using METIS.

For many industry tasks it is significantly important to measure how well model predicts future on
which it has not been trained on. We test whether our pipeline can output a proxy model that is
capable of predicting the future oil debit. See Appendix J for details and results of this experiment.

4.3 SINUSOIDAL VARIABLE PERMEABILITY SCENARIO

In this subsection, we evaluate the performance of our algorithm using a synthetic sinusoidal vari-
able permeability field (See Appendix D). This scenario tests the adaptability and efficiency of our
method in handling spatially varying permeability fields, which are common in geophysical and
environmental simulations.

The 2D domain is set to a unit square with side lengths of l = 1. The grid is initialized with a
resolution of 20× 20 points, resulting in a total of 400 grid points. Each grid point has coordinates
(x, y), and the permeability K(x, y) is generated using a sinusoidal function that varies spatially
across the grid. Specifically, the permeability field k(x, y) is defined as:

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Comparison of ps in the first sink for different degrees of reduction for sinusoidal variable
permeability scenario for: a) k-means + averaging approach. b) method from Shumilin et al.. c) our
method.

K(x, y) = cos(20x) + sin(y) + shift

To ensure that all values of K(x, y) are positive, we add a constant shift shift = 2.0 +
abs(min(K(x, y))). This guarantees that the permeability values remain physically meaningful
throughout the domain.

We simulate this permeability field with sources and sinks as defined:

• A single source is placed at grid point (0.53, 0.53) with a constant injection rate of 100 units.
• Two sinks are located at grid points (0.1, 0.1) and (0.89, 0.89).

Figure 5: Our algorithm achieves comparable
results with algorithm by Shumilin et al. and
better than k-means

In that case, we have τ = 10−5 and the parameters:
m, pbh,src, csrc are identical to the ”loop” case. The
boundary conditions are set slightly outside the unit
square to allow for smoother boundary processing in
the coarsening methods. We evaluated three meth-
ods on the sinusoidal variable permeability scenario,
each tasked with performing grid coarsening at var-
ious degrees of reduction (10%, 7.5% and 5% of the
original grid resolution). We compared the perfor-
mance of the three methods at various levels of grid
reduction. The following figures demonstrate the
coarsened grids produced by each method and the
corresponding simulation accuracy: Fig. 4.

In a sinusoidal variable permeability scenario, our proposed method has comparable performance to
the point optimization method demonstrated in Shumilin et al., while surpassing the basic k-means
method in terms of maintaining high modeling accuracy. This performance is demonstrated in Fig. 5.
The comparison with Metis demonstrated in Appendix K.In addition, as for the ”loop” scenario our
algorithm has better performance.

4.4 USING TRAINED MODEL ON DIFFERENT CONFIGURATIONS

Now let’s consider the loop scenario and taking the model parameters described in Section 4.2. For
performing grid coarsening at a reduction degree of 7.5%, we train our coarsening algorithm. Next,
we take the original permeability distribution field containing 312 points and find the coarsened point
cloud using k-means + averaging approach, the resulting values serve as the initial permeability field
for future comparisons(experiments were conducted for grids with 200, 150, and 100 points). We
then apply the coarsening method presented in this article and obtain results for pressure. The results
of the experiments are demonstrated on the Fig. 9 in Appendix F.

Now we take our trained model for the degree of coarsening 7.5% described in Section 4.2. After
that, we apply our trained coarsening model for the initial permeability field but change the coor-
dinates for the sinks. Our first sink located at grid point (0.48, 0.58), second at grid point (0.39,
0.5), the third sink at (0.22, 0.33) and as we know original sink is located at (0.52, 0.58). See Fig. 7
in Appendix E. The result of measuring pressure at the sink point demonstrated on the Fig. 8 in
Appendix F.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The results indicate that when the new sinks are positioned near the original sink, we achieve accu-
rate pressure results on the coarsened grid (results for the first and second sink on Fig. 8 in Appendix
F), but in the case of choosing a third sink that is located far from the original, our result becomes
worse.

