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ABSTRACT

Several graph mining problems are based on some variant of the subgraph iso-
morphism problem: Given two graphs, G and Q, does G contain a subgraph iso-
morphic to Q? As this problem is NP-complete, many methods avoid addressing
it explicitly. In this paper, we propose a method that solves the problem by local-
izing, i.e., finding the position of, Q in G, by means of an alignment among graph
spectra. Finding a node correspondence from Q to G thereafter is relegated to a
separate task, as an instance of the graph alignment problem. We demonstrate that
our spectral approach outperforms a baseline based on the state-of-the-art method
for graph alignment in terms of accuracy on real graphs and scales to hundreds of
nodes as no other method does.

1 INTRODUCTION

Graph analysis tasks frequently require localizing a smaller target graph Q within a larger source
graph G, i.e., finding a subgraph of G that is best aligned with Q. This type of problem may ap-
pear as subgraph discovery (Kuramochi & Karypis, 2001; Bianchini et al., 2018), where we need to
find any target graph in G, in subgraph querying (Katsarou et al., 2015; Sun & Luo, 2019), where
we find out whether a target subgraph match exists within a collection of source graphs, or graph
matching (Zhang & Tong, 2016), where we have to align corresponding nodes across two graphs,
potentially of different sizes. Such subgraph localization is of interest in practical applications such
as localizing a smaller electronic circuit within a large circuit (Fyrbiak et al., 2019), detecting sub-
molecules in bigger molecules (Najmanovich et al., 2008), and localizing parts of shapes in com-
putational geometry (Rampini et al., 2019). For instance, the task of subcircuit detection (Fyrbiak
et al., 2019) involves sampling multiple subgraphs and comparing the spectra of their adjacency
matrices to that of the query subgraph. Despite the prevalence of the problem, current research has
avoided tackling it directly, due to its NP-hardness.
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Figure 1: An instance of subgraph localiza-
tion (left) and its solution (right).

In this paper, we propose a novel spectral solu-
tion to the problem of subgraph localization, built
around the notion of identifying the spectrum λQ of
a graph Q within that of another graph G. Figure 1
visualizes an instance of the subgraph localization
problem by our formulation; we aim to find a func-
tion δ that indicates which nodes in G correspond
to Q. Our solution effectively recovers both the
nodes belonging to the part and the edges that con-
nect the part to the rest of the graph. This problem
is an instance of inverse eigenvalues problems (Chu
& Golub, 2005), the class of problems which aim to
reconstruct a matrix from its spectrum.

Our experimental study demonstrates that our approach tackles the subgraph localization problem
more effectively than state-of-the-art neural competitors and showcases its applicability to the real
world problem of subgraph alignment.

In summary, our contributions are as follows:

• We propose a spectral formulation for the subgraph localization problem (Sec. 4).
• We show that our solution achieves the optimum value under mild conditions (Sec. 3).
• We experimentally validate the effectiveness of our solution on real and synthetic graphs (Sec. 5).
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2 RELATED WORK

We review related work on five problems related to subgraph localization, namely subgraph isomor-
phism, subgraph discovery, subgraph querying, subgraph matching, and subgraph localization.

The subgraph isomorphism problem is to decide whether a source graph contains a target subgraph
and return that exact subgraph in the source. In graph analytics, this problem is mainly solved for
very small target subgraphs (≤ 10 nodes) and aims at exact matches. Several methods speed up this
process by exploiting query specifics, such as patterns in multiple subgraph queries (Duong et al.,
2021). By contrast, our method aims at bigger target subgraphs.

In subgraph discovery, a target subgraph is not given as input, yet the problem is to identify in-
teresting components of a source graph according to some criteria, as, e.g., those that appear fre-
quently (Kuramochi & Karypis, 2001; 2004), achieve a density threshold (Lee et al., 2010; Qin et al.,
2015), or form cliques (Bianchini et al., 2018).

In subgraph querying, the goal is to identify all source graphs among a collection that contain
a query target subgraph, without necessarily indicating the position of that subgraph within the
returned graphs (Katsarou et al., 2015; Sun & Luo, 2019; Sun et al., 2020). A closely related topic
is subgraph retrieval, where the goal is to retrieve the most relevant graphs from a graph database,
with relevance being measured by some score. In Roy et al. (2022) node embeddings are learned in
order to produce a subgraph matching for the computation of the relevance score. In Li et al. (2019),
nodes are matched in order to produce a graph similarity score without producing node embeddings
as an intermediate step. In both cases, the queries are significantly smaller than ours.

