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ABSTRACT

Continual Test-Time Adaptation (CTTA) is an emerging and challenging task
where a model trained in a source domain must adapt to continuously changing
conditions during testing, without access to the original source data. CTTA is
prone to error accumulation due to uncontrollable domain shifts, leading to blurred
decision boundaries between categories. Existing CTTA methods primarily focus
on suppressing domain shifts, which proves inadequate during the unsupervised test
phase. In contrast, we introduce a novel approach that guides rather than suppresses
these shifts. Specifically, we propose Controllable Continual Test-Time Adaptation
(C-CoTTA), which explicitly prevents any single category from encroaching on
others, thereby mitigating the mutual influence between categories caused by
uncontrollable shifts. Moreover, our method reduces the sensitivity of model to
domain transformations, thereby minimizing the magnitude of category shifts.
Extensive quantitative experiments demonstrate the effectiveness of our method,
while qualitative analyses, such as t-SNE plots, confirm the theoretical validity
of our approach. Our code is available at https://anonymous.4open.science/r/C-
CoTTA-BC4F/.

1 INTRODUCTION

Continual Test-Time Adaptation (CTTA) (Wang et al., 2022) is becoming an emerging field, which
explores the adaptability of any machine learning model during test time in dynamic environments.
The primary objective of CTTA is to enable a pretrained model to adapt to continuously changing
scenarios, where the distribution of data shifts over time. CTTA is practical in many long-term
intelligent applications, such as autopilot (Hu et al., 2022; O’Kelly, 2021; Chen, 2020), monitoring
(Geiger et al., 2013), medical image analysis (Chen et al., 2023; Gonzalez et al., 2020), where models
need to remain robust and accurate against possible changes over extended periods.

The main challenge of CTTA is the accumulation of errors caused by the lack of real labels and the
continuous domain shifts. Existing methods mainly avoid error accumulation by using strategies
such as Mean Teacher (Tarvainen & Valpola, 2017), augmentation-averaged predictions (Wang et al.,
2022; Lyu et al., 2024; Liu et al., 2023), and selecting reliable samples (Yang et al., 2023; Niloy
et al., 2024; Niu et al., 2022; Wang et al., 2024) to minimize the impact of domain shift. However,
these methods focus on suppressing the shifts, few methods explicitly attempt to guide or control
the shifts. This is because the lack of labels in the target domain and the inability to obtain source
domain data in CTTA. We evaluate this on CIFAR10C, as shown in Fig. 1(a), we find that in the
domain adaptation process, multiple categories to lean towards a confusion region. In fact, CTTA
meets continuous unknown domain shifts, making this shift almost uncontrollable. This phenomenon
will worsen with the changing domain over time, resulting in error accumulation.

Therefore, we hypothesize that instead of attempting to suppress the shift, guiding or controlling the
shift to remain class-separable may also achieve effective adaptation. On top of this, the main focus
of this paper is to study how to achieve controllable domain shift in CTTA. Generally, controlling
domain shifts means that controlling the direction of the shift in feature space. To achieve this, we
first need to accurately represent the direction of domain shift. Inspired by the interpretable machine
learning (Kim et al., 2018), we represent shift directions using the tool of Concept Ativation Vectors
(CAV) (Pahde et al., 2022), which represents the transformation path from one concepts to another.
In CTTA, the CAV can be represented by the vector from one prototype to another. With CAV, for a
specific category, we obtain its domain shift direction by subtracting the category prototype of the
target domain in the feature space from the category prototype of the source domain.
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Figure 1: t-SNE visualization of controllable domain shift in CTTA. (a) For CoTTA (Wang et al.,
2022), due to the lack of control over domain shift, categories being biased towards others, resulting
in fuzzy classification boundaries. (b) In contrast, our method achieves controllable domain shift, so
even if categories are shift, it will not lead to confusion among categories.

To further control domain shift, we construct the Domain Shift Controlling Loss (DSCL) loss and
the Class Shift Controlling Loss (DSCL) loss. DSCL refers to controlling the shift of the overall
domain by constraining the model’s sensitivity in that direction, thus reducing the impact of domain
shift on model performance. DSCL controls the shift of specific categories by constraining the shift
direction of each category to avoid biasing other categories. As shown in Fig. 1(b), our method
achieve controllable domain shift, and the direction of the shift will not blur the classification
boundaries. Extensive experiments are conducted on three large-scale benchmark datasets to validate
the effectiveness of the proposed C-CoTTA framework in various challenging and realistic scenarios.

Our contributions are three-fold:

(1) We evaluate and find that only suppressing domain shifts is insufficient, which may lead to
blurred classification boundaries. In contrast, we propose to guide and control shifts to keep the
class-separability.

(2) We propose a simple and effective direction representation based on Concept Activation Vectors
(CAV) in interpretable machine learning, which utilizes the difference between two prototypes in
the feature space.

(3) We propose to explicitly control the direction of specific category bias by preventing any category
from leaning towards other categories, in order to prevent the blurring of classification boundaries;
at the same time, by reducing the sensitivity of the model to domain shift, we control the overall
domain shift to alleviate the impact of domain shift on domain adaptation.

