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Abstract

In this article, we study the behaviour of continuous-time gradient methods on a
two-layer linear network with square loss. A dichotomy between SGD and GD is
revealed: GD preserves the rank at initialization while (label noise) SGD diminishes
the rank regardless of the initialization. We demonstrate this rank deficiency by
studying the time evolution of the determinant of a matrix of parameters. To further
understand this phenomenon, we derive the stochastic differential equation (SDE)
governing the eigenvalues of the parameter matrix. This SDE unveils a replusive
force between the eigenvalues: a key regularization mechanism which induces
rank deficiency. Our results are well supported by experiments illustrating the
phenomenon beyond linear networks and regression tasks.

1 Introduction

Deep neural networks have significantly advanced machine learning in recent decades. A key attribute
of these models is their ability, despite being heavily overparameterized, to learn effective representa-
tions which generalizes well across different tasks. This capability has sparked substantial interest in
understanding how neural networks learn internal representations for specific tasks [Bengio et al.,
2013]. Gaining deeper insights into these mechanisms is crucial for enhancing model interpretability
and refining training and application methodologies in real-world scenarios.

The success in learning these representations is often attributed to the gradient methods used in
training. These methods navigate complex non-convex landscapes, finding solutions that not only
minimize the training objective but also yield effective representations. They achieve this generaliza-
tion while avoiding the spurious features that could potentially arise from the models’ large number
of parameters. Empirical studies have shown that the stochastic noise in gradient algorithms en-
hances generalization [Keskar et al., 2017] by favoring solutions with simpler structures that mitigate
spurious features [Andriushchenko et al., 2022]. This paper address the overarching question:

How does stochasticity facilitate the discovery of solutions with simplified structures?

We explore this question using a simplified model: a single hidden-layer linear network. Despite
lacking non-linearity, such networks capture some intricate phenomena of real-world deep networks
and have been extensively studied to understand convergence [Arora et al., 2019a, Min et al., 2021],
learning dynamics [Saxe et al., 2014], and the implicit bias of optimization algorithms [Gunasekar
et al., 2017, Soudry et al., 2018]. Our work builds on this foundation by comparing stochastic
algorithms with their deterministic counterparts, focusing on how these differences influence the
learning of simpler structures.
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Specifically, we analyze vector regression on two-layer linear networks trained with both gradient
flow and stochastic gradient flow methods. Our contributions include:

• In Section 4, we track the evolution of the determinant of the parameter matrix under
gradient flow and stochastic gradient flow. We show that stochastic gradient flow drives the
determinant towards zero, effectively removing irrelevant direction(s).

• In Section 5, we derive a stochastic differential equation that describes the behavior of
the eigenvalues of the parameter matrix. This analysis reveals a repulsive force between
eigenvalues that pushes them apart and a geometric Brownian motion that pulls them toward
zero.

• In Section 6, we discuss the generalizability of our approach beyond square loss and various
noise models, including discrete step sizes. Finally, we present experimental results in
Section 7 that support our theoretical findings.

2 Related Work

Our work lies at the convergence of distinct research topics:

Effect of SGD on generalization. The relationship between the stochasticity of SGD and its
generalization capabilities has been extensively examined [Mandt et al., 2016, Jastrzebski et al., 2018,
He et al., 2019, Hoffer et al., 2017, Kleinberg et al., 2018]. Notably, SGD tends to yield models with
superior generalization compared to gradient descent [Keskar et al., 2017, Jastrzebski et al., 2018,
He et al., 2019]. Various explorations into this phenomenon have been conducted through various
approaches: hypothesizing that SGD favors flatter minima linked to better generalization, as opposed
to sharp minima associated with poor generalization [Hochreiter and Schmidhuber, 1997, Keskar
et al., 2017, Andriushchenko et al., 2023], using a random walk on a random landscape model to
understand the impact of stochasticity [Hoffer et al., 2017], proposing that the inherent noise in SGD
smooths the loss landscape [Kleinberg et al., 2018], and exploring the implications of dynamical
stability [Wu et al., 2018].

Stochastic dynamics and Label Noise. Recent literature has explored label noise-driven Gradient
Descent as an effective method to probe the beneficial impact of stochasticity on generalization, with
two distinct perspectives emerging. Firstly, an asymptotic view on general model parametrization
is considered, where Blanc et al. [2020], Damian et al. [2021] suggest that stochastic dynamics
preferentially optimize a hidden objective linked to the curvature of the loss. In a related vein, Li et al.
[2021] demonstrates appropriate limiting dynamics on the manifold of interpolators through time
rescaling. Secondly, specifically for diagonal linear networks, HaoChen et al. [2021], Pillaud-Vivien
et al. [2022] observe a similar collapsing effect due to label noise but with a finer characterization of
the limiting process. Finally, in the absence of label noise, Pesme et al. [2021], Even et al. [2023] have
characterized the outcomes of stochastic GF and GD for diagonal linear networks as the solutions
to an implicit regularization problem that results in sparser solutions than without stochasticity.
Recently, Ghosh et al. [2023] further exhibit a similar sparser features effect for single-neuron
autoencoder. Chen et al. [2023] provides a condition under which an invariant set is attractive for
SGD — characterizing the local behavior around these sets. The paper also studies linear networks in
a teacher-student setup, however due to structured label-noise [Chen et al., 2023, A2 in p.30], the
analysis falls short of capturing the repulsive force in the singular values.

Linear Networks. The study of two-layer linear networks has been explored extensively, particularly
when optimized using gradient flow on the square loss, across various settings including zero-balance
initialization and whitened data Fukumizu [1998], Saxe et al. [2014, 2019], Braun et al. [2022].
Early work by Saxe et al. [2014, 2019] elucidates the temporal changes in the singular values of the
predictor, assuming decoupled dynamics and a specific data-dependent weight initialization. This
condition is broadened by the analyses of Fukumizu [1998] and Braun et al. [2022], Tarmoun et al.
[2021], who apply solutions from a matrix Riccati equation to characterize the weights dynamics
under full-rank network initialization. Furthermore, Gidel et al. [2019] extends the existing framework
by relaxing the whitened data assumption, conducting a perturbation analysis, and discussing the
temporal evolution of the weight matrices’ singular values. Additionally, Varre et al. [2024] eliminates
the need for zero-balanced and full-rank initializations. Their study provides detailed formulas for
weight evolution as a function of the initial scale , also studies a simple version of a stochastic flow
without the drift. Wang and Jacot [2023] studied the implicit bias of SGD with ℓ2-regularization.
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Matrix valued stochastic process and their eigenvalues. Stochastic process on the space of
symmetric (or Hermitian) matrices and the evolution of their eigenvalues are well studied since Dyson
[1962]. These techniques were further developed by Bru [1989, 1991] to study perturbations of
principal component analysis and the eigenvalues of Wishart processes. Norris et al. [1986], Graczyk
and Małecki [2013] applied SDE-based techniques to study the eigenvalues and eigenvectors of
Brownian motion on ellipsoids.

3 Linear networks and continuous-time gradient method

Notation We use ⟨., .⟩ to denote the inner product, i.e., ⟨u, v⟩ = u⊤v for vectors, and ⟨A,B⟩ =
Tr (AB⊤) for matrices. Id denotes the identity matrix of dimension d and 0p×k denote the matrix
with all zero entries of dimension p× k.

Vector regression. We study the vector regression problems with inputs x1, . . . , xn in (Rp)n and
outputs y1, . . . , yn in (Rk)n. We consider the minimization of the square loss over a class of
parametric modelsH = {fθ(·) : Rp → Rk | θ ∈ Rd} specified in the next paragraph. The train loss
therefore can be written as L (θ) = 1

2n

∑n
i=1 ∥yi − fθ(xi)∥2.

