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Abstract

In unsupervised representation learning, models aim to distill essential features from high-
dimensional data into lower-dimensional learned representations, guided by inductive biases.
Understanding the characteristics that make a good representation remains a topic of ongoing
research. Disentanglement of independent generative processes has long been credited
with producing high-quality representations. However, focusing solely on representations
that adhere to the stringent requirements of most disentanglement metrics, may result in
overlooking many high-quality representations, well suited for various downstream tasks.
These metrics often demand that generative factors be encoded in distinct, single dimensions
aligned with the canonical basis of the representation space.

Motivated by these observations, we propose two novel metrics: Importance-Weighted Orthog-
onality (IWO) and Importance-Weighted Rank (IWR). These metrics evaluate the mutual
orthogonality and rank of generative factor subspaces. Throughout extensive experiments on
common downstream tasks, over several benchmark datasets and models, IWO and IWR
consistently show stronger correlations with downstream task performance than traditional
disentanglement metrics. Our findings suggest that representation quality is closer related
to the orthogonality of independent generative processes rather than their disentanglement,
offering a new direction for evaluating and improving unsupervised learning models.

1 Introduction

Humans are able to process rich data such as high-resolution images to distill and memorize key information
about potentially complex concepts. Similarly, representation learning aims to devise a procedure, often
unsupervised, to encode potentially high-dimensional data into a lower-dimensional learned embedding space,
such that classifiers or other predictors can easily extract information from the learned representations (Bengio
et al., 2013). Understanding how to generate these convenient representations, requires the definition of
desirable properties that representation learning models should enforce. In the domain of generative models,
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Figure 1: Three configurations of data (circles) encoded in a 2-d learned latent space. The data is characterized
by size and (grayscale) color factors. The blue axes represent the direction of change in the factors. (i)
The factors are aligned with the basis of the space, corresponding to perfect disentanglement and perfect
orthogonality. (ii) The factors are not aligned but orthogonal, corresponding to complete entanglement, but
still perfect orthogonality. (iii) The factors are not orthogonal and some circle configurations are not encoded,
however, disentanglement is higher than in (ii), because of partial alignment with the basis. Despite its
complete entanglement, we argue that latent space (ii) is just as well suited as (i) for common downstream
tasks, while (iii) is not.

the ability to disentangle the explanatory factors underlying the data has long been credited to be such a
desirable property.

In the disentangled representation learning framework, data x is often assumed to be generated by an
underlying function g driven by ground truth, generative factors {zj}K

j=1 and other variability factors t, that
is x = g(z, t). A model then learns a mapping c = r(x) ∈ RL from the data to a latent representation space.
A common characterization of disentanglement posits that the generative factors are represented by single
distinct components of c, implying that they manifest as orthogonal 1-d latent subspaces aligned with the
canonical basis within the latent representation, up to a scaling factor and irrelevant latent dimensions (i.e.,
when L > K).

Disentangled representations have played a pivotal role in improving the performance of tasks such as
classification (Zhou et al., 2022), segmentation (Kalkhof et al., 2022), registration Han et al. (2020), image-
to-image translation (Fei et al., 2021), artifact reduction (Tang et al., 2022), domain adaption (Li et al.,
2021), controllable synthesis (Kelkar & Anastasio, 2022) and disease decomposition (Couronné et al., 2021).
However, while disentanglement represents an intuitive and useful notion to characterize good representations,
its general applicability is limited. Indeed, Locatello et al. (2019) prove, by using orthogonal transformations
and probability (inverse) integral transforms, that unsupervised disentanglement learning is fundamentally
impossible, without inductive biases on both models and datasets. In addition, the authors show that
disentanglement exhibits weak correlation with the suitability of representations for common downstream
tasks. We believe that this weak correlation can be attributed to the stringent nature of disentanglement
measures, which penalize many high-quality representations otherwise suitable for downstream tasks.

To get an intuition of the problem, Figure 1 visualizes 2-d representation spaces encoding circles varying in
size and color. While in space (i) and (ii) the dimensions encoding the generative factors are orthogonal to
one another, in space (iii) they exhibit strong correlation. For the downstream task of regressing size and
color, most models find the orthogonal spaces (i) and (ii) better suited than (iii), as they properly encode all
size and color combinations, while space (iii) fails to encode the largest, lightest and the smallest, darkest
circles. However, according to standard disentanglement metrics, space (ii) is completely entangled (worst
case), while space (iii) exhibits a better disentanglement, due to the requirement that the generative factors
must align with the canonical basis of the representation space. The disentanglement properties of these
representations therefore stands in contrast to their downstream task utility.

While disentangled representations can be well-suited for many downstream tasks, entangled but orthogonal
representations can be equally effective. In line with Wang & Isola (2020), we believe that correlation with
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relevant downstream tasks is a necessary condition for any metric measuring representation utility. The
absence of this correlation is a significant weakness of common disentanglement metrics.

We therefore propose two new metrics: Importance-Weighted Orthogonality (IWO) and Importance-Weighted
Rank (IWR). To compute these metrics, we devise a novel methodology, Generative Component Analysis
(GCA), that identifies the weighted vector subspaces where generative factors vary. IWO then measures the
mutual weighted orthogonality between the subspaces found through GCA, while IWR assesses their weighted
rank. Intuitively, IWO can be thought of as an expansion of cosine similarity to general vector subspaces.

We empirically assess the validity of the proposed metric in various synthetic experiments and by analysing the
performance of three common downstream tasks across six benchmark datasets and six widely used models,
showing that IWO and IWR consistently display stronger correlations with downstream task performance
than popular disentanglement metrics such as MIG (Chen et al., 2018) or DCI (Eastwood & Williams,
2018). Our research suggests that the utility of a representation may be closer related to its orthogonality
than its disentanglement.

2 Related Work

Alongside the task of disentanglement, gauging a model’s performance in disentangling a representation
has emerged as a non-trivial problem. Beyond visual inspection of the results, a variety of quantitative
methodologies have been developed to tackle this issue. Higgins et al. (2017) propose to measure the accuracy
of a classifier predicting the position of a fixed generative factor. Kim & Mnih (2018) further robustify the
metric by proposing a majority voting scheme related to the least-variance factors in the representations.
Chen et al. (2018) introduce the Mutual Information Gap estimating the normalized difference of the mutual
information between the two highest factors of the representation vector. Eastwood & Williams (2018)
propose the DCI metrics to evaluate the correlation between the representation and the generative factors.
For each of them, one linear regressor is trained and the entropy over the rows (Disentanglement) and the
columns (Completeness) is computed, along with the error (Informativeness) achieved by each regressor.
The Modularity metric introduced by Ridgeway & Mozer (2018) computes the mutual information of each
component of the representation to estimate its dependency with at most one factor of variation. SAP score
(Kumar et al., 2018) estimates the difference, on average, of the two most predictive latent components for
each factor.

The use of metrics such as the aforementioned ones contributed to shaping several definitions of disentangle-
ment, each encoding a somewhat different aspect of disentangled representations, which led to a fragmentation
of definitions (Locatello et al., 2019). Higgins et al. (2018) attempt instead to propose a unified view of
the disentanglement problem, by defining a principled symmetry-based disentanglement framework, drawn
from group representation theory. The authors established disentanglement in terms of a morphism from
world states to decomposable latent representations, equivariant with respect to decomposable symmetries
acting on the states/representations. For a representation to be disentangled, each symmetry group must act
only on a corresponding (multidimensional) subspace of the representation. Following this conceptualization,
Caselles-Dupré et al. (2019) demonstrate the learnability of such representations, provided the actions and
the transitions between the states. Painter et al. (2020) extend the work by proposing a reinforcement
learning pipeline to learn without the need for supervision. Noteworthy are the two proposed metrics: (i) an
independence score that, similarly to our work, estimates the orthogonality between the generative factors in
the fashion of a canonical correlation analysis; (ii) a factor leakage score, extended from the MIG metric to
account for all the factors. Tonnaer et al. (2022) formalize the evaluation in the symmetry-based setting and
proposed a principled metric that quantifies the disentanglement by estimating and applying the inverse group
elements to retrieve an untransformed reference representation. A dispersion measure of such representations
is then computed. Note that while most works focus on the linear manipulation of the latent subspace,
the symmetry-based framework can also be used in non-linear cases. However, it requires modelling the
symmetries and the group actions, a challenging task in scenarios with no clear underlying group structure
(Tonnaer et al., 2022). We aim to develop a metric which does not require such a group structure and works
in more general cases.
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Recently, several works (Montero et al., 2021; Träuble et al., 2021; Dittadi et al., 2021) have proposed to
go beyond the notion of disentanglement, advocating for the relaxation of the independence assumption
among generative factors – perceived as too restrictive for real-world data problems – and modelling their
correlations. Reddy et al. (2022) and Suter et al. (2019) formalize the concept of causal factor dependence,
where the generative factors can be thought of as independent or subject to confounding factors. The latter
work introduced the Interventional Robustness Score assessing the effects in the learned latent space when
varying its related factors. Valenti & Bacciu (2022) define the notion of weak disentangled representation
that leaves correlated generative factors entangled and maps such combinations in different regions of the
latent space.