The goal of subgraph matching is to match the nodes of a smaller graph to those of a subgraph in
a bigger graph via minimizing some error criteria, possibly in the presence of available attribute
information. Many methods for graph matching effectively solve a subgraph isomorphism problem,
even though they are not specifically designed for this purpose (Zhang & Tong, 2016). Recent work
(Lou et al., 2020; Li et al., 2019) employs deep neural models to learn node embeddings that are
subsequently used for matching.

The problem of subgraph localization calls to detect a good fit, by some measure (Skitsas et al.,
2023) of a target subgraph within a bigger source graph, without aiming for full isomorphism. This
problem has been scarcely studied. A recent application in computer vision (Xu et al., 2020) uses
subgraph localization to detect temporal actions, where a graph models actions and the temporal
relations between them. However, this model uses edges for temporal aspects and inter-scene rela-
tions, and hence does not generalize to arbitrary graphs. An existing spectral solution (Candogan &
Chandrasekaran, 2018) is limited to special families of graphs, such as cliques.

3 SUBGRAPH LOCALIZATION

All aforementioned problems have in common the search for one graph within another. We study the
most generic form of this problem, which corresponds to the problem named Subgraph localization
in our previous discussion. That is, we aim to identify a subset of the nodes of a graph G corre-
sponding to an input graph Q; we do not aim at an exact 1-to-1 correspondence among all graph
elements, but to simply detect a set of best matches.
Problem 1. The subgraph localization problem for a graph G = ⟨V,E⟩, where V is a set of n nodes
and E ⊆ V × V is a set of edges, and a query graph Q = ⟨VQ, EQ⟩ with nQ = |VQ|, nQ < n,
calls to find a set of nodes VS ⊂ V , inducing a set of edges ES ⊂ E, such that |VS | = |VQ| and
there exists a bijective function f : VS → VQ between the nodes in VS and those in VQ such that for
each (i, j) ∈ ES there exists (f(i), f(j)) ∈ EQ and vice versa.

In many applications, solving subgraph localization, we do not need to explicitly materialize the
correspondence function f . Such a one-to-one correspondence is not explicitly sought for. Thus, we
can eschew recovering an exact f and instead aim at finding an indicator function δ : V → {0, 1}
such that δ(v) = 1, if v ∈ VQ, and δ(v) = 0 otherwise.

At first glance, finding such an indicator function seems easier than recovering a bijective func-
tion f . However, even in this identity-function formulation, the problem corresponds to the decision
version of the subgraph isomorphism problem, which asks whether a graph G contains a subgraph
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isomorphic to another graph Q. Thus, the problem is still NP-complete. Even so, we further relax
our requirements, allowing the function δ to be a binary version of a continuous real-value func-
tion v : V → R on values below a threshold τ :

δ(v) =

{
1 if v(v) < τ

0 otherwise
(1)

This relaxed problem calls to find a real function, or, equivalently, a real vector v ∈ Rn, with n =
|V |, for a known permutation of nodes in the graph. To overcome the requirement for a known node
permutation, we consider a permutation-invariant spectral alignment approach reminiscent of the
Hamiltonian operator used in shape analysis (Choukroun et al., 2018; Rampini et al., 2019). Before
delving into the approach, we introduce the necessary notation.

Background. The adjacency matrix of graph G with n nodes is a n × n matrix A ∈ {0, 1}n×n

where Aij = 1 if (i, j) ∈ E, 0 otherwise. The degree matrix D is an n× n diagonal matrix where
each entry dii =

∑
j ̸=i Aij holds the degree of node i. The graph Laplacian matrix is defined as:

L = D−A. (2)

The Laplacian matrix of undirected graphs is a positive semi-definite symmetric matrix, hence its
eigenvalues λ1, . . . , λn, are real and non-negative. The spectrum λ(M) of a matrix M is the ordered
sequence λ1 ≤ ... ≤ λn of its eigenvalues. Correspondingly, a graph’s spectrum is the spectrum of
its Laplacian matrix.

