
Preference-Driven Multi-Objective Combinatorial
Optimization with Conditional Computation

Mingfeng Fan
National University of Singapore

ming.fan@nus.edu.sg

Jianan Zhou∗

Nanyang Technological University
jianan004@e.ntu.edu.sg

Yifeng Zhang
National University of Singapore

yifeng@u.nus.edu

Yaoxin Wu∗

Eindhoven University of Technology
y.wu2@tue.nl

Jinbiao Chen
Sun Yat-sen University

chenjb69@mail2.sysu.edu.cn

Guillaume Adrien Sartoretti
National University of Singapore

guillaume.sartoretti@nus.edu.sg

Abstract

Recent deep reinforcement learning methods have achieved remarkable success
in solving multi-objective combinatorial optimization problems (MOCOPs) by
decomposing them into multiple subproblems, each associated with a specific
weight vector. However, these methods typically treat all subproblems equally and
solve them using a single model, hindering the effective exploration of the solution
space and thus leading to suboptimal performance. To overcome the limitation, we
propose POCCO, a novel plug-and-play framework that enables adaptive selection
of model structures for subproblems, which are subsequently optimized based
on preference signals rather than explicit reward values. Specifically, we design
a conditional computation block that routes subproblems to specialized neural
architectures. Moreover, we propose a preference-driven optimization algorithm
that learns pairwise preferences between winning and losing solutions. We eval-
uate the efficacy and versatility of POCCO by applying it to two state-of-the-art
neural methods for MOCOPs. Experimental results across four classic MOCOP
benchmarks demonstrate its significant superiority and strong generalization.

1 Introduction

Multi-objective combinatorial optimization problems (MOCOPs) involve optimizing multiple con-
flicting objectives within a discrete decision space. They have attracted considerable attention from
the computer science and operations research communities due to their widespread applications in
manufacturing [1], logistics [25], and scheduling [17]. In such scenarios, decision makers must simul-
taneously consider and balance multiple criteria, such as cost, makespan, and environmental impact.
Unlike single-objective combinatorial optimization problems (SOCOPs), which seek a single optimal
solution, MOCOPs aim to identify Pareto optimal solutions that reflect trade-offs among conflicting
objectives, making them inherently more challenging. Given their NP-hard nature, exact methods
typically struggle to solve MOCOPs within reasonable time frames, as computational complexity may
increase exponentially with problem scale [13, 16]. Consequently, heuristic approaches have emerged
as the main avenue for tackling MOCOPs. However, these heuristics often involve extensive iterative

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

local searches for each new instance, resulting in high computational costs. Furthermore, conventional
heuristics often rely on extensive domain-specific expertise and meticulous, problem-specific tuning,
thus limiting their adaptability to broader classes of MOCOPs.

Recently, neural methods have achieved great success in solving SOCOPs [3, 8, 22, 27, 33, 43, 60,
69, 70] by learning effective patterns of decision policies in a data-driven way. Motivated by these
advances, researchers have extended neural approaches to MOCOPs, leveraging their advantages in
bypassing labor-intensive heuristic design, accelerating problem solving through GPU parallelization,
and flexibly adapting to diverse MOCOP variants. Typically, neural methods address MOCOPs by
decomposing them into a set of scalarized subproblems, each a SOCOP defined by a specific weight
vector, and solving them using deep reinforcement learning (DRL) to approximate the Pareto front.
Early approaches train or fine-tune a separate model for each subproblem using transfer learning
or meta-learning techniques [34, 67]. However, these approaches require extensive computational
resources and struggle to generalize to subproblems with unseen weight vectors. As an alternative,
PMOCO [38] employs a weight-conditioned hypernetwork to modulate model parameters, allowing
a single model to address all subproblems. Nevertheless, it remains limited in effectively handling
subproblems with diverse weight vectors. More recently, methods such as CNH [14] and WE-CA [6]
have tackled this challenge by encoding weight vectors directly into the problem representations,
resulting in a unified model that generalizes across various problem sizes. These methods are currently
considered state-of-the-art (SOTA) in solving MOCOPs.

Current SOTA methods typically rely on a single neural network with limited capacity to handle
all subproblems, which overcomplicates the learning task and results in suboptimal performance.
A straightforward solution to ease training and promote effective representation learning across
subproblems is to increase the model capacity. However, determining how much additional capacity to
allocate and where to introduce it within the architecture remains an open challenge. On the other hand,
neural methods often adopt REINFORCE [56] as the training algorithm, relying solely on scalarized
objective values as reward signals to guide policy updates. Given its on-policy nature, REINFORCE
suffers from high gradient variance and lacks structured mechanisms for effective exploration [32].
These issues are exacerbated in MOCOP settings, where the vast combinatorial action space makes
efficient exploration particularly difficult, ultimately hindering policy performance.

To address these issues, we propose POCCO (Preference-driven multi-objective combinatorial
Optimization with Conditional COmputation), a plug-and-play framework that augments neural
MOCOP methods with two complementary mechanisms. First, POCCO introduces a conditional
computation block into the decoder, where a sparse gating network dynamically routes each sub-
problem through either a selected subset of feed-forward (FF) experts or a parameter-free identity
(ID) expert. This design enables subproblems to adaptively select computation routes (i.e., model
structures) based on their context, efficiently scaling model capacity and facilitating more effective
representation learning. Second, POCCO replaces raw scalarized rewards with pairwise preference
learning. For each subproblem, the policy samples two trajectories, identifies the better one as the
winner, and maximizes a Bradley–Terry (BT) likelihood based on the difference in their average log-
likelihoods. Such comparative feedback guides the search toward policies that generate increasingly
preferred solutions, enabling exploration of the most promising regions of the search space and more
efficient convergence to higher-quality solutions. Our contributions are summarized as follows:

• Conceptually, we address two fundamental limitations of existing approaches for solving
MOCOPs: limited exploration within the vast solution space and the reliance on a single,
capacity-limited model, which can lead to inefficient learning and suboptimal performance.

• Technically, we propose a conditional computation block that dynamically routes subprob-
lems to tailored neural architectures. Additionally, we develop a preference-driven algorithm
leveraging implicit rewards derived from pairwise preference signals between winning and
losing solutions, modeled using the BT framework.

• Experimentally, we demonstrate the effectiveness and versatility of POCCO on classical
MOCOP benchmarks using two SOTA neural methods. Extensive results show that POCCO
not only outperforms all baseline methods but also exhibits superior generalization across
diverse problem sizes.

2

2 Related Works

Traditional methods for MOCOP. MOCOPs are significantly harder to solve than their
single-objective counterparts. Classic cases such as the Traveling Salesman Problem (TSP) and
Capacitated Vehicle Routing Problem (CVRP) are already NP-hard, and adding multiple objectives
only magnifies the difficulty [16]. Exact algorithms quickly become impractical for large instances or
for problems that possess a vast Pareto set [18, 59]. Consequently, research has shifted toward heuris-
tic methods that deliver high-quality Pareto fronts within reasonable time limits [25, 64]. Among
these, multi-objective evolutionary algorithms (MOEAs) are widely used. They fall into two main
categories: dominance-based MOEAs [11, 12, 46] and decomposition-based MOEAs [15, 26, 65].
Despite their popularity, MOEAs typically demand extensive manual design: practitioners must select
and tune crossover, mutation, and selection operators along with many hyperparameters [50, 61, 63],
and this labor-intensive hand-engineering often limits overall performance.

Neural methods for MOCOP. Inspired by the success of DRL in SOCOPs [4], recent research
extends neural methods to MOCOPs by solving a series of scalarized SOCOPs. These neural solvers
generally follow two paradigms: one-to-one and one-to-many. The one-to-one paradigm trains or
fine-tunes a separate neural model for each scalarized subproblem. Some approaches apply DRL
algorithms individually and transfer parameters across models to accelerate convergence [34, 57].
Others adopt architectures such as Pointer Networks [52] and Attention Models [29, 30], and optimize
them using evolutionary strategies [47, 66]. To promote generalization across subproblems, meta-
learning techniques are introduced [67]. However, this paradigm suffers from high training overhead
and the burden of maintaining multiple models. In contrast, the one-to-many paradigm employs a
single neural network to handle all subproblems. This includes hypernetwork-based DRL frameworks
that condition on weight vectors [35, 38, 58], and conditional neural heuristics that incorporate
instance features, weight information, and problem size [6, 14].

Preference optimization. Preference optimization methods, such as Direct Preference Optimiza-
tion (DPO) [44] and Identity Preference Optimization (IPO) [2], have gained significant traction,
particularly in large language model (LLM) training, due to their ability to directly optimize human
preferences without relying on explicit reward modeling as required in reinforcement learning from
human feedback (RLHF). These methods are typically designed for pairwise preference data, where
human annotators identify a preferred output over a less preferred one in response to a given prompt.
Another line of research explores simpler preference optimization objectives that do not depend on
a reference model [21, 62]. Among them, SimPO [41] proposes using the average log-probability
of a generated sequence as an implicit reward. This approach aligns more closely with the model’s
generation process and improves computational and memory efficiency by eliminating the need for
a separate reference model. Some studies [37] have explored applying preference optimization to
SOCOPs, but its application to MOCOPs has been rarely investigated.

3 Preliminary

3.1 MOCOP

An MOCOP instance specified by data G can be formally defined as minπ∈X F (π) =
(f1(π), f2(π), . . . , fκ(π)), where F is the objective vector with κ objective functions, π is a feasible
solution, and X denotes the feasible solution space. Due to inherent conflicts among objectives, a
single solution that simultaneously optimizes all objectives typically does not exist. Instead, Pareto
optimal solutions are sought to represent different trade-offs, often guided by weight vectors, among
competing objectives. We define the Pareto properties of the solutions as follows.

Definition 1 (Pareto Dominance). A solution π ∈ X is said to dominate another solution π′ ∈ X
(i.e., π ≺ π′) if and only if fi(π) ≤ fi(π

′), ∀i ∈ {1, · · · , κ}, and F (π) ̸= F (π′).

Definition 2 (Pareto Optimality). A solution π∗ ∈ X is Pareto optimal if it is not dominated by
any other solution. Accordingly, the Pareto set P is defined as all Pareto optimal solutions, i.e.,
P = {π∗ ∈ X |∄ π ∈ X : π ≺ π∗}. The Pareto front F is defined as images of Pareto optimal
solutions in the objective space, i.e., F = {F (π∗)|π∗ ∈ P}.
Decomposition-based Methods. Since solving a SOCOP optimally is NP-hard, MOCOPs are signif-
icantly more intractable due to the need to identify Pareto optimal solutions, the quantity of which

3

grows exponentially with the problem size. Therefore, MOEAs are commonly adopted to compute
approximate Pareto solutions. Among them, decomposition-based MOEAs (MOEA/Ds) solve a set
of subproblems (i.e., SOCOPs) derived from the original MOCOP, a foundation underlying recent
DRL-based neural methods. Specifically, the vanilla MOEA/D utilizes decomposition techniques
to scalarize an MOCOP into N subproblems with a set of uniformly distributed weight vectors
{λ1, λ2, · · · , λN}, each of which satisfies λi = (λ1

i , · · · , λκ
i)

⊤, ∀ λj
i ≥ 0 and

∑κ
j=1 λ

j
i = 1.