Additionally, Eastwood et al. (2023) relax the notion of disentanglement, by extending the DCI metric with
an Explicitness (E) score related to the capacity required to regress the representation to its generative
factors. Instead, our metric measures the mutual orthogonality between subspaces associated with generative
factors, bypassing the non-linearities of a generative factor and its latent subspace. For a more comprehensive
understanding refer to Appendix A.

3 Methodology

Our goal is to establish a metric that quantifies the total orthogonality of a representation. This involves
estimating the orthogonality between the latent subspaces corresponding to each generative factor. However,
this raises two challenges.

First, the identification of the latent subspaces is not straightforward since the generative factor can exhibit
non-linear behaviour with respect to the learned representation. We propose Generative Component Analysis
(GCA), a procedure where, for each generative factor, multiple non-linear regressors are used to identify
progressively smaller subspaces where most of the generative factor’s information resides. These subspaces
are then used to identify the generative components, that is, the set of orthonormal vectors spanning the
latent subspace. In a similar fashion to procedures such as linear principal component regression, we weight
each vector by a corresponding importance score to obtain an importance-ordered orthogonal (i.o.o.) basis,
for each generative factor.

Second, prominent methods for measuring orthogonality between subspaces do not provide sufficiently
discriminative results for our use case. The conventional definition of orthogonal complement is binary
and too restrictive for nuanced applications. Conversely, methods like canonical correlation analysis, which
determines the similarity between vector spaces, typically operate under optimal conditions and may assign
high scores even to spaces sharing only a single dimension. These approaches, while useful, tend to be overly
permissive for our specific objectives. We therefore propose Importance-Weighted Orthogonality (IWO) to
characterize the orthogonality between generative factors. This is done by computing an average weighted
projection of each generative factor’s latent subspace onto all the others. To further discriminate between
representations with similar orthogonality properties, we also compute Importance-Weighted Rank (IWR),
which estimates the spread of the importance weights, awarding representations that give more importance
to a few dimensions.

3.1 Generative Component Analysis (GCA)

Consider a latent representation or code, c ∈ RL, encoding the generative factors (z1, . . . , zK) ∈ RK , with
L ≥ K. The generative factors are inducded through zj = f∗

j (c), where f∗
j is a potentially non-linear

function. However, not all changes in c imply a change in zj . In particular, we define the invariant latent
subspace of zj to be the largest linear subspace Ij ⊆ RL, such that f∗

j (c + v) = f∗
j (c), ∀v ∈ Ij . Accordingly,

the variant latent subspace (simply latent subspace) of zj is defined to be the orthogonal complement of
Ij and will be denoted as Sj , with dimensionality Rj . In the next paragraph, we describe how to find an
importance-weighted basis for Sj .

Subspace learning Starting from a code c ∈ RL, we project it onto progressively smaller dimensional
subspaces, removing the least important dimension for regressing zj at each step, until the subspace is
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Figure 2: Overview of GCA. I - Subspace Learning: Through iterative multiplications with Wl ∈
Rl×(l+1), the input is projected to subspaces of decreasing dimensionality. The resulting outputs wd are
directed into NN heads, trained to minimize the expected loss terms Ll. The importance αl is gauged by the
loss decrease between consecutive NNs heads. II - Basis Generation: The least important dimension, b4,
corresponds to the null space of W3. For each subsequent dimension bl, the composed projection matrix
Ŵl−1 = Wl−1 · · · · ·W3 is computed. bl then corresponds to the dimension in the null space of Ŵl which is
orthogonal to all previously found basis vectors. Finally, b1 is retrieved by normalizing and transposing Ŵ1.

1-dimensional. In particular, we design a Linear Neural Network (LNN) composed of a set of projective
transformations WL−1, . . . , W1, with Wl ∈ Rl×(l+1), which reduce the dimensionality of c step-by-step. No
non-linearities are applied, therefore each layer performs a projection onto a smaller linear subspace. The
entire learning process is depicted in Figure 2.

To capture the most informative latent subspace of dimensionality l at every layer of the LNN, we feed
the intermediate projections wl ∈ Rl into non-linear neural networks fjl. These networks are tasked with
regressing zj , thereby guiding the selection of which latent dimension to discard in each projection step.

When the training has ended, each regressor fjl can be associated with an expected loss of regressing the
factor:

Ll = Ec [ℓ(fjl(wl(c)), zj(c))] , (1)

where ℓ is a specific loss term. In particular, note that Ll−1 ≥ Ll because of the potential information loss
due to dimensionality reduction. Let us now quantify the loss increment by each of the LNN projections as
∆Ll = Ll−1 − Ll. We define Rj as the smallest dimensionality at which the lowest achievable loss is reached,
that is, ∆Ll = 0 for l > Rj . For l = 1, we compute ∆L1 as the difference between L1 and a baseline loss
L0 = Ezj

[
ℓ(Ezj [zj ] , zj)

]
.

Basis generation Using the trained projection matrices WL−1, . . . , W1, along with the layer-specific loss
differences ∆Ll, we now describe how to construct an i.o.o. basis spanning zj ’s latent subspace Sj . Formally,
we want to devise a set of orthonormal vectors Bj = {b(j)

l ∈ RL | l = 1, . . . , Rj}, along with their respective
importance weights {α(j)

l ∈ R>0 | l = 1, . . . , Rj}. In the following, we drop the superscript (j) to ease the
notation.

Each projection matrix Wl, l = 1, . . . , L − 1 eliminates a dimension from the data representation. The
adopted training methodology ensures that at each step the dimension discarded is the least important for
regressing zj among the remaining ones. This is in turn based on which removed dimension results in the
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minimum increase of ∆Ll+1. The removed dimension represents the 1-d null space of its corresponding
projection matrix.

We begin by finding the basis vector bL, corresponding to the least important dimension, by identifying
the null space of matrix WL−1 ∈ R(L−1)×L. For each subsequent dimension bl+1 ∈ RL, l = 1, . . . , L− 2, we
iteratively compute the composed projection matrix Ŵl = Wl · · · · ·WL−1 ∈ Rl×L. The null space ker(Ŵl)
contains the target dimension bl+1 along with the previously found basis vectors bl+2, . . . , bL. We retrieve
bl+1 by finding the dimension in the null space of Ŵl that is also orthogonal to the previously identified basis
vectors, for example through QR decomposition. Finally, the remaining dimension b1, corresponding to the
most significant basis vector, can be directly retrieved by computing Ŵ1 ∈ R1×L and normalizing it. This
process is depicted in Figure 2, and a pseudocode implementation can be found in Appendix E.

Using the loss difference defined on the basis of equation 1, we can quantify the importance weight αl of each
basis vector bl by the relative loss increase associated to its layer in the LNN:

αl = ∆Ll

L0 − LRj

l = 1, . . . , L. (2)

Finally, we normalize each vector bl thus obtaining an i.o.o. basis Bj = {b(j)
1 , . . . , b

(j)
Rj
} for Sj , with its

corresponding importance weights α
(j)
1 , . . . , α

(j)
Rj

.

GCA allocates an i.o.o. basis for each generative factor of a learned representation. However, when comparing
representations, we also have to account for differences in LRj

, as this loss corresponds to the best possible
regression of zj from the representation. In the DCI framework, this aspect is captured by the Informativeness
metric. In order not to favour representations with low Rj and high LRj

over those with low LRj
and higher

Rj , we adjust the importance weights of any factor zj whose LRj > 0. To do that, we first complete the
factor’s basis Bj to span the whole latent space, then we distribute the loss LRj among the importance of
the basis vectors equally:

αl =
∆Ll + LRj

/L

L0
l = 1, . . . , L. (3)

3.2 Importance Weighted Orthogonality (IWO)

Orthogonality is commonly treated as a dichotomous attribute; that is, vectors are classified as either
orthogonal or non-orthogonal, and similarly, a subspace is considered to either reside in the orthogonal
complement of another or not. The concept of cosine similarity provides a continuous measure of the degree
of orthogonality between two vectors. Analogously, we aim at a continuous measure that evaluates the
degree of orthogonality between two subspaces. Consider two orthonormal bases Bj = {b(j)

1 , . . . , b
(j)
Rj
} and

Bk = {b(k)
1 , . . . , b

(k)
Rk
} spanning two subspaces Sj and Sk. Let r

(jk)
l be the overall projection of Bj ’s basis

vector b
(j)
l onto all the basis vectors in Bk:

r
(jk)
l =

Rk∑
m=1

(b(j)
l · b

(k)
m )2 l = 1, . . . , Rj , (4)

where the square is applied to guarantee non-negativity. With these projections, a continuous interpretation
of orthogonality between Sj and Sk can be expressed as

O(Sj ,Sk) = 1
min(Rj , Rk)

Rj∑
l=1

r
(jk)
l . (5)

O(Sj ,Sk) ∈ [0, 1] with its maximum reached if Sj is a subspace of Sk or vice-versa, and its minimum reached
when Sk lies in the orthogonal complement of Sj . This definition of orthogonality can be interpreted as the
average squared cosine similarity between any vector pair from Sj and Sk.