4 SPECTRAL SUBGRAPH LOCALIZATION

We examine how the presence of a subgraph within a graph affects the graph’s spectrum. Spec-
tral theory establishes that the spectrum of a subgraph interlaces with the spectrum of the graph.
However, the problem is also non-trivially affected by nodes beside the subgraph. Still, if we could
compensate for the effect of nodes other than the subgraph’s nodes, the two spectra would be indis-
tinguishable. Following this reasoning, we devise a novel objective for subgraph localization. To
that end, we first propose an original connection between subgraph localization and inverse eigen-
value problems with structural constraints (Chu & Golub, 2005).

Inverse Eigenvalue Problem. The general additive inverse eigenvalue problem (AIEP) is defined
as follows:
Problem 2 (AIEP, Problem 3.6 in Chu & Golub (2005)). Given an n× n matrix A, a special class
of matricesN , and a set of scalars {λQi}

k
i=1, find X ∈ N such that {λ(A+X)i}ki=1 = {λQi}

k
i=1.

A vast literature on this problem (see Chu & Golub (2005) and references therein) explores questions
regarding the existence of solutions and numerical approximation algorithms for various special
classes of matrices N . A common variant of Problem 2 expresses the problem as a least squares
problem between the spectra:

min
X∈N

∥λ(A+X)− λQ∥2. (3)

In what follows, we establish a connection between the subgraph localization problem (Problem 1)
and the additive inverse eigenvalue problem (Problem 2). Under the above formulation, we aim to
find a v that, added to the diagonal of the Laplacian of G, renders its first nQ eigenvalues equal to
those of the query graph. In addition to finding v, we aim to remove from G the edges that connect
the identified part to the remaining nodes. To the best of our knowledge, this is the first time such a
connection has been established, and the first time an AIEP with structural Laplacian constraints is
considered.

To devise our solution for subgraph localization, we commence with an intuitive scenario. We
assume that G has a number of clearly separated communities, one of which corresponds to the
query graph Q. A community is defined by a cut, as nodes within the same community are more
well connected than nodes across communities. Without loss of generality, assume the graph com-
prises two distinct communities. In this case, G’s Laplacian is a block matrix with two diagonal

3



blocks L11∈RnQ×nQ and L22∈R(n−nQ)×(n−nQ) and a few entries in the blocks L12∈RnQ×(n−nQ)

and L21∈R(n−nQ)×nQ representing edges across the two communities. The spectra λ(L) of G
and λ(LQ) of Q differ on the nodes in L22 and the edges in L12 and L21.

We aim to transform L into a Hamiltonian Choukroun et al. (2018), defined hereby, to cancel out
this difference. A Hamiltonian is an operator H = L + diag(v) where v : V → R is a scalar real-
valued function and L is the Laplacian. The Hamiltonian reduces to the Laplacian if the potential
is 0. According to (Rampini et al., 2019, Lemma 1), if we add to the diagonal of L a vector v
having non-zero values, v(v) > τ , limited to nodes in L22, i.e., outside VQ, then eigenvectors
corresponding to eigenvalues λi < τ of the resulting spectrum λ(L + diag(v)) will have non-zero
values limited to the positions corresponding to nodes in VQ, in effect rendering λ(L + diag(v))
similar to λ(LQ). Still, the non-zero entries between communities in L12,L21 affect the spectrum.
To cancel that effect, we introduce a Laplacian editing matrix that removes the contribution of such
edges to the Laplacian of the graph G:

E =

[
−diag(L121) L12

L21 −diag(L211)

]
where L121 (resp. L211) corrects the degree of the nodes after removing the edges in L12 (resp.
L21). In effect, the corrected Laplacian L − E is equivalent to the Laplacian of a graph with two
connected components, one of which isomorphic to the query graph Q. Thus, the solution v renders
the |VQ| smallest eigenvalues of the corrected Laplacian indistinguishable from the spectrum of Q,
λQ, i.e., λ(L− E+ diag(v)) = λQ, where, with a slight abuse of notation, λ(L− E+ diag(v))
refers to the |VQ| smallest eigenvalues of L−E+ diag(v).