2 RELATED WORK

2.1 CONTINUAL TEST-TIME ADAPTATION

Continual Test-Time Adaptation (CTTA) (Wang et al., 2022) is an emerging paradigm within the
machine learning community designed to address the dynamic nature of real-world data distributions.
Unlike traditional Test-Time Adaptation (TTA) (Jain & Learned-Miller, 2011; Sun et al., 2020; Wang
et al., 2020), which typically assumes a fixed target domain in a source-free and online manner, CTTA
operates under the assumption that the target domain may change over time. The main challenge in
CTTA is the potential for catastrophic forgetting and error accumulation. During the test time, as the
model adapts to new distributions, it risks losing previously learned knowledge, which can result in a
degradation in performance known as catastrophic forgetting (Van de Ven & Tolias, 2019). Moreover,
the utilization of pseudo-labels derived from the model’s own predictions can introduce errors, which
may accumulate over time (Li & Hoiem, 2017; Wang et al., 2022), especially when there are frequent
domain shifts.

To address the challenges of error accumulation in CTTA, researchers have developed various
strategies. A number of works (Wang et al., 2022; Lyu et al., 2024; Liu et al., 2023) employ
augmentation-averaged predictions for the teacher model to boost the teacher’s confidence, while
others (Chakrabarty et al., 2023; Döbler et al., 2023) add perturbations to the student to enhance the
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model’s robustness. Various methods (Yang et al., 2023; Niloy et al., 2024; Niu et al., 2022; Wang
et al., 2024) focus on selecting reliable samples to eliminate the impact of misclassified samples
on domain adaptation. As to the challenge of catastrophic forgetting, Wang et al. (Wang et al.,
2022) and Brahma et al. (Brahma & Rai, 2023) believe that the source model is more reliable, thus
they designed to restore the source parameters. While these studies address the CTTA issue at the
model level, other research efforts (Gan et al., 2023; Yang et al., 2023; Ni et al., 2023) leverage
visual domain prompts or a limited subset of parameters to extract ongoing target domain knowledge.
However, these approaches primarily focus on suppressing domain shift and there are few methods
that explicitly attempt to guide or control domain shift.

2.2 CONCEPT ACTIVATION VECTORS

Concept Activation Vectors (CAVs) is an interpretability tool for explaining decision-making pro-
cesses in deep learning models. Originally, the authors of Kim et al. (2018) define CAV as the
normal to a hyperplane that separates examples without a concept from examples with a concept in
the model’s latent activations. This hyperplane is commonly computed by solving a classification
problem, for example, using Support Vector Machines (SVMs) Anders et al. (2022), ridge (Cortes
& Vapnik, 1995), lasso (Pfau et al., 2021) or logistic regression (Yuksekgonul et al., 2022). Given
its ability to effectively orient concepts, CAVs have been employed for a plethora of tasks in recent
years, such as concept sensitivity testing (Kim et al., 2018), model correction for shortcut removal
(Anders et al., 2022; Pahde et al., 2023; Dreyer et al., 2023), knowledge discovery by investigation
of internal model states (McGrath et al., 2022), and training of post-hoc concept bottleneck mod-
els (Yuksekgonul et al., 2022). However, common regression-based methods tend to deviate from
the true conceptual direction due to factors such as noise in the data (Haufe et al., 2014). To that
end, signal-pattern-based CAVs (referred to signalCAVs) have been proposed (Pahde et al., 2022),
which are more robust against noise (Weber et al., 2023; Dreyer et al., 2024; Samek, 2023; Biecek &
Samek, 2024). However, during test-time, we may not have access to all samples of a prototype, and
due to the lack of true labels, misclassified samples may contaminate the prototype. Therefore, the
construction of a prototype is different from interpretable machine learning.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a classification model pre-trained on a source domain, CTTA methods adapt the source model
to the unlabeled target data, where the domain continuously changes. The unsupervised dataset of
target domains are denoted as Dk = {xk

m}Nk

m=1, where k is the target domain index. As shown in
Figure 1, in the process of CTTA, if the domain shifts are uncontrolled, some categories may generate
bias towards other categories, resulting in blurred classification boundaries. In this paper, we propose
to explicitly control over the shift direction in CTTA. specific categories and the overall domain. In
the following, we first study how to represent domain shifts in Sec. 3.2. Then, we propose to control
the shift within the process of CTTA in Sec. 3.3.

3.2 REPRESENTING SHIFT VIA CAV

Domain shift refers to the distribution shift of each class that occurs in the feature space, generally
caused by differences between the target domain distribution in the testing phase and the source
domain distribution in the training phase. Therefore, how to represent the domain shift direction in
the feature space in CTTA is a challenge.

In the field of interpretable machine learning (Kim et al., 2018; McGrath et al., 2022), CAV (Kim
et al., 2018) refers to the normal to a hyperplane that separates examples without a concept from
examples with a concept in the model’s latent activations feature space. CAV is widely used in areas
such as model correction for shortcut removal (Anders et al., 2022; Pahde et al., 2023; Dreyer et al.,
2023). The concept in CAV generally refers to high-level semantic information, such as whether
there are a large number of striped structures in an image. For example, in the concept of stripe, the
label for features extracted from images with stripes is 1, and without stripes is 0.

