
PORTAL: Scalable Tabular Foundation Models via
Content-Specific Tokenization

Marco Spinaci
SAP France

marco.spinaci@sap.com

Marek Polewczyk
SAP SE

marek.polewczyk@sap.com

Johannes Hoffart
SAP SE

johannes.hoffart01@sap.com

Markus C. Kohler
SAP SE

markus.kohler01@sap.com

Sam Thelin
SAP SE

sam.thelin@sap.com

Tassilo Klein
SAP SE

tassilo.klein@sap.com

Abstract

Self-supervised learning on tabular data seeks to apply advances from natural
language and image domains to the diverse domain of tables. However, current
techniques often struggle with integrating multi-domain data and require data
cleaning or specific structural requirements, limiting the scalability of pre-training
datasets. We introduce PORTAL1 (Pretraining One-Row-at-a-Time for All tabLes),
a framework that handles various data modalities without the need for cleaning or
preprocessing. This simple yet powerful approach can be effectively pre-trained on
online-collected datasets and fine-tuned to match state-of-the-art methods on com-
plex classification and regression tasks. This work offers a practical advancement
in self-supervised learning for large-scale tabular data.

1 Introduction

The introduction of BERT Devlin et al. (2019), powered by the transformer architecture and enriched
by extensive unstructured data from the internet, marked a transformative era in deep learning-based
natural language processing. On the other hand, the impact of neural architectures on structured
tabular data has been less significant. Tabular data, widely used in many enterprises, is a common
target for machine learning applications but handling such data at scale presents challenges requiring
scalable analytical solutions.

Currently, tree-based ensemble methods, particularly boosting techniques, excel in managing tabular
data. Methods like XGBoost Chen and Guestrin (2016) and CatBoost Prokhorenkova et al. (2018)
generally outperform deep learning models in both effectiveness and resource efficiency, maintaining
a strong dominance Grinsztajn et al. (2022).

Despite successes in natural language, neural network methods for tabular data often underperforms
compared to gradient boosting methods, possibly due to the limited possibilities for transfer learning,
stemming from stringent preprocessing requirements. While there are attempts to adapt transformer
models for tabular data Yang et al. (2024); Ye et al. (2024); Yan et al. (2024), few achieve results

1Code is available at https://github.com/SAP-samples/portal

Table Representation Learning Workshop at NeurIPS 2024.

https://github.com/SAP-samples/portal


comparable to gradient boosting models, with successes generally confined to specific settings
Hollmann et al. (2023); Kim et al. (2024).

To address these challenges, we propose PORTAL (Pretraining One-Row-at-a-Time for All tabLes),
a transformer encoder-based model pre-trained on diverse tabular data sources, with data types
including text, numbers, and dates. PORTAL demonstrates superior performance (especially on text-
heavy datasets) with respect to both boosting (XGBoost) and transformer (CM2) approaches, while
being comparable to, and sometimes better than, state-of-the-art approaches (CatBoost, AutoGluon,
CARTE). Our core contributions are threefold:

First, we introduce an adaptable encoding structure that eliminates the need for normalization or
special handling of missing values and outliers.
Second, we implement a pre-training scheme using masked cell modeling that generalizes effectively
to fine-tuning, reducing the gap between pre-training and fine-tuning stages.
Third, we provide a comparative analysis with robust classical baselines to highlight performance
gaps between traditional tree-based methods and our transformer-based approach.

2 Related Work

Several approaches have been proposed to pre-train models on large amounts of tabular data. Here,
we highlight those most relevant to our work.

Herzig et al. (2020) was among the first to adapt BERT’s architecture to encode tables for question
answering, yet it was constrained to smaller tables. Zhu et al. (2023) developed a transformer model
divided into an encoder, backbone transformer, and decoder, but with limited scalability as only
the transformer was shared across pre-training datasets. Despite these advancements, traditional
tree-based models like CatBoost still exhibited superior performance.

Following these, Hollmann et al. (2023) pre-trained a transformer on synthetic datasets targeting high
accuracy and swift inference, though its utility was limited to smaller tables and specific classification
tasks, making it less relevant to broader applications. Yang et al. (2024) utilized TabUnit modules
that treat table cells as key-value pairs, combining transformer and LSTM decoders, pre-training on a
vast 13B-row dataset to slightly edge out XGBoost.