Since both v and E are unknown, we optimize the objective:

min
v,E
∥λ(L−E+ diag(v))− λQ∥22

s.t. E = E⊤,E1 = 0, off(L−E) ≤ 0, ∥v∥ = c.
(4)

This objective is not convex, yet it only depends on the spectrum, for which there exists efficient
approximations (Cohen-Steiner et al., 2018); it leads to a solution even if the initial value of v is
a noisy version of the ground truth. As constraints, we postulate that E should be: (i) symmetric,
E = E⊤; (ii) row- (and, by symmetry, also column-) centered, E1 = 0, with every row summing
to 0; and (iii) yielding only non-positive off-diagonal entries off(L−E) ≤ 0. In addition, we enforce
that v be a point on the surface of a sphere of radius c, via the constraint ∥v∥ = c. Proposition 4.1
provides a sufficient condition on c for the optimality of Equation (4), considering the noiseless case
where G exactly contains the subgraph Q.
Proposition 4.1. When c >

√
n− nQ max(λQ), the global optimum of Equation (4) is obtained at

v =

{
0 if vi ∈ VQ

c√
n−nQ

otherwise (5)

with

ṽ =
v −min(v)

max(v)−min(v)
, Sij = |ṽi − ṽj |Aij , E = diag(S1)− S (6)

Proof. Let E be constructed from Equations 5–6. L − E is the Laplacian of a graph composed of
two disjoint components, one of which is exactly the component indicated by Equation 5, i.e., the
query subgraph Q. Then there is a permutation Π such that ΠLΠ⊤ is a block diagonal matrix with
the Laplacian of each component on the diagonal. Without loss of generality, we assume that the
Hamiltonian operator attains this block diagonal form:

L−E+ diag(v) =

[
LQ

LQ̄ + c√
n−nQ

1

]
. (7)

When c satisfies the stated condition, the spectrum of the bottom-right block contains only eigenval-
ues larger than max(λQ). It follows that the first nQ eigenvalues of L − E + diag(v) are exactly
those of LQ, rendering the objective of Equation 4 equal to zero.
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In effect, by Proposition 4.1, we can recover the optimal solution if v is appropriately normalized
and c is no less than a certain value. We exploit this result in Section 4.2 to design our algorithm by
numerical optimization. We first introduce a regularization term.

Regularization. The objective in Equation 4 does not prevent v from taking arbitrary values. How-
ever, since L − E has two connected components, v plays a role similar to that of Fiedler’s vector
in the minimization of the normalized cut (Shi & Malik, 2000). This observation leads us to the
spectral regularization v⊤(L − E)v that exhorts v to take values in the null-space of L − E. In
other words, the spectral regularizer drives v to be a stepwise function. We combine the spectral
regularization with our objective as follows:

min
v,E
∥λ(L−E+ diag(v))− λQ∥22︸ ︷︷ ︸

Data term

+µv⊤ (L−E)v︸ ︷︷ ︸
Spectral regularizer

s.t. E = E⊤,E1 = 0, off(L−E) ≤ 0, ∥v∥ = c

(8)

where µ ≥ 0 is a regularization coefficient.
Corollary. Proposition 4.1 applies also with the spectral regularization term in Equation (8).

Proof. Let E be constructed from Equations (5)–(6). L − E is the Laplacian of a graph composed
of two disjoint components, one of which is exactly indicated by Equation (5), i.e., the query sub-
graph Q. Then v in Equation (5) belongs to the null-space of L − E, rendering the regularization
term 0, hence Equation (5) also provides the global minimum of Equation (8).

4.1 LOCALIZING DISCONNECTED SUBGRAPHS

A special case of subgraph localization is that of a graph with a number of connected components,
one of which corresponds to the query graph Q. In this case the editing matrix E = 0, leading to
the simpler objective:

min
v
∥λ(L+ diag(v))− λQ∥22 + µv⊤Lv s.t. ∥v∥ = c. (9)

4.2 NUMERICAL OPTIMIZATION

We exploit Proposition 4.1 to craft a numerical procedure that minimizes the objective in Equa-
tion (4), collaterally optimizing for E and v. In the first iteration q = 0, we initialize Eq = 0. In
iteration q + 1 we minimize f(v,Eq) = λ(L − Eq + diag(v)) − λQ∥22 + µv⊤ (L−Eq)v for v
given Eq:

vq+1 = arg min
v:∥v∥=c

f(v,Eq), (10)

via projected gradient descent, until convergence; an iteration k + 1 of projected gradient descent
performs the step:

xk+1 = xk+1 − α∇vf(v,Eq)

vk+1 = c
xk

∥xk∥,
(11)

where α > 0 regulates the learning rate. The gradient ∇v for Equation 11 requires a differentiable
eigendecomposition, which is achievable by extant methods (Wang et al., 2019).