This formulation of orthogonality ignores the “importance” of dimensions within subspaces Sj and Sk. To
illustrate why this is problematic, consider two generative factors, zj and zk, sharing the same subspace S. If
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most of their variation is concentrated in two dimensions, b
(j)
1 and b

(k)
1 , while the rest of S encodes minimal

variation, our metric should certainly distinguish between b
(j)
1 and b

(k)
1 being orthogonal vs. identical.

Metrics As the name suggests, in addition to encapsulating the orthogonality between factor subspaces,
IWO also takes into consideration the importance of the dimensions spanning them. Let us consider
K different generative factors z1, . . . , zK . For each one of them, we are able to allocate an i.o.o. basis
Bk = {b(k)

1 , . . . , b
(k)
Rk
} with the importance weights {α(k)

1 , . . . , α
(k)
Rk
}. For any ground truth factor zj , we define

r̃
(jk)
l as b

(j)
l ’s projection onto the latent subspace of another ground truth factor zk, scaling the projection by

the importance of the respective basis vectors:

r̃
(jk)
l =

Rk∑
m=1

√
α

(j)
l α

(k)
m (b(j)

l · b
(k)
m )2 l = 1, . . . , Rj . (6)

Analogously to subspace orthogonality, IWO is then defined using the sum over all projections r̃
(jk)
l of the

dimensions spanning zj ’s subspace.

IWO(zj , zk) = 1−
Rj∑
l=1

r̃
(jk)
l . (7)

Note that, with respect to Equation 5, IWO does not require a normalization factor as the square root
in Equation 6 guarantees that IWO ∈ [0, 1]. In addition, we subtract from 1 to simplify the comparison
with standard disentanglement metrics. Therefore, the maximum of 1 is reached if zj lies in the orthogonal
complement of zk and vice versa. The minimum of 0 is reached when zj and zk, in addition to lying in the
same subspace, also share the same importance along the same dimensions (cf. Appendix B for the proofs).
Both Orthogonality and IWO can be efficiently calculated using matrix operations (cf. Appendix D).

Together with IWO, we define Importance Weighted Rank (IWR). IWR measures how the importance of a
generative factor’s subspace is distributed among the dimensions spanning it:

IWR(zj) = 1−H(j), (8)

where H(j) = −
∑Rj

l=1 α
(j)
l logL(α(j)

l ) and we always assume L > 1. IWR thus measures how the importance
is distributed among the L dimensions of the representation space. Note that, IWR(zj) = 0 if the importance
is distributed equally along all L dimensions spanning the representation space, while IWR(zj) = 1 if the
importance is concentrated in a single dimension only (cf. Appendix B for the proofs). We denote the mean
over all generative factors of IWO and IWR as IWO and IWR.

4 Experiments

To evaluate the effectiveness of our IWO and IWR implementations, we first test whether we can (i) recover
the true latent subspaces using GCA and (ii) correctly assess their orthogonality and importance spread. For
that purpose, we set up a synthetic data generation scheme, providing us with the ground truth IWO and
IWR values. For comparison, we also test how other metrics capture different aspects of the representation.
In particular, Disentanglement, Completeness, Informativeness and Explicitness, as measured by the DCI-ES
framework using its official implementation.

We further evaluate IWO/IWR through the disentanglement_lib framework (Locatello et al., 2019) and
measure how strong they correlate with downstream task performance for three different tasks deployed
on the learned representations of six widely used variational autoencoder models trained on six benchmark
disentanglement datasets and over a wide range of seeds and hyperparameters. More details are listed in the
appendix and in our open-source code implementation1.

Training of all neural networks in the LNN is performed in parallel. In principle, the gradient flow from each
individual regressor fjl can be stopped after the corresponding Wl, however, we attested a faster convergence

1https://github.com/cyrusgeyer/iwo

7

https://github.com/cyrusgeyer/iwo


Published in Transactions on Machine Learning Research (10/2024)

Table 1: Synthetic experimental results: comparison between (D) Disentanglement, (C) Completeness, (I)
Informativeness, (E) Explicitness, IWO and IWR for Polynomial (Poly.) and Trigonometric (Trig.) encodings.

Experiment (K = 5, always) L R f ROP D C I E IWO IWR

(1) Permutation and additive Gaussian noise 5 1 Perm. ✗ 0.98 0.98 1.00 0.90 0.98 1.00
5 1 Noisy ✗ 0.98 0.98 1.00 0.90 0.98 1.00

(2) Low rank + polynomial mapping 10 2 Poly. ✗ 0.99 0.69 1.00 0.75 0.98 0.69
10 2 Poly. ✓ 0.21 0.15 1.00 0.75 0.98 0.69

(3) High rank + polynomial/trigonometric mapping

10 5 Poly. ✗ 0.41 0.30 1.00 0.74 0.61 0.31
10 5 Poly. ✓ 0.06 0.04 1.00 0.74 0.61 0.31
10 5 Trig. ✗ 0.41 0.30 0.99 0.73 0.62 0.30
10 5 Trig. ✓ 0.06 0.04 1.00 0.73 0.62 0.31

(4) High rank + polynomial/trigonometric mapping

20 4 Poly. ✗ 0.98 0.53 0.99 0.76 0.97 0.54
20 4 Poly. ✓ 0.12 0.07 1.00 0.76 0.97 0.54
20 4 Trig. ✗ 0.96 0.52 0.99 0.73 0.98 0.53
20 4 Trig. ✓ 0.12 0.07 0.99 0.74 0.98 0.53
20 8 Poly. ✗ 0.56 0.30 0.99 0.74 0.76 0.31
20 8 Poly. ✓ 0.05 0.03 0.99 0.74 0.76 0.31
20 8 Trig. ✗ 0.54 0.29 0.98 0.71 0.76 0.31
20 8 Trig. ✓ 0.07 0.04 0.98 0.70 0.76 0.30

(5) High dimensional latent space + poly./trig. mapping

50 5 Poly. ✗ 0.98 0.58 0.98 0.75 0.99 0.57
50 5 Poly. ✓ 0.11 0.05 0.98 0.75 0.99 0.56
100 5 Poly. ✗ 0.98 0.64 0.97 0.74 0.98 0.63
100 5 Poly. ✓ 0.09 0.04 0.98 0.73 0.98 0.63
250 5 Poly. ✗ 0.97 0.67 0.97 0.72 0.98 0.68
250 5 Poly. ✓ 0.09 0.04 0.97 0.72 0.98 0.68

when letting the gradient of each fjl flow back up to c. The aim of simultaneously exploring all nested
subspaces is to facilitate the identification of the smallest subspaces by guidance through the larger ones.
Additionally, we assume a reduction factor of 1, so that Wl ∈ Rl×(l+1) for l = 1, . . . , L, however, higher values
can also be considered for larger representations. Further speed-up techniques are presented in Appendix I.

4.1 Synthetic Experiments

We introduce a synthetic data generating scheme, which generates vectors of i.i.d Gaussian distributed latent
representations c ∈ RL. Then, on the basis of the latent representations, we synthesize K generative factors
{z1, . . . , zK}. For simplicity, we choose L as a multiple of K.

For simulating a disentangled latent space, we define each zj to be linearly dependent on a single, distinct
element of c. To assess higher dimensional cases with non-linear relationships, we consider a non-linear
commutative mapping f : RRj → R. In particular, we experiment with a polynomial (Poly.) and a
trigonometric (Trig.) f . Notice that the commutativity enforces that the distribution is spread evenly across
all dimensions, such that we can easily assess the performance of IWR. For simplicity, we always set Rj = R
for all j = 1, . . . , K. Together, L (latent space dimension), K (number of factors) and R (latent subspace
dimension) determine how many dimensions each generative factor shares with the others. We consider the
shared dimensions to be contiguous. For more details about the synthetic data generation scheme, refer to
Figure 5 and the pseudocode in Appendix E.

To test representations that are not aligned with the canonical basis, we apply Random Orthogonal Projections
(ROP) R ∈ RL×L to c. In line with commonly used datasets such as Cars3D or dSprites, we rescale and
quantize zj to the range [0, 1]. All experiments are run four times with differing random seeds. The standard
deviation was smaller than 0.02 for all reported values. The results are displayed in Table 1.

(1) Permutation and additive Gaussian noise We define two setups, both with L = K = 5 and R = 1.
First, we let z be a mere permutation of c, second we let z be c + ϵ, with ϵ ∼ N (0, 0.01) being Gaussian
noise. As expected, under conditions of low-complexity and (quasi-)perfect disentanglement we obtain high
scores for all the metrics.
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(2) Low rank + polynomial mapping We choose L = 10, K = 5, R = 2. No dimensions are shared
between the generative factors. The mapping f is polynomial, adding more complexity. We also apply ROP
in one of the experiments. We see that the C score decreases due to dimension sharing. Additionally, ROP
dramatically lower both D and C, while E, IWO and IWR are resilient to it.