Ye et al. (2024) advanced a positional-encoding-free transformer using masked cell modeling on large
datasets, with nuances in text and numerical data handling that, while innovative, led only to marginal
performance gains. Meanwhile, Yak et al. (2023) introduced a "MapTransformer" architecture that
converts table rows into feature embeddings sequences, albeit restricted to a select few large datasets
for pretraining.

Yan et al. (2024) further explored transformer encoders pre-trained on discretized numerical features
with the C4.5 algorithm but required labeled datasets, thus limiting its scalability. Finally, Kim
et al. (2024) presented a graph-based encoder forming data into star-shaped graphlets for fine-tuning,
achieving state-of-the-art results with an ensemble of multiple models. Our experiments indicate that
while ensemble methods are necessary for peak performance, satisfactory results are achievable with
a standalone model setup.

3 Method

Preliminaries:

In this study, we implement an encoder-only transformer as our primary architecture, optimally
adapted for generating embeddings from heterogeneous data types. The model takes feature values
and dataset descriptors, such as column names, as inputs. Initially, dedicated type-specific encoders
convert each type of data into fixed-length embeddings. These embeddings are then combined
with column metadata information and transformed into a unified latent space, which feeds directly
into the transformer’s backbone. The output from the transformer is then decoded for each feature
individually, allowing specific processing based on the feature type.

A key characteristic of our model is its capacity to handle data on a row-by-row basis without needing
context from the rest of the table that the row comes from (or even to know if there was any other
data beyond this one row). The training process of our model is executed in two main stages. In the

2



first stage, the pre-training phase, the model sees randomly masked tokens, similarly to the process
popularized by BERT pre-training Devlin et al. (2019). In this step, the model sees a version of
the data where content is masked, but column names are left unmasked, to “prompt” the model for
completion. This is needed, since no other positional encoding is used, and therefore the model could
otherwise not determine which masked value to predict for which cell when more than one cell is
masked. The model is then fine-tuned on downstream tasks, typically consisting of either regression
or classification. All of the weights are shared between the pre-training stage and the fine-tuning one
except, possibly, the last output layer.

The conceptual framework of our method is structured into three sequential segments: encoding,
backbone, and decoding. Detailed descriptions of each segment are elaborated in the subsequent
sections of this paper. For a graphical representation of the proposed PORTAL approach, readers are
directed to refer to Fig. 1, which visually outlines the structure and flow of our methodology.

Throughout the discussion, we denote the hidden dimension of the backbone transformer model by d.

+ + + +

CE loss Huber loss

Acquisition date

16/08/2024 (Fri)

Price ($)

1792.00=+1.75·210

Description

MacBook Pro 16"

Received

TRUE

Transformer
Encoder

Number
Decoder

Text
Decoder

Date
Decoder

Figure 1: Schematic illustration of PORTAL architecture: Example on a row with 4 columns. Blue
cells denote custom encodings/decodings for date (day, month, year, day of the week, and holidays).
Green cells correspond to numbers (sign, fraction, and exponent), and gray cells correspond to text
embeddings. Dark gray cells are column name embeddings. All values are processed via a trainable
linear/embedding layer before being aggregated by sum. In the output layer, similar decoding layers
are applied before feeding the outputs to cross-entropy or Huber loss in training (see 3.3 for details).

3.1 Encoding

Depending on the type of input data, distinct encoding mechanisms are employed. Specifically, we
introduce three specialized encodings tailored for the primary atomic data types: text, numerical
values, and dates. For each cell in a table row, only one type of embedding—date, numerical, or
string—is generated and summed with the header embedding derived from the column name or
meta information. At the end of the encoding process, each input row cell is represented by a single
vector. Subsequently, all token embeddings are concatenated and passed to the backbone (in our case,
transformer encoder).

Text: For cells that include text data, we employ a pre-trained large language model (LLM) for
sentence embedding. Similar techniques were also used in other papers, such as Yak et al. (2023);
Kim et al. (2024); Ye et al. (2024); however, the details of how information from cell and content
are mixed together differ. In PORTAL, we separately embed text content and column name via
the same LLM. Both types of embeddings then undergo processing via two distinct trainable linear
layers configured to deliver output in dimension d. This alignment is necessary to allow the model to
distinguish between column name embeddings and text content embeddings.