Parameterization with a linear network. We focus on two-layer linear neural networks of width
l ∈ N∗. The model is described by the parameterization θ = (W1,W2), where W1 ∈ Rp×l and
W2 ∈ Rl×k, and the function fθ(x) = W⊤

2 W
⊤
1 x. This model is linear with respect to the input x. In

terms of expressivity, it is comparable to the linear class of predictors, represented as fβ(x) = β⊤x,
where β equals W1W2. Throughout our analysis, we denote the equivalent linear predictor of the
network as β. A key aspect of this parametrization is that the prediction function fθ is positive
homogeneous of degree 2 with respect to θ: specifically, for any λ ∈ R, fλθ = λ2fθ. This property
mirrors that of two-layer ReLU networks and significantly influences the loss landscape navigated by
the parameters θ. It is important to note that this parameterization introduces some redundancy, a
single linear predictor β can have multiple representations W1,W2 such that W1W2 = β. Some
representations have a rich structure whereas other resemble random features. For example, consider
the case of scalar regression (k = 1), for a vector β there exists rich parameterizations where all
the neurons, i.e., columns of W1 align with β and also some lazy structures where W1 resembles a
random matrix [Chizat et al., 2019, Varre et al., 2023].

Train loss. By defining X⊤ = [x1, . . . , xn] and Y ⊤ = [y1, . . . , yn], the loss function is given by:

L (W1,W2) =
1

2n
∥XW1W2 − Y ∥2. (3.1)

For simplicity, we adjust for the normalization factor n by rescaling the data to (X,Y ) ←
(X/

√
n, Y/

√
n), thereby implicitly considering it in the loss function without directly mentioning

n in the formula. Note that the loss is non-convex in W1,W2.

Gradient flow. The dynamics induced in parameter space by running GF on Equation (3.1) is given
by

dW1 = −∇W1
L (W1,W2) dt = X⊤(Y −XW1W2)W

⊤
2 dt, (3.2)

dW2 = −∇W2
L (W1,W2) dt = W⊤

1 X
⊤(Y −XW1W2)dt. (3.3)

Introducing the block matrix, Θ =
[
W⊤

1 |W2

]
∈ Rl×(p+k) and denoting the residual matrix by

R = X⊤(Y −XW1W2), the evolution of Θ can be written as

dΘ =
[
dW1

⊤ | dW2

]
=
[
W2R

⊤dt |W⊤
1 Rdt

]
=
[
W⊤

1 |W2

] ï0p×p R
R⊤ 0k×k

ò
dt.

The gradient flow can therefore be compactly written as

dΘ = ΘJdt, where J =

ï
0p×p R
R⊤ 0k×k

ò
. (3.4)

The gradient flow (GF), when expressed in this form, reveals an inherent multiplicative structure with
respect to Θ in the gradient of the loss. As we see in subsequent sections, this representation of the
gradient flow with block matrices proves to be very convenient.
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Label noise gradient descent. Label noise gradient descent (LNGD) is a theoretically studied
alternative to SGD that mirrors its practical behavior by sharing the geometric properties of the
noise Blanc et al. [2020], Damian et al. [2021]. Let εt ∈ Rn×k, where each entry of εt is an
independent Gaussian random variable. At iteration t, the labels are perturbed with this Gaussian
noise at an intensity δ, i.e., Ỹ = Y +

√
δεt. The LNGD algorithm updates the iterates with a step

size η in the direction of the gradient computed after the labels have been perturbed, as follows:

Wt+1
1 = Wt

1 − η∇W1L
Ä
Ỹ ,X,Wt

1,W
t
2

ä
; Wt+1

2 = Wt
2 − η∇W2L

Ä
Ỹ ,X,Wt

1,W
t
2

ä
,

where, by an abuse of notation, L (Y,X,W1,W2) = 1/2∥XW1W2 − Y ∥2. The iterates can then
be restructured into a block matrix:

Θt+1 = Θt − ηΘtJt − η
√
δΘtξt, where ξt =

ï
0p×p X⊤εt
ε⊤t X 0k×k

ò
, (3.5)

and Jt is defined as in Equation (3.4).

Stochastic gradient flow (SGF). We aim to model the aforementioned LNGD in continuous time
using an appropriate SDE. Stochastic continuous-time counterparts of discrete stochastic gradient
algorithms are favored for their enhanced amenability to theoretical analysis. We propose the
following stochastic differential equation (SDE) to model LNGD in continuous time:

dΘ = Θ
î
Jdt+

√
ηδdξ
ó
,where dξ =

ï
0p×p X⊤dBt

dBt
⊤X 0k×k,

ò
(3.6)

where Bt denotes a matrix Brownian motion in Rn×k. LNGD as defined in Equation (3.5), can be
interpreted as the the Euler-Maryama discretization of the above SGF with a stepsize η. Although the
inclusion of step size in the continuous-time modeling of an SDE may seem counter-intuitive, it is a
necessary component [Li et al., 2019b]. As all the terms of the SDE in Equation (3.6) are polynomial
in Θ, both the drift and diffusion terms are locally Lipschitz continuous. Hence, the solution of the
SDE is uniquely defined up to the explosion time τ∞ [see, e.g., Khasminskii, 2012]. Furthermore,
the explosion time can be proven to be infinite (τ∞ =∞ almost surely), by using that the GF does
not diverge and applying the techniques outlined by Pillaud-Vivien et al. [2022, Proposition 10].

Initialization. The dynamics of gradient methods on homogeneous models are significantly influ-
enced by initialization, which determines the regime they operate in—specifically, the lazy regime
for large initializations and the rich regime for small ones [Chizat et al., 2019, Woodworth et al.,
2020]. Thus, the scale of initialization has garnered significant interest, particularly its impact on the
training of linear and non-linear networks with GD [Woodworth et al., 2020, Boursier et al., 2022]. It
is observed that stochastic methods eliminate the dependence on initialization [Pesme et al., 2021].

Conserved quantities and balanceness. Gradient flows follow specific conservation laws along
their trajectory [Marcotte et al., 2023], maintaining characteristics of the initial conditions. For linear
networks, this conservation manifests as the balanceness property [Du et al., 2018], described by:

∆ = W⊤
1 W1 −W2W

⊤
2 = W⊤

1 (0)W1(0)−W2(0)W
⊤
2 (0).

As a result, Saxe et al. [2014], Arora et al. [2018, 2019b] have adopted balanced initialization, where
∆(0) = 0, to ensure that weight matrices remain low rank throughout the trajectory. However,
unbalanced initialization do not preserve these simple low-rank structures, as aspects of the initial
conditions persist.

In contrast, stochastic methods do not adhere to these conservation laws [Ziyin et al., 2023] and the
evolution of the imbalance ∆ for SGF is

d∆ = d
(
W⊤

1 W1 −W2W
⊤
2

)
= tr (XX⊤) W2W

⊤
2 dt− k W⊤

1 X
⊤XW1dt.

While there is no diffusion term in the derivative, the matrices remain stochastic and no definitive
conclusions can be drawn from this. However, in the case where k = p and X⊤X = Ip, it can be
shown that W⊤

1 W1−W2W
⊤
2 → 0, indicating that the stochastic noise eliminates initial imbalance.

Conclusion. Understanding how stochastic methods mitigate dependency on initialization requires
exploring beyond the evolution of the imbalance ∆. To this end, we identify and discuss other
conserved quantities, such as the determinant of the block matrix Θ⊤Θ in the following sections.
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4 Separation between Gradient Flow through determinant

Here, we present our first separation result between GF and SGF. While the determinant of the
parameters is preserved in GF, it is driven to zero by the stochasticity of SGF, leading to a simplistic
low-rank structure.

4.1 Determinant evolution of the gradient flow

The theorem below demonstrates that the determinant of the parameters is preserved in gradient flow.
Theorem 4.1. For the gradient flow defined in Equation (3.4), the following property holds,

d
(
det
(
Θ⊤Θ

))
= 0.

Hence, det
(
Θ(t)⊤Θ(t)

)
= det

(
Θ⊤

0 Θ0

)
, where Θ0 = Θ(0) is the initialisation at time t = 0.