(3) High rank + polynomial/trigonometric mapping We set L = 10, K = R = 5 and vary ROP. We
test with a polynomial and a trigonometric f . Each generative factor now shares, on average, two out of five
dimensions with the others, determining a decrement in D, C, IWO and IWR scores. E is slightly sensible
to the change in the mapping used.

(4) High rank + polynomial/trigonometric mapping We set L = 20, K = 5, R ∈ {4, 8}, varying
ROP and f . Increasing L mitigates the mutual dependence between generative factors, with IWO and IWR,
partially recovering. In the presence of ROP, D and C keep low scores. E stays almost constant assessing
only the complexity of the function used.

(5) High-dimensional latent space + polynomial/trigonometric mapping We set L ∈ {50, 100, 250},
K = R = 5 and vary ROP, keeping f polynomial. The large dimensionality of the representation mitigates
the effect of dimension sharing. We observe that IWO and IWR assess good orthogonality reliably, while the
other metrics perform similarly to the previous cases.

The experimental results reveal that both the D and C metrics from the DCI framework exhibit pronounced
sensitivity to ROP, making them unsuitable for evaluating generative factor separability in the manner we
propose. Although the E metric from the DCI-ES framework demonstrates robustness against ROP, it still
falls short of reliably capturing generative factor separability. This shortcoming arises because E primarily
measures the complexity of the mapping between generative factors rather than their actual separability.
In contrast, our proposed metrics, IWO and IWR, offer accurate assessments of orthogonality and the
importance distribution across latent subspaces. They provide a more reliable evaluation of factor separability,
demonstrating both resilience to orthogonal projections and immunity to mapping complexity.

4.2 Downstream Experiments

For the systematic evaluation of IWO’s and IWR’s correlation with downstream task performance, we use
the disentanglement_lib framework (Locatello et al., 2019). We consider six benchmark datasets, namely
dSprites, Color dSprites and Scream dSprites (Matthey et al., 2017), Cars3D (Reed et al., 2015),
smallNORB (LeCun et al., 2004) and Shapes3D (Burgess & Kim, 2018). These datasets cover a wide
range of complexities and variations, for more information on the individual datasets refer to Appendix F.2.

On each of these datasets, six different commonly used Variational Auto Encoder (VAE) models are trained:
β-VAE Higgins et al. (2017), Annealed VAE (Burgess et al., 2018), β-TCVAE (Chen et al., 2018) Factor-
VAE (Kim & Mnih, 2018), DIP-VAE-I and DIP-VAE-II (Kumar et al., 2018). These models represent a
diverse set of approaches to disentanglement, each introducing unique mechanisms to encourage factorized
representations. For each model, we consider six different regularization strengths (cf. Appendix F.1), each
with ten different random seeds, resulting in a total of 2160 learned representations.

The representations are evaluated for their utility in regressing the generative factors. To this end, we consider
three distinct downstream models trained on the learned representations: (i) random forest, (ii) logistic
regression, and (iii) multi-layer perceptron. Correlations between downstream task performance and the
commonly used metrics, DCI-D, DCI-C, and MIG, together with IWO’s and IWR, are calculated throughout
the considered regularization strengths.

Our main objective is to investigate whether the orthogonality of a representation is indicative of the
performance on a variety of downstream tasks and thus a good metric for the utility or quality of the
representation, as elucidated by Wang & Isola (2020). The primary distinction between Orthogonality and
Disentanglement, as measured by the considered metrics, is that the former does not require alignment with
the canonical basis of the representation space. The three downstream models are chosen to distill this key
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Table 2: (a) Average correlation between metrics and downstream task performance aggregated by model.
Each model is trained on six different datasets. For each dataset six hyperparameters on 10 random seeds are
trained for a total of 360 learned representations per model. (b) Average correlation between metrics and
downstream task performance aggregated by dataset. For each dataset, six different VAE models are trained.
For each model six hyperparameters on 10 random seeds are trained for a total of 360 learned representations
per dataset.

(a) Per dataset correlation aggregated by model

Model DCI-D DCI-C MIG IWO IWR

(1) Random Forest

AnnealedVAE 0.74 0.64 0.66 0.74 0.82
β-TCVAE 0.66 0.63 0.64 0.78 0.66
β-VAE 0.65 0.65 0.64 0.26 0.83
DIP-VAE-I 0.56 0.59 0.52 0.43 0.40
DIP-VAE-II 0.47 0.32 0.44 0.09 0.66
FactorVAE 0.62 0.54 0.18 0.68 0.61

(2) Logistic Regression

AnnealedVAE 0.43 0.20 0.26 0.77 0.85
β-TCVAE 0.13 0.06 0.13 0.45 0.09
β-VAE 0.18 0.19 0.16 0.44 0.51
DIP-VAE-I 0.73 0.63 0.59 0.73 0.63
DIP-VAE-II 0.07 -0.53 0.01 0.88 0.16
FactorVAE 0.14 -0.05 0.07 0.71 0.69

(3) Multi-Layer Perceptron

AnnealedVAE 0.35 0.17 0.08 0.41 0.58
β-TCVAE -0.25 -0.31 -0.28 -0.28 -0.16
β-VAE -0.14 -0.20 -0.18 0.61 0.20
DIP-VAE-I 0.54 0.46 0.43 0.64 0.56
DIP-VAE-II 0.00 0.57 0.00 0.71 0.08
FactorVAE -0.04 -0.19 -0.39 0.51 0.44

(b) Per model correlation aggregated by dataset

Model DCI-D DCI-C MIG IWO IWR

(1) Random Forest

Cars3d -0.52 -0.59 -0.64 0.63 0.46
Color dSprites 0.73 0.79 0.69 0.33 0.77
dSprites 0.94 0.96 0.94 0.55 0.79
Scream dSprites 0.88 0.93 0.76 0.51 0.44
Shapes3D 0.88 0.76 0.66 0.13 0.63
smallNORB 0.78 0.54 0.67 0.82 0.88

(2) Logistic Regression

Cars3d -0.39 -0.57 -0.70 0.75 0.69
Color dSprites 0.66 0.50 0.64 0.61 0.50
dSprites 0.38 0.35 0.30 0.58 0.36
Scream dSprites 0.79 0.55 0.86 0.86 0.67
Shapes3D -0.30 -0.49 -0.61 0.52 -0.06
smallNORB 0.54 0.17 0.73 0.65 0.78

(3) Multi-Layer Perceptron

Cars3d -0.12 -0.36 -0.39 0.56 0.63
Color dSprites -0.25 -0.48 -0.26 -0.25 -0.77
dSprites 0.18 0.17 0.13 0.35 0.08
Scream dSprites 0.18 0.01 0.23 0.59 0.78
Shapes3D -0.38 -0.51 -0.66 0.60 0.05
smallNORB 0.84 0.52 0.62 0.77 0.92

difference. While we expect alignment with the canonical basis to benefit downstream task (i) Random forest,
we do not expect such a benefit for tasks (ii) logistic regression or (iii) multi-layer perceptron.

In Table 2a-2b, we present the results aggregated by model and dataset respectively. We refer the reader to
the complete results in Table 3 in Appendix F for a detailed breakdown of all experiments and their outcomes.
Figure 3 serves as an illustrative example, visualizing the comparison between the generative components
as identified by GCA and the dimensions found through the DCI framework for one of the 2160 considered
representation spaces.

(1) Random forest High correlations are present for all models and datasets except for Cars3D, where
the DCI and MIG metrics fail to correlate entirely. However, DCI-D correlates more reliably for the other
datasets and models with the downstream task than IWO does. This can be attributed to the nature of
random forests in defining axis-aligned discriminative rules. Therefore, the downstream task benefits from
the alignment of the generative factors with the canonical basis. Indeed a random forest might have a harder
time fitting latent space (ii) from Figure 1, than fitting latent space (iii), as in the latter, one generative factor
aligns with the canonical basis. However, we also notice that DCI-C and IWR correlate even stronger than
DCI-D and IWO do. This suggests that random forests benefit even more significantly from low-dimensional
representations of generative factors than from their alignment with the canonical basis.

(2) Logistic regression For logistic regression, where ℓ2-regularization is applied to the weights, there is
no reason to assume that alignment between generative factors and canonical basis should lead to higher
downstream task performance. Indeed, we can see that IWO and IWR correlate higher and more reliably
than DCI or MIG do. This leads us to assume that measuring the orthogonality detached from canonical
basis alignment provides a better metric for the evaluation of downstream logistic regression.
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Figure 3: Samples from a β-VAE trained on Shapes3D dataset. In each row, the same latent code is modulated
along a different dimension. The reconstruction of the resulting latent codes through the decoder network is
depicted. Left: The dimensions of modulation correspond to the most important generative components of
each generative factor as found by GCA. We attest that modulation along the generative components indeed
predominantly varies the respective generative factor. Right: The dimension of modulation corresponds
to the most important dimensions for each generative factor as found by DCI. However, modulation along
the dimension supposedly encoding floor color also changes azimuth and vice versa. Modulation along the
dimension supposedly encoding wall color also changes floor color. The same form of entanglement goes for
most other dimensions identified through the DCI framework.