These findings demonstrate that our proposed coarsening method after training can be used in other
initial simulation conditions and this does not require training the coarsening algorithm again, which
proves its better generalizability in comparison for example with Shumilin et al..

4.5 ADDITIONAL EXPERIMENTS

Log-uniform permeability scenario

Now we consider an experiment with a significantly more complex permeability. We have 2D do-
main is set to a unit square with side lengths of l = 1. In this experiment, we generate permeability
based on a log-uniform distribution. See Appendix L for details and results.

Implicit Solver. Another way to improve the stability of our method is to use an implicit solver as
described in Section 3.1 for the diffusion equation. The solver is implemented in the open-source
code and the demonstration of its work is available here1 . Please read Appendix M for more
information, including motivation of using implicit solvers.

Wave equation. We also verified the applicability of the proposed scheme on the wave equation
(hyperbolic). Because of the reduced stability restrictions the scheme worked well without the
stability loss. The demonstration is also available in the same folder1.

Time and memory tests. Details of the time and memory performance results are available in
Appendix H.

5 CONCLUSION

In this work, we introduce a novel flexible framework for unstructured grid coarsening based on
GNNs, advancing the state of grid optimization from position-based adjustments to a learnable,
self-supervised coarsening process. Importantly, our pipeline is physically motivated and aggregates
features in physically correct way also taking care of the numerical scheme stability. Our approach
can be used on different grid sizes, eliminating the need for grid-specific re-optimization, making it
scalable for a wide range of simulation setups.

Our experiments demonstrate that the present approach delivers comparable accuracy to the work
of Shumilin et al. while giving a better generalizability. We validated this in the sinusoidal variable
permeability scenario, where the results closely match the fine-mesh simulations, showcasing the
robustness of our method. Furthermore, the adaptability of the learned model to grids of differ-
ent sizes and another initial conditions without retraining provides a clear advantage over previous
methods, including the work of Shumilin et al., where costly optimization is required for every new
grid. This capacity for generalization paves the way for efficient simulations with reduced compu-
tational costs and without sacrificing accuracy. We also show the applicability of our method for the
hyperbolic wave equation here1. Due to good stability properties of an explicit scheme for the wave
equation we are able to optimize physical loss only. Overall, the framework we propose opens new
possibilities for scalable and adaptable physics simulations, reducing both computational resources
and the environmental footprint associated with large-scale simulations.

Limitations and future work. The present work while promising is still applied to only two types
of equations (parabolic and hyperbolic, describing subsurface flows and waves). The applicability of
the approach to more complex flows and other physics equations is an open problem. The approach
still relies on differentiable physics-based solvers and hence has the limitations of the simulations
themselves such as small timestep and stability to name a few. Thus, combining the present work
with data-driven models or graph neural ODEs could be a promising future work. Finally, the present
approach employs a simple message passing GNN. It would be interesting explore the performance
of the framework on different graph architectures with inductive biases such as equivariant GNNs.

1https://drive.google.com/drive/folders/1Aygtfvio3JB8ZxK0HAU3jIpIQolKaAk-?
usp=drive_link

10

https://drive.google.com/drive/folders/1Aygtfvio3JB8ZxK0HAU3jIpIQolKaAk-?usp=drive_link
https://drive.google.com/drive/folders/1Aygtfvio3JB8ZxK0HAU3jIpIQolKaAk-?usp=drive_link


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY

Link to anonymous repository containing code of experiments: https://anonymous.4open.
science/r/Learnable-coarsening-9434. In Appendix I, we list the hyper-parameters
used for the experiments. The hardware specifications of the machine where the experiments were
conducted is outlined in Appendix H.

REFERENCES

Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas Lozano-
Perez, and Leslie Kaelbling. Graph element networks: adaptive, structured computation and
memory. In International Conference on Machine Learning, pp. 212–222. PMLR, 2019.