The proof presented in the App. B.1, is based on straightforward computations of the derivative
of the determinant and the fact that the matrix J has zero trace. We note that the simplicity of the
proof arises from the strategically chosen block structure of Θ. This result would have been less
straightforward with different parametrizations, which likely explains why such a simple finding
appears to be novel. The theorem implies that the determinant of M along the trajectory remains
equal to the determinant at initialization. If Θ⊤

0 Θ0 is full-rank initially, meaning the determinant is
non-zero, the theorem ensures that the determinant of M remains non-zero. Consequently, the rank
of Θ does not diminish along the trajectory. When l ≥ p+ k, i.e., the hidden layer has a large width
and W1,W2 are initialized randomly from a Gaussian distribution, Θ⊤

0 Θ0 has full rank almost
surely. The theorem also reveals some implications regarding the impact of initialization scale. Note
that λmin(A) ≤ n

√
detA, indicating that when the scale of initialization is very small, at least one

singular value of Θ is small.

4.2 Determinant evolution of the stochastic gradient flow

In contrast, the theorem presented below demonstrates that the determinant of the parameters con-
verges to zero in stochastic gradient flow.
Theorem 4.2. For the SDE, defined in the Equation (3.6), for t ≤ τ∞, the following property holds
for the evolution of determinant

d
(
det
(
Θ⊤Θ

))
= −2ηδktr

(
X⊤X

)
det
(
Θ⊤Θ

)
dt.

Hence, det
Ä
Θ(t)

⊤
Θ(t)

ä
= det

(
Θ⊤

0 Θ0

)
exp
{
−2ηδktr

(
X⊤X

)
t
}

, where Θ0 is the initialization.

Although the evolution of the parameters in SGF is random, the evolution of the determinant is
deterministic. The theorem highlights a striking phenomenon: the noise in SGF diminishes the
determinant along the trajectory, leading to a simplification of the network over time. The larger the
noise and the stepsize, the faster the determinant vanishes. The vanishing of the determinant suggests
that the rank of the parameters decreases by at least one, effectively eliminating some components. It
holds for any initialization of Θ0 and indicates how the SGF overrides some aspects of initialization.
The proof uses the fact that stochastic Brownian term in the SDE, through Itô’s calculus, introduces a
negative drift, ultimately driving the determinant to zero (refer to B.3 for the proof).

Limitations. Given the large width of the hidden layer, the determinant converging to zero does not
fully reveal the complexity of the situation. It merely indicates that at least one singular value is
approaching zero. Furthermore, the theorem provides limited insights when the determinant is already
0 at initialization, detΘ0 = 0 which happens whenever l < p+ k. Next, we explore the mechanisms
behind this low-rank phenomenon, suggesting that the repulsive forces induced by stochasticity drive
the spurious singular values to zero as seen in the right plot of Figure 1.

5 Mechanism behind the low-rank phenomenon

In this section, we investigate the evolution of singular values under stochastic training to gain
deeper insights into the low-rank phenomenon. To simplify the discussion, throughout the section
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we consider the case where k = 1 and for notational convenience, we let W1 = W,W2 = a.
Additionally, we assume that l ≤ p, however the results can be extended to any l.

Warm-up: Comparison with diagonal networks. Let W = UΣV⊤ be the singular value decom-
position (assuming l ≤ p). The predictor β can be expressed as

Wa = UΣV⊤a = U [σ ⊙ c] ,where c = V⊤a.

This expression reveals a Hadamard product between σ and c, reminiscent of diagonal networks
which are widely studied to understand the nonconvex dynamics of gradient algorithms [Woodworth
et al., 2020, Pesme et al., 2021, Pillaud-Vivien et al., 2022]. In the context of diagonal networks, SGD
is known to provably induce sparsity in predictions. Similarly, for linear networks, SGF may induce
sparsity in terms of the singular value σ. We next derive the SDE governing the evolution of the
singular values Σ of the weight matrix to gain a clearer understanding of the low-rank phenomenon.

Scalar Regression. We assume that the data is isotropic, i.e., X = Ip. Under these conditions, the
loss function for scalar regression can be written as

L (W,a) =
1

2
∥y −Wa∥2. (5.1)

We train the above objective with SGF, formulated as follows,

dW = (y −Wa)a⊤dt+
√
ηδ dBta

⊤; da = W⊤(y −Wa)dt+
√
ηδ W⊤dBt. (5.2)

where Bt is the standard Brownian motion in Rp. For analytical convenience, we rescale the time
t→ t/ηδ and use the process dX = 1/ηδ(y −Wa)dt+ dBt. The SGF can then be rewritten as,

dW = dXa⊤; da = W⊤dX. (5.3)

Our focus is on understanding the evolution of the singular values of the matrix W. This aim is
facilitated by considering the symmetric matrix M = W⊤W, whose eigenvalues are the squares of
the singular values of W. Taking the derivative of M, we find

dM = dW⊤W +W⊤dW + dW⊤dW = adX⊤W +W⊤dXa⊤ + paa⊤dt. (5.4)

Note that dxdy represents d[x, y] for any continuous semi-martingales x, y [see, e.g., Ikeda and
Watanabe, 1981, chapter 3 for reference].

Eigenvalues of a matrix-valued stochastic process. We leverage tools from the study of eigenvalues
of matrix-valued stochastic processes [Bru, 1989, Graczyk and Małecki, 2013] to derive the evolution
of the eigenvalues of M in the theorem that follows.
Theorem 5.1. Let s1 > . . . > sl be the order of the eigenvalues of the matrix M defined by
Equation (5.4). Let the collision time for the eigenvalues be defined as

τ = {inf t : si(t) = sj(t) for 1 ≤ i ̸= j ≤ l}. (5.5)

For t ≤ τ , the eigenvalues are semi-martingales given by the solution of the following SDE

d(si) = pc2i dt+
l∑

j=1,
j ̸=i

sic
2
j + sjc

2
i

si − sj
dt+ 2

»
sic2i

Ä
dX̃
ä
i

(5.6)

where c = V⊤a and
Ä

dX̃
ä
i
= 1/ηδ

Ä
⟨ui, y⟩ −

√
sic2i

ä
dt+ dεi with ui being the ith column of U

and (ε0, . . . , εl−1) is the standard Brownian motion in Rl. The evolution of ci and U are presented
in the appendix B.5.

This theorem can be interpreted as the stochastic counterpart to the evolution of eigenvalues previously
described for linear networks by Arora et al. [2019c], Varre et al. [2023]. The derivation of the
eigenvalues is inspired by the work of Bru [1989].

The evolution of the eigenvalues features a key term highlighted in Equation (5.6) consisting of
the sum of skew-symmetric elements sic

2
j+sjc

2
i/si−sj . For a pair of indices (i0, j0) with i0 < j0

and thus si0 > sj0 , the term si0c
2
j0

+sj0c
2
i0/si0−sj0 positively influences the evolution of the larger

eigenvalue dsi0 and negatively affects the smaller eigenvalue dsj0 . Therefore, this force is repulsive,
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driving the eigenvalues apart and increasing their gap. Another factor influencing the dynamics is the
presence of Geometric Brownian motion, where the singular value σi multiplicatively influences the
Brownian motion as

√
sic2i

Ä
dX̃
ä
i
, similar to what is observed in diagonal linear networks (refer

to the previous discussion for similarities). This effect tends to pull the singular values toward zero.
Together with the fact that (si, ci) = (0, 0) represents a fixed point of the dynamics, these two forces
collectively push redundant singular values toward zero.

To further understand the interplay of repulsive forces and geometric Brownian motion, we consider
the evolution of the smaller singular value sp for l = p. Using the Ito chain rule, we analyze the
evolution of log sp, expressed as,

d(log sp) = p
c2p
sp

dt+
1

sp

p∑
j=1,
j ̸=p

spc
2
j + sjc

2
p

sp − sj
dt− 2

c2p
sp

+ 2

 
c2p
sp

Ä
dX̃
ä
p
.

Using that spc
2
j+sjc

2
p/sp−sj < −c2p, for all indices j, the repulsive force accumulates to −(p −

1)(c2p/sp) and the Ito correction term from the logarithm contributes an additional −2(c2p/sp) (the
GBM component) thus offsetting the positive drift of p(c2p/sp). In the case of l ̸= p, considering a
polynomial xα with an appropriate α would demonstrate similar behaviour. This discussion outlines
the forces at play, yet a complete characterization of the solution of the SDE Equation (5.6) remains
missing. Moreover, we have not established that the eigenvalues avoid a.s. collision, i.e., the explosion
time τ∞ =∞ which is in itself a significant challenge [Bru, 1989, Graczyk and Małecki, 2014].