(3) Multi-layer perceptron A similar behavior can be attested when fitting a multi-layer perceptron,
initialized using Kaiming uniform initialization (He et al., 2015). There is, again, no reason to assume that
alignment with the canonical basis would be beneficial. Indeed, we see that neither DCI-D, DCI-C nor MIG
correlate reliably. IWO and IWR correlate reliably with this downstream task, except for the β-TCVAE
model and the Color dSprites dataset.

5 Discussion and Conclusions

In our investigation, we pivoted from the conventional focus on the disentanglement of generative factors to a
novel examination of their orthogonality. Our approach, geared towards accommodating non-linear behaviors
within linear subspaces tied to generative factors, fills a gap in existing literature, as no prior method aptly
addressed this perspective. The proposed Generative Component Analysis (GCA) efficiently identifies the
generative factor subspaces and their importance. Leveraging GCA, we formulated Importance-Weighted
Orthogonality (IWO) and Importance-Weighted Rank (IWR), two novel metrics offering unique insights into
subspace orthogonality and importance ranking. Throughout experiments, our implementation emerged as a
robust mechanism for assessing orthogonality, exhibiting resilience across varying latent shapes, non-linear
encoding functions, and degrees of orthogonality.

Disentanglement has long been credited for fostering fairness, interpretability, and explainability in generated
representations. However, as pointed out by Locatello et al. (2019), the utility of disentangled representations
invariably hinges on at least partial access to generative factors. With such access, an orthogonal subspace could
be rendered as useful as a disentangled one. Through orthonormal projection, any orthogonal representation
discovered can be aligned with the canonical basis, achieving good disentanglement.

In conjunction with IWO’s stronger downstream task correlation across datasets, models and tasks, this
underscores our assertion that latent representations, which successfully decouple generative factors, are
crucial for a wide range of downstream applications, regardless of their alignment with the canonical basis.

In conclusion, our work lays the groundwork for a fresh perspective on evaluating generative models. We
hope GCA and IWO may help identify models crafting useful orthogonal subspaces, which might have been
overlooked under the prevailing disentanglement paradigm. We hope that IWO extends its applicability
across a broader spectrum of scenarios compared to traditional disentanglement measures.
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Figure 4: Four configurations of a 3-dimensional latent space. The planes represent the latent subspace where
generative factors z1, z2 lie. The color mapping on each subspace represents the relationship between the
generative factor and the latent components (e.g., blue indicating large values for z1, red indicating low ones).
Cases (i) and (ii) are characterized by a good explicitness score as both subspaces encode z1 and z2 as simple
quadratic functions, contrary to cases (iii) and (iv) where the relationship is trigonometric and more complex
to recover. In contrast, cases (i) and (iii) are characterized by a better IWO score compared to (ii) and (iv).
Indeed, in configurations (i) and (iii), there are dimensions within each generative factor’s subspace that are
orthogonal to one another. Consequently, any variation along any such dimension will leave the other factor
unchanged.

A Explicitness vs IWO

The Explicitness (E) metric aims to evaluate the capacity needed for a representation to regress its generative
factors. Formally,

E(zj , c;F) = 1− AULCC(zj , c;F)
Z(zj ;F) , (9)

where zj and c represent a generative factor and the latent space respectively, and F a class of regressors
(e.g., multilayer perceptrons or random forests). AULCC is the Area Under the Loss Curve, computed by
recording the minimum losses achievable by regressing zj from c with models in F of increasing capacity.
The denominator, easily computable, acts as a normalizing constant so that E ∈ [0, 1]. As an example, E = 1
suggests that a linear regressor is sufficient to reach zero error, proving that the representation is efficient. To
account for a bias toward large representations, the explicitness is paired with the Size (S), computed as the
ratio between the number of generative factors and the size of the latent representation.

In Figure 4, we depict four situations of a 3-dimensional latent space where two generative factors z1, z2 lie in
a separate 2-dimensional plane each, and the relationship between each generative factor and its corresponding
latent subspace is non-linear, as hinted by the coloring. In particular, z

(n)
j = f (n)(c′) = f (n)(P (n)

j c), for
j ∈ {1, 2} and n ∈ {i, ii, iii, iv}, with P

(n)
j ∈ R2×3 being a projection matrix. For cases (i) and (iii), the

projections span orthogonal planes, contrarily to cases (ii) & (iv) where the planes have a different inclination.
Case (i) & (ii) are characterized by a quadratic relationship, i.e., f (n) = A(c′

1)2 + B(c′
2)2 (with A, B being

parameters), while case (iii) and (iv) encode a trigonometric relationship, i.e., f (n) = cos(2πλc′
1) + cos(2πλc′

2)
(with λ being a parameter).

Explicitness evaluates the capacity required by a model to regress the generative factors z1, z2, starting
from the representation c. Given that the effect of the linear transformation is present in all four situations,
the differences are determined only by the non-linearity f (n). Therefore the metric is able to discriminate
cases (i) & (ii) from (iii) & (iv). Instead, IWO quantifies the orthogonality of the planes, regardless of
the non-linearities in the generative factors, so it discriminates the orthogonal cases (i) & (iii) from the
non-orthogonal ones (ii) & (iv). Finally, note that the DCI-Disentanglement metric would penalize all four
configurations as they are not disentangled.
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B Theoretical Results on IWO/IWR

Theorem B.1. Given a representation c ∈ RL, IWO = 1 if and only if the latent subspaces S1, . . . ,SK of
the generative factors z1, . . . , zK all lie in each other’s orthogonal complement.

Proof. Let Bj and Bk represent basis for the latent subspaces Sj and Sk. If the subspaces lie in each other’s
orthogonal complement, this implies that b

(j)
l · b

(k)
m = 0, ∀l = 1, . . . , Rj , ∀m = 1, . . . , Rk. The computation of

IWO is therefore

IWO(zj , zk) = 1−
Rj∑
l=1

Rk∑
m=1

√
α

(j)
l α

(k)
m (b(j)

l · b
(k)
m )2 = 1−

Rj∑
l=1

Rk∑
m=1

√
α

(j)
l α

(k)
m · 0 = 1. (10)

From proving that IWO(zj , zk) = 1 for any j ̸= k, it follows that IWO = 1.

Conversely, if at least one subspace does not lie in the orthogonal complement of at least one other subspace,
this implies that b

(j)
l · b

(k)
m ≠ 0 for at least one combination of l, m, j, k. Because α

(j)
l > 0 for l ≤ Rj for any

j, this implies that IWO(zj , zk) < 1.

Theorem B.2. Given a representation c ∈ RL, IWO = 0 if and only if the latent subspaces S1, . . . ,SK of
the generative factors z1, . . . , zK all share the same importance along the same dimensions.

Proof. Let Bj and Bk represent basis for the latent subspaces Sj and Sk. From Section 3.1 we have that
α

(ζ)
l ≥ α

(ζ)
l+1 for any l and any ζ ∈ {j, k}. Let us first consider the special case α

(ζ)
l > α

(ζ)
l+1 for any l, i.e. the

basis are ordered from most important to least important basis vector. Assuming all subspaces share the
same importance along the same dimensions, it must follow that Bj = Bk. Then b

(j)
l = b

(k)
l and α

(j)
l = α

(k)
l ,

∀l. Also, b
(j)
l · b

(k)
l = 1 implies that b

(j)
l · b

(k)
m = 0 for l ̸= m. Then,

IWO(zj , zk) = 1−
R∑

l=1

R∑
m=1

√
α

(j)
l α

(k)
m (b(j)

l · b
(k)
m )2

= 1−
R∑

l=1

√
α

(j)
l α

(k)
l

= 1−
R∑

l=1
α

(j)
l

= 1− 1 = 0. (11)

Let us now consider the special case where Sj = Sk = RR and α
(j)
l = α

(k)
m = 1/R, ∀l, m. Note that, since

all importance weights are equal, there is no order in the basis. Let Bj and Bk be two orthogonal bases
spanning Sj and Sk respectively. Because Sj = Sk, each basis vector b

(j)
l in Bj can be expressed as a linear

combination of the basis vectors in Bk. We can then use Parseval’s identity (Johnson & Riess, 1982) for the
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finite case: ∥b(j)
l ∥2 =

∑R
m=1(b(j)

l · b
(k)
m )2.

IWO(zj , zk) = 1−
R∑

l=1

R∑
m=1

√
α

(j)
l α

(k)
m (b(j)

l · b
(k)
m )2

= 1−
R∑

l=1

R∑
m=1

√
1
R
· 1

R
(b(j)

l · b
(k)
m )2

= 1− 1
R

R∑
l=1

R∑
m=1

(b(j)
l · b

(k)
m )2

= 1− 1
R

R∑
l=1
∥b(j)

l ∥
2 = 1− R

R
= 0. (12)

The general case for α
(j)
l ≥ α

(j)
l+1 then follows from the two special cases described above. From proving that

IWO(zj , zk) = 0 for any j ̸= k, it follows that IWO = 0.

Conversely, if two generative factors do not share the same importance along the same dimensions, this can
either mean that their subspaces are different or it means their subspaces are the same, but the importance
is spread differently, i.e. α

(j)
l ̸= α

(k)
l for at least two different l. For both cases it follows that IWO(zj , zk)

cannot be 0.