3.2 Subproblem Solving

Given a subproblem (G, λi), we formulate the solving process as a Markov Decision Process (MDP).
An agent iteratively takes the current state as input (e.g., the instance information and the partially
constructed solution), and outputs a probability distribution over the nodes to be selected next. An
action corresponds to selecting a node, either greedily or by sampling from the predicted probabilities.
The transition involves appending the selected node to the partial solution. We parameterize the
policy p by a deep neural network θ, such that the probability of constructing a complete solution
π is defined as pθ(π|G, λi) =

∏T
t=1 pθ(πt|π<t,G, λi), where T is the total number of steps, and πt

and π<t represent the selected node and partial solution at the t-th step, respectively. The reward
is defined as the negation of the scalarized objective, e.g.,R(π) = −

∑κ
j=1 λ

j
ifj(π) with weighted

sum decomposition. The policy network is typically optimized using the REINFORCE [56], which
maximizes the expected reward L(θ|G, λi) = Epθ(π|G,λi)R(π) via the following gradient estimator:

∇θL(θ|G, λi) = Epθ(π|G,λi)[(R(π)− b(G))∇θ log pθ(π|G, λi)], (1)

where the baseline function b(·) reduces the gradient variance and stabilizes the training. There are
two primary paradigms to extend the above approach to solve MOCOPs. In the one-to-one paradigm,
methods sequentially train separate models to solve subproblems with a predefined set of weight
vectors. However, they often suffer from low training efficiency and generalize poorly to subproblems
with unseen weight vectors. In contrast, the one-to-many paradigm trains a single model to solve
subproblems for arbitrary weight vectors. This is typically achieved by incorporating a subnetwork
that transforms each weight vector into model parameters, thus inducing tailored policies for each
subproblem. Our POCCO follows the one-to-many paradigm and introduces two key innovations.
Specifically, we design a conditional computation block to dynamically route subproblems to different
neural architectures, and propose a preference-driven algorithm to train the model effectively.

4 Methodology

4.1 Overview

POCCO is a learning-based framework that trains a portfolio of policies to solve a set of scalarized
subproblems {(G, λi)}Ni=1, obtained by decomposing an MOCOP instance. Instead of forcing a
single policy to handle all subproblems, which often yields bland and suboptimal behavior, POCCO
promotes specialization: each policy is encouraged to focus on a subset of subproblems, yielding
a diverse policy ensemble. Such diversity is known to enhance multi-task optimization [53] by ex-
panding the exploration space and ultimately improving solution quality. Technically, we achieve this
diversity by activating different subsets of model parameters through a CCO block, enabling distinct
computational paths to emerge for different subproblems. Moreover, POCCO should encourage
each policy to thoroughly explore the combinatorial solution space during training for reducing
suboptimality. To achieve this, we replace raw rewards with preference signals. For each subprob-
lem (G, λi), we construct a set of winning–losing solution pairs {(πw,j , πl,j)}Kj=1. Training then
proceeds by maximizing the likelihood of the winning solutions while minimizing that of the losing
ones, following a BT-style objective. This preference-driven training encourages the learned policy
to explore the most promising regions of the search space, leading to more efficient convergence
toward higher-quality solutions. Notably, POCCO is a generic, plug-and-play framework that can
seamlessly involve different neural solvers for MOCOPs. We demonstrate this by augmenting two
SOTA methods, CNH [14] and WE-CA [6], in Section 5.

4

Multi-head Attention

ℎ! ℎ" ℎ#… ℎ$! ℎ$"

𝑄𝐾 𝑉

Probability

Multi-head Attention

ℎ! ℎ" ℎ#… ℎ$! ℎ$"

𝑄𝐾 𝑉

Probability

Conditional Computation Block

(a) Backbone Decoder (b) POCCO Decoder (Ours)

CCO Block

Router

FF

ℎ%

FF FF FF ID

NormalizationCompatibility & Softmax Compatibility & Softmax

ℎ%

Figure 1: Decoder structures of backbone and POCCO. Given an MOCOP instance G with n + 1
nodes (e.g., n customers and a depot, if applicable) and a weight vector λi, POCCO encodes their raw
features into joint node embeddings {hi}ni=0 using an encoder. At each decoding step t, the decoder
forms a query Q from the embeddings of the first and last selected nodes (π1, πt), and computes
the key K and value V via linear projections of {hi}ni=0. The MHA layer processes Q, K, and V
to produce a context vector hc, which is refined by the CCO block. The refined context is passed
through a compatibility layer followed by a Softmax to compute the node selection probabilities.
More details about the forward pass can be found in Appendix C.

4.2 Conditional Computational Block

Most approaches employ a Transformer-based architecture, where the encoder generates joint node
embeddings {hi}ni=0 that capture the interaction between the instance G and the weight vector λi,
and the decoder produces candidate solutions conditioned on these embeddings. We propose a CCO
block to increase the model capacity and promote policy diversity across subproblems. To maintain
efficiency, we integrate the CCO block solely into the decoder of the backbone model. This design
enables the generation of multiple diverse solutions through a single, computationally expensive
encoder pass, offering a favorable trade-off between empirical performance and computational cost.

As illustrated in Fig. 1, the CCO block comprises multiple FF experts and a single ID expert. We
insert this block between the multi-head attention (MHA) layer and the compatibility layer in the
decoder. Given a batch of MHA outputs {hb

c}Bb=1, the CCO block dynamically routes each context
vector hb

c from the corresponding subproblem through either the FF or ID experts, forming distinct
computation paths that function as different policies. The ID expert allows the model to bypass the
FF computation, promoting architectural sparsity and specialization [19]. Consequently, the CCO
block facilitates the learning of dedicated, weight-specific policies tailored to individual subproblems.

Formally, a CCO block consists of: 1) m FF experts {E1, E2, . . . , Em} with independent trainable
parameters; 2) a parameter-free identity expert Em+1; 3) a router, implemented as a gating network
G parameterized by WG, which determines how the inputs {hb

c}Bb=1 are routed to the experts; and 4)
a skip connection followed by an instance normalization (IN) layer. Given a single context vector hb

c,
let G(hb

c) ∈ Rm+1 denote the output of the gating network, which represents the expert selection
probabilities, and let Ej(h

b
c) denote the output of the j-th expert. The output of the CCO block is:

CCO(hb
c) = IN

m+1∑
j=1

G(hb
c)jEj(h

b
c) + hb

c

 . (2)

The sparse vector G(hb
c) activates only a small subset of experts, either parameterized FF experts or the

parameter-free ID expert, thereby enabling diverse computation paths while reducing computational
overhead. A typical implementation uses a Top k operator that retains the k largest logits and masks
the rest with −∞. In this case, the gating network output is: G(hb

c) = Softmax
(
Top k(hb

c ·WG)
)
.

Our proposed CCO block aligns with the principles of recent advances in efficiently scaling
Transformer-based models along both width [48] and depth [45]. In specific, it combines a
mixture-of-experts (MoE) layer, implemented using multiple FF experts to widen the network,
with a mixture-of-depths (MoD) layer, realized through an ID expert that allows inputs to skip compu-
tation. Within the CCO block, each subproblem is adaptively routed to only a small subset of experts,

5

Weight vector
Pareto front

Obj !!

O
bj
! "

Explicit Reward (previous) Implicit Reward (ours)

Obj 𝑟!

𝜆! # 𝑟!
+𝜆" # 𝑟"

RL
Policy

PL
Policy

⋖

Data Generation

Construct MOCOP Subproblems

Instances Weights

Solution
𝜋

Obj 𝑟"

Solution
𝜋!😊

Solution
𝜋"😫

𝝀
BT

Model

Reward

Sample

																			
(",#)

Figure 2: An overview of preference-driven MOCO. Unlike prior DRL methods that explicitly learn
from scalarized rewards, our approach converts relative preferences into a BT likelihood, providing
an implicit reward signal to optimize the PL policy.

granting the model the expressiveness of a significantly wider network while preserving computa-
tional efficiency. As demonstrated in Section 5, this joint design achieves a better capacity–efficiency
trade-off than scaling either dimension in isolation.

4.3 Preference-driven MOCO

To mitigate the exploration inefficiencies inherent in REINFORCE algorithms, we optimize relative
preferences [41] instead of absolute objective values. We summarize our preference-driven MOCO in
Appendix D and outline the complete pipeline in Fig. 2, which proceeds in three steps as follows.

Generating preference pairs. For each scalarized subproblem (G, λi) in the training batch, the
policy pθ samples two candidate solutions, πw and πl. We denote πw ⋖ πl if πw is preferred over
πl, as determined by the ordering of their scalarized objective values. This evaluator ranks the two
solutions and designates the better one as the winning solution πw and the other as the losing solution
πl. A binary preference label y is then assigned, where y = 1 if πw ⋖ πl, and y = 0 otherwise. This
label serves as the supervision signal required for the preference-driven MOCO.

Defining an implicit reward. Distinct from DRL training paradigms that rely on raw objective values,
POCCO treats the average log-likelihood of a solution as an implicit reward fθ, directly relating
preferences between solutions to their policy probabilities. This reward is inherently normalized by
sequence length |π|, thereby mitigating length bias between winning and losing solution pairs.

fθ(π|G, λi) =
1

|π|
log pθ(π|G, λi) =

1

|π|

|π|∑
t=1

log pθ(πt|π<t,G, λi). (3)

Learning from pairwise comparisons. We formulate preference learning (PL) as a probabilistic
binary classification problem through the BT model. Specifically, the BT model is a pairwise prefer-
ence framework that uses a function gθ(·) to map reward differences into preference probabilities. It
assigns each solution a strength proportional to its implicit reward (defined in Eq. (3)) and predicts
the probability gθ that the winning solution outranks the losing one:

gθ
(
πw ⋖ πℓ | G, λi

)
= σ

(
β [fθ(π

w | G, λi)− fθ(π
ℓ | G, λi)]

)
, (4)

where σ(·) is the sigmoid function, and β > 0 is a fixed temperature that controls the sharpness with
which the model distinguishes between unequal rewards. We maximize the likelihood of the collected
preferences, yielding the following loss function:

L(θ|pθ,G, λi, π
w, πl) = −y log σ

(
β[

log pθ(π
w|G, λi)

|πw|
− log pθ(π

l|G, λi)

|πl|
]
). (5)

6

In practice, we collect multiple (πw, πℓ) pairs per update, sum their losses, and backpropagate
through pθ. By maximizing the log-likelihood of gθ

(
πw ⋖ πℓ | G, λi

)
, the model is encouraged to

assign higher probabilities to preferred solutions πw over less preferred ones πl.