A simplified two-vector problem. To enhance our understanding of the SDE governing the evolution
of the eigenvalues detailed in Equation (5.6), we consider the large noise limit. In this scenario, the
process described in Equation (5.3) simplifies to a purely noise-driven process without drift:

dW = dBta
⊤; da = W⊤dBt.

This SDE exhibits notable symmetry; allowing for an analysis using a matrix with sub-sampled
columns. Let S be any subset of 1, . . . , l, with (wi)

l
i=1 representing the columns of W. We define

WS ∈ Rp×|S| as the subsampled matrix obtained by selecting columns wi where i ∈ S, and
similarly, we define a subsampled vector aS by selecting the corresponding coordinates. The SDE
restricted to the set S is structured as follows:

dWS = dBta
⊤
S ; daS = W⊤

S dBt.

To demonstrate that the columns of W align, we leverage the symmetry of the SDE by examining
the restricted problem on every pair of rows S = {i, j}, and proving alignment within this subset.
This approach leads us to consider the two vector problem (l = 2), where W = [w1|w2] and
w1,w2 ∈ Rp, a ∈ R2. We describe the behavior of the eigenvalues for this two-vector problem in
the theorem below.
Theorem 5.2. In the large noise limit, let s0 > s1 be the eigenvalues of W, the following properties
hold, for t ≤ τ defined by τ = {inf t : s0(t) = s1(t)},

(a) s0, s1 are greater than zero almost surely,

(b) for α = (p− 3)/2, s−α
0 is a super-martingale while s−α

1 is a sub-martingale.

This model for l = 2 mirrors the dynamics of the Wishart process studied by Bru [1991], motivating
the exploration of the evolution of an appropriately chosen exponent of s0, s1. The first part of the
theorem arises from the fact that s−α

1 s−α
2 is a local continuous martingale that cannot explode to

infinity in finite time. The second part highlights a clear separation between the eigenvalues: one is a
sub-martingale that consistently increases in expectation, while the other is a super-martingale that
diminishes (note that the eigenvalues are raised to a negative power). This dynamic, coupled with the
symmetry argument, suggests that for every pair of columns, there is a component that strengthens
the alignment through its increases in expectation. Refer to App. B.6 for the proof.

Conclusion. In this section, we derive the SDE of eigenvalues for the matrix of parameters evolving
under SGF. This derivation provides deeper insights into the mechanisms contributing to low-rank
behavior. Specifically, repulsive forces drive the eigenvalues apart, while the geometric Brownian
motion pulls them towards zero. These forces, unique to training with SGF, highlight the regularization
effects of stochastic methods compared to gradient flow. However, fully characterizing the solution
of this SDE remains a challenging open problem we let as future work.
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6 Generalization to other settings

In this section, we generalize our results beyond the square loss and the label noise gradient flow. We
consider the general framework of a loss function over the weight product W1W2 defined as

L (W1,W2) = L̂(W1W2) = E(x,y)∼D [ℓ(W1W2;x, y)] ,

In this framework, the loss function ℓ combines the prediction loss directly with the parametrized
model fθ. This approach applies, for example, to classification problems using linear networks
where ℓ might represent any classification loss and fθ = W1W2. It also directly extends to more
complex architectures where fθ = σ(W1W2) for an activation function σ, including settings like
a self-attention layer with frozen value vectors. We denote the product by β = W1W2 noting it
solely controls the loss. We investigate the evolution of the weight matrix determinant for a general
loss across various algorithms, from gradient flow to gradient descent, and demonstrate that a similar
separation occurs due to stochasticity.

Warm-up: Gradient flow. The gradient flow on the loss L can be written as the following,

dΘ = ΘJdt, where J =

ñ
0p×p −∇L̂(β)

−∇L̂(β)⊤ 0k×k

ô
. (6.1)

Following a similar proof as in Theorem 4.1, we obtain that d
(
det
(
Θ⊤Θ

))
= 0. For separable

classification problem, the gradient flow converges to infinity [Soudry et al., 2018, Ji and Telgarsky,
2019], hence, after appropriate rescaling, the layers are aligned, as shown by Ji and Telgarsky [2019].
Next, we contrast this result with the outcomes observed in stochastic and discrete algorithms.

Continuous modelling of SGD. We consider the SGD algorithm with a batch size B. We denote the
mini-batch version of the loss functions L and L̂ as LB and L̂B , respectively. The SGD update with
stepsize η can be represented with the following block structure,

Θt+1 = Θt − ηΘtJt − ηΘtξt, where ξt =

[
0p×p −

Ä
∇L̂(β)−∇L̂B(β)

ä
−
Ä
∇L̂(β)−∇L̂B(β)

ä⊤
0k×k

]
.

We denote the SGD noise as gt =
Ä
∇L̂(β)−∇L̂B(β)

ä
and the noise covariance as Σt =

E
î
gt (gt)

⊤ó where the expectation is over all the minibatches. Following Li et al. [2019a], the
SGD update can be modelled with the following SDE,

dΘ = −ΘJdt−√ηdξ,where dξ =

[
0p×p −Σ1/2

t dBt

−
Ä
Σ

1/2
t dBt

ä⊤
0k×k

]
. (6.2)

The main difference with SGF is that, in overparameterized problems, the noise covariance is time-
varying and decreases to zero upon convergence. Using Theorem B.3, the evolution of the determinant
of M = Θ⊤Θ is given by d(det (M)) = −ηdet (M)Tr (Σ(t))dt and can be explicitly solved as

d(det (M)(t)) = det (M(0))exp{−η
∫ t

0

Tr (Σ(s))ds}.

Hence, the decay in the determinant is governed by the integral
∫∞
0

Tr (Σ(t))dt which is a stochastic
quantity. Tr (Σ(t)) represents the strength of the stochastic noise, which, in over-parameterized
regression, is proportional to the loss, i.e., Tr (Σ(t)) ∝ L (Θ) [Pesme et al., 2021]. Therefore, the
rate of decay in the determinant depends on

∫∞
0
L ((Θ(t))) dt, with slower convergence leading to a

simpler model at convergence, as observed in the case of diagonal networks by Pesme et al. [2021].
The result above also holds for non-separable classification tasks where the noise of SGD drives the
determinant to 0, a scenario not covered by the previous analysis of Ji and Telgarsky [2019].

Discrete gradient algorithms. We can extend the previous results to discrete (possibly stochastic)
gradient algorithm. Both algorithms can be written as

Θt+1 = Θt (Ip+k + ηJt) ,

for stepsize η and Jt the possibly stochastic block gradient matrix defined in Equation (6.1). In the
context of discrete algorithms, the determinant is controlled by the following lemma (refer to B.4 for
the proof).
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Figure 1: Evolution of the model characteristics for gradient flow (δ = 0) and stochastic gradient
flow (δ = 2). Left: Determinant of M. Right: Top-5 singular values of W1.
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Figure 2: Evolution of the top-5 singular values of W1 for SGD with small and large stepsizes η.
Left: Regression with MSE loss, linear network. Middle: Classification with logistic loss, linear
network. Right: Regression with MSE loss, 2-layer ReLU network.

Lemma 6.1. When l = p+ k and η2
∥∥Jt

∥∥2
F
≤ 1, the following property holds for the determinant,

|detΘt+1| ≤ exp

Å
−η2

2

∥∥Jt

∥∥2
F

ã
|detΘt|.

If the factor η2
∥∥Jt

∥∥2
F
≤ 1 at every iteration t, the determinant is reduced by the discrete step size.

However, there is a tradeoff: the sum S :=
∑∞

t=0 η
2
∥∥Jt

∥∥2
F

can be finite, indicating that it does not
completely drive the determinant to zero. Increasing η to increase S might lead to instability and
divergence. Furthermore, since

∥∥Jt

∥∥2
F
∝ L (Θt), there is an additional tradeoff between convergence

and the simplicity of the parameters. This illustrates how step sizes that produce non-convergent
training loss patterns, such as the catapult effect [Lewkowycz et al., 2020] or the edge of stability
mechanisms [Cohen et al., 2020], can simplify the network’s parameters.