3



Date: For date cell values, the day, month, and year (clipped to the 1950-2050 range) are individually
treated as integers and embedded in dimension d. As part of the automated feature engineering
process, d-dimensional embeddings for the day of the week are incorporated, along with those of
binary indicators that denote whether a date corresponds to a public holiday in any major countries
and territories. These vectors are then summed up together with the embedding of the column name
(followed by the same linear adaptation layer as above).

Numerical: Numerical values in our model are expressed using scientific notation: x = ±α · 2β ,
where α ranges within [1, 2) and β ∈ Z is an integer. Practically, we limit β to the range of
−127 ≤ β ≤ 127, mirroring the constraints of single precision floating-point arithmetic. Both
the sign and β, as discrete entities, are embedded in d dimensions. The fractional component is
segmented into K uniformly distributed bins using a method of soft binning. These embeddings are
then also summed up together with the column name embedding.

This numerical encoding enjoys multiple advantageous properties:

i) Adaptability to Varying Scales: This method is effective across diverse data scales. For datasets
spanning multiple orders of magnitude, the most critical components are the exponent and sign.
For more uniformly scaled data, the fractional part gains prominence. Unlike typical normalization
methods, both orders of magnitude difference and small scale ones can be captured.

ii) Outlier Robustness: Unlike other scaling techniques such as min/max scaling, having one (or
many) outliers within a dataset does not compromise the encoding of other rows.

iii) Versatility for Individual Observations: The encoding is practical for single data rows, making it
suitable both for pre-training on rows provided as sets of key-value pairs and for zero-shot inference.
This improves upon methods like quantile encoding, which do not make sense outside a reference
dataset and typically require multiple unique values to be present.

3.2 Backbone

PORTAL employs a modified version of the standard transformer encoder Vaswani et al. (2017) as
the structural backbone. This model, originally designed for natural language processing tasks, has
been adapted to align with the nuances of tabular data. Specifically, with respect the BERT Devlin
et al. (2019) implementation, we employ two important modifications. First, we have substituted the
traditional positional encodings in BERT with column name embeddings. This adaptation allows
our model to recognize and interpret the structural attributes of tabular data, where the importance
and arrangement of data are dictated by the name of the corresponding columns rather than their
sequential order. Second, we have omitted the initial [CLS] token that is standard in BERT’s
architecture. In BERT’s typical applications, this token is needed during pre-training for the next
sentence classification task. However, as our model does not engage in such tasks, the [CLS] token
would never have any loss associated to it, rendering it superfluous.

3.3 Decoding

Decoding transforms the tokens that have gone through the backbone encoder into features similar
to those in the encoding. For dates, we only predict day, month, and year. For numbers, we make a
small but crucial change: in the fraction part, we do not predict the raw value α ∈ [1, 2) but predict
either α − 1 ∈ [0, 1) or 2 − α ∈ (0, 1], depending on the parity of β. This can be expressed as
α̃ = (−1)β

(
α− 3

2

)
+ 1

2 . This ensures the target α̃ is a continuous function of x, which has theoretical
advantages for computing the derivative of the loss and has been empirically proven to perform better
for regression tasks (see Tab. 4 for details).

3.4 Training

Our methodology relies on a multi-task learning objective, incorporating contextually selected loss
components based on input type. Specifically, we integrate four distinct loss measures: binary cross-
entropy, cross-entropy, Huber loss, and L2 loss, to enhance the model’s adaptability and accuracy
across different tasks. We employ the following loss configuration:

i) Cross-entropy loss is used for discrete output fields, including day, month, year, sign, and exponent.
ii) Binary cross-entropy loss is designated for the fraction part of numerical values, following its

4



piecewise linear transformation detailed in Section 3.3.
iii) Huber loss is applied to predictions of text embeddings.
iv) L2 loss is employed for tasks involving a single 1-dimensional head, specifically for regression
during fine-tuning.