5 Experiments

5.1 Experimental settings

Training. We conduct extensive experiments to evaluate the effectiveness of the proposed POCCO
across various MOCOPs, including multi-objective traveling salesman problem (MOTSP) [39],
multi-objective capacitated vehicle routing problem (MOCVRP) [64], and multi-objective knapsack
problem (MOKP) [23]. In MOTSP, the goal is to find a tour that visits all nodes exactly once,
while minimizing multiple total path lengths, each computed based on a distinct set of coordinates
associated with a specific objective. Regarding MOCVRP, a fleet of vehicles with limited capacity
must serve all customer nodes and return to the depot, with the objectives of minimizing the total
travel distance and the length of the longest individual route. As for MOKP, the problem involves
selecting a subset of items, each with a weight and multiple objective-specific values. The objective
is to maximize all objective values simultaneously, while ensuring the total weight stays within the
knapsack capacity. In this work, we consider three commonly used problem sizes: n = 20/50/100
for MOTSP and MOCVRP, and n = 50/100/200 for MOKP.

Hyperparameters. We implement POCCO on top of two SOTA neural MOCO methods, CNH [14]
and WE-CA [6], resulting in POCCO-C and POCCO-W, respectively. Most hyperparameters are
aligned with those used in the original CNH and WE-CA implementations. Both models are trained
for 200 epochs, with each epoch processing 100,000 randomly sampled instances and a batch size of
B = 64. We use the Adam optimizer [28] with a learning rate of 3× 10−4 and a weight decay of
10−6. The N weight vectors used for decomposition are generated following [10], with N = 101 for
κ = 2 and N = 105 for κ = 3.

Baselines. We compare POCCO with a broad range of baseline methods across three categories,
all employing weighted-sum (WS) scalarization to ensure fair comparison: (1) Single-model
neural MOCO approaches: This includes PMOCO [38], and recent SOTA methods CNH [14],
and WE-CA [6]. Both CNH and WE-CA are unified models trained across problem size
n ∈ {20, 21, · · · , 100} (except n ∈ {50, 51, · · · , 200} for Bi-KP) (2) Multi-model neural MOCO
approaches: This category covers methods like DRL-MOA [34], MDRL [67], and EMNH [7].
Specifically, DRL-MOA trains a separate POMO model for each of the N subproblems, with the
first model trained for 200 epochs and the rest fine-tuned for 5 epochs each using parameter transfer.
MDRL and EMNH both initialize from a shared pretrained meta-model and fine-tune N subproblem-
specific models using the same network structure and training settings as in [7]. (3) Non-learnable
approaches, including classical MOEAs and other problem-specific heuristics: MOEA/D [65] and
NSGA-II [12], each run for 4,000 iterations, serve as representative decomposition-based and
dominance-based MOEAs, respectively. MOCOP-specific MOEAs such as MOGLS [24], config-
ured with 4,000 iterations and 100 local search steps per iteration, and PPLS/D-C [49], run for
200 iterations, are also considered. These methods use 2-opt heuristics for MOTSP and MOCVRP,
and a greedy transformation heuristic [23] for MOKP. Finally, WS-LKH and WS-DP combine
weighted-sum scalarization with powerful solvers, with LKH [20, 51] used for MOTSP and dynamic
programming applied to MOKP.

Inference. We evaluate all methods using three metrics: average hypervolume (HV) [54], average
gap, and total runtime per instance set. HV is a widely used indicator in multi-objective optimization
that reflects both the convergence and diversity of the solution set. A higher HV indicates better
performance. To ensure consistency, HV values are normalized to the range [0, 1] using the same
reference point for all methods. The gap is defined as the relative difference between a method’s
HV and the HV of POCCO-W. Methods with the “-Aug” suffix apply instance augmentation [38]
to further improve performance. To evaluate statistical significance, we use the Wilcoxon rank-sum
test [55] at a 1% significance level. The best results and others that are not significantly worse are
marked in bold, while the second-best and statistically similar results are underlined. All experiments
are implemented in Python and conducted on a machine with NVIDIA Ampere A100-80GB GPUs
and an AMD EPYC 7742 CPU. The code and dataset are publicly released for reproducibility.2

2https://github.com/mingfan321/POCCO

7

Table 1: Performance on BiTSP and MOCVRP Instances
Bi-TSP20 Bi-TSP50 Bi-TSP100

Method HV Gap Time HV Gap Time HV Gap Time
WS-LKH 0.6270 0.00% 10m 0.6415 0.05% 1.8h 0.7090 -0.17% 6h
MOEA/D 0.6241 0.46% 1.7h 0.6316 1.59% 1.8h 0.6899 2.53% 2.2h
NSGA-II 0.6258 0.19% 6.0h 0.6120 4.64% 6.1h 0.6692 5.45% 6.9h
MOGLS 0.6279 -0.14% 1.6h 0.6330 1.37% 3.7h 0.6854 3.16% 11h
PPLS/D-C 0.6256 0.22% 26m 0.6282 2.12% 2.8h 0.6844 3.31% 11h
DRL-MOA 0.6257 0.21% 6s 0.6360 0.90% 9s 0.6970 1.53% 16s
MDRL 0.6271 -0.02% 5s 0.6364 0.84% 8s 0.6969 1.54% 14s
EMNH 0.6271 -0.02% 5s 0.6364 0.84% 8s 0.6969 1.54% 15s
PMOCO 0.6259 0.18% 6s 0.6351 1.04% 12s 0.6957 1.71% 26s
CNH 0.6270 0.00% 13s 0.6387 0.48% 16s 0.7019 0.83% 33s
POCCO-C 0.6275 -0.08% 14s 0.6409 0.14% 20s 0.7047 0.44% 42s
WE-CA 0.6270 0.00% 6s 0.6392 0.41% 9s 0.7034 0.62% 18s
POCCO-W 0.6275 -0.08% 7s 0.6411 0.11% 14s 0.7055 0.32% 36s
MDRL-Aug 0.6271 -0.02% 47s 0.6408 0.16% 1.8m 0.7022 0.79% 5.4m
EMNH-Aug 0.6271 -0.02% 46s 0.6408 0.16% 1.8m 0.7023 0.78% 5.4m
PMOCO-Aug 0.6270 0.00% 39s 0.6395 0.36% 1.7m 0.7016 0.88% 5.8m
CNH-Aug 0.6271 -0.02% 1.3m 0.6410 0.12% 3.9m 0.7054 0.34% 12m
POCCO-C-Aug 0.6270 0.00% 2.2m 0.6416 0.03% 4.0m 0.7071 0.10% 14m
WE-CA-Aug 0.6271 -0.02% 1.3m 0.6413 0.08% 3.6m 0.7066 0.17% 12m
POCCO-W-Aug 0.6270 0.00% 2.2m 0.6418 0.00% 4.0m 0.7078 0.00% 14m

MOCVRP20 MOCVRP50 MOCVRP100
Method HV Gap Time HV Gap Time HV Gap Time
MOEA/D 0.4255 1.07% 2.3h 0.4000 2.63% 2.9h 0.3953 3.33% 5.0h
NSGA-II 0.4275 0.60% 6.4h 0.3896 5.16% 8.8h 0.3620 11.47% 9.4h
MOGLS 0.4278 0.53% 9.0h 0.3984 3.02% 20h 0.3875 5.23% 72h
PPLS/D-C 0.4287 0.33% 1.6h 0.4007 2.46% 9.7h 0.3946 3.50% 38h
DRL-MOA 0.4287 0.33% 8s 0.4076 0.78% 12s 0.4055 0.83% 21s
MDRL 0.4291 0.23% 6s 0.4082 0.63% 13s 0.4056 0.81% 22s
EMNH 0.4299 0.05% 7s 0.4098 0.24% 12s 0.4072 0.42% 22s
PMOCO 0.4267 0.79% 6s 0.4036 1.75% 12s 0.3913 4.30% 22s
CNH 0.4287 0.33% 11s 0.4087 0.51% 15s 0.4065 0.59% 25s
POCCO-C 0.4294 0.16% 16s 0.4101 0.17% 25s 0.4079 0.24% 53s
WE-CA 0.4290 0.26% 7s 0.4089 0.46% 10s 0.4068 0.51% 21s
POCCO-W 0.4294 0.16% 8s 0.4102 0.15% 17s 0.4084 0.12% 46s
MDRL-Aug 0.4294 0.16% 12s 0.4092 0.39% 36s 0.4072 0.42% 2.8m
EMNH-Aug 0.4302 -0.02% 12s 0.4106 0.05% 35s 0.4079 0.24% 2.8m
PMOCO-Aug 0.4294 0.16% 14s 0.4080 0.68% 42s 0.3969 2.93% 2.0m
CNH-Aug 0.4299 0.05% 21s 0.4101 0.17% 45s 0.4077 0.29% 1.9m
POCCO-C-Aug 0.4302 -0.02% 31s 0.4108 0.00% 1.4m 0.4086 0.07% 2.4m
WE-CA-Aug 0.4300 0.02% 15s 0.4103 0.12% 36s 0.4081 0.20% 1.8m
POCCO-W-Aug 0.4301 0.00% 24s 0.4108 0.00% 1.2m 0.4089 0.00% 2.3m

5.2 Experimental results

Comparison analysis. The comparison results are presented in Table 1 and Table 2. POCCO-W
consistently achieves superior performance over WE-CA across all benchmark scenarios, establishing
itself as the new SOTA results among neural MOCOP solvers. Similarly, POCCO-C outperforms
CNH in every case. Both variants also surpass their augmentation-based counterparts, WE-CA-Aug
and CNH-Aug, on Bi-TSP20 and Bi-CVRP100, highlighting POCCO’s enhanced ability to explore
the solution space and approximate high-quality Pareto fronts. When further combined with instance
augmentation, POCCO demonstrates additional performance gains. Please note that POCCO with
instance augmentation yields lower HV values compared with its non-augmented counterpart on Bi-
TSP20. This is because decomposition-based methods focus on optimizing individual subproblems
rather than ensuring overall solution diversity. While augmentation improves solution quality for
specific subproblems, it may reduce the number of non-dominated solutions, resulting in a smaller
HV. Compared with multi-model approaches that require training or fine-tuning separate models for
each subproblem, POCCO delivers superior results while maintaining a single shared model. Notably,
POCCO achieves better results on Bi-TSP50 than WS-LKH, a setting where previous neural solvers
have consistently failed. In terms of efficiency, POCCO significantly reduces computational time.