7 Experimental evidence

We consider a regression problem on synthetic data with n = 1000 samples of Gaussian data in
R5 (p = 5) with labels in R2 (k = 2) generated by some ground truth β ∈ R5×2, the width of
the network is l = 10. We use Gaussian initialization of the network parameters with entries from
N (0, 1). Experiments details can be found in the appendix C. In the left plot of Figure 1, we show
the time evolution of the determinant of matrix M. As suggested by theorems 4.1 and 4.2, in the
case without label noise, det

(
Θ⊤Θ

)
stays constant, while with the Label Noise of intensity δ = 2

it goes to zero with time. In the right plot of Figure 1, we demonstrate the time evolution of the
top-5 singular values of the matrix W1. Note that in the case of Gradient Flow all except the first k
singular values (σ0 and σ1) stay at the same scale, while adding Label Noise forces smallest d+ l− k
singular values (σ2, σ3, and σ4) to tend toward zero. Further experiments illustrate in Figure 2 the
evolution of singular values of parameter matrix W1 when optimized with SGD, for classification
tasks and with ReLU network. These results also confirm that the beneficial effects of stochasticity
hold in these contexts.
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8 Conclusion

In this paper, we demonstrate a distinct separation between GF and SGF when trained on linear
networks. This separation is obtained by tracking the evolution of the determinant of the parameter
matrix. However, while the determinant is a significant factor, it does not fully capture the implicit
regularization effects. Notably, the determinant mirrors the imbalance u2 − v2 in diagonal networks
represented by u ⊙ v, whose dynamics play a crucial role in attuning the implicit regularization
across various algorithms [Woodworth et al., 2020, Pesme et al., 2021, Papazov et al., 2024]. Our
analysis presents the initial step in deciphering implicit regularization for stochastic methods in linear
networks, yet achieving a complete characterization remains a promising direction for future research.
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A Notations

Notation Sd, S
+
d , S++

d denote the set of symmetric, positive semi-definite and positive definite
matrices in Rd×d. We use ⊙ to denote the Hadamard product.

B Proofs

Theorem B.1. For the gradient flow defined in Equation (3.4), the following property holds,

d
(
det
(
Θ⊤Θ

))
= 0.

Hence, det
(
Θ(t)⊤Θ(t)

)
= det

(
Θ⊤

0 Θ0

)
, where Θ0 = Θ(0) is the initialisation at time t = 0.

First, we present a proof of this theorem, based on straightforward computations of the derivative of
the determinant and the fact that the matrix J has zero trace.

Proof. Let M = Θ⊤Θ. The dynamics of M are governed by the ODE,

dM = dΘ⊤Θ+Θ⊤dΘ = Θ⊤ΘJdt+ JΘ⊤Θdt = (MJ+ JM)dt.

Using the gradient of the determinant given in Proposition B.2, the determinant of M evolves as
follows,

d(det (M)) = ⟨∇det (M), dM⟩ = det (M)
〈
M−1,MJ+ JM

〉
dt,

= det (M)
〈
M−1,MJ

〉
+
〈
M−1,JM

〉
= 2det (M) ⟨Ip+k,J⟩ = 2det (M)Tr (J).

Given that Tr (J) = 0, it follows that d(det (M)) = 0.

Proposition B.2. For any matrix M in S++
d , the first two derivatives of the determinant of M, denoted

by det (M) are the following

(i) ∇det (M) = det (M)M−1

(ii) For 1 ≤ a, b, k, l ≤ d, the second order partial derivative is given by

∂2det (M)

∂Mab∂Mkl
= det (M)

[
(M−1)ba(M

−1)lk − (M−1)bk(M
−1)la

]
(B.1)

Theorem B.3. For a stochastic process given by the SDE,

dΘ = Θ [Jdt+ dξ] (B.2)

with TrJ = Tr ξ = 0, the determinant of the M = Θ⊤Θ evolves as

d(det (M)) = −det (M)Tr [dξdξ]. (B.3)

Proof. First, we compute the evolution of M = Θ⊤Θ using the Ito’s product rule,

dM = d
(
Θ⊤Θ

)
= dΘ⊤Θ+Θ⊤dΘ+ dΘ⊤dΘ

The last term is interpreted as a derivative of the finite variation and it should be computed using
dt. (dBt)ij = 0 and (dBt)ij . (dBt)kl = δi=k∧j=ldt. Using Eq. (3.6),

dM = [Jdt+ dξ]Θ⊤Θ+Θ⊤Θ[Jdt+ dξ] + dξΘ⊤Θdξ,
= JMdt+MJdt+ dξMdξ + dξM+Mdξ.

Using the Ito chain rule, we can compute the evolution of determinant as following,

d(det (M)) = ⟨∇det (M), dM⟩+ 1

2

∑
a,b,k,l

∂2det (M)

∂Mab∂Mkl
dMabdMkl,
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The first term is

⟨∇det (M), dM⟩ = det (M)
〈
M−1,JMdt+MJdt+ dξMdξ + dξM+Mdξ

〉
,

= 2det(M) ⟨Ip+k,J⟩ dt+ 2det (M) ⟨Ip+k, dξ⟩+ det (M)
〈
M−1, dξMξ

〉
Using the property that Tr (J) = Tr (dξ) = 0. We get that ⟨∇det (M), dM⟩ =

〈
M−1, dξMξ

〉
. For

the second term

1

2

∑
a,b,k,l

∂2det (M)

∂Mab∂Mkl
dMabdMkl =

1

2

∑
a,b,k,l

detM
[
(M−1)ba(M

−1)lk − (M−1)bk(M
−1)la

]
dMabdMkl,

=
det(M)

2

∑
a,b,k,l

[
(M−1)ba(M

−1)lk
]

dMabdMkl

−
∑

a,b,k,l

[
(M−1)bk(M

−1)la
]

dMabdMkl,

Rearranging the terms in the summation, we get,∑
a,b,k,l

[
(M−1)ba(M

−1)lk
]

dMabdMkl =
∑

a,b,k,l

[
(M−1)badMab

] [
(M−1)lkdMkl

]
,

=
∑
b,l

[∑
a

(M−1)badMab

][∑
k

(M−1)lkdMkl

]
,

=
∑
b,l

(
M−1dM

)
bb

(
M−1dM

)
ll
=
∑
b

(
M−1dM

)
bb

∑
l

(
M−1dM

)
ll
,

= Tr
(
M−1dM

)
Tr
(
M−1dM

)
.

Similarly for the other term, we get,∑
a,b,k,l

[
(M−1)bk(M

−1)la
]

dMabdMkl =
∑

a,b,k,l

[
(M−1)bkdMkl

] [
(M−1)ladMab

]
,

=
∑
b,l

[∑
a

(M−1)badMal

][∑
k

(M−1)bkdMkl

]
,

=
∑
b

[∑
l

(
M−1dM

)
bl

(
M−1dM

)
lb

]
=
∑
b

(
M−1dMM−1dM

)
bb
,

= Tr
[(
M−1dM

) (
M−1dM

)]
.

Note that the diffusion part of M−1dM is dξ +M−1dξM. Using this

Tr
(
M−1dM

)
Tr
(
M−1dM

)
= Tr

[
dξ +M−1dξM

]
Tr
[
dξ +M−1dξM

]
= 0,

as Tr dξ = 0. For the other term,

Tr
[(
M−1dM

) (
M−1dM

)]
= Tr

[(
dξ +M−1dξM

) (
dξ +M−1dξM

)]
,

= 2Tr [dξdξ] + 2Tr
[
M−1dξMdξ

]
.

Putting everything together, we get,

1

2

∑
a,b,k,l

∂2det (M)

∂Mab∂Mkl
= −detM

(
Tr [dξdξ] + Tr

[
M−1dξMdξ

])
which gives us

d(det (M)) = −det (M) Tr [dξdξ].
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Lemma B.4. When l = p+ k and η2
∥∥Jt

∥∥2
F
≤ 1, the following property holds for the determinant,

|detΘt+1| ≤ exp

Å
−η2

2

∥∥Jt

∥∥2
F

ã
|detΘt|.