3
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Figure 2: The pipeline of C-CoTTA. (a) Based on the mean teacher framework, perturb the student to
enhance model robustness, while optimizing using symmetric cross-entropy. (b) Control the overall
domain shift by constraining the model’s sensitivity to domain shift directions. (c) Control the shift of
a specific category by directly controlling the shift direction of any category to prevent bias towards
other categories.

CAV can be calculated in different methods, we use the signal-pattern-based CAVs (SCAV) (Pahde
et al., 2022) which provide a simple but effective way to represent the CAV v as follows:

v =
cov[f(x), t]

cov[t, t]
=

∑
(f(xi)− f(x))(ti − t)∑

(ti − t)2
, ti =

{
1 if xi ∈ Xc,

0 if xi ∈ Xn.
, (1)

where f(·) represents the feature extractor and t represents the concept label of the features, Xc and
Xn denote sets of samples that either possess or lack the specified concept, respectively. Mean feature
f(x) = 1

N

∑
f(xi) and mean label t = 1

N

∑
ti.

Nevertheless, in the traditional CAV, the concept label t is manually annotated offline. In contrast,
in unsupervised CTTA scenario, to represent the domain shift direction in an online manner is
intractable. Therefore, we use the pseudo-label y obtained by the existing model to represent concepts
automatically. The shift representation for the direction in CTTA can be computed as follows:

v =
cov[f(x), y]

cov[y, y]
=

∑
(f(xi)− f(x))(yi − y)∑

(yi − y)2
, yi =

{
1 if xi ∈ Xt,

0 if xi ∈ Xs.
, (2)

where Xt and Xs represent two different data sets (which may express two different categories or
two different domains). At the same time, through deduction (refer to Appendix A for details), it is
determined that the direction can be further represented as the difference between two prototypes in
the feature space.

v =
1

|Xt|
∑

xi∈Xt

f(xi)−
1

|Xs|
∑

xi∈Xs

f(xi) = pt − ps. (3)

Based on this, we can calculate various directional vectors, in order to further control domain shift.

Domain-level source-to-target shift. We represent the shift of the overall domain as below:

vs→t = pt − ps, (4)

This calculates by subtracting the target domain prototype pt composed of all samples in each batch
at test-time from the source domain prototype ps composed of prototypes of all categories in the
source domain as shown in Figure 2(b). Using the source domain prototype does not violate the
CTTA setup, which does not lead to privacy leakage and some previous methods also directly use the
source domain prototype, such as RMT Döbler et al. (2023) and SATA Chakrabarty et al. (2023).

4
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Class-level source-to-target shift. We also represent the shift of a specific category i as below:

vs→t
i = pt

i − ps
i , (5)

where we construct it by subtracting the prototype pt
i composed of trustworthy samples belonging

to that category in each batch at test time from the source domain prototype ps
i of that category as

shown in Figure 2(c). Moreover, during test time, some samples may be misclassified due to the lack
of real labels, leading to distortion in the extracted prototypes. Therefore, we estimate the entropy
H(xt) for each sample xt from the target domain using the model. We then set aside samples with
an entropy exceeding a predefined threshold E0 following Niu et al. (2022).

Class-to-class source shift. We then construct class relative shift from category i to j as below:

vs
i→j = ps

j − ps
i . (6)

As shown in Figure 2(c), this is calculated by using the source domain category prototypes ps
i and

ps
j , representing the inherent domain difference between source classes.

3.3 CONTROL OF SHIFT

We control the shift at domain and class levels. On one hand, the shift of different categories are
influenced by the overall domain shift, which is represented by closely aligned feature distributions.
This means that after domain shift, the distances between different categories in the feature space
become closer. This finding is similar to the conclusions drawn in studies such as Xu et al. (2019);
Kondo (2022); Rahman et al. (2021), where researchers found that the feature norms in the target
domain are relatively small. On the other hand, the shift of different categories is related to their
characteristics and may show different shifts.

Domain-level shift controlling. First, we propose to control the shift of the overall domain at the
domain level. Specifically, we model the shift sensitivity by considering the gradient of the model
output h(g(xi)) with respect to the feature map g(xi), and then combine it with the overall domain
shift direction vs→t. We can then reduce the sensitivity of the model to domain shift by constraining
the direction gradient as follows:

LDSCL =
∑

xi∈Xb

∣∣∣∣∂h(g(xi))

∂g(xi)
· vs→t

∣∣∣∣ , (7)

where h(·) represents the remaining part of the model. Intuitively, the Domain Shift Controlling
Loss (DSCL) loss LDSCL enforces the model output to not change when slightly adding or removing
activations along the bias direction as follows:

lim
ϵ→0

h(g(x) + ϵvs→t)− h(g(x))

ϵ
= 0. (8)

Thus, by minimizing LDSCL, the model becomes insensitive towards the domain shift direction,
thereby reducing the impact of domain shift on the domain adaptation process.