Pre-training: Pre-training involves masked prediction modeling. Mimicking the original BERT
Devlin et al. (2019) and follow-up works (e.g. RoBERTa Liu et al. (2019)), given a row for pre-
training, we select each cell with a fixed probability for masking. Following recent trends (e.g., Wettig
et al. (2023)), we use a higher 30% probability of masking. For each cell selected for masking, we
either zero out its content vector (with 80% probability), leave it unchanged (with 10% probability),
or replace it with a random value (with 10% probability). Unlike text modeling, in this last case, we
restrict the choice to other values sampled from the same column within the same table. This makes
it more challenging for the model and solves the issue of selecting a potentially arbitrary, artificial
random text or number.

Training the model entails optimizing the following objective:

θ∗ = argmin
θ

∑
i∈{d,m,y,s,f,e,t}

ωiLi(θ), (1)

where θ ∈ Rk denotes the k trainable parameters, ωi ∈ R are the weighting terms, Li, for i ∈
{d,m, y, s, f, e} denote the cross-entropy losses for day, month, year, sign, fraction, and exponent,
and the Huber loss for text embeddings, respectively. Each of the 7 losses is the result of averaging
across all masked tokens of the corresponding type (if any).

Fine-tuning: During fine-tuning, the decoding heads are removed and replaced by a single “pooling”
head (e.g., selecting the first token from the transformer output), followed by two linear layers with a
non-linearity and dropout in between. For classification, the final layer has as many output nodes as
there are classes, trained with cross-entropy loss. For regression, two strategies can be employed. On
the one hand, we employ the same shape as the number decoding head above (typically 257 nodes,
of which one is used to predict the sign bit, one for α̃ ∈ [0, 1], and the rest for the exponent in the
[−127, 127] ∩ Z range). In this case, the same losses are applied as for pre-training. Alternatively, a
single value can be predicted, and the L2 loss is used. In this last case, it is necessary to normalize
the target variable to zero mean and unit variance beforehand.

4 Experiments & Results

4.1 Setup

For the text embeddings, we leverage the SentenceTransformers Reimers and Gurevych (2019)
framework and a small open-source LLM for efficiency reasons (all-MiniLM-L6-v2)2, which was
trained on 1 billion sentences and produces embeddings v ∈ R384.

Additionally, we adopt the BERT nomenclature for model sizes (mini, small, medium, base, large),
spanning from N = 4 layers and d = 256 for “mini” to N = 24 and d = 1024 for “large”. Unless
otherwise specified, results are reported for the “base” configuration of N = 12 layers and d = 768.
Regarding the weights ωi, we employ a cascading uniform approach, i.e. ωt =

1
3 and ωi =

1
9 for all

other i ∈ {d,m, y, s, f, e}.

Our model is pre-trained using tabular data from English Wikipedia, similar to Herzig et al. (2020).
This data consists of infoboxes (treated as single-row tables) and wikidata (multi-row tables found in
article texts)—refer to Tab 1 for a breakdown of data statistics.

Table 1: Data distribution: Wikipedia pre-training data.
Name # tables Avg. rows Avg. columns Avg. cells Total cells

Infoboxes 4.2M 1 8.5 8.5 35M
Wikidata 4.4M 11.8 5.6 73 320M

2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

5

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


4.2 Training

Pre-training: During pre-training, we randomly sample a single row from each table in the corpus
each epoch, thus exposing the model to 8.6M rows per epoch across 30 epochs. This amounts to
1.8B tokens sampled from the overall 355M data points. Remark that not all wikidata rows are used
in training, though infobox rows are reviewed 30 times. We use a triangular learning rate schedule
peaking at 3 · 10−4, starting with a warmup over 5% of the training data, followed by a linear decay
to zero. A batch size of 4096 is used, and training is conducted on a single NVIDIA A10 GPU with
gradient accumulation, with micro batch sizes ranging from 64 to 256 based on model size.
For validation, 28k wikidata tables were randomly selected, with one row each set aside. Validation
involves sequentially masking each cell for a prediction task, totaling a validation set size of 155k.
Performance is evaluated using cosine similarity for text and absolute difference for numeric and date
fields; similarities between predictions and ground truth are compared to similarities between ground
truth and unique values within the same column. The final metric is then the average of relative
rankings; results are reported in Fig. 2.

0 5 10 15 20 25 30
Epoch

25%
30%
35%
40%
45%
50% Number validation mean rank

0 5 10 15 20 25 30
Epoch

12%
14%
16%
18%
20%
22%
24% Text validation mean rank

Figure 2: Epoch-wise pre-training performance: Validation metrics per epochs for the number and
text head during pre-training.