8

Table 2: Performance comparison on Bi-KP and Tri-TSP Instances

Method Bi-KP50 Bi-KP100 Bi-KP200
HV Gap Time HV Gap Time HV Gap Time

WS-DP 0.3561 0.03% 22m 0.4532 0.04% 2h 0.3601 0.06% 5.8h
MOEA/D 0.3540 0.62% 1.6h 0.4508 0.57% 1.7h 0.3581 0.61% 1.8h
NSGA-II 0.3547 0.42% 7.8h 0.4520 0.31% 8.0h 0.3590 0.36% 8.4h
MOGLS 0.3540 0.62% 5.8h 0.4510 0.53% 10h 0.3582 0.58% 18h
PPLS/D-C 0.3528 0.95% 18m 0.4480 1.19% 47m 0.3541 1.72% 1.5h
DRL-MOA 0.3559 0.08% 8s 0.4531 0.07% 15s 0.3601 0.06% 32s
MDRL 0.3530 0.90% 7s 0.4532 0.04% 18s 0.3601 0.06% 35s
EMNH 0.3561 0.03% 7s 0.4535 -0.02% 17s 0.3603 0.00% 48s
PMOCO 0.3552 0.28% 8s 0.4523 0.24% 22s 0.3595 0.22% 50s
CNH 0.3556 0.17% 16s 0.4527 0.15% 23s 0.3598 0.14% 55s
POCCO-C 0.3560 0.06% 20s 0.4535 -0.02% 36s 0.3603 0.00% 1.4m
WE-CA 0.3558 0.11% 8s 0.4531 0.07% 16s 0.3602 0.03% 50s
POCCO-W 0.3562 0.00% 11s 0.4534 0.00% 26s 0.3603 0.00% 1.3m

Tri-TSP20 Tri-TSP50 Tri-TSP100
Method HV Gap Time HV Gap Time HV Gap Time
WS-LKH 0.4712 0.00% 12m 0.4440 -0.07% 1.9h 0.5076 -0.55% 6.6h
MOEA/D 0.4702 0.21% 1.9h 0.4314 2.77% 2.2h 0.4511 10.64% 2.4h
NSGA-II 0.4238 10.06% 7.1h 0.2858 35.59% 7.5h 0.2824 44.06% 9.0h
MOGLS 0.4701 0.23% 1.5h 0.4211 5.09% 4.1h 0.4254 15.73% 13h
PPLS/D-C 0.4698 0.30% 1.4h 0.4174 5.93% 3.9h 0.4376 13.31% 14h
DRL-MOA 0.4699 0.28% 6s 0.4303 3.02% 9s 0.4806 4.79% 18s
MDRL 0.4699 0.28% 5s 0.4317 2.70% 10s 0.4852 3.88% 17s
EMNH 0.4699 0.28% 5s 0.4324 2.55% 10s 0.4866 3.61% 17s
PMOCO 0.4693 0.40% 5s 0.4315 2.75% 12s 0.4858 3.76% 33s
CNH 0.4698 0.30% 10s 0.4358 1.78% 14s 0.4931 2.32% 25s
POCCO-C 0.4704 0.17% 18s 0.4393 0.99% 17s 0.4985 1.25% 28s
WE-CA 0.4707 0.11% 5s 0.4389 1.08% 8s 0.4975 1.45% 17s
POCCO-W 0.4710 0.04% 6s 0.4397 0.90% 13s 0.4985 1.25% 23s
MDRL-Aug 0.4712 0.00% 4.2m 0.4408 0.65% 25m 0.4958 1.78% 1.6h
EMNH-Aug 0.4712 0.00% 4.2m 0.4418 0.43% 25m 0.4973 1.49% 1.6h
PMOCO-Aug 0.4712 0.00% 4.9m 0.4409 0.63% 28m 0.4956 1.82% 1.6h
CNH-Aug 0.4704 0.17% 8.5m 0.4409 0.63% 28m 0.4996 1.03% 1.6h
POCCO-C-Aug 0.4706 0.13% 8.9m 0.4419 0.41% 34m 0.5023 0.50% 2h
WE-CA-Aug 0.4712 0.00% 8.2m 0.4432 0.11% 29m 0.5035 0.26% 1.7h
POCCO-W-Aug 0.4712 0.00% 8.9m 0.4437 0.00% 33m 0.5048 0.00% 2h

For example, POCCO-W-Aug solves Bi-TSP100 in only 14 minutes, while WE-LKH requires about
6.0 hours, with POCCO delivering comparable solution quality.

Out-of-distribution size generalization analysis. We evaluate the generalization ability of the
models on out-of-distribution, benchmark instances KroAB100/150/200 [40]. All neural methods
are trained on Bi-TSP100, except for CNH, WE-CA, and POCCO, which are trained across varying
sizes n ∈ {20, 21, . . . , 100}. The results, visualized in Fig. 3, show that POCCO-W-Aug consistently
achieves the best generalization performance compared with other neural baselines. POCCO-C-Aug
also outperforms CNH-Aug across all evaluated scenarios. Full benchmark results and experiments
on larger-scale instances Bi-TSP150/200 are provided in Appendix I and Appendix J, respectively.

Effectiveness of PL. We assess the training efficiency of PL by comparing it to REINFORCE on the
WE-CA and POCCO-W models using the Bi-TSP100 dataset. As shown by the validation curves in
Fig. 4a, PL achieves faster convergence despite identical network architectures. Notably, for WE-CA,
training with PL for 100 epochs reaches performance comparable to 200 epochs of REINFORCE.
Similar improvements are observed for POCCO-W. These results demonstrate that PL accelerates the
training process and achieves better performance with fewer training epochs.

Effectiveness of the CCO block. To evaluate the impact of the CCO block’s structure and placement,
we compare POCCO-W with WE-CA and several POCCO variants: POCCO-E (CCO inserted
in the encoder replacing the FF layer), POCCO-D (CCO replacing the final linear layer of MHA
in the decoder, using MLP experts), POCCO-ME (replacing CCO with a standard MoE layer),
POCCO-MD (replacing CCO with three MoD layers), POCCO-MED (using MoE in the encoder
and MoD in place of CCO in the decoder), and POCCO-Emp (replacing the identity expert in CCO

9

10 20 30 40 50
Obj 1

10

20

30

40

50

O
bj

 2

WS-LKH (HV: 0.7022)
CNH-Aug (HV: 0.6980)
POCCO-C-Aug (HV: 0.6999)
WE-CA-Aug (HV: 0.6990)
POCCO-W-Aug (HV: 0.7006)

47 55
7.9

8.5

(a) KroAB100

10 20 30 40 50 60 70 80
Obj 1

10

20

30

40

50

60

70

80

O
bj

 2

WS-LKH (HV: 0.7017)
CNH-Aug (HV: 0.6938)
POCCO-C-Aug (HV: 0.6959)
WE-CA-Aug (HV: 0.6957)
POCCO-W-Aug (HV: 0.6976)

70 80
9.3

10.3

(b) KroAB150

20 40 60 80 100
Obj 1

20

40

60

80

100

O
bj

 2

WS-LKH (HV: 0.7430)
CNH-Aug (HV: 0.7303)
POCCO-C-Aug (HV: 0.7334)
WE-CA-Aug (HV: 0.7349)
POCCO-W-Aug (HV: 0.7369)

88 98
10.6

12

(c) KroAB200

Figure 3: Pareto fronts of benchmark instances.

1 20 40 60 80 100 120 140 160 180 200
Epoch

0.685

0.690

0.695

0.700

0.705

HV

WE-CA
WE-CA-PL
POCCO-W-RL
POCCO-W

(a) Validation curves

WE
-CA

PO
CC
O-E

PO
CC
O-D

PO
CC
O-M

E

PO
CC
O-M

D

PO
CC
O-M

ED

PO
CC
O-E
mp

PO
CC
O-W

0.703

0.704

0.704

0.705

0.705

0.706

0.706
HV

0.7034

0.7041
0.7043

0.7053

0.7042
0.7045

0.7052
0.7055

(b) Bi-TSP100

WE
-CA

PO
CC
O-E

PO
CC
O-D

PO
CC
O-M

E

PO
CC
O-M

D

PO
CC
O-M

ED

PO
CC
O-E
mp

PO
CC
O-W

0.733

0.734

0.735

0.736

0.737

HV

0.7346

0.7356 0.7356

0.7333

0.7355

0.7363 0.7364

0.7371

(c) Bi-TSP200

Figure 4: Ablation study:(a) validates the effectiveness of PL; (b) and (c) verify the effects of different
CCO block variants.

with an empty expert). As shown in Fig. 4b, all variants outperform WE-CA on the in-distribution
Bi-TSP100, with POCCO-W, POCCO-ME, and POCCO-Emp achieving the most notable gains. On
the out-of-distribution Bi-TSP200 in Fig. 4c, only POCCO-W and POCCO-Emp maintain strong
performance, while POCCO-ME performs worst, even underperforming WE-CA. These results
highlight the importance of both the structure and placement of the CCO block for achieving strong
generalization across in- and out-of-distribution settings.

Hyperparameter study. We conduct experiments to examine the impact of different key hyperpa-
rameters on POCCO’s performance. As detailed in Appendix L, the number of CCO block layers, the
number of experts, the Top k value, and the temperature parameter β all influence model effectiveness.
For the problems studied, the desirable settings, as identified based on empirical results, are: one
CCO block layer, four FF experts and one ID expert, Top k = 2, β = 3.5 for bi-objective tasks, and
β = 4.5 for tri-objective tasks.

6 Conclusion

This paper presents POCCO, a plug-and-play framework tailored for MOCOPs, which adaptively
routes subproblems through different model structures and leverages PL for more effective training.
POCCO is integrated into two SOTA neural solvers, and extensive experiments demonstrate its
effectiveness. Ablation studies further highlight the necessity of both CCO block and PL, and reveal
the critical impact of the design and placement of the CCO block. We acknowledge certain limitations,
such as the limited capability to address real-world MOCOPs with complex constraints or large
problem sizes. Addressing these challenges may require constraint-handling mechanisms [5] or
divide-and-conquer [36] strategies, which we leave for future work.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers and (S)ACs of NeurIPS 2025 for their constructive comments
and dedicated service to the community.

10

References
[1] Ehsan Ahmadi, Mostafa Zandieh, Mojtaba Farrokh, and Seyed Mohammad Emami. A multi objective

optimization approach for flexible job shop scheduling problem under random machine breakdown by
evolutionary algorithms. Computers & operations research, 73:56–66, 2016.

[2] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from human
preferences. In International Conference on Artificial Intelligence and Statistics, pages 4447–4455. PMLR,
2024.

[3] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Learning Representations, 2017.

[4] Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang,
Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi,
Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao,
Qingfu Zhang, Joungho Kim, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun
Kwon, Kevin Tierney, Lin Xie, and Jinkyoo Park. RL4CO: an extensive reinforcement learning for
combinatorial optimization benchmark. In SIGKDD Conference on Knowledge Discovery and Data
Mining, 2025.

[5] Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning to
handle complex constraints for vehicle routing problems. In Advances in Neural Information Processing
Systems, volume 37, pages 93479–93509, 2024.

[6] Jinbiao Chen, Zhiguang Cao, Jiahai Wang, Yaoxin Wu, Hanzhang Qin, Zizhen Zhang, and Yue-Jiao
Gong. Rethinking neural multi-objective combinatorial optimization via neat weight embedding. In The
Thirteenth International Conference on Learning Representations, 2025.

[7] Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta neural
heuristic for multi-objective combinatorial optimization. Advances in Neural Information Processing
Systems, 36, 2024.

[8] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. In
International Conference on Neural Information Processing Systems, volume 32, pages 6281–6292, 2019.

[9] Eng Ung Choo and Derek R Atkins. Proper efficiency in nonconvex multicriteria programming. Mathe-
matics of Operations Research, 8(3):467–470, 1983.