Theorem B.3. Given a representation c ∈ RL with L > 1, then IWR = 1 if and only if the latent subspaces
S1, . . . ,SK of the generative factors z1, . . . , zK are all uni-dimensional.

Proof. Let Bj = {b(j)
1 }, then α

(j)
1 = 1 and

IWR(zj) = 1 +
1∑

l=1
α

(j)
l logL(α(j)

l ) = 1 + 1 logL(1) = 1 + 0 = 1, (13)

From proving that IWR(zj) = 1 for any j, it follows that IWR = 1.

Conversely, if α
(j)
l > 0 for l > 1, under the constraint that α

(j)
l ≥ α

(j)
l+1 and

∑Rj

l α
(j)
l = 1, then IWR(zj)

cannot be 1.

Theorem B.4. Given a representation c ∈ RL with L > 1, then IWR = 0 if and only if for each generative
factor z1, . . . , zK the importance is spread equally among all dimensions of the representation space.

Proof. Let Bj = {b1, . . . , bL} and α
(j)
l = 1/L, l = 1, . . . , L, then:

IWR(zj) = 1 +
L∑

l=1
α

(j)
l logL α

(j)
l = 1 +

L∑
l=1

1
L

logL

(
1
L

)
= 1 +

L∑
l=1

1
L
· (−1) = 1− 1 = 0. (14)

From proving that IWR(zj) = 0 for any j, it follows that IWR = 0.

Conversely if any α
(j)
l ̸= 1/L, under the constraint that

∑L
l α

(j)
l = 1, then IWR(zj) cannot be 0.

C Complexity and Differentiability

For GCA, the subspace learning step complexity is dependent on the backpropagation algorithm used, while
the basis generation step complexity is dependent on the reduced QR decomposition algorithm used. The
worst-case complexity of IWO is O(KL3), for IWR it is O(KL). GCA and the metrics are composed of
differentiable operations and are therefore differentiable. While the metrics are optimizable, GCA requires
supervision from the generative factors, information that may not always be available.
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D Efficient IWO Calculation

For the efficient calculation of Orthogonality, consider two matrices Bj ∈ RRj×L, Bk ∈ RRk×L whose
rows compose the i.o.o. basis vectors spanning zj ’s and zk’s latent subspaces respectively. We define the
orthogonality between the two latent subspaces in terms of these matrices as:

O(Sj ,Sk) =
Tr(BjB⊤

k BkB⊤
j )

min(Rj , Rk) . (15)

Note that the trace Tr(BjB⊤
k BkB⊤

j ) equals the sum of the squared values in BjB⊤
k , i.e.,

∑
l,m(BjB⊤

k )2
ml =∑

l,m(bjl · bkm)2, where bjl and bkm are the l-th and m-th rows of Bj and Bk respectively. The maximum
of the trace is therefore min(Rj , Rk), reached if Sj is a subspace of Sk or vice-versa. This definition of
orthogonality can be interpreted as the average absolute cosine similarity between any vector pair from Sj

and Sk.

To efficiently calculate the importance-weighted projection of zj ’s subspace onto zk’s subspace, we first scale
the corresponding bases vectors in Bj , Bk with their respective importance before projecting them onto one
another. IWO is the sum of all individual projections. Using Uj = DjBj , where Dj ∈ RRj×Rj is diagonal
with the l-th diagonal entry corresponding to the square root of importance,

√
αl(zj), we can efficiently

calculate IWO as:

IWO(zj , zk) = 1− Tr(UjU⊤
k UkU⊤

j ) (16)

E Pseudocode

E.1 Basis Generation

Full QR decomposition Given a rectangular matrix A ∈ Rn×(n−1), its full QR decomposition is

A =
[
Q v

] [
R
0

]
, (17)

with R ∈ R(n−1)×(n−1) being upper-triangular, and the columns of Q ∈ Rn×(n−1) and v ∈ Rn×1 being
orthonormal. In particular, note that A⊤v = 0, that is v ∈ ker(A⊤). We denote v = QRker(A).

We report the pseudocode for generating an orthonormal basis as described in Section 3
Require: Projection matrices {Wl}L−1

l=1 , Wl ∈ Rl×(l+1)

Ensure: Orthonormal basis matrix B ∈ RL×L

1: Ŵ ←W ⊤
L−1 ▷ Ŵ ∈ RL×(L−1)

2: bL ← QRker(Ŵ ) ▷ Get least important basis vector bL.
3: B ← bL

4: for l← L− 2 to 2 do
5: Ŵ ← Ŵ ·W ⊤

l ▷ Ŵ ∈ RL×l

6: W̃ ← [Ŵ ⊤ B] ▷ Concatenate Ŵ ⊤ and B. W̃ ∈ RL×(L−1)

7: bl ← QRker(W̃ ) ▷ Get basis vector bl

8: B ← [bl B] ▷ Concatenate bl to B
9: end for

10: Ŵ ← (W1 · Ŵ )⊤ ▷ Ŵ ∈ RL×1

11: b1 ← Ŵ
∥Ŵ ∥2

▷ Get most important basis vector b1

12: B ← [b1 B] ▷ Concatenate b1 to B
13: return B
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Figure 5: Two synthetic experimental settings with L = 10, K = 5 and differing ranks R. Left: R = 2, each
zj is a function of two successive elements of c: z1 = f(c1, c2), . . . , z5 = f(c9, c10). Right: R = 5, each zj is
a function of five successive elements of c: z1 = f(c9, c10, c1, c2, c3) , . . . , z5 = f(c7, c8, c9, c10, c1).

E.2 Synthetic Data Generation

We report the pseudocode for generating the synthetic representations discussed in Section 4.1. For simplicity,
we have assumed L as a multiple of K. Figure 5 describes two examples of the used schema.
Require: Representation size L, # of generative factors K, # of shared dimensions R, mapping f
Ensure: A representation c ∈ RL and its related generative factors z ∈ RK

1: c← N (0L, IL) ▷ Get L i.i.d. Gaussian distributed samples
2: c(rep) ← cat(c, 3) ▷ Concatenate c three times, c(rep) ∈ R3L

3: ld ← ⌊R
2 ⌋

4: lu ← ⌈R
2 ⌉

5: z ← [ ]
6: for l← L to 2L by L

K do
7: x← c

(rep)
l−ld:l+lu

▷ Get values of c(rep) from l − ld to l + lu
8: z ← [z f(x)] ▷ Concatenate the generative factor f(x) to z
9: end for

10: return c, z

F Experimental Details

In this section, we provide a detailed description of the correlation analysis of our orthogonality metric
with downstream tasks on six different datasets and six different models listed in Table 3. For each model,
learned representations for six different regularization strengths are considered (ten different random seeds
for each reg. strength). All these representations are directly retrieved from or trained with the code of
disentanglement_lib2. For the ES metric, we utilized the official codebase provided by the authors of
DCI-ES 3. Each dataset we investigate has independent generative factors associated with it.

F.1 Hyperparameters

The hyperparameters considered for each model are the following:

• β-VAE (Higgins et al., 2017): with β ∈ {1, 2, 4, 6, 8, 16}

• Annealed VAE (Burgess et al., 2018): with cmax ∈ {5, 10, 25, 50, 75, 100}

• β-TCVAE (Chen et al., 2018): with β ∈ {1, 2, 4, 6, 8, 10}

• Factor-VAE (Kim & Mnih, 2018): with γ ∈ {10, 20, 30, 40, 50, 100}

• DIP-VAE-I (Kumar et al., 2018): with λod ∈ {1, 2, 5, 10, 20, 50}

• DIP-VAE-II (Kumar et al., 2018): with λod ∈ {1, 2, 5, 10, 20, 50}
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Figure 6: Samples from the Datasets used in our studies. From left to right: DSprites, Color DSprites,
Scream DSprites, Cars3D, Shapes3D, smallNORB

F.2 Datasets

dSprites Dataset The dSprites dataset is a collection of 2D shape images procedurally generated from six
independent latent factors. These factors are color (white), shape (square, ellipse, heart), scale, rotation, and
x and y positions of a sprite. Each possible combination of these latents is present exactly once, resulting in
a total of 737280 unique images.

Color dSprites Dataset This dataset retains the fundamental characteristics of the original dSprites
dataset, with the distinct variation that each sprite, in the observation sampling process, is rendered in a
color determined by random selection.

Scream dSprites Dataset The dataset mirrors the original dSprites dataset but introduces a unique
modification in the observation sampling process: A random segment from the Scream image is selected as
the background, and the sprite is integrated into this image by inverting the color of the chosen segment
specifically at the sprite’s pixel locations.

Cars3D Dataset The Cars3D dataset is generated from 3D computer-aided design (CAD) models of cars.
It consists of color renderings of 183 car models from 24 rotation angles, each offset by 15 degrees, and from
4 different camera elevations. The images are rendered at a resolution of 64× 64.

smallNORB Dataset The smallNORB dataset is designed for 3D object recognition from shape, featuring
images of 50 toys categorized into five types: four-legged animals, human figures, airplanes, trucks, and cars.
The images were captured under six lighting conditions, nine elevations, and 18 different angles. The dataset
is split into a training set with five instances of each category and a test set with the remaining five instances.