Fine-tuning: For our study, we utilized a compilation of 51 datasets referenced in Kim et al. (2024),
consisting of 11 binary classification and 40 regression datasets. Unlike Kim et al. (2024), we
consistently split data into 80% training and 20% testing across all datasets, with results detailed in
Tab. 2. We also evaluated our model on 45 predominantly numerical datasets from Grinsztajn et al.
(2022), with results presented in Tab. 3. These datasets were cleaned without strictly adhering to
Grinsztajn et al. (2022) protocols (e.g. multi-class classification was maintained) and limited to 50k
rows through random sampling, then subject to the same 80%− 20% data split.

Fine-tuning was conducted for up to 100 epochs with early stopping (patience of 20 epochs), typically
concluding between 25 and 70 epochs. Similar to Kim et al. (2024), we experimented with ensemble
learning via bagging, using 10 models. For regression, we used here a single head and L2 loss,
predicting the target value, normalized to zero mean and unit variance. Different types of regression
targets are analyzed in Section 4.4.

4.3 Results

We benchmarked our models against robust baselines, including tree boosting algorithms (XG-
Boost Chen and Guestrin (2016), CatBoost Prokhorenkova et al. (2018)) and transformer-based
architectures (CM2 Ye et al. (2024), CARTE Kim et al. (2024)). We also compared against feature-
engineered versions of boosting algorithms by providing them with text embeddings, reduced to 50
dimensions via PCA. Text columns with fewer than 50 unique values are treated as categorical and
retain default encoding methods (one-hot for XGBoost, target encoding for CatBoost). AutoGluon
was included as a baseline. Model performance was evaluated using accuracy for classification tasks
and R2 score for regression, capping the latter at zero. Note that our results differ from those in Kim
et al. (2024) due to different data splits and baselines. Kim et al. (2024) used smaller datasets (up to
2048 points), different baselines (CatBoost without text embeddings, XGBoost with different text
embeddings), and different metrics (AUC and normalized scores).
Analyzing datasets with categorical data from Kim et al. (2024), our model combined with bagging
shows state-of-the-art performance in regression and comes close for classification. Results for
PORTAL, CARTE, AutoGluon, and CatBoost with embeddings are statistically close, while XGBoost
slightly trails. Without bagging, our model outperforms CARTE, CM2, as well as boosting methods
which were not enriched via text embeddings.
For numerical datasets from Grinsztajn et al. (2022), both CatBoost and AutoGluon outperform

6



other models. However, PORTAL is competitive, surpassing XGBoost, CARTE, and CM2. This
differentiation highlights our model’s adaptability.

Table 2: Evaluation of regression and classification tasks: Performance on 51 benchmarks. Top:
Standard approaches. Bottom: Ensemble models with embeddings. Datasets: Average scores on 51
datasets from Kim et al. (2024). Training on 80% of the data, testing on 20%.

Method Acc. (%) Cl. Rank R2 Reg. Rank

CARTE w/o bagging (Kim et al., 2024) 75.2 7.1 67.6 6.8
CatBoost (Prokhorenkova et al., 2018) 75.4 6.2 66.7 6.7
XGBoost (Chen and Guestrin, 2016) 71.8 9.5 59.0 8.7
CM2 (Ye et al., 2024) 76.3 6.6 4.9 10.0
PORTAL w/o bagging 77.0 5.4 71.4 4.2
CARTE 10 models bagging 78.3 3.7 72.3 3.2
CatBoost + Embeddings 78.4 2.6 72.3 3.5
XGBoost + Embeddings 76.5 6.5 67.5 6.8
AutoGluon (Erickson et al., 2020) 78.4 3.6 72.6 3.1
PORTAL 10 models bagging 77.8 3.7 73.8 1.9

Table 3: Evaluation of regression and classification tasks: Performance on 45 benchmarks. Top:
Standard approaches. Bottom: Ensemble models with embeddings. Datasets: Average scores on 45
numerical datasets Grinsztajn et al. (2022). Training on 80% of the data, testing on 20%.