[10] I Das and JE Dennis. Normal-boundary intersection: A new method for generating pareto-optimal points
in multieriteria optimization problems. SIAM J. Optimiz, 1996.

[11] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE
transactions on evolutionary computation, 18(4):577–601, 2013.

[12] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[13] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media, 2005.

[14] Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and Guohua Wu.
Conditional neural heuristic for multiobjective vehicle routing problems. IEEE Transactions on Neural
Networks and Learning Systems, 2024.

[15] Wei Fang, Qiang Zhang, Jun Sun, and Xiaojun Wu. Mining high quality patterns using multi-objective
evolutionary algorithm. IEEE Transactions on Knowledge and Data Engineering, 34(8):3883–3898, 2020.

[16] Kostas Florios and George Mavrotas. Generation of the exact pareto set in multi-objective traveling
salesman and set covering problems. Applied Mathematics and Computation, 237:1–19, 2014.

[17] Keivan Ghoseiri, Ferenc Szidarovszky, and Mohammad Jawad Asgharpour. A multi-objective train
scheduling model and solution. Transportation research part B: Methodological, 38(10):927–952, 2004.

[18] Pascal Halffmann, Luca E Schäfer, Kerstin Dächert, Kathrin Klamroth, and Stefan Ruzika. Exact algorithms
for multiobjective linear optimization problems with integer variables: A state of the art survey. Journal of
Multi-Criteria Decision Analysis, 29(5-6):341–363, 2022.

11

[19] Jiayi Han, Liang Du, Hongwei Du, Xiangguo Zhou, Yiwen Wu, Weibo Zheng, and Donghong Han. Slim:
Let llm learn more and forget less with soft lora and identity mixture. In North American Chapter of the
Association for Computational Linguistics Annual Conference, 2025.

[20] Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic. European
journal of operational research, 126(1):106–130, 2000.

[21] Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without reference
model. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pages 11170–11189, Miami, Florida, USA, November 2024. Association for Computational Linguistics.

[22] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial optimization
problems. In International Conference on Learning Representations, 2021.

[23] Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. Behavior of multiobjective evolutionary algorithms
on many-objective knapsack problems. IEEE Transactions on Evolutionary Computation, 19(2):264–283,
2014.

[24] Andrzej Jaszkiewicz. Genetic local search for multi-objective combinatorial optimization. European
journal of operational research, 137(1):50–71, 2002.

[25] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective vehicle routing problems.
European Journal of Operational Research, 189(2):293–309, 2008.

[26] Liangjun Ke, Qingfu Zhang, and Roberto Battiti. A simple yet efficient multiobjective combinatorial
optimization method using decompostion and pareto local search. IEEE Transactions on Cybernetics,
44:1808–1820, 2014.

[27] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems. In
International Conference on Neural Information Processing Systems, volume 34, pages 10418–10430,
2021.

[28] Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference on Learning
Representations, 2015.

[29] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

[30] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo:
Policy optimization with multiple optima for reinforcement learning. In International Conference on
Neural Information Processing Systems, volume 33, pages 21188–21198, 2020.

[31] Philippe Lacomme, Christian Prins, and Marc Sevaux. A genetic algorithm for a bi-objective capacitated
arc routing problem. Computers & Operations Research, 33(12):3473–3493, 2006.

[32] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning:
A survey. Information Fusion, 85:1–22, 2022.

[33] Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, and Yeow Meng Chee. Learning
feature embedding refiner for solving vehicle routing problems. IEEE Transactions on Neural Networks
and Learning Systems, 2023.

[34] Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization. IEEE
Transactions on Cybernetics, 51(6):3103–3114, 2020.

[35] Shicheng Li, Feng Wang, Qi He, and Xujie Wang. Deep reinforcement learning for multi-objective
combinatorial optimization: A case study on multi-objective traveling salesman problem. Swarm and
Evolutionary Computation, page 101398, 2023.

[36] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In Advances
in Neural Information Processing Systems, volume 34, pages 26198–26211, 2021.

[37] Zijun Liao, Jinbiao Chen, Debing Wang, Zizhen Zhang, and Jiahai Wang. Bopo: Neural combinatorial
optimization via best-anchored and objective-guided preference optimization. In Proceedings of the 42nd
International Conference on Machine Learning (ICML 2025), 2025. Poster.

[38] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial
optimization. In International Conference on Learning Representations, 2022.

12

[39] Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem: A survey and a new
approach. In Advances in Multi-Objective Nature Inspired Computing, pages 119–141. Springer, 2010.

[40] Thibaut Lust and Jacques Teghem. Two-phase Pareto local search for the biobjective traveling salesman
problem. Journal of Heuristics, 16(3):475–510, 2010.

[41] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free
reward. Advances in Neural Information Processing Systems, 37:124198–124235, 2024.

[42] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business Media,
2012.

[43] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning
for solving the vehicle routing problem. In Advances in Neural Information Processing Systems, volume 31,
2018.

[44] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728–53741, 2023.

[45] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language models. arXiv
preprint arXiv:2404.02258, 2024.

[46] Haitham Seada and Kalyanmoy Deb. A unified evolutionary optimization procedure for single, multiple,
and many objectives. IEEE Transactions on Evolutionary Computation, 20(3):358–369, 2015.

[47] Yinan Shao, Jerry Chun-Wei Lin, Gautam Srivastava, Dongdong Guo, Hongchun Zhang, Hu Yi, and
Alireza Jolfaei. Multi-objective neural evolutionary algorithm for combinatorial optimization problems.
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[48] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In International
Conference on Learning Representations, 2017.

[49] Jialong Shi, Jianyong Sun, Qingfu Zhang, Haotian Zhang, and Ye Fan. Improving pareto local search using
cooperative parallelism strategies for multiobjective combinatorial optimization. IEEE Transactions on
Cybernetics, 54(4):2369–2382, 2022.

[50] Ye Tian, Langchun Si, Xingyi Zhang, Ran Cheng, Cheng He, Kay Chen Tan, and Yaochu Jin. Evolutionary
large-scale multi-objective optimization: A survey. ACM Computing Surveys, 54(8):1–34, 2021.

[51] Renato Tinós, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-helsgaun
traveling salesman heuristic. In Parallel Problem Solving from Nature–PPSN XV: 15th International
Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part I 15, pages 95–107. Springer,
2018.

[52] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, volume 28, 2015.

[53] Lirui Wang, Xinlei Chen, Jialiang Zhao, and Kaiming He. Scaling proprioceptive-visual learning with
heterogeneous pre-trained transformers. Advances in Neural Information Processing Systems, 37:124420–
124450, 2024.

[54] Lyndon While, Philip Hingston, Luigi Barone, and Simon Huband. A faster algorithm for calculating
hypervolume. IEEE Transactions on Evolutionary Computation, 10(1):29–38, 2006.

[55] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics: Methodology
and distribution, pages 196–202. Springer, 1992.

[56] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

[57] Hong Wu, Jiahai Wang, and Zizhen Zhang. MODRL/D-AM: Multiobjective deep reinforcement learning
algorithm using decomposition and attention model for multiobjective optimization. In International
Symposium on Intelligence Computation and Applications, pages 575–589, 2020.

[58] Yaoxin Wu, Mingfeng Fan, Zhiguang Cao, Ruobin Gao, Yaqing Hou, and Guillaume Sartoretti. Col-
laborative deep reinforcement learning for solving multi-objective vehicle routing problems. In 23rd
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2023.

13

[59] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, Abhishek Gupta, and Mingyan Lin. Graph learning
assisted multi-objective integer programming. Advances in Neural Information Processing Systems,
35:17774–17787, 2022.

[60] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for
solving routing problems. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[61] Yingbo Xie, Shengxiang Yang, Ding Wang, Junfei Qiao, and Baocai Yin. Dynamic transfer reference
point-oriented MOEA/D involving local objective-space knowledge. IEEE Transactions on Evolutionary
Computation, 26(3):542–554, 2022.

[62] Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than others:
Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682, 18, 2023.

[63] Jiao-Hong Yi, Li-Ning Xing, Gai-Ge Wang, Junyu Dong, Athanasios V Vasilakos, Amir H Alavi, and Ling
Wang. Behavior of crossover operators in NSGA-III for large-scale optimization problems. Information
Sciences, 509:470–487, 2020.

[64] Sandra Zajac and Sandra Huber. Objectives and methods in multi-objective routing problems: a survey
and classification scheme. European Journal of Operational Research, 290(1):1–25, 2021.

[65] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

[66] Yongxin Zhang, Jiahai Wang, Zizhen Zhang, and Yalan Zhou. MODRL/D-EL: Multiobjective deep
reinforcement learning with evolutionary learning for multiobjective optimization. In International Joint
Conference on Neural Networks, pages 1–8, 2021.

[67] Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-learning-based deep reinforcement
learning for multiobjective optimization problems. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[68] Aimin Zhou, Qingfu Zhang, and Guixu Zhang. A multiobjective evolutionary algorithm based on
decomposition and probability model. In 2012 IEEE Congress on Evolutionary Computation, pages 1–8.
IEEE, 2012.

[69] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi. MVMoE: Multi-
task vehicle routing solver with mixture-of-experts. In International Conference on Machine Learning,
2024.

[70] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural
methods for vehicle routing problems. In International Conference on Machine Learning, 2023.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main contributions and scope are accurately reflect in Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: The paper does not include new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [No]

Justification: We promise that the source code and data will be publicly released with the
MIT License upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed experimental setups are presented in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments compute resources are indicated in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper respects the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive societal impacts and negative societal impacts of this
work are discussed in Appendix Q.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses for existing assets are detailed in Appendix R.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

A Details of MOCOP

Here we elaborate on the problem definitions for the three typical MOCOPs, i.e., MOTSP, MOCVRP,
and MOKP.

MOTSP. An MOTSP instance involves multiple cost matrices, aiming to identify a set of tours, i.e.,
node sequences, that are Pareto optimal. For instance, a κ-objective TSP instance G with n + 1
nodes is featured by cost matrices Ci = (cij,k), with i ∈ {1, · · · , κ} and j, k ∈ {0, · · · , n}. The κ
objectives are defined as follows,

min
π∈X

F (π) = min(f1(π), f2(π), · · · , fκ(π)),

with fi(π) = ciπnπ0
+

n−1∑
j=0

ciπjπj+1
,

(6)

where π = (π0, π2, · · · , πn) with πj ∈{0, · · · , n}. X represents all feasible solutions (i.e., tours),
ensuring each node is visited exactly once. This paper considers the Euclidean MOTSP following
[16, 34, 38]. Each node j has a 2κ-dim feature vector oj = [loc1j , loc

2
j , · · · , locκj], where locij ∈ R2

is the coordinate for the i-th objective. The objective fi(π) is defined as fi(π) = ∥lociπn
− lociπ0

∥2 +∑n−1
j=0 ∥lociπj

− lociπj+1
∥2.