We subsequently update E according to:

ṽ =
vq −min(vq)

max(vq)−min(vq)
, (12)

Sij = |ṽi − ṽj |Aij , (13)
Eq+1 = diag(S1)− S. (14)

We obtain a threshold τ of the indicator function δ(v) in Equation 1 for the nodes comprising the
subgraph by splitting the elements of v into two clusters minimizing sum-of-squares error from the
mean (i.e., optimizing the k-means objective in one dimension) and compute the matrix E from this
thresholded v by Equations 12–14.
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Figure 2: Alignment of the spectrum λQ of Q and the part of the spectrum λ(L − E + diag(v))
of G corresponding to Q at 1, 6, and 18 iterations. As two spectra progressively converge, especially
in smaller eigenvalues, Q is correctly localized in G.

Figure 3: Example SSL result:
ground-truth subgraph Q in blue;
remaining nodes of G in red.

The SSL algorithm. We eventually present our Spectral Sub-
graph Localization (SSL) algorithm (Algorithm 1 in the sup-
plementary material) for Problem 1. SSL takes as input the
adjacency matrix A of the full graph G and the spectrum of a
query subgraph, and returns the vector v and the threshold τ of
the indicator function δ; it additionally requires some hyperpa-
rameters, such as the number of outer iterations maxiterout,
the number of inner iterations maxiterin, the learning rate α,
and the regularization coefficient µ. We empirically found
that the number of iterations and the learning rate do not sig-
nificantly affect results across datasets if chosen within some
range; we report those ranges and recommended values in Ta-
ble 1 in the supplementary material. On the other hand, the
regularization coefficient µ in Equation 8 requires tuning for
each dataset. We thus first normalize the value of µ by c2 to
remove the dependency on v’s magnitude and then perform
grid search on a range of values for µ to select an appropriate
value.

The optimization process alternates the projected gradient optimization in Equation 11 and the
update of E using Equations 12–14 until it converges or reaches the maximum number of itera-
tions maxiterout. Figure 2 illustrates the solution’s progressive convergence through iterations,
while Figure 3 shows an example result.

4.3 COMPLEXITY ANALYSIS

We derive the worst-case time complexity of the algorithm in the number of nodes n in the graph G.
The eigendecomposition in Equation 11 takes O(n3) per iteration; the computation in Equation 14
takes O(n2) for the matrix-vector multiplication; 1-D k-means in Line 9 takes O(n) with the best
algorithm (Grønlund et al., 2017). In effect, the total time is O(maxiterout · (maxiterin ∗ n3 +
n2 + n)), where the O(n3) term dominates. However, as L− E+ diag(v) is a graph’s Laplacian,
its spectrum can be efficiently approximated through sampling (Cohen-Steiner et al., 2018).

5 EXPERIMENTS

Here we empirically evaluate our method, SSL, on a number of datasets and against several hy-
potheses. Our evaluation aims to answer the following questions:

(Q1) Do the regularization term and the constraint ∥v∥ = c in Equation (8) help the localization?

(Q2) How does the conductance of the part corresponding to Q affect the quality of localization and
how does SSL fare against state-of-the-art methods for graph alignment?

(Q3) What kind of graphs are challenging for SSL and why?
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5.1 EXPERIMENT DESIGN

The code and data are available at https://anonymous.4open.science/r/SSL-F39A.

Hyperparameters. Unless stated otherwise, we choose maxiterout = 3, maxiterin = 500,
atol = 10−5 and α = 0.02. Regarding the regularization coefficient, we select µ = 0.2 through
grid search. This choice achieves good accuracy across datasets and conductance levels.

Datasets. We evaluate SSL on the three real-world graphs from Rossi & Ahmed (2015) and two
synthetic graphs generated by the Erdős-Renyi (ER) and Barabasi-Albert (BA) models. The data
characteristics are described in the supplementary material. Additionally, we generate graphs with
community structure using the stochastic block model (SBM) (Holland et al., 1983).

Choosing Q. Given a number k, we generate a query workload of size VQ = k from a real-world
graph G to evaluate our subgraph localization method as follows.