F. Aurenhammer, R. Klein, and D.-T. Lee. VORONOI DIAGRAMS AND DELAUNAY TRIANGU-
LATIONS. World Scientific Publishing Co. Pte. Ltd., 1st edition, 2013.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, pp. 1–9, 2024.

Jean-Paul Berrut and Lloyd N Trefethen. Barycentric lagrange interpolation. SIAM review, 46(3):
501–517, 2004.

James C Bezdek. Pattern recognition with fuzzy objective function algorithms. Springer Science &
Business Media, 2013.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018a. URL http:
//github.com/jax-ml/jax.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018b.

Priyanshu Burark, Karn Tiwari, Meer Mehran Rashid, AP Prathosh, and NM Anoop Krishnan.
Codbench: a critical evaluation of data-driven models for continuous dynamical systems. Digital
Discovery, 3(6):1172–1181, 2024.

Dominik Dold and Derek Aranguren van Egmond. Differentiable graph-structured models for in-
verse design of lattice materials. arXiv preprint arXiv:2304.05422, 2023.

Joseph C Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-
separated clusters. 1973.

Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods, pp. 713–1018. El-
sevier, 2000. doi: 10.1016/s1570-8659(00)07005-8. URL http://dx.doi.org/10.1016/
s1570-8659(00)07005-8.

CL Farmer. Upscaling: a review. International journal for numerical methods in fluids, 40(1-2):
63–78, 2002.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019. URL https://arxiv.org/abs/1903.02428.

Michael S Floater. Generalized barycentric coordinates and applications. Acta Numerica, 24:161–
214, 2015.

Abhijeet S Gangan, Samuel S Schoenholz, Ekin Dogus Cubuk, Mathieu Bauchy, and NM Krish-
nan. Force field optimization by end-to-end differentiable atomistic simulation. arXiv preprint
arXiv:2409.13844, 2024.

11

https://anonymous.4open.science/r/Learnable-coarsening-9434
https://anonymous.4open.science/r/Learnable-coarsening-9434
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
http://dx.doi.org/10.1016/s1570-8659(00)07005-8
http://dx.doi.org/10.1016/s1570-8659(00)07005-8
https://arxiv.org/abs/1903.02428


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Margot G Gerritsen and Louis J Durlofsky. Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid
Mech., 37(1):211–238, 2005.

Mengwu Guo and Jan S. Hesthaven. Data-driven reduced order modeling for time-dependent prob-
lems. Computer Methods in Applied Mechanics and Engineering, 345:75–99, March 2019. ISSN
0045-7825. doi: 10.1016/j.cma.2018.10.029. URL http://dx.doi.org/10.1016/j.
cma.2018.10.029.

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics.
arXiv preprint arXiv:2001.07457, 2020.

Peter S Huyakorn. Computational methods in subsurface flow. academic press, 2012.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Gaetan Kerschen, Jean-claude Golinval, Alexander F Vakakis, and Lawrence A Bergman. The
method of proper orthogonal decomposition for dynamical characterization and order reduction
of mechanical systems: an overview. Nonlinear dynamics, 41:147–169, 2005.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. ICLR, 2017.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic Mode
Decomposition: Data-Driven Modeling of Complex Systems. Society for Industrial and Applied
Mathematics, November 2016. ISBN 9781611974508. doi: 10.1137/1.9781611974508.

Yu.A. Kuznetsov, O.V. Boiarkine, I.V. Kapyrin, and N.B. Yavich. Numerical analysis of a two-level
preconditioner for the diffusion equation with an anisotropic diffusion tensor. Russian Journal of
Numerical Analysis and Mathematical Modelling, 22(4):377–391, 2007. doi: doi:10.1515/rnam.
2007.018. URL https://doi.org/10.1515/rnam.2007.018.