Class-level shift controlling. Then, in order to prevent uncontrollable shifts of each category, we
propose to control class-level shift to avoid any category leaning towards other categories. This
requires that the direction of shift vs→t

i for any category is preferably the opposite direction of the
direction vs

i→j of other categories relative to that category as shown in Fig. 2(c). This means that
the dot product of vs→t

i and vs
i→j should be as small as possible. The Class Shift Controlling Loss

(CSCL) loss is calculated as follows:

LCSCL =

c∑
i=1

c∑
j ̸=i

vs→t
i

∥vs→t
i ∥2

·
vs
i→j

∥vs
i→j∥2

, (9)

where we normalize vs→t
i and vs

i→j . The loss LCSCL is to prevent any category from shifting
towards other categories, achieving controllable domain shift, effectively preventing the decrease in
classification performance caused by blurred category boundaries in continuous domain adaptation.

5
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Algorithm 1 Controllable Continual Test-Time Adaptation

Require: Target domains data Dk = {xk
m}Nk

m=1, Source model, Source domain class prototype ps
i

1: Generate the category relative direction vectors vs
i→j = ps

j − ps
i before domain adaptation

2: for a domain k in K do
3: for a batch {xk

b}Bb=1 in Dk do
4: Forward the batch, make predictions and get features
5: Identify reliable samples with low entropy using a predefined threshold E0

6: Compute the direction of the domain shift vs→t = pt − ps and constrained via Eq. 7
7: Compute the direction of the class shift vs→t

i = pt
i − ps

i and constrained via Eq. 9
8: Compute the symmetric cross-entropy loss via Eq. 10
9: Optimize model by minimizing L via Eq. 11 and update student and teacher models

10: end for
11: end for

3.4 OVERALL OBJECTIVE

Our work utilizes the symmetric cross-entropy (SCE) loss LSCE following Döbler et al. (2023),
which is based on the mean teacher framework, involving simply averaging the weights of a student
model over time. The resulting teacher model provides a more accurate prediction function than the
final function of the student, meanwhile perturbs the student to enhance the robustness of the model
(Xie et al., 2020; Sohn et al., 2020). The SCE loss (Wang et al., 2019) which has superior gradient
properties compared to the commonly used cross-entropy loss. For enhancing the output of students
q and teachers p, the SCE loss is defined as follows:

LSCE = −
∑C

c=1
qc logpc −

∑C

c=1
pc logqc. (10)

The overall objective of our proposed continual test-time adaptation method is as follows:
L = LSCE + λ1LDSCL + λ2LCSCL, (11)

where λ1, and λ2 are the hyperparameters. LDSCL refers to controlling the shift of the overall
domain, which constrains the model’s sensitivity in that direction. LCSCL controls the shift of specific
categories, which constrains the shift direction of each category to avoid biasing other categories.
The overall frame diagram is shown in Figure 2.

We illustrate the whole algorithm in Algorithm 1. First, before domain adaptation begins, we use the
source domain category prototypes to calculate the inter-class relative direction vector vs

i→j . During
domain adaptation, on one hand, we calculate the shift direction vs→t

i for specific categories and
constrain it through the loss LCSCL; on the other hand, we calculate the shift direction vs→t for the
entire domain and constrain it through the loss LDSCL. Additionally, we compute the symmetric
cross-entropy loss for the prediction logits of the student and teacher, optimize it via Eq. 11, and
update the student and teacher models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We evaluate our proposed method on three CTTA benchmark datasets, including CIFAR10-
C, CIFAR100-C, and ImageNet-C. Each dataset contains 15 types of corruptions with 5 levels of
severity, ranging from 1 to 5. For simplicity in tables, we use Gauss., Impul., Defoc., Brit., Contr.,
Elas. and Pix. to represent Gaussian, Impulse, Defocus, Brightness, Contrast, Elastic,and Pixelate,
respectively.

Pretrained Model. Following previous studies (Wang et al., 2020; 2022), we adopt the pretrained
WideResNet-28 (Zagoruyko & Komodakis, 2016), ResNeXt-29 (Xie et al., 2017) and ResNet-50 (He
et al., 2016) for CIFAR10-C, CIFAR100-C and Imagenet-C, respectively. Similar to CoTTA, we
update all the trainable parameters in all experiments.

Methods to be Compared. We compare our C-CoTTA with the original model (Source) and multiple
state-of-the-art (SOTA) methods such as BN (Li & Hoiem, 2017; Schneider et al., 2020), TENT (Wang

6
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Table 1: Classification error rate (%) for standard CIFAR10-C continual test-time adaptation task.
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. Jpeg Mean