1. Randomly select a node u, add it to VQ and place all its neighbors into a set N .

2. Randomly select a node u′ from N , add it to VQ, place in N all its neighbors not in VQ.

3. Repeat the previous step until |VQ| = k.

4. Set Q as the subgraph induced by VQ in G.

For graphs generated by the stochastic block model, we set Q as the smallest community.

Quality measure. To evaluate performance in a manner independent of subgraph size, we use
Balanced Accuracy (BA) (Brodersen et al., 2010); given the query graph VQ and the subgraph VS

returned by a localization algorithm, balanced accuracy BA(v) = 1
2 (

|VQ∩VS |
|VQ| +

|¬VQ∩¬VS |
|¬VQ| ) is the

arithmetic mean of sensitivity (or recall) and specificity.
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Figure 4: Variants of the objective function; SSL’s objective achieves the highest accuracy.

5.2 ABLATION STUDY

We commence our study by examining how the terms in SSL’s objective function (Equation 8)
affect the result. Recall that the objective function consists of: (1) the data term, that drives the
alignment between the spectrum of the part and that of the query, (2) a spectral regularization term
that exhorts v to be in the null space of L−E and (3) the sphere constraint that enforces a constant
norm on the potential v. To study the contribution of each term on the results, we compare SSL
against two variants thereof:

1. A method only optimizing the data term ∥λ(L−E+ diag(v))− λQ∥22.

2. A method optimizing a linear combination of the data term ∥λ(L−E+diag(v))−λQ∥22
and the spectral regularization v⊤ (L−E)v, without a sphere constraint.
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We experiment on graphs with |V | = 200 nodes sampled form the stochastic block model, letting
the size of the query subgraph increase from 20% of the graph to 45%. Figure 4a reports on the
results of this ablation study in terms of average balanced accuracy over 5 sampled graphs for each
subgraph size. Unsurprisingly, the optimization of the data term yields the worst results, although the
method performs well on small subgraphs. Still, the addition of the spectral regularizer and sphere
constraint enhances the results up to 20% accuracy. For small subgraphs the sphere constraint brings
only marginal gains compared to the spectral regularization. On the other hand, on large query
subgraphs, the sphere constraint boosts the accuracy by an additional 8%.

To further corroborate these results, Figure 4b shows an example of how the terms impact the po-
tential v, on a 40-node graph sampled from the SBM with two communities with 20 nodes each; the
query graph is one of the two communities. Ideally, we would like to obtain a v clearly separating
values between the part corresponding to the query graph and the rest. In that case, we say that v
forms a step function. The optimization of the data term (left chart) alone leads to no clear sepa-
ration between the two parts. Introducing the spectral regularization (middle chart) yields a result
closer to a step function, though some nodes are incorrectly assigned to the part. Finally, the full
objective in Equation 8 produces to a clearly separated potential vector v. Visualizing the mapping
of this potential to the graph G, we clearly recognize the part GS as the light-colored nodes.

5.3 COMPETING METHODS

Here we assess our method against previous work. To the best of our knowledge, no extant unsu-
pervised method is capable to answer localization queries in graphs with more than 15 nodes (Roy
et al., 2022). Therefore, we compare SSL to the nearest feasible competitor, namely the state-of-
the-art method for unsupervised graph alignment, CONE (Chen et al., 2020). To set up CONE so
that it detects subgraphs, we inject in the query nodes with degree 0, so that the size of the query Q
corresponds to that of the graph G, i.e., |VQ = V |. We extract the ensuing localization vector as the
matches of query nodes in G with the default hyper-parameter settings.

Figure 5 and Figure 6 present the average BA of 10 randomly generated connected subgraphs as a

function of conductance, Φ(VQ) =

∑
i∈VQ,j/∈VQ

Aij

min
(∑

i∈VQ,j∈V Aij ,
∑

i/∈VQ,j∈V Aij

) , i.e., the ratio between the

size of the cut among query Q and graph G and the minimum number of edges among the two
resulting partitions. A graph’s minimum conductance is associated (Cheeger, 2015) to its algebraic
connectivity, i.e., second smallest eigenvalue λ2 (Fiedler, 1973). A larger conductance denotes more
edges between the query subgraph and the rest of the graph, thus a harder subgraph localization
instance. We use query subgraphs corresponding to 10%, 20% and 30% of the full graph size.