Tianyu Li, Yiye Zou, Shufan Zou, Xinghua Chang, Laiping Zhang, and Xiaogang Deng. A fully
differentiable gnn-based pde solver: With applications to poisson and navier-stokes equations.
arXiv preprint arXiv:2405.04466, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Junbang Liang and Ming C Lin. Differentiable physics simulation. In ICLR 2020 Workshop on
Integration of Deep Neural Models and Differential Equations, 2020.

Uwe Naumann. The art of differentiating computer programs : an introduction to algorithmic
differentiation. SIAM, 1st edition, 2012. ISBN ISBN 978-1-611972-06-1.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

12

http://dx.doi.org/10.1016/j.cma.2018.10.029
http://dx.doi.org/10.1016/j.cma.2018.10.029
https://doi.org/10.1515/rnam.2007.018
https://arxiv.org/abs/1912.01703


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Dasheng Qi and Tim Hesketh. An analysis of upscaling techniques for reservoir simulation.
Petroleum Science and Technology, 23(7–8):827–842, July 2005. ISSN 1532-2459. doi:
10.1081/lft-200033132.

Clarence W Rowley. Model reduction for fluids, using balanced proper orthogonal decomposition.
International Journal of Bifurcation and Chaos, 15(03):997–1013, 2005.

Samuel Schoenholz and Ekin Dogus Cubuk. Jax md: a framework for differentiable physics. Ad-
vances in Neural Information Processing Systems, 33:11428–11441, 2020.

Sergei Shumilin, Alexander Ryabov, Nikolay Yavich, Evgeny Burnaev, and Vladimir Vanovskiy.
Self-supervised coarsening of unstructured grid with automatic differentiation. In Forty-first In-
ternational Conference on Machine Learning.

Xiaoying Zhang, Funing Ma, Shangxian Yin, Corey D Wallace, Mohamad Reza Soltanian, Zhenxue
Dai, Robert W Ritzi, Ziqi Ma, Chuanjun Zhan, and Xiaoshu Lü. Application of upscaling methods
for fluid flow and mass transport in multi-scale heterogeneous media: A critical review. Applied
energy, 303:117603, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A GRAPH COARSENING

Problem 1 (Graph Coarsening for physics-based simulations). Let G = {G1, · · · ,GT } be the input
graphs with associated ground-truth data Y ∈ RT×|V|. The goal is to obtain coarsened graphs
G̃t = (Ṽ, Ẽ , Ã, X̃t) from a GNN model M(G̃; Θ), parameterized by Θ and output from the physics-
based simulation as Ỹ = {ỹ1, · · · , ỹT }, that satisfies the following:

min
Θ

L
[
Ỹ , Y

]
(9)

where L denotes the loss function. We also need to an devise aggregation function fx : (Xt, π) →
X̃t. The exact aggregation function fx and the loss function L

[
Ỹ , Y

]
is defined in Section 3.3 and

Section 3.4 respectively.

B HANDLING MESH RECONSTRUCTION AFTER COARSENING

Currently, our framework operates in 2D, where we construct a new Delaunay triangulation fol-
lowed by a differentiable Voronoi tessellation after obtaining the coarsened nodes. This process
is efficient, with a computational complexity of O(n log n), where n is the number of coarsened
points, significantly smaller than the original number of nodes (n≪ N ).

For 3D domains, the main adaptation involves replacing the 2D differentiable Voronoi tessellation
with its 3D counterpart. We actively working on extending our pipeline to support 3D differentiable
Voronoi setups. Importantly, our GNN and finite volume simulator are agnostic to the dimensionality
of the computational domain, ensuring that these components will seamlessly adapt to 3D setups in
the future.

In cases where the mesh is non-simplex, maintaining regularity post-coarsening can be challeng-
ing. To address this, we rely on the flexibility of the finite volume solver, which effectively handles
irregular grids while maintaining the accuracy and stability of the simulation. Our framework is
particularly well-suited for regular grids, where differentiable coarsening and pooling steps are nat-
urally supported.