MOCVRP. An MOCVRP instance consists of n customer nodes and one depot node. Each node
has a 3-dim feature vector oj = [locj , δj], where locj and δj , for j ∈ {0, · · · , n}, correspond to the
coordinates and demand of node j. Notably, for the depot node, o0 = [loc0, δ0], the demand δ0 is
set to 0. Vehicles with a capacity of Q (Q > δi) are employed to serve all customers in multiple
routes, with each route commencing and concluding at the depot. The problem must satisfy the
following constraints: 1) Each customer is visited exactly once, and 2) The total demand of customers
in each route must not exceed the vehicle’s capacity. In our study, we focus on the bi-objective CVRP,
aligning with prior research [31, 38]. Specifically, we aim to minimize two objectives: the total length
of all routes and the length of the longest route (i.e., the makespan).

MOKP. An MOKP instance consists of n+ 1 items, where each item j is characterized by a 2-dim
feature vector oj = [wj , pj], representing its weight wj and profit vector pj , for j ∈ {0, · · · , n}. The
profit vector pj ∈ Rκ corresponds to κ distinct objective values associated with item j. A knapsack
with a capacity of C is provided, where C > wj for each item. The goal is to select a subset of items
to place into the knapsack while satisfying the following constraint: the total weight of selected
items must not exceed the knapsack capacity C. In our study, we focus on the bi-objective knapsack
problem, consistent with previous research [40, 68]. Specifically, we aim to simultaneously maximize
two objectives: the sum of the first and second profit components across the selected items.

B Theoretical Analysis

We derive the loss function and gradient for our PL objective and contrast it with the REINFORCE
gradient. Our theoretical (and empirical) analyses demonstrate that PL yields significantly lower
gradient variance, which contributes to faster and more stable convergence.

B.1 Formulation of Loss Function

Different from the RL, our PL method exploits the preference relations between generated solutions
according to their objective. The explicit preference f∗(π|G, λ) is defined as the negation of the
scalarized objective. We contruct a preference pair, denoted as (πw, πℓ), along with a binary
preference label y, where y = 1 if πw ⋖ πl (i.e., f∗(πw|G, λ) > f∗(πℓ|G, λ)), and y = 0 otherwise.

22

For the policy pθ(π|G, λ) used to construct solution π, its implicit preference is defined as the average
log-likelihood: fθ(π | G, λ) = 1

|π| log pθ(π | G, λ). For a preference pair (πw, πℓ), the preference
distribution is modeled using the Bradley-Terry (BT) ranking objective and implicit preferences:

gθ
(
πw ⋖ πℓ | G, λ

)
= σ

(
β [fθ(π

w | G, λ)− fθ(π
ℓ | G, λ)]

)
,

where σ(·) is the sigmoid function, and β > 0 is a fixed temperature that controls the sharpness
with which the model distinguishes between unequal rewards. By maximizing the log-likelihood of
gθ
(
πw ⋖ πℓ | G, λ

)
, the model is encouraged to assign higher probabilities to preferred solutions πw

compared with less preferred solutions yℓ. We can derive the PL loss function:

LPL(θ|pθ,G, λ, πw, πl) = −y log σ
(
β[

log pθ(π
w|G, λ)

|πw|
− log pθ(π

l|G, λ)
|πl|

]
),

PL directly distinguishes optimization signals based on exact preferences, and the strength of the
optimization signal correlates with the difference in log-likelihood, requiring the model to maximize
the probability gap between πw and πℓ.

B.2 Gradient Analysis

Let z denote the argument of the sigmoid function:

z = β[
log pθ(π

w|G, λ)
|πw|

− log pθ(π
l|G, λ)

|πl|
]
.

The gradient of LPL with respect to θ is:

∇θLPL =
∂LPL

∂z
· ∇θz.

Derivative of −y log σ(z) becomes:
∂LPL

∂z
= −y(1− σ(z)).

Gradient of z with respect to θ:

∇θz = β[
1

|πw|
∇θ log pθ(π

w|G, λ)− 1

|πℓ|
∇θ log pθ(π

ℓ|G, λ)].

Combining these, the total gradient becomes:

∇θLPL = −yβ(1− σ(z))[
1

|πw|
∇θ log pθ(π

w|G, λ)− 1

|πℓ|
∇θ log pθ(π

ℓ|G, λ)].

The gradient increases the likelihood of πw and decreases the likelihood of πℓ. For comparison, we
analyze the loss function in the REINFORCE algorithm here:

LRL(π|G, λ) = −(R(π)− b)logpθ(π|G, λ),

where b is a baseline to distinguish positive or negative optimization signals for each solution π. The
gradient of the REINFORCE algorithm is:

∇θLRL = −(R(π)− b)∇θlogpθ(π|G, λ).

REINFORCE relies on absolute returns R(π), whose large variance propagates directly to the
gradient. In contrast, LPL uses relative returns inside a sigmoid, yielding the difference of two
normalized log-likelihoods. This pairwise, centered signal reduces gradient variance and produces
smoother, more stable updates, leading to faster and more reliable convergence. This theoretical
insight is further supported by our empirical analyses. We provide concrete evidence of this in Table 3,
which reports the average gradient variance in the first five batches of training POCCO-W under both
RL and PL frameworks. Across three MOTSP settings, PL consistently exhibits two to four orders of
magnitude lower variance, leading to faster convergence and more stable optimization dynamics.

23

Table 3: Gradient variance in REINFORCE vs. preference learning.
Problem Size Batch RL Variance PL Variance

MOTSP20 1 0.054648 0.000314
2 0.039951 0.000252
3 0.019038 0.000191
4 0.009093 0.000115
5 0.010742 0.000104

MOTSP50 1 0.474784 0.000142
2 0.220530 0.000077
3 0.140275 0.000048
4 0.092114 0.000040
5 0.065286 0.000031

MOTSP100 1 10.124832 0.000059
2 6.355499 0.000039
3 3.461700 0.000032
4 1.755804 0.000021
5 1.111246 0.000014

C MOCOP Solvers with POCCO

Existing neural MOCOP solvers are based on a transformer-based architecture that consists of an
encoder and a decoder. The encoder is used to generate embeddings for all nodes based on the
instance G and the weight vector λ. The decoder is used to decode a sequence of actions based on
these embeddings in an iterative fashion. To demonstrate the versatility of our POCCO, we integrate
it into two SOTA neural methods, WE-CA [6] and CNH [14], yielding POCCO-W and POCCO-C.

C.1 POCCO-W

Given an instance G comprising n + 1 nodes with Z-dimensional features {oi}ni=0 ⊂ RZ and a
weight vector λ, first obtains initial embeddings by applying separate linear projections to the node
features and the weight vector:

h0
i = W o oi + bo, ∀ i ∈ {0, . . . , n}, h0

λ = Wλ λ+ bλ, (7)

where W o ∈ Rd×Z , Wλ ∈ Rd×κ, and bo, bλ ∈ Rd are learnable parameters, with embedding
dimension d = 128. POCCO-W integrates the weight embedding into each node embedding in a
feature-wise fashion within the encoder. To ensure harmonious interaction, the weight and node
embeddings are updated simultaneously. The encoder itself comprises L = 6 transformer layers, each
layer applying a conditional attention sublayer, followed by a residual Add & Norm (skip connection
with instance normalization), a fully connected feed-forward sublayer, and a second Add & Norm.

Specifically, the conditional attention sublayer first conditions node embeddings on the weight
embedding via a feature-wise affine transform:

γ = W γ hl−1
λ , β = W β hl−1

λ , h′
i = γ ◦ hl−1

i + β, ∀ i ∈ {0, . . . , n}, (8)

where W γ and W β are trainable matrices; ◦ denotes element-wise multiplication. Then, the weight
and node embeddings are updated via the Multi-Head Attention (MHA) mechanism with 8 heads and
an Add & Norm, as follows:

ĥλ = IN
(
hl−1
λ +MHA

(
hl−1
λ , {hl−1

λ , h′
0, . . . , h

′
n}

))
, (9)

ĥi = IN
(
hl−1
i +MHA

(
h′
i, {hl−1

λ , h′
0, . . . , h

′}
n

))
, ∀ i ∈ {0, . . . , n}. (10)

Afterwards, a fully connected feed-forward sublayer and another Add & Norm are employed to yield
the weight embedding hl

λ and the node embeddings {hl
i}ni=0, as follows:

hl
i = IN

(
ĥi + FF(ĥi)

)
, (11)

hl
λ = IN

(
ĥλ + FF(ĥλ)

)
, (12)

24

Given the eventual node embeddings {hi}ni=0 and weight embedding hλ output by the encoder, the
decoder autoregressively computes the probability of node selection over T steps. At decoding step
t ∈ {1, . . . , T}, the advanced context vector hc is produced by an MHA layer with 8 heads based on
the context embedding vc and eventual node embeddings as follows:

hc = MHA
(
vc, {hλ, h0, . . . , hn}

)
, (13)

Context embedding. For MOTSP, the context embedding vc is obtained by concatenating the
embeddings of the first and last visited nodes, and all previously visited nodes are masked when
computing selection probabilities. In MOCVRP, vc consists of the embedding of the last visited node
together with the remaining vehicle capacity, while nodes that have already been visited or whose
demand exceeds the remaining capacity are masked. In MOKP, the context embedding combines
the graph embedding h̄ = 1

n+1

∑n
i=0 hi with the remaining knapsack capacity, masking both items

that are already selected and those whose weight exceeds the remaining capacity when computing
selection probabilities.

The context vector hc is fed through the CCO block to produce a glimpse gc based on Eq. 2 (i.e.,
gc = CCO(hc)). This glimpse gc is then used in a compatibility layer to compute unormalized
compatibility scores α as follows:

αi =

{
−∞, if node i is masked,

C · tanh
(g⊤

c (WKhi)√
d

)
, otherwise,

(14)

where C is set to 50 and WK is a learnable weight matrix. Finally, the node-selection probability for
the scalarized subproblem is given by:

Pθ(πt | π1:t−1, s) = Softmax(α). (15)

C.2 POCCO-C

POCCO-C mirrors the overall design of POCCO-W but (i) replaces every conditional-attention
sublayer in the encoder with a dual-attention sublayer and (ii) enriches the context vector hc via a
problem-size embedding (PSE) layer. Specifically, each of the L encoder layers in POCCO-C consists
of a dual-attention sublayer, followed by a residual Add & Norm, a fully connected feed-forward
sublayer, and a second Add & Norm. Concretely, at layer l the dual-attention and first Add & Norm
operate as:

ĥλ = IN
(
hl−1
λ +MHA

(
hl−1
λ , {hl−1

λ , hl−1
0 , . . . , hl−1

n }
))
, (16)

ĥ′
i = MHA

(
hl−1
i , {hl−1

λ , hl−1
0 , . . . , hl−1

n }
)
+MHA

(
hl−1
i , {hl−1

λ }
)
, ∀ i ∈ {0, . . . , n}. (17)

ĥi = IN
(
hl−1
i + ĥ′

i

)
, ∀ i ∈ {0, . . . , n}. (18)

Besides, POCCO-C employs the sinusoidal encoding based on sine and cosine functions to yield the
PSE as follows,