Method Acc. (%) Cl. Rank R2 Reg. Rank

CARTE w/o bagging (Kim et al., 2024) 71.9 6.5 67.1 5.7
CatBoost (Prokhorenkova et al., 2018) 87.8 2.2 75.5 3.2
XGBoost (Chen and Guestrin, 2016) 84.6 4.7 72.1 4.8
CM2 (Ye et al., 2024) 82.0 6.4 3.2 8.0
PORTAL w/o bagging 84.2 5.1 73.4 5.0
CARTE 10 models bagging 72.6 4.9 68.3 4.3
AutoGluon (Erickson et al., 2020) 87.5 1.7 77.2 1.8
PORTAL 10 models bagging 84.5 4.5 75.3 3.1

4.4 Ablation Study

Target number encoding: In Tab. 4, we present the outcomes of various experiments investigating
different encoding strategies for the target variable, denoted as y = ±α · 2β , with α̃ = (−1)β(α−
1.5) + 0.5. Each model configuration predicts either y directly or a triplet consisting of the sign, β,
and either α or α̃. For direct y prediction, we explore binning into percentiles with cross-entropy
loss or using non-binned values with L2 loss. For triplet predictions, both α and α̃ are tested as
binned or non-binned. In non-binned scenarios, α− 1, α̃ ∈ [0, 1] are learned via binary cross-entropy
loss. Furthermore, the results of applying different normalization techniques to y (no normalization,
standard scaler, power transform) are investigated.

Bagging: In Fig. 3 (top), we examine the impact of varying the number of top-performing models
(in terms of validation metrics) included in bagging on the overall score. Our analysis indicates that
averaging results between 5 and 7 models yields the optimal results, increasing overall classification
accuracy by ∼0.4% and regression R2 score by ∼0.2%.

Note, although adopting this technique would have significantly improved our results, we refrained
from including them in Tab. 2, as these ablation results were obtained on the test set directly. However,
from an application point of view, it is interesting to note that this approach could maintain, and even
surpass, the performance of a full bagging model, while halving the inference runtime.

Model size and pretraining: Finally, we test different model sizes, as well as the effect of pretraining.
Results are reported in Figure 3 (bottom). While, on average, pretraining brings a benefit, and
larger models do perform better, the relation is noisy. We suspect both effects might become more
pronounced with a larger pretraining dataset.

7



Table 4: Ablation of regression target encoding. We report separately the average score of
max(R2, 0) and the number (out of 40 experiments) of “failures”, i.e., when R2 < 0 (or when power
transforms resulted in infinity / NaN), to prevent negative scores from impacting the average too
much. Numbers refer to fine-tuning a pre-trained “base” size model, without bagging, and with a
shorter patience of 10 epochs.

Method Targets Binned? Loss Normalization R2 score (%) # Failures

PORTAL L2 y No L2 Standard 70.9 0
PORTAL α̃ ±, α̃, β No XE None 67.3 0

Raw L2 y No L2 None 58.1 0
Percentile y Yes XE None 63.8 0

Not continuous ±, α− 1, β No XE None 57.8 4
Binned α̃ ±, α̃, β Yes XE None 64.6 1

Continuous L2 ±, α̃, β No L2 None 63.8 1
Standard α̃ ±, α̃, β No XE Standard 64.1 0
Power L2 y No L2 Power 67.2 2
Power α̃ ±, α̃, β No XE Power 58.0 4

1 2 3 4 5 6 7 8 9 10
Number of models used

70.0%

71.0%

72.0%

73.0%
Regression R² score

1 2 3 4 5 6 7 8 9 10
Number of models used

77.6%

77.8%

78.0%

78.2%
Classification accuracy

mini medium base large
Model size

75%

76%

Classification Accuracy

scratch
pretrained

mini medium base large
Model size

62%

64%

66%

Regression R2 score

scratch
pretrained

Figure 3: Performance analysis by model size and count: Top: Effect of bagging on R2 score and
accuracy: this experiment was conducted by selecting top n performing models (based on validation
R2 scores and accuracy) from a single batch of 10 runs. Bottom: Performance of models of different
sizes, trained on the full training datasets (using patience = 10 epochs and, for regression, predicting
α̃ with binary cross-entropy loss)

5 Conclusion and Limitations

This study introduced a novel transformer encoder-based model, PORTAL, which excels on text-
heavy datasets and competes strongly with, and occasionally surpasses, established models like
XGBoost, CatBoost, and AutoGluon. The model features an innovative encoding structure and a
pre-training scheme using masked cell modeling, removing the need for data normalization and
enhancing adaptability during fine-tuning, showing potential benefits over traditional tree-based
methods.