C RATIONALE FOR PRESERVING KEY POINTS

Consider an oil reservoir with wells where measurements are available - we are only interested in
simulating the pressure at these particular points. Thus, if we achieve speed-up of computation at
these positions while preserving the physics, we consider the goal to be completed. Indeed, if higher
accuracy is required in certain regions of interest, additional sensor points can be incorporated into
these areas to reduce interpolation errors. It can be implemented by the a priori analysis of the
initial data: we may compute the gradient field and choose points that have higher gradients as
sensor points. Also, we may use other algorithms based on graph spectral decomposition and other
importance metrics e.g. centrality measures. This adaptive selection of sensor points ensures that
regions requiring more precise solutions receive adequate attention without significantly increasing
the computational gains.

In our current implementation, we assume that sensor locations align with the grid points. However,
we recognize that in some practical applications, this may not always be the case. To address scenar-
ios where sensors do not coincide with grid nodes, we plan to incorporate interpolation techniques
such as Barycentric interpolation Berrut & Trefethen (2004); Floater (2015) in future work. These
methods allow us to estimate sensor values based on surrounding grid points while ensuring that the
interpolation weights remain differentiable with respect to grid parameters. This approach would
preserve the overall differentiability of our computational pipeline, maintaining compatibility with
gradient-based optimization.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: Permeability fields: a) ”loop” scenario. b) sinusoidal variable permeability field.

D PERMEABILITY FIELDS USED IN OUR EXPERIMENTS

E COARSENED PERMEABILITY FIELDS FOR LOOP CASE FOR DIFFERENT
POSITIONS OF SINKS

Figure 7: Point clouds after reduction: a) first sink, b) second sink, c) third sink.

F INFERENCE WITH DIFFERENT CONFIGURATIONS

Figure 8: Comparison of ps for different locations of our new sinks: a) result for first sink, b) result
for second sink, c) result for third sink.

Figure 9: Comparison of ps for different cloud sizes for loop scenario: a trained model applied to
other clouds with pre-applied kmeans.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

G LOG-UNIFORM ”HARD” PERMEABILITY FIELDS

Figure 10: Permeability fields: a) when we keep values less than 100 and greater than 0.01 b) when
we keep values less than 10 and greater than 0.1

H RESULTS OF TIME AND MEMORY TESTS

We compared the time performance of our method and method from Shumilin et al.. The experi-
ments were conducted on Google Colab, using two cores of an Intel(R) Xeon(R) CPU @ 2.20GHz
and 12.7 GB of RAM. The experiments were conducted on grids with a sinusoidal permeability
field, varying between 2.5 and 4.5. All runs used 10 epochs of optimization and 100 timesteps. Our
method, while slower on individual tasks, has the same order of time, especially for grids having
less than 10000 points. However, our approach does not need new optimization for each new task.

Table 1: Time comparison between new and algorithm from Shumilin et al. (called ”competitive”
there)

Grid Size Algorithm (Clusters) Time (s)
4900 New (50) 8.5 ± 0.87
4900 New (30) 7.66 ± 0.85
4900 Competitive (50) 5.56 ± 1.14
4900 Competitive (30) 4.31 ± 0.51
8100 New (50) 7.9 ± 1.05
8100 New (30) 8.85 ± 2.39
8100 Competitive (50) 5.44 ± 0.44
8100 Competitive (30) 4.84 ± 0.62
22500 New (50) 26.1 ± 5.54
22500 New (30) 22.4 ± 0.44
22500 Competitive (50) 6.55 ± 1.31
22500 Competitive (30) 5.00 ± 0.43

Memory-wise, our method shows higher usage compared to the baseline. For example, in the 22500-
point test with 50 clusters, our approach used around 6.5 GB, while the baseline consumed around
4.7 GB. Although our method requires more computation time and memory, it offers significant
advantages in terms of flexibility. Once trained on diverse configurations, it can be applied to grids
of varying sizes without the need for retraining, offering a solution to large-scale and dynamically
changing simulation problems.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 2: Memory comparison between new and algorithm from Shumilin et al. (referred to as
“competitive” in the work).