Proof. Note that because of the block structure of the matrix Jt, its nonzero eigenvalues come in
±-pairs: ±σ1, . . . ,±σm, moreover, since Jt is symmetric, singular values of Jt are the absolute
values of eigenvalues, i.e. σ1, . . . , σm. Then, the determinant of Θt+1 can be written as the following,

detΘt+1 = detΘtdet (Ip+k + ηJt) = detΘt

m∏
i=1

(1− η2σ2
i ).

Using that 1− x2 ≤ e−x2

for all x, we can estimate

m∏
i=1

(1− η2σ2
i ) ≤ exp

(
−η2

m∑
i=1

σ2
i

)
= exp

Å
−η2

2

∥∥Jt

∥∥2
F

ã
.

We obtain the required inequality by observing that
m∏
i=1

(1 − η2σ2
i ) =

∣∣∣∣ m∏
i=1

(1− η2σ2
i )

∣∣∣∣ since each

term 1− η2σ2
i ≥ 0 when η2

∥∥Jt

∥∥2
F
< 1.

Theorem B.5. Let s1 > . . . sl be the order of the eigenvalues of the matrix M defined by Equa-
tion (5.4). Let the collision time for the eigenvalues be defined as

τ = {inf t : si(t) = sj(t) for 1 ≤ i ̸= j ≤ l}. (B.4)

For t ≤ τ , the eigenvalues are semi-martingales given by the solution of the following SDE

d(si) = pc2i dt+
l∑

j=1,
j ̸=i

sic
2
j + sjc

2
i

si − sj
dt+ 2

»
sic2i

Ä
dX̃
ä
i

(B.5)

where
Ä

dX̃
ä
i

= 1/ηδ
Ä
⟨ui, y⟩ −

√
sic2i

ä
dt + dεi with ui being the ith column of U and

(ε0, . . . , εl−1) is the standard Brownian motion in Rl. The evolution of ci and U are presented
in the appendix.

Proof. The proof follows the approach of Bru [1989]. Let W = UΣV⊤ be the singularvalue
decomposition (see Def.D.1 involved with r = l and l < p and it will be the rank). Our focus is on
understanding the evolution of the singular values and singular vectors of the matrix W. To derive
the evolution of Σ,V we can consider the eigenvalues and eigenvectors of the PSD matrix process
M. Note that M = VΣ2V⊤, let D = Σ2.

Evolution of D and V Taking the derivative of M, we find

dM = dW⊤W +W⊤dW + dW⊤dW = adX⊤W +W⊤dXa⊤ + paa⊤dt. (B.6)

We invoke the theorem D.2 we derived to give the eigenvalues of any matrix valued stochastic process.
Note that VV⊤ = Il, so some terms of the computation are not required.

dD = I⊙ Ñ dt+ I⊙ dM̃ dt+ I⊙
Ä

dM̃
Ä
S⊙ dM̃

ää
.

and the evolution of the eigenvectors,

dV = V
Ä
Q∥ dt+ S⊙ (Ñdt+ dM̃)

ä
where you define,

Q∥ =
I⊙
îÄ
S⊙ dM̃

ä Ä
S⊙ dM̃

äó
2

− S⊙
îÄ
S⊙ dM̃

ä î
dM̃⊙ I

óó
+ S⊙

Ä
dM̃
Ä
S⊙ dM̃

ää
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where the matrix S is given by

Sij =

®
0 if i = j,

(sj − si)
−1 o.w.

Ñ = V⊤(paa⊤)V = pcc⊤.

dM̃ = V⊤ [adX⊤W +W⊤dXa⊤
]
V,

= cdX⊤UΣ+ΣU⊤dXc⊤.

Note that Σ = diag ((σ0, . . . ,σl−1)) where σ0 > σ1 . . . > σl−1. Let D = Σ2 and denote the
entires of D as following, D = diag ((s0, . . . , sp−1)). Note that

U⊤dX = U⊤(
1

ηδ
(y −Wa)dt+ dBt),

=
1

ηδ

[
U⊤y −Σc

]
dt+U⊤dBt.

Using Levy’s characterization U⊤dBt is a Brownian motion in Rl, lets call that dB̃t. The diffusion
part of dM̃ (say dF)

dF = ΣV⊤dBtc
⊤ + cdBt

⊤VΣ,

=
Ä
σ ⊙ dB̃t

ä
c⊤ + c

Ä
σ ⊙ dB̃t

ä⊤
= dmtc

⊤ + cdmt
⊤

where dmt
def
= (σ ⊙ dB̃t). We are required to compute dF(S ⊙ dF) to compute the evolution of

eigenvalues. Using the lemma D.4, we get

dF(S⊙ dF) = cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt+Ddiag (c)Sdiag (c) dt,

I⊙ [dF(S⊙ dF)] = I⊙
[
cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt

]
The element wise computation of this term gives the required result for evolution of eigenvalues.

Evolution of c. Note that c = V⊤a. Computing the derivative using the Ito’s product rule, we get,

dV⊤a = V⊤da+ dV⊤a+ dV⊤da,

= V⊤da+ dV⊤VV⊤a+ dV⊤VV⊤da,

dV⊤V =
îÄ
Q⊤

∥ dt− S⊙ dX
äó

,

V⊤da = V⊤W⊤dBt +
1

ηδ

[
U⊤y −Σc

]
dt = ΣdB̃t = dmt +

1

ηδ

[
U⊤y −Σc

]
dt,

dV⊤VV⊤da = −(S⊙ dF)dmt.

dV⊤VV⊤da =
îÄ
Q⊤

∥ dt− S⊙
Ä
Ñdt+ dM̃

ääó
c

Using the lemma D.6, D.5, D.4 and computing the element wise summation, we get the following
evolution for dc

dci = −
1

2

l∑
j=1

Sij(sic
2
j + sjc

2
i )dt− ci

l∑
j=1

(Sijc
2
j )

Ñ∑
k ̸=i,j

skSki

é
− (p− 2)ci

l∑
j=1

Sijc
2
i dt−

l∑
j=1

Sijsjdt,

+ σi(U
⊤dX)i(1−

l∑
j=1

Sijc
2
j )− ci

∑
j

Sijσjcj(U
⊤dX)j

Evolution of U. To compute the evolution of U, we invoke the theorem D.2 on the evolution of
WW⊤ = UDU⊤. We ignore it here as it does not have much consequence on our results.
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Theorem B.6. In the large noise limit, when l = 2, the following properties hold, for t ≤ τ ,

(a) s0, s1 are greater than zero almost surely.

(b) for α = (p− 3)/2, s−α
0 is a super-martingale while s−α

1 is a sub-martingale.

Proof. First, note that in the large noise limit with l = 2, the evolution of the eigenvalues is expressed
as

d(s0) = pc20dt+
s0c

2
1 + s1c

2
0

s0 − s1
dt+ 2

»
s0c20

Ä
dB̃t

ä
0
, (B.7)

d(s1) = pc21dt− s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

»
s1c21

Ä
dB̃t

ä
1
. (B.8)

Using the Ito chain rule, for the evolution of s−α
0 we can write

d
(
s−α
0

)
=

∂(s−α
0 )

∂s0

Å
pc20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

»
s0c20

Ä
dB̃t

ä
0

ã
+

1

2

∂2(s−α
0 )

∂2s0

(
2
»
s0c20

)2
dt

= −αs−α−1
0

Å
pc20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt− 2(α+ 1)c20dt+ 2

»
s0c20

Ä
dB̃t

ä
0

ã
= −αs−α−1

0

Å
c20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

»
s0c20

Ä
dB̃t

ä
0

ã
,

analogously

d
(
s−α
1

)
= −αs−α−1

1

Å
c21dt− s0c

2
1 + s1c

2
0

s0 − s1
dt+ 2

»
s1c21

Ä
dB̃t

ä
1

ã
,

and finally for s−α
0 s−α

1

d
(
s−α
0 s−α

1

)
= d
(
s−α
0

)
s−α
1 + s−α

0 d
(
s−α
1

)
+ d
(
s−α
0

)
d
(
s−α
1

)
= −αs−α−1

0 s−α
1

Å
c20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

»
s0c20

Ä
dB̃t

ä
0

ã
−αs−α

0 s−α−1
1

Å
c21dt− s0c

2
1 + s1c

2
0

s0 − s1
dt+ 2

»
s1c21

Ä
dB̃t

ä
1

ã
.