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 09.3 46.7 26.6 58.5 30.3 43.5
BN Li & Hoiem (2017) 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 08.4 12.6 23.8 19.7 27.3 20.4
TENT Wang et al. (2020) 24.8 20.6 28.5 15.1 31.7 17.0 15.6 18.3 18.3 18.1 11.0 16.8 23.9 18.6 23.9 20.1
CoTTA Wang et al. (2022) 24.5 21.5 25.9 12.0 27.7 12.2 10.7 15.0 14.1 12.7 07.6 11.0 18.5 13.6 17.7 16.3
RoTTA Yuan et al. (2023) 30.3 25.4 34.6 18.3 34.0 14.7 11.0 16.4 14.6 14.0 08.0 12.4 20.3 16.8 19.4 19.3
RMT Döbler et al. (2023) 24.1 20.2 25.7 13.2 25.5 14.7 12.8 16.2 15.4 14.6 10.8 14.0 18.0 14.1 16.6 17.0
PETAL Brahma & Rai (2023) 23.7 21.4 26.3 11.8 28.8 12.4 10.4 14.8 13.9 12.6 07.4 10.6 18.3 13.1 17.1 16.2
SATA Chakrabarty et al. (2023) 23.9 20.1 28.0 11.6 27.4 12.6 10.2 14.1 13.2 12.2 07.4 10.3 19.1 13.3 18.5 16.1
DSS Wang et al. (2024) 24.1 21.3 25.4 11.7 26.9 12.2 10.5 14.5 14.1 12.5 07.8 10.8 18.0 13.1 17.3 16.0
SWA Yang et al. (2023) 23.9 20.5 24.5 11.2 26.3 11.8 10.1 14.0 12.7 11.5 07.6 09.5 17.6 12.0 15.8 15.3

Ours 22.7 17.9 23.8 11.6 24.3 12.8 09.5 13.1 12.4 11.6 08.0 09.5 16.4 11.4 15.6 14.7

Table 2: Classification error rate (%) for standard CIFAR100-C continual test-time adaptation task.
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. Jpeg Mean

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN Li & Hoiem (2017) 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4
TENT Wang et al. (2020) 37.2 35.8 41.7 37.9 51.2 48.3 48.5 58.4 63.7 71.1 70.4 82.3 88.0 88.5 90.4 60.9
CoTTA Wang et al. (2022) 40.1 37.7 39.7 26.9 38.0 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5
RoTTA Yuan et al. (2023) 49.1 44.9 45.5 30.2 42.7 29.5 26.1 32.2 30.7 37.5 24.7 29.1 32.6 30.4 36.7 34.8
RMT Döbler et al. (2023) 40.2 36.2 36.0 27.9 33.9 28.4 26.4 28.7 28.8 31.1 25.5 27.1 28.0 26.6 29.0 30.2
PETAL Brahma & Rai (2023) 38.3 36.4 38.6 25.9 36.8 27.3 25.4 32.0 30.8 38.7 24.4 26.4 31.5 26.9 32.5 31.5
DSS Wang et al. (2024) 39.7 36.0 37.2 26.3 35.6 27.5 25.1 31.4 30.0 37.8 24.2 26.0 30.0 26.3 31.1 30.9
SATA Chakrabarty et al. (2023) 36.5 33.1 35.1 25.9 34.9 27.7 25.4 29.5 29.9 33.1 23.6 26.7 31.9 27.5 35.2 30.3

Ours 38.1 34.8 36.4 27.1 34.3 27.7 26.1 28.7 28.5 30.9 24.1 26.2 28.2 26.2 31.2 29.9

et al., 2020), CoTTA (Wang et al., 2022), RoTTA (Yuan et al., 2023), SATA (Chakrabarty et al., 2023),
SWA (Yang et al., 2023), PETAL (Brahma & Rai, 2023), RMT (Döbler et al., 2023), DSS (Wang
et al., 2024). All compared methods utilize the same backbone and pretrained model. All experiments
are conducted on a single RTX 4090.

4.2 MAJOR RESULTS FOR CONTINUAL TEST-TIME ADAPTATION BENCHMARKS

Experiments on CIFAR10-C. We first evaluate the effectiveness of the proposed model on the
CIFAR10-C dataset. We compare our method to the source-only baseline and nine SOTA methods.
As shown in Table 1, directly using pre-trained model without adaptation yields a high average error
rate of 43.5%. BN method improve the performance by 23.1% compared to the source-only baseline.
Among all comparison methods, SWA achieve the lowest error rate of 11.2%, 11.8% and 11.5% on
Defoc., Motion and Fog, respectively. Both PETAL and SATA achieve the lowest error rate of 7.4%
on Brit.. In other conditions, our proposed method outperforms or is comparable to all the above
methods. In conclusion, our method achieve the lowest average error rate, which is reduced to 14.7%.

Experiments on CIFAR100-C. To further demonstrate the effectiveness of the proposed method,
we evaluate it on the more difficult CIFAR100-C task with the source-only baseline and eight SOTA
methods. The experimental results are shown in Table 2. Generally speaking, our method not only
achieved the lowest error rates on the Snow, Frost, Fog, and Pix. tasks but also had the lowest average
error rate. We improve the performance by 16.5% and 0.4% compared to the source-only baseline
and SATA, respectively.

Experiments on ImageNet-C. The last experiment is conducted on ImageNet-C to further demon-
strate the effectiveness of the proposed method. The experimental results can be seen in Table 3.
Compared with the SOTA methods, the proposed method achieve the lowest average error rate.
Noteworthily, the proposed method outperforms SATA by a large margin for the Shot(71.6% vs.
72.9%), Impul. (68.7% vs. 71.6%), Defoc. (74.0% vs. 75.7%) and Glass. (71.6% vs. 74.1%)
corruptions.