Grid Size Algorithm (Clusters) Memory Peak (MiB)
4900 New (50) 1069
4900 New (30) 1218
4900 Competitive (50) 888
4900 Competitive (30) 984
8100 New (50) 1239
8100 New (30) 1196
8100 Competitive (50) 1005
8100 Competitive (30) 1005
22500 New (50) 6611
22500 New (30) 7011
22500 Competitive (50) 4766
22500 Competitive (30) 4766

I HYPERPARAMETERS DESCRIPTION AND EXPERIMENTAL SETTINGS

This section outlines the key hyperparameters used in our coarsening and simulation framework for
both experiments.

The main hyperparameters used include (excluding GNN architecture’ hyperparameters):

• Learning Rate (lr): The learning rate for the Adam optimizer used during training.
• Physics Loss Weight: The weight applied to the physics loss in the final loss function.
• Sigmoid Weight: Scaling factor for the stability loss (inside sigmoid).
• Time Step (dt): Time step for solving the PDE.
• Number of epochs: Defines the number of epochs of algorithm.

I.1 HYPERPARAMETERS USED IN LOOP SCENARIO

For the loop scenario, the following hyperparameters were used for reduction degree 10%:

• Time Step: 0.0001
• Number of Epochs: 300
• Learning Rate: 0.015
• Sigmoid Weight: 10
• Physics Loss Weight: 15

For reduction degree 7.5%:

• Time Step: 0.0001
• Number of Epochs: 300
• Learning Rate: 0.01
• Sigmoid Weight: 10
• Physics Loss Weight: 20

For reduction degree 5%:

• Time Step: 0.0001
• Number of Epochs: 300
• Learning Rate: 0.01
• Sigmoid Weight: 10
• Physics Loss Weight: 15

I.2 HYPERPARAMETERS USED IN SINUSOIDAL PERMEABILITY SCENARIO

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For reduction degree 10%:

• Time Step: 0.00001
• Number of Epochs: 300
• Learning Rate: 0.015
• Sigmoid Weight: 10
• Physics Loss Weight: 20

For reduction degree 7.5%:

• Time Step: 0.00001
• Number of Epochs: 300
• Learning Rate: 0.01
• Sigmoid Weight: 10
• Physics Loss Weight: 20

For reduction degree 5%:

• Time Step: 0.00001
• Number of Epochs: 300
• Learning Rate: 0.01
• Sigmoid Weight: 10
• Physics Loss Weight: 25

J PROXY MODEL SCENARIO

To demonstrate the effectiveness of our approach in predictive tasks at specific measurement points,
we carried out experiments that model predictions for future time steps not used during the training
stage. In the ”loop” scenario with eight sinks (representing critical points), we compared our method
against the competing algorithm. Importantly, the training loop is performed only in 1000 timesteps
for both algorithms.

Figure 11: Comparison of ps obtained by our algorithm and algorithm from Shumilin et al. used for
future prediction in loop scenario
.
Results show that our algorithm beats the competing algorithm for sinks 0, 1, 2, 4 and 6. Hence,
it demonstrates competitive or slightly better performance and, additionally, does not only optimize
points but represents a trainable coarsening approach, providing a novel extension to the competing
algorithm. Possibly, better choice of hyperparameters could lead to even better results.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Altogether, our algorithm coarsens the grid not using the solution over all the grid but the solution
only at several critical points.

K COMPARISON RESULTS WITH METIS

Figure 12: Comparison of ps obtained by our algorithm and Metis for different permeability scenar-
ios: a) ”loop” scenario. b) sinusoidal permeability field.