Now, we can show that the drift term in the SDE that describes the dynamics of s−α
0 s−α

1 is zero,
which gives us the first part of the result by Mckean’s argument [Mayerhofer et al., 2011],

−αs−α−1
0 s−α−1

1

Å
s1c

2
0 + s1

s0c
2
1 + s1c

2
0

s0 − s1
+ s0c

2
1 + s0

s0c
2
1 + s1c

2
0

s0 − s1

ã
= −αs−α−1

0 s−α−1
1

Å
s1c

2
0 + s0c

2
1 +

s0s1c
2
1 + s21c

2
0 − s20c

2
1 + s0s1c

2
0

s0 − s1

ã
= −αs−α−1

0 s−α−1
1

Ç
s1c

2
0 + s0c

2
1 +

(s1 − s0)
(
s0c

2
1 + s1c

2
0

)
s0 − s1

å
= 0.

The second part is obtained by noticing that

c20 +
s0c

2
1 + s1c

2
0

s0 − s1
=

s0
(
c21 + c20

)
s0 − s1

≥ 0,

c21 −
s0c

2
1 + s1c

2
0

s0 − s1
= −

s1
(
c21 + c20

)
s0 − s1

≤ 0,

and hence the drift term of d
(
s−α
0

)
is not positive, while the drift term of d

(
s−α
1

)
is not negative.
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C Experiment details

In all the graphs we plot the values averaged on 20 runs with different random seeds as well as the
95% confidence interval (lightly colored). To numerically emulate GF (Figure 1), we set a stepsize of
1e−6 in numerical simulation.

In the further experiments, we study the behaviour of the linear network for regression with the same
synthetic data and same network initialization as in previous experiment. As seen in the left plot
of the Figure 2, when the stepsize is large (η = 0.1), singular values exhibit behavior similar to the
case of LNGF, while with the small stepsize (η = 0.005) the evolution of singular values is closer to
GF case. Next, we examine the effect of SGD in the case of classification task with logistic loss, as
illustrated in the middle plot of the Figure 2. We consider synthetic data with n = 1000 samples of
Gaussian data in R5 (d = 5) constituting two clusters corresponding to two classes (k = 1). Note that
larger stepsize (η = 0.5) in this case also forces the smallest singular value to tend to zero, however
the effect is not so dramatic for the rest of singular values. Additionally, we study the 2-layer ReLu
network optimized with SGD on the same regression task as before. As seen in the right plot of
the Figure 2, the decrease of the last singular value σ4 is much slower than in the case of the linear
network, however, the larger stepsize still facilitates divergence of k largest (σ0 and σ1) and p− k
smallest (σ2, σ3 and σ4) singular values.

All experiments are implemented with Python 3 [Van Rossum and Drake, 2009] under PSF license,
NumPy [Harris et al., 2020] under BSD license, and PyTorch [Paszke et al., 2019] under BSD-3-
Clause license.

The experiments were run on a Intel i5-8250U, 8-GB RAM, with OS Ubuntu 20.04.6.

D Supplementary material

D.1 Notations and preliminary definitions

Definition D.1 (Eigen decomposition and Singular Value decomposition). We discuss the eigen value
decomposition for a symmetric square matrix, and the singular value decompostion for any matrix is
defined as the following

(a) Eigen decomposition. For any rank r matrix R ∈ Sp, R = VDV⊤ is the eigen decomposition,
where V ∈ Rp×r, D ∈ Rr×r, D is a diagonal matrix and V⊤V = Ir, however, VV⊤ is not
necessarily an identity matrix unless r = p.

(b) Singular Value Decomposition. For any rank r matrix W ∈ Rp×l, W = UΣV⊤, where
U ∈ Rp×r,V ∈ Rl×r,Σ ∈ Rr×r, Σ is a diagonal matrix and U⊤U = V⊤V = Ir, however
the UU⊤ and VV⊤ are not necessarily identity unless r = p or r = l respectively.

D.2 Eigenvalues of matrix valued stochastic process

Theorem D.2. For a matrix-valued stochastic process on S++
p+k,

dR = Ndt+ dM

where dM is a local martingale process. Let R = VDV⊤ is the eigenvalue decomposition of the
process, the evolution of eigenvalues satisfy the SDE for time t less than the collision time,

dD = I⊙ Ñ dt+ I⊙ dM̃ dt+ I⊙
Ä

dM̃
Ä
S⊙ dM̃

ää
+D−1 ⊙

(
V⊤dR

(
I−VV⊤) dRV

)
.

where S is defined as per Eq. D.1 and dM̃ = V⊤dMV, Ñ = V⊤NV. The evolution of the
eigenvectors,

dV = V
(
Q∥ dt+ S⊙ dF

)
+ (I−VV⊤)

(
Q⊥ dt+ dRVD−1

)
.
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where you define,

Q∥ =
I⊙
îÄ
S⊙ dM̃

ä Ä
S⊙ dM̃

äó
2

−
I⊙

[
D−1V⊤dR

(
I−VV⊤) dRVD−1

]
2

− S⊙
îÄ
S⊙ dM̃

ä î
dM̃⊙ I

óó
+ S⊙

Ä
dM̃
Ä
S⊙ dM̃

ää
+ S⊙

(
V⊤dR

(
I−VV⊤) dRVD−1

)
,

Q⊥ =
[
dRVD−1

] îî
S⊙ dM̃

ó
D− dM̃

ó
D−1.

Evolution of eigenvalues for general matrix SDE

Proof. Using the eigen decomposition, we have R = VDV⊤,

D = V⊤RV,

dD = V⊤dRV +V⊤RdV + dV⊤RV +V⊤dRdV + dV⊤dRV + dV⊤RdV,

= V⊤dRV +DV⊤dV + dV⊤VD+V⊤dRdV + dV⊤dRV +
(
dV⊤V

)
D
(
V⊤dV

)
.

The approach we follow is use the jacobian of the evolution of V (see [Townsend, 2016] ) and solve
the constrains equations to obtain the Ito correction term as done in Bru [1989]. Let (s1, s2, . . . , sr)
denote the diagonal entries of D. Furthermore, we define the matrix S, which plays a notable role in
Jacobian w.r.t V, as the following,

Sij =

®
0 if i = j,

(sj − si)
−1 o.w.

(D.1)

For the sake of brevity, we denote the evolution

dF def
= V⊤dRV = V⊤NV dt+V⊤dMV,

def
= Ñ dt+ dM̃

The evolution of the eigenvectors,

dV = VdΩV + (I−VV⊤)dΞV.

Using the Jacobian of the eigen vectors, we write,

dΩV = Q∥ dt+ S⊙ dF,

dΞV = Q⊥ dt+ dRVD−1.

Note that V⊤V = Ir, using this we have,

0 = d
(
V⊤V

)
= dV⊤V +V⊤dV + dV⊤dV,

= dΩV
⊤ + dΩV + dV⊤VV⊤dV + dV⊤ (I−VV⊤) dV,

= dΩV
⊤ + dΩV + dΩV

⊤dΩV + dΞV
⊤ (I−VV⊤) dΞV,

= dΩV
⊤ + dΩV − (S⊙ dF) (S⊙ dF) +D−1V⊤dR

(
I−VV⊤) dRVD−1.

Using dΩ⊤
V = Q⊤

∥ dt− S⊙ dF, we have dΩV
⊤ + dΩV =

Ä
Q⊤

∥ +Q∥
ä

dt.Ä
Q∥ +Q⊤

∥

ä
dt =

Ä
S⊙ dM̃

ä Ä
S⊙ dM̃

ä
−D−1V⊤dR

(
I−VV⊤) dRVD−1. (D.2)

Coming back to the evolution of singular values,

dD = V⊤dRV +DV⊤dV + dV⊤VD+V⊤dRdV + dV⊤dRV +
(
dV⊤V

)
D
(
V⊤dV

)
.