Shapes3D Dataset The Shapes3D dataset, initially presented in Kim & Mnih (2018) is a specialized
collection designed for the study of factorized variations in 3D object representation. This dataset is
characterized by its systematic variation across six ground-truth factors, making it particularly suitable
for experiments in disentanglement and representation learning. These factors include floor color with 10
variations, wall color also with 10 variations, object color featuring 10 distinct options, object size represented
in 8 different scales, object type with 4 unique categories, and azimuth with 15 varied positions. Such a
diverse range of factors allows for comprehensive analysis and experimentation in 3D object recognition and
disentanglement tasks. The dataset is thoughtfully split into a training set and a test set, each containing a
balanced mix of these variations to facilitate robust model training and evaluation.

F.3 IWO on Limited Data

To assess the impact of smaller sample sizes on IWO and IWR’s correlation with downstream task performance,
we repeat the experiments detailed in Section 4.2 for the smallNORB dataset, but with only 50% and 10% of
the data. The results are illustrated in Table 4. We observe that IWO and IWR are resilient to changes in
dataset size.

2https://github.com/google-research/disentanglement_lib/tree/master
3https://github.com/andreinicolicioiu/DCI-ES
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Table 3: Individual correlations between metrics and downstream task performance. Each model is trained
on six different datasets. For each dataset, six different hyperparameters on 10 random seeds are trained for
a total of 2160 learned representations. Correlations between downstream task performance and the three
commonly used metrics DCI-D, DCI-C and MIG together with IWO and IWR are calculated. Correlations
are calculated between averaged task performance and averaged metrics, where the average is taken over the
seeds and grouped by hyperparameter. As such, we assess the capability of the metrics to point us to good
models and hyperparameters.

Random Forest Logistic Regression Multi-Layer Perceptron

D C MIG IWO IWR D C MIG IWO IWR D C MIG IWO IWR

C
ar

s3
D

AnnealedVAE 0.72 -0.18 -0.19 0.74 0.69 -0.40 -0.85 -0.82 0.84 0.89 0.25 -0.36 -0.33 0.98 0.97
β-TCVAE -0.92 -0.91 -0.91 0.80 0.11 -0.94 -0.97 -0.90 0.75 -0.15 0.06 -0.04 0.16 -0.48 -0.90
β-VAE -0.92 -0.94 -0.93 0.67 0.80 -0.93 -0.95 -0.92 0.60 0.91 -0.66 -0.67 -0.67 0.22 0.82
DIP-VAE-I -0.84 -0.77 -0.61 -0.09 -0.18 0.61 0.39 -0.10 0.68 0.73 -0.07 -0.32 -0.50 0.98 0.99
DIP-VAE-II -0.89 -0.96 -0.76 0.90 0.59 -0.49 -0.72 -0.74 0.74 0.83 -0.49 -0.70 -0.49 0.67 0.94
FactorVAE -0.26 -0.17 -0.81 0.78 0.74 -0.17 -0.31 -0.71 0.91 0.91 0.22 -0.08 -0.49 0.97 0.98

C
ol

or
dS

p.

AnnealedVAE 1.00 1.00 0.98 0.97 0.97 0.86 0.85 0.90 0.91 0.94 -0.80 -0.80 -0.82 -0.86 -0.85
β-TCVAE 0.99 0.99 1.00 0.78 0.97 0.44 0.54 0.45 0.70 0.55 -0.81 -0.89 -0.85 -0.68 -0.86
β-VAE 0.98 0.99 1.00 -0.80 0.76 0.69 0.85 0.80 -0.45 0.93 -0.67 -0.85 -0.78 0.32 -0.95
DIP-VAE-I 0.46 0.39 0.61 0.96 0.94 0.73 0.68 0.70 0.78 0.63 0.89 0.91 0.75 0.04 -0.18
DIP-VAE-II 0.07 0.50 -0.07 -0.73 0.26 0.37 -0.78 0.39 0.90 -0.81 0.71 -0.45 0.73 0.50 -0.92
FactorVAE 0.91 0.85 0.63 0.81 0.75 0.86 0.86 0.62 0.82 0.72 -0.79 -0.80 -0.60 -0.80 -0.87

dS
pr

it
es

AnnealedVAE 0.99 0.99 0.97 0.89 0.89 0.84 0.82 0.85 0.87 0.87 0.47 0.45 0.54 0.73 0.72
β-TCVAE 1.00 0.99 0.99 0.92 0.97 0.37 0.38 0.25 0.66 0.54 -0.14 -0.18 -0.25 0.07 0.03
β-VAE 0.98 0.99 0.97 0.75 0.96 0.03 0.07 0.01 -0.18 0.02 -0.04 -0.06 0.02 0.40 0.08
DIP-VAE-I 0.96 0.96 0.94 0.28 0.11 0.80 0.79 0.77 0.44 0.35 0.91 0.91 0.90 -0.10 -0.22
DIP-VAE-II 0.77 0.88 0.80 -0.33 0.93 -0.20 -0.46 -0.43 0.69 -0.59 -0.92 -1.00 -0.92 0.14 -0.98
FactorVAE 0.96 0.94 0.96 0.81 0.86 0.43 0.48 0.35 0.99 0.98 0.79 0.93 0.49 0.86 0.84

Sc
re

am
dS

p. AnnealedVAE 0.84 0.79 0.85 0.86 0.87 0.92 0.85 0.95 0.92 0.91 0.81 0.86 0.71 0.84 0.84
β-TCVAE 0.91 0.98 0.90 0.32 -0.12 0.93 0.83 0.94 0.65 -0.46 -0.88 -0.75 -0.89 -0.78 0.37
β-VAE 0.94 0.97 0.96 0.53 0.54 0.86 0.83 0.89 0.78 0.79 0.17 0.13 0.23 0.87 0.90
DIP-VAE-I 0.79 1.00 0.28 0.68 0.78 0.83 0.50 0.94 0.95 0.89 0.86 0.61 0.89 0.98 0.94
DIP-VAE-II 0.93 0.92 0.81 0.42 0.46 0.53 0.13 0.76 0.99 1.00 0.49 0.03 0.72 0.99 0.99
FactorVAE 0.87 0.92 0.80 0.23 0.11 0.65 0.14 0.68 0.79 0.89 -0.38 -0.79 -0.30 0.66 0.64

Sh
ap

es
3D

AnnealedVAE 0.95 0.62 0.21 0.91 0.96 0.60 -0.13 -0.51 0.91 0.83 0.87 0.45 -0.01 0.97 1.00
β-TCVAE 1.00 0.99 0.93 0.90 0.96 -0.91 -0.93 -0.96 -0.87 -0.87 -0.64 -0.68 -0.83 -0.69 -0.60
β-VAE 0.99 0.97 0.86 -0.57 0.92 -0.53 -0.62 -0.80 0.94 -0.55 -0.57 -0.66 -0.84 0.92 -0.63
DIP-VAE-I 1.00 1.00 0.95 -0.24 -0.24 0.46 0.45 0.32 0.57 0.25 -0.33 -0.34 -0.41 0.96 0.82
DIP-VAE-II 0.99 0.99 0.97 -0.74 0.74 -0.63 -0.78 -0.83 0.98 -0.44 -0.73 -0.86 -0.90 0.97 -0.56
FactorVAE 0.35 -0.02 0.03 0.49 0.44 -0.80 -0.96 -0.90 0.59 0.43 -0.85 -0.98 -0.96 0.45 0.27

sm
al

lN
O

R
B AnnealedVAE -0.04 0.28 0.77 0.09 0.56 -0.26 -0.37 0.21 0.14 0.68 0.50 0.42 0.38 -0.17 0.80

β-TCVAE 0.97 0.76 0.98 0.94 0.99 0.86 0.53 0.97 0.78 0.92 0.93 0.64 1.00 0.89 0.99
β-VAE 0.92 0.93 0.97 0.97 1.00 0.97 0.96 0.96 0.93 0.97 0.93 0.94 0.97 0.97 0.99
DIP-VAE-I 1.00 0.98 0.95 0.97 0.98 0.97 0.94 0.91 0.93 0.94 0.99 0.98 0.96 0.97 0.98
DIP-VAE-II 0.91 -0.44 0.88 1.00 0.99 0.85 -0.56 0.90 0.99 0.98 0.93 -0.45 0.86 1.00 1.00
FactorVAE 0.89 0.73 -0.55 0.95 0.79 -0.14 -0.51 0.40 0.13 0.18 0.77 0.59 -0.47 0.94 0.77

F.4 Segmentation Task

The task involves segmenting the sprite from the Scream dSprites dataset using the learned representations, utilizing
a decoder neural network that generates segmentation masks based on these representations. In Table 5, we list the
results of these experiments. We observe that both IWO and IWR correlate stronger with downstream segmentation
performance than classic disentanglement metrics.