L COMPLEX EXAMPLE RESULTS

In this experiment the grid is initialized with a resolution of 30×30 points, resulting in a total of 900
grid points. We generate permeability based on a log-uniform distribution while excluding perme-
ability values that are greater than 0.01 and less than 100 (see Appendix G). We apply our algorithm
with 10% of the original grid resolution. First, let’s demonstrate the results of our algorithm in the
zero sink (see Fig. 13).

It can be seen that in this example of the algorithm, more steps are required to converge to a solution,
and it is also seen that our loss function has many perturbations. Now let’s look at the algorithm from
the Shumilin et al. (see Fig. 13). In this case, at one of the steps of the algorithm, the scheme of the
explicit solver diverges, which leads to the algorithm stopping. The algorithm we have demonstrated
provides stability loss, which prevents the discrepancy of the explicit solution scheme.

Figure 13: Results of algorithms and pressure measurements in the zero sink: a) our algorithm b)
method from Shumilin et al.

We also demonstrate an experiment with less complex permeability field, when we take permeability
values from log-uniform distribution and collect values which less than 10 and greater than 0.1. In
this case, the algorithm from the Shumilin et al. got a more accurate result, but also broke down at
one of the steps (See results in Fig. 14).

Figure 14: Results of algorithms and pressure measurements in the zero sink: a) our algorithm b)
method from Shumilin et al.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

M MOTIVATION FOR IMPLICIT SOLVER

In this appendix, we provide additional details on the implementation of the implicit solver for the
diffusion equation and demonstrate its advantages in terms of stability compared to the explicit
solver.

The explicit Euler scheme can suffer from stability issues, especially when dealing with large time
steps or fine spatial discretizations. Without the inclusion of a stability loss term, the explicit solver
may diverge. To address this limitation and broaden the applicability of our method, we implemented
an implicit solver, which is known for its superior stability properties.

We conducted a numerical experiment using both the explicit and implicit solvers to solve the diffu-
sion equation with a sinusoidal permeability distribution. In this experiment, we used 100 timesteps,
τ = 0.01, Gaussian-like initial condition with no source terms.

Figure 15: Comparison of pressure distributions obtained from the explicit and implicit solvers
for the diffusion equation with sinusoidal permeability. The explicit solver without stability loss
diverges, while the implicit solver remains stable.

Figure 15 illustrates the pressure distributions obtained using the explicit and implicit solvers at
different time steps. As observed, the explicit solver without the stability loss diverges, leading to
non-physical results. In contrast, the implicit solver remains stable and produces accurate pressure
distributions throughout the simulation.

By incorporating the implicit solver into our framework, we enhance the stability and extend the
applicability of our graph coarsening method to a broader range of physical simulations. The implicit
solver serves as a robust building block, particularly in scenarios where the explicit solver may
fail due to stability issues. This approach also enables possibility to handle stiff and nonlinear
PDEs within our framework, facilitating extensions to more complex problems that require advanced
numerical schemes like WENO for nonlinear advection terms.

20


	Introduction
	Preliminaries and Problem Formulation
	Autodifferentiation
	GNNs for graph coarsening

	Proposed Methodology
	Equations and differentiable solvers
	Graph coarsening pipeline
	Feature aggregation
	Loss function

	Experiments and Analysis
	Baselines
	"loop" scenario
	Sinusoidal variable permeability scenario
	Using trained model on different configurations
	Additional experiments

	Conclusion
	Reproducibility
	Graph Coarsening
	Handling mesh reconstruction after coarsening
	Rationale for preserving key points
	Permeability fields used in our experiments
	Coarsened permeability fields for loop case for different positions of sinks
	Inference with different configurations
	Log-uniform "Hard" permeability fields
	Results of time and memory tests
	Hyperparameters Description and Experimental Settings
	Hyperparameters Used in Loop Scenario
	Hyperparameters Used in Sinusoidal Permeability Scenario

	Proxy model scenario
	Comparison results with Metis
	Complex example results
	Motivation for Implicit Solver