4.3 ABLATION STUDIES

We perform ablation study experiments to evaluate the effectiveness of major components of C-
CoTTA on three benchmarks. For simplicity, we denote the Class Shift Controlling Loss as CSCL
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Table 3: Classification error rate (%) for standard ImageNet-C continual test-time adaptation task.
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. Jpeg Mean

Source 95.3 95.0 95.3 86.1 91.9 87.4 77.9 85.1 79.9 79.0 45.4 96.2 86.6 77.5 66.1 83.0
BN Li & Hoiem (2017) 87.7 87.4 87.8 88.0 87.7 78.3 63.9 67.4 70.3 54.7 36.4 88.7 58.0 56.6 67.0 72.0
TENT Wang et al. (2020) 81.6 74.6 72.7 77.6 73.8 65.5 55.3 61.6 63.0 51.7 38.2 72.1 50.8 47.4 53.3 62.6
CoTTA Wang et al. (2022) 84.7 82.1 80.6 81.3 79.0 68.6 57.5 60.3 60.5 48.3 36.6 66.1 47.2 41.2 46.0 62.7
RoTTA Yuan et al. (2023) 88.3 82.8 82.1 91.3 83.7 72.9 59.4 66.2 64.3 53.3 35.6 74.5 54.3 48.2 52.6 67.3
RMT Döbler et al. (2023) 79.9 76.3 73.1 75.7 72.9 64.7 56.8 56.4 58.3 49.0 40.6 58.2 47.8 43.7 44.8 59.9
PETAL Brahma & Rai (2023) 87.4 85.8 84.4 85.0 83.9 74.4 63.1 63.5 64.0 52.4 40.0 74.0 51.7 45.2 51.0 67.1
DSS Wang et al. (2024) 84.6 80.4 78.7 83.9 79.8 74.9 62.9 62.8 62.9 49.7 37.4 71.0 49.5 42.9 48.2 64.6
ViDA Liu et al. (2023) 79.3 74.7 73.1 76.9 74.5 65.0 56.4 59.8 62.6 49.6 38.2 66.8 49.6 43.1 46.2 61.2
SATA Chakrabarty et al. (2023) 74.1 72.9 71.6 75.7 74.1 64.2 55.5 55.6 62.9 46.6 36.1 69.9 50.6 44.3 48.5 60.1

Ours 75.1 71.6 68.7 74.0 71.6 65.1 56.4 55.7 61.0 49.3 41.3 61.9 49.1 44.8 46.0 59.4

Table 4: Ablation study on class and domain under severity 5.

No. CSCL DSCL CIFAR10-C CIFAR100-C ImageNet-C

1 15.66 31.19 60.56
2 ✓ 14.94 30.42 59.67
3 ✓ 15.16 30.68 59.75
4 ✓ ✓ 14.71 29.92 59.43

and Domain Shift Controlling Loss as DSCL. As shown in Table 4, C-CoTTA decrease error rates in
all benchmarks after adding CSCL or DSCL to the network, which indicate mitigating inter-category
interference or reducing the model’s sensitivity to overall domain shifts can improve the classification
accuracy. Furthermore, the combination of CSCL and DSCL can further improve the classification
accuracy of the C-CoTTA framework.

4.4 T-SNE VISUALIZATION FOR CLASS SHIFT

We use t-SNE Van der Maaten & Hinton (2008) for dimensionality reduction to visualize domain shift
situations of different methods during test-time. As shown in Figure 3, it can be observed that directly
using pre-trained model (Source), CoTTA, and SATA methods do not explicitly control domain shift,
resulting in unpredictable domain shift directions, leading to blurry classification boundaries and
mutual interference between categories. In contrast, our method implements controllable domain
shift, so it can be seen that although categories also experience shift, the direction of the shift is
benign and does not cause mutual interference between categories.

4.5 INTER-CLASS DISTANCE AND INTER-DOMAIN DISTANCE

Inter-Class Distance. The inter-class distance can be formulate as dic =
∑c

i=1

∑c
j ̸=i

∥∥pt
i − pt

j

∥∥2
2
,

where pt
i and pt

j denote target domain category prototype. The inter-class distance comparison
between our method, CoTTA and SATA can be seen in Figure 4(a). Compared to CoTTA and
SATA, our method has a larger inter-class distance, indicating better separability between classes and
reflecting the effectiveness of controlling class shift direction.

Inter-Domain Distance. The inter-domain distance can be computed as did = ∥ps − pt∥22, where
ps denotes overall prototype of the source domain while pt denotes overall prototype of the target
domain. As shown in the Figure 4(b), compared to SATA, our method has smaller inter-domain
distances, indicating that the model is less sensitive to domain transformations and reflecting the
effectiveness of controlling domain shift. At the same time, although the CoTTA method has relatively
small inter-domain distances in the early stage, as the target domain changes at test time, its inter-
domain distances gradually increase. This indicates that the model is sensitive to domain shift, further
emphasizing the importance of reducing the sensitivity of the model to domain shift in controlling
overall domain shift.
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Source CoTTA SATA Ours
Source Sample Target Sample Shift Direction Confusion Area

Figure 3: Visualization of the t-SNE dimensionality reduction of three classes from CIFAR10-C
dataset (three easily misclassified animals: bird, deer, frog) transferred from the source domain to the
target domain (zoom)

(a) Inter-class distance (b) Inter-domain distance
Figure 4: (a) Inter-class distance: can indicate the separability between classes. (b) Inter-domain
distance: can indicate the sensitivity of the model to domain transformations.