F.5 IWO Training

Given a learned representation of a dataset, we consider each generative factor independently, allocating separate
LNNs respectively. On top of the LNNs, we have NN heads, which regress the generative factors from the intermediate
projections. The NN heads are also independent from one another and do not share any weights.

F.5.1 Implementation Details

We use the PyTorch Lightning framework4 for the implementation of the models required to discern IWO and IWR.
In particular, we use the implementations of the Linear and Batch-Normalization layers. Whereas the setup of the
LNN is equal for all models and datasets, the NN-heads vary in their complexity for different datasets and factors. As

4https://github.com/Lightning-AI/lightning
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Table 4: Correlation coefficients between IWO, IWR, DCI-D, DCI-C, MIG and the downstream task of
recovering the generative factors with logistic regression and random forest. Examined latent representations
of smallNORB dataset as learned by models: Annealed VAE (A-VAE), β-VAE, β-TCVAE and Factor-VAE
(F-VAE) on 100%, 50% and 10% of the dataset

IWO IWR

Model Logistic
Regression

Random
Forest

Logistic
Regression

Random
Forest

10
0%

A-VAE 0.14 0.09 0.68 0.56
β-VAE 0.93 0.97 0.97 1.00

β-TCVAE 0.78 0.94 0.92 0.99
F-VAE 0.13 0.95 0.18 0.79

50
%

β-VAE 0.20 0.02 0.43 0.75
A-VAE 0.97 0.98 0.97 1.00

β-TCVAE 0.82 0.95 0.94 0.99
F-VAE 0.13 0.72 -0.09 0.95

10
%

A-VAE -0.02 -0.30 0.50 0.31
β-VAE 0.94 0.99 0.96 0.99

β-TCVAE 0.87 0.95 0.92 1.00
F-VAE 0.32 0.56 0.12 0.58

Table 5: Correlation coefficients between IWO, IWR, DCI-D, DCI-C, MIG and the downstream task of
segmenting the sprite in the Scream DSprite dataset.

Model DCI-D DCI-C MIG IWO IWR
Annealed VAE 0.74 0.80 0.65 0.79 0.79
β-TCVAE -0.91 -0.78 -0.91 -0.65 0.48
β-VAE -0.20 -0.27 -0.19 0.52 0.51
DIP-VAE-I 0.01 0.33 -0.31 0.01 0.08
DIP-VAE-II 0.45 0.02 0.69 1.00 1.00
Factor VAE 0.09 -0.33 0.19 0.63 0.62
Average 0.03 -0.03 0.02 0.38 0.58

all considered models operate with a 10-dimensional latent space, each LNN has 10 layers. The output of each LNN
layer is fed to the next layer and also to the corresponding NN-head.

Table 6 holds the NN head configuration per dataset and factor. These were found using a simple grid search on one
randomly selected learned representation. This is necessary as factors vary in complexity and so does the required
capacity to regress them. It is worth mentioning, that the Explicitness pipeline, as proposed by Eastwood et al. (2023),
could actually be employed on top of the NN-heads, integrating both metrics.

For the initialization of the LNN layers and the NN heads, we use Kaiming uniform initialization as proposed in He
et al. (2015). We further use the Adam optimization scheme as proposed by Kingma & Ba (2015) with a learning rate
of 5 × 10−4 and a batch size of 128 for all optimizations. Data is split into a training (80%) and a test set (20%).
During training, part of the training set is used for validation, which is in turn used as an early stopping criterion. The
importance scores used for IWO should be allocated using the test set. In our experiments, the difference between the
importance scores computed on the training set and the test set was small. For further details on the implementation,
please refer to our official code5.

5https://github.com/cyrusgeyer/iwo
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Table 6: Implementation Details for neural network heads operating on LNN layers. For each factor, ten NN
heads with the specified number of hidden layers and their respective dimensions are trained in parallel.

Dataset Factor Layer dimensions Batch Norm Factor Discrete

dSprites

Shape 256, 256 ✗ ✓
Scale 256, 256 ✗ ✗
Rotation 512, 512, 512 ✗ ✗
x-position 256, 256 ✗ ✗
y-position 256, 256 ✗ ✗

Cars3D
model 256, 256, 256 ✗ ✓
rotation 256, 256, 256 ✗ ✗
elevation 256, 256, 256 ✗ ✗

smallNORB

category 256, 256 ✓ ✓
lightning condition 256, 256 ✓ ✗
elevation 256, 256 ✓ ✗
rotation 256, 256 ✓ ✗

Shapes3D

Floor color 128, 128 ✗ ✓
Wall color 128, 128 ✗ ✓
Object Color 128, 128 ✗ ✓
Object Size 128, 128 ✗ ✗
Object Type 128, 128 ✗ ✓
Azimuth 128, 128 ✗ ✗

Table 7: Average correlation between metrics and downstream task. Comparison between IWO, IWR and
unweighted orthogonality (O)

Random Forest Logistic Regression

Model IWO IWR O IWO IWR O

AnnealedVAE 0.74 0.82 0.53 0.77 0.85 0.60
β-TCVAE 0.78 0.66 0.12 0.45 0.09 0.02
β-VAE 0.26 0.83 -0.03 0.44 0.51 0.09
DIP-VAE-I 0.43 0.40 0.30 0.73 0.63 0.18
DIP-VAE-II 0.09 0.66 -0.27 0.88 0.16 0.64
FactorVAE 0.68 0.61 0.59 0.71 0.69 0.56

G Importance Analysis

In order to test the effectiveness of IWO and IWR’s importance weighing, we compare their downstream task
correlation with the downstream task correlation of pure orthogonality (without any weighing). Table 7 holds the
results of the correlation analysis. We can see, perhaps unsurprisingly, that the importance of weighing plays an
important role in why IWO and IWR can serve as representation quality metrics, whereas orthogonality might be a
questionable contender at best.

H Loss Analysis

In Figure 7, we depict the loss of neural network heads at different projection steps for a single run of synthetic
experiment 3 (L = 10, K = R = 5). L6 to L10 are omitted, as they are almost zero (similar to L5). Each generative
factor is analysed using GCA, which means for each generative factor we train an LNN spine with nine matrices
W9 ∈ R9×10, . . . , W1 ∈ R1×2 and 10 NN heads acting on the projections. Because of the symmetry of the synthetic
experiments, all five generative factors are similarly encoded in the latent space. In Figure 7, we are therefore
depicting the mean and standard deviation over the generative factors. An entire pass through each LNN projects the
representation to the most informative dimension for the respective generative factor. When recovering the generative
factor from that projection, we incur a loss of L1. The fraction L1/L0 tells us that this is ≈ 20% better than naive
guessing (assuming the expectation value) of the factor. We see that we can almost perfectly recover the generative
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Figure 7: Loss of neural network heads at different projection steps for a single run of synthetic experiment 3
(L = 10, K = 5 and Rj = 5). We only depict L5 to L1, as L6 to L10 are almost zero (similar to L5). Left:
Magnitude of relative loss after convergence for different projection depths. Right: Loss evolution over
training iterations.

factors from projections to 5 and more dimensions. This is expected as the experiment is set up with Rj = 5. We see
that each subsequently removed dimension increases the loss by ≈ 20%. It follows that ∆Ll/L0 ≈ 0.2, i.e. αl ≈ 0.2
for 1 ≤ l ≤ 5. The right-hand side of Figure 7 depicts the relative validation loss of the NN heads during training.
The relative loss at the 72nd iteration corresponds to the relative loss depicted in the left plot.

I Computational Resources Analysis

This section details the computational resources utilized for evaluating DCI, IWO and IWR, specifically applied to
the smallNORB dataset from disentanglement_lib using a β-VAE framework. For the GCA model specifications
please refer to section F.5.1

I.1 Experimental Setup
• Data: Learned representations of a β-VAE trained on the smallNORB dataset from the disentanglement_lib
• Objective 1: Assess the orthogonality of 60 learned representations, by performing GCA and calculating

IWO/IWR. Note that the computational resources for the calculation of IWO/IWR are negligible compared
to GCA.

• Objective 2: Assess the disentanglement of 60 learned representations, by computing the DCI metric.

I.2 Resource Utilization

In Table 8, we list the computational resources used for each run of GCA.

Table 8: Average resource utilization for each run of the GCA + IWO pipeline. No GPU was used.

Resource Usage
Process Memory 400 MB
CPU Process Utilization 50%
GPU Process Utilization 0%

I.3 Runtime Analysis
• GCA Average Duration: 7 minutes per run (20 Epochs)
• DCI Average Duration: 4 minutes per run.
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I.4 Computational Cost Considerations for GCA
• For GCA computational costs scale with the number of linear layers in the LNN spine and the capacity of

the NN heads.
• For large latent spaces, one should avoid step-wise dimensionality reduction in the LNN spine; larger reductions

between consecutive LNN layers are preferred.
• The first LNN layer size need not match the dimensionality of the representation. For large representations,

a smaller first LNN layer is recommended.
• GPU usage is beneficial for larger representations and models
• Performing GCA on pretrained smallNORB representations shows small computational costs, comparable to

those necessary for computing DCI.
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