The results in Figure 5 show that SSL effectively localizes the query in real graphs. Accuracy grad-
ually increases as the conductance approaches Φ(VQ) = 0, finally settling at 100% accuracy on all
datasets, when the query is disconnected. In the Malaria dataset, we note a more abrupt increase.
The performance of SSL is always comparable to, and most often exceeds, that of CONE. While
performance drops as conductance grows, in real applications we would aim at detecting interest-
ing subgraphs that exhibit distinguishable structures, such as social communities. Such subgraphs
deviate substantially from both random and complete subgraphs. We model these nontrivial con-
nectivity patterns by a lower conductance. As conductance increases, the subgraph progressively
becomes merged into other nodes, hence SSL cannot discriminate it.

The results in Figure 6 show that SSL consistently outperforms CONE on synthetic graphs. As
with real graphs, we observe a gradual accuracy increase as the graph becomes progressively dis-
connected. Notably, on ER graphs, SSL succeeds even at high conductance values (> 0.6).

Impact of the graph’s spectrum. To better understand the performance of SSL on different graphs,
we look at it under the lens of the graph’s spectrum. Figure 7 shows the spectra of the real (Figure 5)
and synthetic graphs (Figure 6) in our experiments, normalized in the range

[
0, λn−λ2

λn

]
. First, we

observe that the spectrum of synthetic graphs exhibits a gradual increase and a small difference
between λ2 and the maximum eigenvalue λn. By the Generalized Cheeger’s inequality (Lee et al.,
2010) the kth-order conductance, minV1,V2,...,Vk

max{Φ(Vi) : i = 1, 2, ..., k}, is related to the
kth eigenvalue. We conclude that, under gradual eigenvalue growth, the presence or absence of
one edge does not affect the spectrum significantly, hence the projected gradient descent in SSL
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gracefully retrieves a good solution. On the other hand, the spectra of real graphs in our experiments
exhibit an abrupt divergence between λ2 and higher eigenvalues, indicating that a single edge may
significantly affect the spectrum, rendering the task of projected gradient descent more challenging.
In effect, SSL performs better as the gap between λ2 and the rest of the eigenvalues decreases.
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Figure 5: Accuracy vs. conductance between query subgraph Q and graph G, real graphs.
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Figure 6: Accuracy vs. conductance, ER and BA graphs.
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6 CONCLUSION

We studied the challenging problem of subgraph localization, which calls to find a set of nodes in
a larger graph that best corresponds to a given subgraph. We devised a novel spectral solution that
identifies the query match by adding a penalty to the Laplacian matrix so as to obtain a spectrum
similar to that of the query graph. This novel approach requires solving a non-convex, non-smooth
problem for which we devised a numerical method. Our results demonstrate that our spectral method
localizes query subgraphs more effectively than a baseline based on the state-of-the-art method for
graph alignment. To our knowledge, this is the first endeavor in effective subgraph localization that
can handle graphs of any size in the order of magnitude of hundreds of nodes.
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Jérôme Kunegis. Konect: the Koblenz network collection. In WWW, pp. 1343–1350. ACM, 2013.

10



Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In ICDM, pp. 313–320.
IEEE, 2001.

Michihiro Kuramochi and George Karypis. Grew-a scalable frequent subgraph discovery algorithm.
In ICDM, pp. 439–442. IEEE, 2004.

Daniel B Larremore, Aaron Clauset, and Caroline O Buckee. A network approach to analyzing
highly recombinant malaria parasite genes. PLoS computational biology, 9(10):e1003268, 2013.

Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey of algorithms for dense
subgraph discovery. In Managing and Mining Graph Data, pp. 303–336. Springer, 2010.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In ICML, pp. 3835–3845. PMLR,
2019.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural sub-
graph matching. arXiv preprint arXiv:2007.03092, 2020.

Rafael Najmanovich, Natalja Kurbatova, and Janet Thornton. Detection of 3d atomic similarities
and their use in the discrimination of small molecule protein-binding sites. Bioinformatics, 24
(16):i105–i111, 2008.

Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. Locally densest subgraph discovery. In
KDD, pp. 965–974, 2015.

Arianna Rampini, Irene Tallini, Maks Ovsjanikov, Alex M Bronstein, and Emanuele Rodolà.
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A SUPPLEMENTARY MATERIAL

We implemented SSL in Python 3.6 and ran experiments on an 8-core Intel Core i7-8565U machine
with 16GB RAM. Code and data available at https://anonymous.4open.science/r/
SSL-F39A.