PSE(ξ, 2i) = sin(ξ/100002i/d),

PSE(ξ, 2i+ 1) = cos(ξ/100002i/d),
(19)

where ξ(ξ = n+ 1) and i (i ∈ {0, · · · , 63}) mean the problem size and dimension. The resulting
d-dimensional PSEs are then processed using two linear layers with trainable matrices Wξ1 ∈ Rd×2d

and Wξ2 ∈ R2d×d. POCCO-C injects the size information by adding the results from PSE to {hi}ni=0
from the encoder, such that,

hξ
i = hi + hξ, with hξ = (PSE(ξ, ·)Wξ1)Wξ2. (20)

Then, POCCO-C produces the advanced context vector hc based on the context embedding vc and
the size-injected node embeddings {hξ

i }ni=0 through a MHA layer with 8 heads as follows,

hc = MHA
(
vc, {hξ

0, . . . , h
ξ
n}

)
. (21)

25

Algorithm 1 Preference-driven MOCO

Input: Instance distribution G̃, weight vector distribution λ̃, number of training steps E, batch size
B, number of tours K per subproblem;
Output: The trained policy network θ;

1: Initialize policy network θ.
2: for e = 1 to E do
3: λb ∼ SAMPLEWEIGHTVECTOR(λ̃); Gb ∼ SAMPLEINSTANCE (G̃), ∀b ∈ {1, · · · , B}
4: πj,b∼SAMPLESOLUTIONS(pθ(·|Gb, λb)), ∀j ∈ {1, · · · ,K} , ∀b ∈ {1, · · · , B}
5: ybj,p ∼ PAIRWISEPREFERENCE(1[πj,b⋖πp,b]), ∀j, p ∈ {1, · · ·K}, ∀b ∈ {1, · · · , B}
6: Calculate gradient∇θL(θ) according to Eq. (5)
7: θ ← ADAM(θ,∇θL(θ))
8: end for

C.3 Gating Mechanism

Our CCO block employs a subproblem-level gating mechanism to dynamically route each context
vector hc to a subset of experts from a pool consisting of 4 FF experts and 1 ID expert (thus m = 4).
Let d be the hidden dimension and WG ∈ Rd×(m+1) denote the trainable gating weight matrix. Given
a batch of context vectors X = {hb

c}Bb=1 ∈ RB×d, where B is the batch size, the gating network
computes a score matrix: H = X ·WG ∈ RB×(m+1), where each element Hj

b represents the affinity
or preference (score) of subproblem b towards expert j.

For each subproblem, the router selects the Top-k highest-scoring experts from the score vector Hj
b .

These selected experts are then activated, and their outputs are weighted by a softmax-normalized
version of their scores. In our POCCO with k = 2, each subproblem is routed to its two highest-
scoring experts.

This Top-k routing plays a critical role by reducing computation, as only k experts are activated per
subproblem (i.e., sparse activation widely used in MoE structure [69]). It also encourages expert
specialization, since different subproblems (defined by context and weight vectors) tend to activate
different subsets of experts. Additionally, it allows the inclusion of a parameter-free ID expert, which
is often selected when minimal transformation is needed. This enables the router to learn when it is
appropriate to leave a representation unchanged.

D Training Algorithm

The training algorithm is provided in Algorithm 1. To train the model with preference learn-
ing, we first sample a batch of instances and weight vectors {(Gb, λb)}Bb=1 (as in Line 3). Then,
for each scalarized subproblem (Gb, λb), we construct a set of winning–losing solution pairs
(πj,b, πp,b),∀j, p ∈ {1, · · · ,K} (as in Lines 4-5). Training then proceeds by maximizing the
likelihood of the winning solutions while minimizing that of the losing ones (as in Lines 6-7).

E Decomposition Approaches

The major decomposition techniques include weighted-sum, Tchebycheff, and penalty-based bound-
ary intersection (PBI) approaches [42, 65], respectively.

Weighted-sum Approach. Given an MOCOP, the ith subproblem (i.e., SOCOP) is defined with the
ith weight vector λi, such that,

min gw(π|λi) =
∑κ

j=1
λj
ifj(π), π ∈ X (22)

Tchebycheff Approach. It minimizes the maximal distance between objectives and the ideal
reference point, such that,

min gt(π|λi, z
∗) = max

1≤j≤κ

{
λj
i |fj(π)− z∗j |

}
, π ∈ X (23)

26

where z∗ = (z∗1 , · · · , z∗κ)⊤ signifies the ideal reference point with z∗j ≤ min {fj(π)|π ∈ X}. It
guarantees that the optimal solution in Eq. (23) under a specific (but unknown) weight vector λi

could be a Pareto optimal solution [9].

PBI Approach. This approach formulates the ith subproblem of an MOCOP as follows,

min gp(π|λ) = d1 + αd2

where d1=
∥(F (π)−z∗)⊤λ∥

∥λ∥
d2=∥F (π)−(z∗+d1λ)∥ , π ∈ X

(24)

where α > 0 is a preset penalty item and z∗ is the ideal reference point as defined in the Tchebycheff
approach.

F Hypervolume

Hypervolume (HV) is a widely used indicator to evaluate approximate Pareto solutions to MOCOPs.
Formally, the HV for a set of solutions P is defined as the volume of the subspace, which is weakly
dominated by the solutions in P and bounded by a reference point r∗, such that,

HV(P) = ζκ({r ∈ Rκ|∃π ∈ P, π ≺ r ≺ r∗}), (25)

where ζκ denotes the Lebesgue measure on the κ-dimensional space, i.e., the volume for a m-
dimensional subspace [54]. Since the range of objective values varies among different problems, we
report the normalized HV H̄(P) = HV(P)/

∏κ
i=1 |r∗i − zi|, where the ideal point z = (z1, . . . , zκ)

satisfies zi < min
{
fi(π) | π ∈ P

}(
or zi > max{fi(π) | π ∈ P} for maximization

)
,∀ i ∈

{1, . . . , κ}. All methods share the same r∗ and z for an MOCOP, as given in Table 4, and we report
the average H̄(P) over all test instances in this paper.

Table 4: Reference points and ideal points.
Problem Size r∗ z

Bi-TSP

20 (20, 20) (0, 0)
50 (35, 35) (0, 0)
100 (65, 65) (0, 0)
150 (85, 85) (0, 0)
200 (115, 115) (0, 0)

Bi-CVRP
20 (30, 4) (0, 0)
50 (45, 4) (0, 0)
100 (80, 4) (0, 0)

Bi-KP
50 (5, 5) (30, 30)
100 (20, 20) (50, 50)
200 (30, 30) (75, 75)

Tri-TSP
20 (20, 20, 20) (0, 0)
50 (35, 35, 35) (0, 0)
100 (65, 65, 65) (0, 0)

G Instance Augmentation

To further improve the performance of POCCO at the inference stage, we apply the instance
augmentation proposed in [30], which is also used in PMOCO [38]. The rationale of in-
stance augmentation is that an instance of Euclidean VRPs can be transformed into different
ones that share the same optimal solution, e.g., by flipping coordinates for all nodes in an in-
stance. Given a coordinate (x, y) in a VRP, there are eight simple transformations, i.e., (x′, y′) =
(x, y); (y, x); (x, 1−y); (y, 1−x); (1−x, y); (1−y, x); (1−x, 1−y); (1−y, 1−x). In our paper, we
adopt these transformations for each objective, respectively. Hence, we could have 8 transformations
for Bi-CVRP (since there is only one coordinate for each node), 82=64 transformations for Bi-TSP,
and 83=512 transformations for Tri-TSP, respectively.

27

H Impact of Neutralizing Non-Dominated Pairs

Our method adopts a decomposition-based framework, where the MOCOP is divided into a set of
scalarized subproblems, each associated with a weight vector. During training, the goal is to find
high-quality solutions with respect to each subproblem, rather than globally exploring the entire
Pareto front at once. In this context, preference learning operates at the subproblem level. We
acknowledge, however, that sampled solutions may occasionally be mutually non-dominated in
the original objective space. To investigate the effect of this scenario, we conducted an additional
experiment where preference signals for such non-dominated pairs were set to 0, effectively treating
them as equivalent. The results, shown in Table 5, indicate that this modification (NDS) significantly
degrades model performance across all Bi-TSP instances.

This observation suggests that introducing indifference signals for non-dominated pairs hinders the
learning process. One reason is that it reduces the amount of effective preference supervision per
subproblem, especially in early training stages when many solutions are of similar quality. In contrast,
using scalarized values provides a consistent and differentiable training signal aligned with the
decomposition objective. Therefore, although scalarized comparisons may not reflect global Pareto
dominance in every case, they remain well-justified and necessary within the decomposition-based
learning paradigm, and do not appear to bias the overall Pareto front approximation based on our
empirical findings.

Table 5: Performance on Bi-TSP instances when neutralizing non-dominated pairs.
Problem Size POCCO-W HV NDS HV

Bi-TSP20 0.6275 0.5516
Bi-TSP50 0.6411 0.5160
Bi-TSP100 0.7055 0.5601
Bi-TSP150 0.7033 0.5494
Bi-TSP200 0.7371 0.5809

I Detailed Results on Benchmark Instances

The detailed out-of-distribution generalization results are presented in Table 6, further confirming the
exceptional generalization ability of our POCCO.

J Experimental Results on the Larger Problem Sizes

The results on Bi-TSP150/200, summarized in Table 7, show that POCCO-W consistently achieves
the best generalization performance compared to all neural baselines and classical MOEAs.

Furthermore, to demonstrate scalability, we include experimental results on even larger problems,
including Bi-TSP with 300/500/1000 nodes and MOKP with 300/500/1000 items. These results are
summarized in Table 8 and Table 9. As shown, POCCO-W consistently outperforms the baseline
WE-CA in most large-scale cases.

K Comparison with DPO

We have added a comparative experiment between our preference learning (PL) method and the
recent DPO objective, as shown in Table 10. Since DPO requires two models, i.e., a policy model
and a reference model, we use the same architecture and initialization for both, with the reference
model updated from the previous epoch. This setup significantly increases training time for DPO
(122h vs. 36h for POCCO-W).

As shown in Table 10, while DPO achieves slightly better performance on the smallest instance
(MOTSP20), it is consistently outperformed by POCCO-W on larger instances (MOTSP50–200).
These results suggest that our PL method offers a more favorable trade-off in terms of both training
efficiency and solution quality, especially for large-scale problems.