4.6 RESULTS FOR GRADUAL TEST-TIME ADAPTATION

In the standard setup described above, corruption types change abruptly at the highest severity level.
We will now present the results of the gradual setup. We design the sequence by gradually changing
the severity for the 15 types of corruption. When the type of corruption changes, the severity level is
at its lowest. The distribution shift within each type is also gradual. Table 5 shows that the proposed
method outperforms competing methods.

Table 5: Results for Gradual Adaptation

Methods CIFAR10-C CIFAR100-C ImageNet-C

Source 23.9 32.9 81.7
TENT 39.1 72.7 53.7
CoTTA 10.6 26.3 42.1
SATA 10.8 27.5 44.8
Ours 9.21 26.2 41.1

Table 6: Results for Corruption loops Adaptation

Methods CIFAR10-C CIFAR100-C ImageNet-C

Source 43.5 46.4 83.0
TENT 41.8 31.2 65.3
CoTTA 15.7 32.4 68.2
SATA 15.5 32.2 62.5
Ours 11.6 27.2 52.6

4.7 RESULTS FOR CORRUPTION LOOPS TEST-TIME ADAPTATION

In real-world scenarios, test domains may occur in cycles. To assess the long-term adaptation
performance of the method, we evaluated the test conditions for 10 consecutive cycles. This means
that at level 5 severity, the test data will be reanalyzed and readjusted nine times. The complete result
can be found in Table 6. The results also show that our method outperforms the other methods in this
long-term adaptation scenario. It illustrates the effectiveness of domain offset controllability as well
as category offset controllability.
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4.8 RESULTS FOR RANDOM ORDER TEST-TIME ADAPTATION

For a more comprehensive evaluation of the proposed method, CIFAR10-C, CIFAR100-C, and
ImageNet-C experiments are conducted on over ten sequences of various corruption types with a
severity level of 5. As shown in the Table 7, C-CoTTA is consistently outperforming CoTTA and
other competing methods. This shows C-CoTTA is robust when facing different corruption orders.

Table 7: Average error of standard ImageNet-C experiments over 10 diverse corruption sequences.

Avg. Error (%) Source TENT CoTTA SATA Ours

CIFAR10-C 43.5 20.1 16.3 16.3 14.7
CIFAR100-C 46.4 61.3 32.6 32.8 29.5
ImageNet-C 83.0 61.8 57.9 64.5 55.5

4.9 SEMANTIC SEGMENTATION ON CITYSCAPES-TO-ACDC

We further evaluate our methodology in the context of the more practical continual test-time semantic
segmentation task. We conduct our experiments on Cityscapes-to-ACDC dataset, and use ViT
(Segformer-B5) as backbone. The results are shown in Table 8. The results indicate that our approach
is not only effective for semantic segmentation tasks but also demonstrates robustness across various
architectural configurations. Our proposed method achieves an absolute improvement of 0.6% in
mean Intersection over Union (mIoU) compared to the baseline, resulting in a total mIoU of 59.2%.
It is noteworthy that existing methods such as BN and TENT exhibit suboptimal performance in this
task, with a marked decline in efficacy over time.

Table 8: Semantic segmentation results (mIoU in %) on the Cityscapes-to-ACDC Sakaridis et al.
(2021) online continual test-time adaptation task. We evaluate the four test conditions continually
for ten times to evaluate the long-term adaptation performance. To save space, we only show the
continual adaptation results in the first, fourth, seventh, and last round. Full results can be found in
the supplementary material. All results are evaluated based on the Segformer-B5 Xie et al. (2021)
architecture.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10
Condition Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean

Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7
BN 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 52.0
TENT 69.0 40.2 60.1 57.3 66.5 36.3 58.7 54.0 64.2 32.8 55.3 50.9 61.8 29.8 51.9 47.8 52.3
CoTTA 70.9 41.2 62.4 59.7 70.9 41.0 62.7 59.7 70.9 41.0 62.8 59.7 70.8 41.0 62.8 59.7 58.6

Ours 72.3 42.2 62.8 59.9 71.9 41.2 63.7 60.2 71.2 42.0 63.2 60.3 71.4 42.1 62.9 59.9 59.2

5 CONCLUSION AND LIMITATION

In this work, we introduce C-CoTTA, a novel framework designed to prevent any category from lean-
ing towards other categories by explicitly controlling the offset direction to avoid fuzzy classification
boundaries, and reduce the sensitivity of the model in the domain shift direction to reduce the impact
of domain shift on domain adaptation. This fills the gap left by traditional methods, which can only
mitigate the impact of domain drift. C-CoTTA can explicitly control domain shift, opening up a new
solution pathway for CTTA. Through extensive quantitative experiments and qualitative analysis,
such as t-SNE plots, we demonstrate the effectiveness and theoretical validity of C-CoTTA.