However, PORTAL faces challenges, possibly stemming from having used Wikipedia data for pre-
training, which may not adequately represent diverse tabular datasets. Incorporating broader datasets
such as OpenTabs Ye et al. (2024) or the CSV subset from The Stack Kocetkov et al. (2023) could
increase the model’s versatility. Additionally, enhancing the text embedding strategy and optimizing
the model for numerical data handling could further improve performance. In particular, larger
embedding models have shown better performance in various domains (e.g., Grinsztajn et al. (2023)),
which is a route we have not yet examined in detail.

8



Moreover, the computational efficiency of PORTAL lags behind more optimized models. Future
work should focus on optimizing pre-training strategies to boost efficiency, perhaps by refining
larger models or using optimized ensemble configurations. Addressing these limitations is key to
improving PORTAL’s effectiveness and real-world applicability, offering promising directions for
future research.

References
Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794, New York, NY, USA. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. 2020. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505.

Léo Grinsztajn, Edouard Oyallon, Myung Jun Kim, and Gaël Varoquaux. 2023. Vectorizing string
entries for data processing on tables: when are larger language models better? arXiv preprint
arXiv:2312.09634.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. 2022. Why do tree-based models still
outperform deep learning on typical tabular data? In Advances in Neural Information Processing
Systems, volume 35, pages 507–520. Curran Associates, Inc.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian Eisen-
schlos. 2020. TaPas: Weakly supervised table parsing via pre-training. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 4320–4333, Online.
Association for Computational Linguistics.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. 2023. TabPFN: A trans-
former that solves small tabular classification problems in a second. In The Eleventh International
Conference on Learning Representations.

Myung Jun Kim, Leo Grinsztajn, and Gael Varoquaux. 2024. Carte: Pretraining and transfer for
tabular learning. In Forty-first International Conference on Machine Learning.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, Yacine Jernite, Margaret
Mitchell, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
Werra, and Harm de Vries. 2023. The stack: 3 TB of permissively licensed source code. Transac-
tions on Machine Learning Research.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692.

Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush,
and Andrey Gulin. 2018. Catboost: unbiased boosting with categorical features. In NeurIPS, pages
6639–6649.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837.

9

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/2020.acl-main.398
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=pxpbTdUEpD
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#ProkhorenkovaGV18
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084


Alexander Wettig, Tianyu Gao, Zexuan Zhong, and Danqi Chen. 2023. Should you mask 15% in
masked language modeling? In Proceedings of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages 2985–3000, Dubrovnik, Croatia. Association
for Computational Linguistics.

Scott Yak, Yihe Dong, Javier Gonzalvo, and Sercan Arik. 2023. Ingestables: Scalable and efficient
training of llm-enabled tabular foundation models. In NeurIPS 2023 Second Table Representation
Learning Workshop.

Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Chen, Jimeng Sun, Jian Wu, and Jintai
Chen. 2024. Making pre-trained language models great on tabular prediction. In The Twelfth
International Conference on Learning Representations.

Yazheng Yang, Yuqi Wang, Guang Liu, Ledell Wu, and Qi Liu. 2024. Unitabe: A universal pretraining
protocol for tabular foundation model in data science. In The Twelfth International Conference on
Learning Representations.

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao. 2024. Towards
cross-table masked pretraining for web data mining. In Proceedings of the ACM on Web Conference
2024, pages 4449–4459.

Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. 2023.
Xtab: cross-table pretraining for tabular transformers. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org.

10

https://doi.org/10.18653/v1/2023.eacl-main.217
https://doi.org/10.18653/v1/2023.eacl-main.217
https://openreview.net/forum?id=anzIzGZuLi
https://openreview.net/forum?id=6LLho5X6xV
https://openreview.net/forum?id=6LLho5X6xV

	Introduction
	Related Work
	Method
	Encoding
	Backbone
	Decoding
	Training

	Experiments & Results
	Setup
	Training
	Results
	Ablation Study

	Conclusion and Limitations