= dF+
Ä
DQ∥ +Q⊤

∥ D
ä

dt+D (S⊙ dF)− (S⊙ dF)D+ dΩ⊤
VDdΩV

+V⊤dR
[
VdΩV +

(
I−VV⊤) dΞV

]
+
î
dΩV

⊤V⊤ + dΞV
⊤ (I−VV⊤)ó dRV,
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dD = I⊙ dF+
Ä
DQ∥ +Q⊤

∥ D
ä

dt−
Ä
S⊙ dM̃

ä
D
Ä
S⊙ dM̃

ä
+ dM̃

Ä
S⊙ dM̃

ä
−
Ä
S⊙ dM̃

ä
dM̃+V⊤dR

(
I−VV⊤) dRVD−1 +D−1V⊤dR

(
I−VV⊤) dR.

(D.3)

Note that dD is diagonal, hence, I⊙ dD = dD.

I⊙ dD = I⊙ dF+ I⊙
Ä
DQ∥ +Q⊤

∥ D
ä

dt− I⊙
îÄ
S⊙ dM̃

ä
D
Ä
S⊙ dM̃

äó
+ 2I⊙

Ä
dM̃
Ä
S⊙ dM̃

ää
+ 2I⊙

(
D−1V⊤dR

(
I−VV⊤) dR

)
Note that I⊙ (DM) = I⊙ (MD) = D ⊙M for any matrix M and diagonal matrix D, using this
property, we can simplify the above expression as,

dD = I⊙ dF+D⊙
Ä
Q∥ +Q⊤

∥

ä
dt− I⊙

îÄ
S⊙ dM̃

ä
D
Ä
S⊙ dM̃

äó
+ 2I⊙

Ä
dM̃
Ä
S⊙ dM̃

ää
+ 2D−1 ⊙

(
V⊤dR

(
I−VV⊤) dR

)
Using Eq. D.2, we have,

D⊙
Ä
Q∥ +Q⊤

∥

ä
dt = D⊙

îÄ
S⊙ dM̃

ä Ä
S⊙ dM̃

ä
−D−1V⊤dR

(
I−VV⊤) dRVD−1

ó
,

= I⊙
îÄ
S⊙ dM̃

ä Ä
S⊙ dM̃

ä
D
ó
−D−1 ⊙

(
V⊤dR

(
I−VV⊤) dRV

)
.

Using this,

dD = I⊙ dF+ I⊙
îÄ
S⊙ dM̃

ä Ä
S⊙ dM̃

ä
D
ó
− I⊙

îÄ
S⊙ dM̃

ä
D
Ä
S⊙ dM̃

äó
+ 2I⊙

Ä
dM̃
Ä
S⊙ dM̃

ää
+D−1 ⊙

(
V⊤dR

(
I−VV⊤) dRV

)
,

= I⊙ dF+ I⊙
îÄ
S⊙ dM̃

ä îÄ
S⊙ dM̃

ä
D−D

Ä
S⊙ dM̃

äóó
+ 2I⊙

Ä
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Evolution of eigenvectors for general matrix SDE. Here, we derive the evolution of eigenvectors,

Using Eq. D.2, we have,Ä
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∥ D
ä
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Ä
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Now further using the constrain that dD needs to be diagonal we get,Ä
DQ∥ +Q⊤

∥ D
ä

dt = dD− I⊙ dF+
Ä
S⊙ dM̃

ä
D
Ä
S⊙ dM̃

ä
− dM̃

Ä
S⊙ dM̃

ä
+
Ä
S⊙ dM̃

ä
dM̃

−V⊤dR
(
I−VV⊤) dRVD−1 −D−1V⊤dR

(
I−VV⊤) dR.(

DQ∥ −Q∥D
)

dt = dD− I⊙ dF−
Ä
S⊙ dM̃

ä îÄ
S⊙ dM̃

ä
D−D

Ä
S⊙ dM̃

äó
− dM̃

Ä
S⊙ dM̃

ä
+
Ä
S⊙ dM̃

ä
dM̃−V⊤dR

(
I−VV⊤) dRVD−1,

= dD− I⊙ dF−
Ä
S⊙ dM̃

ä î
dM̃⊙ Ī
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Combing these, we get the diagonal and off diagonal terms of Q∥(
I⊙Q∥

)
dt =
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ä
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Computing of Q⊥. Recalling the evolution of the eigenvectors,

dV = VdΩV + (I−VV⊤)dΞV.

Using the Jacobian of the eigen vectors, we write,
dΩV = Q∥ dt+ S⊙ dF,

dΞV = Q⊥ dt+ dRVD−1,

dV = V
[
Q∥ dt+ S⊙ dF

]
+ (I−VV⊤)

[
Q⊥ dt+ dRVD−1

]
,
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î
Q⊤
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ó
V⊤ +

[
Q⊤

⊥dt+D−1V⊤dR
]
(I−VV⊤).

Using the fact that
(
I−VV⊤)R = 0 and deriving it,

0 =
(
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0 = d
[(
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(
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)
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= dVV⊤R+VdV⊤R+VV⊤dR+ dVdV⊤R+ dVV⊤dR+VdV⊤dR,
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[
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]
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ó
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]
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Adding the terms up we get,
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[
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This gives the expression for Q⊥ and this ends our computation.
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Lemma D.3. For any matrix A ∈ Rn×m, B ∈ Rn×n, m × n-dimensional Brownian motion dBt,
the following results hold on the covariance

dBtAdBt = A⊤dt, (D.4)

dBtBdBt
⊤ = tr (B) Imdt. (D.5)

Lemma D.4. With S defined in Equation (D.1), dF = dF = ΣV⊤dBtc
⊤ + cdBt

⊤VΣ and
dmt

def
= (σ ⊙ dB̃t).

dF(S⊙ dF) = cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt+Ddiag (c)Sdiag (c) dt. (D.6)

Proof.

S⊙ dF = [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] ,

dF(S⊙ dF) =
(
cdmt

⊤ + dmtc
⊤) [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] ,

= cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt+Ddiag (c)Sdiag (c) dt.

Lemma D.5. With S defined in Equation (D.1), dF = dF = ΣV⊤dBtc
⊤ + cdBt

⊤VΣ and
dmt

def
= (σ ⊙ dB̃t).

(S⊙ dF)(S⊙ dF) = Ddiag
Ä
Sdiag (c)

2
S
ä

dt+ diag (c)SDSdiag (c) dt. (D.7)

Proof.

(S⊙ dF) = S⊙
(
dmtc

⊤ + cdmt
⊤) ,

= diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c) .

Now, computing the product,

(S⊙ dF)(S⊙ dF) = [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] ,

= Ddiag
Ä
Sdiag (c)

2
S
ä

dt+ diag (c)SDSdiag (c) dt.

Lemma D.6.

(S ⊙ dF)dmtc
⊤dF =

Proof.

(S ⊙ dF)dmt = [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] dmt = diag (c)S(σ ⊙ σ)
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The dichotomy between SGD and GD is revealed by theorems 4.1 and 4.2, the
repulsive force between the eigenvalues of parameter matrix is discussed in theorems 5.1
and 5.2. Supporting experiments are discussed in section 7.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in section 4 in a designated paragraph
as well as in section 5 in the discussion of theorem 5.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs of the theorems that are not presented in the main body are presented in
appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The data as well as the models and optimization algorithms used are discussed
in the section 7
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code in the form of Jupyter notebook is provided and all the random seeds
are fixed for the reproducibility purposes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The setup is discussed in the section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the graphs of the parameters evolution are accompanied with the 95%
confidence interval calculated on the 20 runs with different random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All relevant information is stated in the appendix section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is theoretical and does not suggest any new model that can cause
harm. All the data used is synthetic.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work investigates the effects of well known algorithms on the simple
models and doesn’t suggest any new applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work doesn’t entail models or datasets releases.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All relevant information is stated in the appendix section C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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