Our method also has certain limitations. During test-time, we may not have access to all samples of a
specific domain prototype, and due to the lack of true labels, misclassified samples may contaminate
the prototype. As a result, the representation of the prototype may be poor, further affecting
the accuracy of the constructed direction, leading to ineffective or even erroneous domain shift
control. Therefore, in the future, addressing how to obtain high-quality prototypes and directional
representations is a task that needs attention.
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A EQUIVALENT REPRESENTATION OF SCAV

Further derivation of scav is conducted to obtain a simpler equivalent representation, as follows:

cov[f(x), y] =
∑

xi∈Xc∪Xn

(f(xi)− f(x))(yi − y)

=
|Xn|

|Xc|+ |Xn|
∑

xi∈Xc

(f(xi)− f(x)) +
|Xc|

|Xc|+ |Xn|
∑

xi∈Xn

(f(xi)− f(x))

=
|Xn|

|Xc|+ |Xn|

( ∑
xi∈Xc

f(xi)− |Xc| · f(xi)

)
− |Xc|

|Xc|+ |Xn|

( ∑
xi∈Xn

f(xi)− |Xn|f(xi)

)

=
|Xn|

|Xc|+ |Xn|
∑

xi∈Xc

f(xi)−
|Xn||Xc|

|Xc|+ |Xn|
f(xi)−

|Xc|
|Xc|+ |Xn|

∑
xi∈Xn

f(xi) +
|Xc||Xn|

|Xc|+ |Xn|
f(xi)

=
|Xn||Xc|

|Xc|+ |Xn|

(
1

|Xc|
∑

xi∈Xc

f(xi)−
1

|Xn|
∑

xi∈Xn

f(xi)

)
cov[y, y] =

∑
xi∈Xc∪Xn

(yi − y)2

=
∑

xi∈Xc

(1− |Xc|
|Xc|+ |Xn|

)2 +
∑

xi∈Xn

(0− |Xc|
|Xc|+ |Xn|

)2

=
∑

xi∈Xc

|Xn|2

(|Xc|+ |Xn|)2
+
∑

xi∈Xn

|Xc|2

(|Xc|+ |Xn|)2

=
|Xc||Xn|2 + |Xn||Xc|2

(|Xc + |Xn|)2

=
|Xc||Xn|

|Xc|+ |Xn|
cov[f(x), y]

cov[y, y]
=

1

|Xc|
∑

xi∈Xc

f(xi)−
1

|Xn|
∑

xi∈Xn

f(xi)

B CORRUPTION LOOPS TEST-TIME ADAPTATION

We present the results of 10 cycles on CIFAR10-C. As depicted in the Fig. 5, it is evident that over
time, the error rate of CoTTA and SATA methods has gradually increased, whereas our method
continues to decrease. Consequently, the performance gap is widening. This phenomenon is most
likely related to the fact that the first two methods lack reasonable control over the category and the
offset direction of the domain.

C HYPERPARAMETER ANALYSIS

In this section, we delve into the critical examination of hyperparameters λ1 and λ2 in Eq. 11 within
our C-CoTTA framework in ImageNet-C, which substantially influence the model’s performance.
Through meticulous experimentation, we fine-tuned these hyperparameters to identify their optimal
values, ensuring the harmonious interplay between Domain Shift Controlling Loss (DSCL) and Class
Shift Controlling Loss (CSCL) components.

Our investigation revealed that the selection of λ1 and λ2 is pivotal in balancing the contributions
of DSCL and CSCL to the overall objective function. We experimented with a spectrum of values
for these hyperparameters, meticulously recording the impact on classification accuracy and domain
adaptation efficacy. The empirical results, illustrated in Fig. 6, present a compelling case for the
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Figure 5: Under the CIFAR10-C dataset, it can be observed that the performance of each method
under 10 corruption cycles varies. The error rates of CoTTA and SATA methods start to gradually
increase in the later stages, whereas our method continues to decrease or maintain stability.

optimal balance that our chosen hyperparameters provide, underscoring the model’s robustness
against various disturbances.
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Figure 6: Analysis Hyperparameter of λ1 for DSCL and λ2 for
CSCL on ImageNet-C.
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Figure 7: Analysis Hyperparameter
of E0 on CIFAR10-C.

D RELIABLE SAMPLE SELECTION ANALYSIS

In our control category offset method, in order to reduce the contamination of category prototypes by
misclassified samples and thus affect the control of category shift direction, we remove samples with
entropy values exceeding the predefined threshold E0, which is set as 0.4× lnC based on Niu et al.
(2022). We have verified the rationality of this operation through experiments. As shown in Fig. 7,
when the threshold is large, the effectiveness of the CSCL method deteriorates. This may be because
the conditions are too loose, leading to a large number of misclassified samples when calculating
the prototype. On the other hand, when the threshold is small, the CSCL method also deteriorates.
This may be because the conditions are too strict, resulting in too few samples used to calculate the
prototype, making the generated prototype not representative.

E CLASS CONFUSION MATRIX

We observed the confusion matrix of category in the domain adaptation process. As shown in Fig. 8,
compared to the CoTTA and SATA methods, our method significantly reduced the degree of category
confusion, demonstrating the effectiveness of controllable domain shift.

Source CoTTA SATA Ours

Figure 8: confusion matrix of category in the domain adaptation process. The vertical axis represents
the true labels, and the horizontal axis represents the predicted labels.
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