A.1 HYPERPARAMETER SETTING

We calibrated SSL using grid search on the hyperparameters maxiterin, maxiterout, atol, and α.
The range of the tested hyperparameters is depicted in Table 1. We observe no significant difference
in the hyperparameters in different datasets, vindicating the robustness of our method. Surprisingly,
we observe the same robustness for the regularization parameter µ.

Parameter Value/range Description
maxiterin 500–1000 number of inner iterations
maxiterout 3–5 number of outer iterations
atol 10−5 loss tolerance
α 0.02 gradient step size

Table 1: SSL hyperparameters and default values.

A.2 DATASET DESCRIPTION

Table 2 and Table 2 presents the characteristics of the datasets used in the experimental evaluations
in the number of nodes V , edges E, network type, and parameters.

Dataset Source |V | |E| Network type
Football Girvan & Newman (2002) 115 613 Contact
Malaria Larremore et al. (2013) 306 9042 Biological
HighSchool Fournet & Barrat (2014) 327 5 818 Proximity

Table 2: Real graphs used in our evaluation: number of nodes |V |, number of vertices |E|, and graph
type.

Dataset Source |V | |E| Parameters
Barabási–Albert Barabási & Albert (1999) 200 5907 mnew = 50
Erdős–Rényi Erdős et al. (1960) 200 8185 pnew = 0.5

Table 3: Synthetic graphs used in our evaluation: number of nodes |V |, number of vertices |E|,
number of edges to attach from a new node to existing nodes mnew, edge creation probability pnew.

A.3 CHALLENGING CASES

In this section, we investigate some examples of challenging cases for SSL, illustrated in Figures 8
and 9. In the results of Figure 8, we observe that the spectrum of the query graph and that of the
detected subgraph are well aligned. However, the localized subgraph deviates substantially from
the ground truth. Similarly, in the results of Figure 9, while SSL does not perfectly align the two
spectra, it yields a correlated spectrum. Nevertheless, SSL detects a subgraph comprising nodes
that are only connected by one edge. In both cases, the challenge arises from the sensitivity of the
spectrum at weakly connected parts of the graph. Changing the Laplacian in such parts by adding v
has a larger impact on the spectrum than changing the Laplacian in a well-connected neighborhood.
These types of graphs force the optimization process into a local optimum, as the optimizer has a
large incentive to separate these weakly connected parts of the graph.
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Figure 8: Alignment of the spectrum λQ of Q and the corresponding part of the spectrum λ(L −
E+diag(v)) of G after convergence, ground truth VS (blue) and V \VS (white), and corresponding
localization by SSL; while the spectra are perfectly aligned, the detected subgraph is not the ground
truth. The depicted graph is a protein-protein interaction network from the D&D dataset Dobson &
Doig (2003).
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Figure 9: Alignment of the spectrum λQ of Q and the corresponding part of the spectrum λ(L −
E+diag(v)) of G after convergence, ground truth VS (blue) and V \VS (white), and corresponding
localization by SSL; while the spectra are well aligned, the detected subgraph is not the ground
truth; the detected subgraph coincides with nodes that have degree 0 or 1. The depicted graph is
arenas Kunegis (2013).

A.4 SSL PSEUDOCODE

Algorithm 1 shows the psedocode of SSL presented in Section 3. The algorithm is easy to implement
in a few lines of code.
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Algorithm 1 SSL
Input: A adjacency matrix of the full graph; λQ spectrum of the query subgraph.
Params: µ regularization coefficient; atol loss tolerance; α gradient step size; maxiterin maxi-

mum number of inner iterations; maxiterout maximum number of outer iterations
Output: Vector v, threshold τ

1: L← D−A
2: loss←∞
3: c← 2

√
n− nq max(λQ)

4: v0 ← c
|V |1

5: E0 ← 0
6: while q ≤ maxiterout and loss ≥ atol do

// Compute vq+1 by iterating (11) maxiterin
7: vq+1 ← argminv:∥v∥=c f(v,Eq)

// Update Eq+1 via (12))-(14)
8: Eq+1 ← E from v(vq+1)

// Update the threshold τ
9: τ ← k means 1d(vq+1)

10: loss← f(vτ ,Eτ )
11: q ← q + 1

12: return vq, τ
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