28

Table 6: Performance on KroAB Instances
KroAB100 KroAB150 KroAB200

Method HV Gap Time HV Gap Time HV Gap Time
WS-LKH 0.7022 -0.23% 2.3m 0.7017 -0.59% 4.0m 0.7430 -0.83% 5.6m
MOEA/D 0.6836 2.43% 5.8m 0.6710 3.81% 7.1m 0.7106 3.57% 7.3m
NSGA-II 0.6676 4.71% 7.0m 0.6552 6.08% 7.9m 0.7011 4.86% 8.4m
MOGLS 0.6817 2.70% 52m 0.6671 4.37% 1.3h 0.7083 3.88% 1.6h
PPLS/D-C 0.6785 3.15% 38m 0.6659 4.54% 1.4h 0.7100 3.65% 3.8h
DRL-MOA 0.6903 1.47% 10s 0.6794 2.61% 12s 0.7185 2.50% 18s
MDRL 0.6881 1.78% 9s 0.6831 2.08% 11s 0.7209 2.17% 16s
EMNH 0.6900 1.51% 9s 0.6832 2.06% 11s 0.7217 2.06% 16s
PMOCO 0.6878 1.83% 9s 0.6819 2.25% 12s 0.7193 2.39% 17s
CNH 0.6947 0.84% 16s 0.6892 1.20% 19s 0.7250 1.61% 22s
POCCO-C 0.6965 0.59% 30s 0.6925 0.73% 40s 0.7302 0.91% 50s
WE-CA 0.6948 0.83% 9s 0.6924 0.75% 12s 0.7317 0.71% 16s
POCCO-W 0.6981 0.36% 20s 0.6946 0.43% 31s 0.7345 0.33% 40s
MDRL-Aug 0.6950 0.80% 10s 0.6890 1.23% 16s 0.7261 1.47% 25s
EMNH-Aug 0.6958 0.69% 10s 0.6892 1.20% 16s 0.7270 1.34% 25s
PMOCO-Aug 0.6937 0.98% 11s 0.6886 1.29% 18s 0.7251 1.60% 30s
CNH-Aug 0.6980 0.37% 17s 0.6938 0.54% 26s 0.7303 0.90% 37s
POCCO-C-Aug 0.6999 0.10% 32s 0.6959 0.24% 48s 0.7334 0.47% 1.1m
WE-CA-Aug 0.6990 0.23% 10s 0.6957 0.27% 20s 0.7349 0.27% 31s
POCCO-W-Aug 0.7006 0.00% 22s 0.6976 0.00% 39s 0.7369 0.00% 59s

Table 7: Performance on Bi-TSP150 and Bi-TSP200 Instances
Bi-TSP150 Bi-TSP200

Method HV Gap Time HV Gap Time
WS-LKH 0.7149 –1.23% 13h 0.7490 –1.23% 22h
MOEA/D 0.6809 3.58% 2.4h 0.7139 3.51% 2.7h
NSGA-II 0.6659 5.71% 6.8h 0.7045 4.78% 6.9h
MOGLS 0.6768 4.16% 22h 0.7114 3.85% 38h
PPLS/D-C 0.6784 3.94% 21h 0.7106 3.96% 32h
DRL-MOA 0.6901 2.28% 36s 0.7219 2.43% 1.2m
MDRL 0.6922 1.98% 36s 0.7251 2.00% 1.1m
EMNH 0.6930 1.87% 37s 0.7260 1.88% 1.1m
PMOCO 0.6910 2.15% 42s 0.7231 2.27% 1.3m
CNH 0.6985 1.09% 50s 0.7292 1.45% 1.4m
POCCO-C 0.7011 0.72% 1.5m 0.7333 0.89% 2.5m
WE-CA 0.7008 0.76% 45s 0.7346 0.72% 1.3m
POCCO-W 0.7033 0.41% 1.4m 0.7371 0.38% 2.4m
MDRL-Aug 0.6976 1.22% 37m 0.7299 1.35% 1.1h
EMNH-Aug 0.6983 1.12% 39m 0.7307 1.24% 1.1h
PMOCO-Aug 0.6967 1.35% 40m 0.7283 1.57% 1.2h
CNH-Aug 0.7025 0.52% 41m 0.7343 0.76% 1.2h
POCCO-C-Aug 0.7043 0.27% 55m 0.7366 0.45% 1.5h
WE-CA-Aug 0.7044 0.25% 42m 0.7381 0.24% 1.2h
POCCO-W-Aug 0.7062 0.00% 45m 0.7399 0.00% 1.4h

L Hyperparameter Study

Effects of the β. Fig.5 shows how the temperature parameter β in the preference learning loss affects
performance (HV) across four benchmark tasks. A moderate value of β consistently yields the best
results. For the three bi-objective problems (Bi-TSP100, MOCVRP100, Bi-KP100), performance
peaks around β = 3.5; larger or smaller values provide no additional benefit, and in Bi-KP100, an
overly large β = 5 sharply degrades HV. For the tri-objective problem (Tri-TSP100), performance
improves up to β = 4.5 and then declines slightly. Overall, these trends justify the default settings
adopted in our experiments: β = 3.5 for bi-objective tasks and β = 4.5 for tri-objective tasks.

29

Table 8: HV on large Bi-TSP instances.
Problem Size WE-CA POCCO-W

Bi-TSP300 0.7441 0.7458
Bi-TSP500 0.7476 0.7592

Bi-TSP1000 0.7186 0.7400

Table 9: HV on large MOKP instances.
Problem Size WE-CA POCCO-W

Bi-KP300 0.6000 0.5947
Bi-KP500 0.4244 0.5658

Bi-KP1000 0.2439 0.8408

Table 10: HV of different PL methods on Bi-TSP instances.
Problem Size POCCO-W DPO

Bi-TSP20 0.6275 0.6276
Bi-TSP50 0.6411 0.6400

Bi-TSP100 0.7055 0.7030
Bi-TSP150 0.7033 0.6998
Bi-TSP200 0.7371 0.7331

2 3 3.5 4 5
β

0.704

0.704

0.705

0.705

0.705

0.705

0.706

0.706

0.706

HV

0.7048

0.7052

0.7055
0.7054

0.7055

Bi-TSP100

2 3 3.5 4 5
β

0.407

0.407

0.407

0.408

0.408

0.408

0.408

0.409

0.409

HV

0.4077

0.4082

0.4084
0.4083

0.4084

MOCVRP100

2 3 3.5 4 5
β

0.200

0.225

0.250

0.275

0.300

0.325

0.350

HV

0.3602 0.3602 0.3603 0.3603

0.1761

Bi-KP100

3 3.5 4 4.5 5
β

0.497

0.497

0.498

0.498

0.498

0.498

0.499

0.499

0.499

HV

0.4978
0.4979

0.4983

0.4985

0.4980

Tri-TSP100

Figure 5: Effectis of the β.

30

Effects of the number of CCO layers. The CCO block sits in the decoder, whose sequence length
T grows with problem size. Each additional CCO layer, therefore, adds a full set of gating and
expert computations at every decoding step. Hence, stacking too many CCO layers can inflate the
runtime disproportionately. Table 11 reports the trade-off. Using two CCO layers yields the highest
HV on both Bi-TSP100 and Bi-TSP200, but increases inference time by roughly 60% and 130 %,
respectively. A third layer further slows inference while slightly reducing HV. We therefore adopt
a single-layer CCO as the default, which preserves most of the performance gain while keeping
computation modest. For larger instances or latency-sensitive applications, the one-layer setting
offers a favorable balance between solution quality and speed.

Table 11: Effects of the number of CCO block layers.
Bi-TSP100 Bi-TSP200

Method HV Time HV Time

POCCO-W 0.7055 36 s 0.7371 2.4 m
2 CCO layers 0.7058 59 s 0.7379 5.6 m
3 CCO layers 0.7049 85 s 0.7352 7.9 m

Effects of the number of experts. We have added an ablation study to analyze the impact of the
number of experts in Table 12. Specifically, POCCO-W (5E) refers to the original model presented in
the paper, which includes 4 feedforward (FF) experts and 1 parameter-free identity (ID) expert. We
additionally evaluate four variants:

1. POCCO-W (3E): 2 FF + 1 ID;
2. POCCO-W (9E): 8 FF + 1 ID;
3. POCCO-W (9E_2D): 8 FF + 1 ID, trained on twice the amount of data;
4. POCCO-W (17E): 16 FF + 1 ID.

All variants are trained under the same settings as POCCO-W (5E) for a fair comparison, except for
POCCO-W (9E_2D), which is trained on more data.

As shown in Table 12, all POCCO-W variants outperform the backbone model WE-CA, confirming
the effectiveness of the expert-based architecture. Moreover, POCCO-W (3E) and POCCO-W (5E)
achieve better overall performance than POCCO-W (9E) and POCCO-W (17E), the latter of which
requires additional data scaling to realize performance gains. To strike a better balance between
computational cost and solution quality, we select POCCO-W (5E) as our default model.

Table 12: Effects of the number of experts.
Problem Size WE-CA POCCO-W (3E) POCCO-W (5E) Exp_num (9E) Exp_num (9E_2D) Exp_num (17E)

Bi-TSP20 0.6270 0.6275 0.6275 0.6275 0.6275 0.6275
Bi-TSP50 0.6392 0.6410 0.6411 0.6408 0.6411 0.6408
Bi-TSP100 0.7034 0.7057 0.7055 0.7050 0.7053 0.7050
Bi-TSP150 0.7008 0.7035 0.7033 0.7026 0.7031 0.7027
Bo-TSP200 0.7346 0.7363 0.7371 0.7364 0.7370 0.7361

Effects of Top k. Fig.6 plots validation HV on Bi-TSP100 for k∈{1, 2, 3}. Selecting two experts
per token (k=2) converges fastest and attains the highest final HV. A single expert (k=1) limits model
capacity, leading to slower early progress and a slightly lower plateau. Choosing three experts (k=3)
increases computation relative to k=2 yet offers no benefit and even marginally reduces HV, likely
because the additional expert dilutes specialization and weakens sparsity. We therefore adopt k=2 as
the default, balancing performance and efficiency.

M Experimental Results of Scalarized Subproblems

To assess subproblem optimality, we report scalarized objective values for three representative
weight vectors λ = (1, 0), (0.5, 0.5), (0, 1) on Bi-TSP100 (Table 13). We also compare against
single-objective solvers LKH and POMO, each tuned to the corresponding subproblem. Among

31

1 20 40 60 80 100 120 140 160 180 200
Epoch

0.6875

0.6900

0.6925

0.6950

0.6975

0.7000

0.7025

0.7050

HV

Top k=1
Top k=2
Top k=3

Figure 6: Effects of Top k.

neural MOCOP methods, POCCO-W attains the smallest optimality gaps across all weight settings.
Ablating CCO (POCCO-Aug w/o CCO) increases optimality gaps across all settings, and eliminating
preference learning as well (WE-CA-Aug) further degrades performance. Notably, POCCO-W-Aug
even outperforms POMO-Aug on the subproblem with λ = (0, 1).

Table 13: Performance comparison under different weight settings (ω1, ω2).
λ = (1, 0) λ = (0.5, 0.5) λ = (0, 1)

Method Obj Gap Obj Gap Obj Gap

WS-LKH 7.7632 0.00% 17.3094 0.00% 7.7413 0.00%
POMO-Aug 7.7659 0.03% 17.4421 0.77% 7.7716 0.39%
WE-CA-Aug 7.8132 0.64% 17.4994 1.10% 7.7888 0.61%
POCCO-Aug w/o CCO 7.7970 0.44% 17.4629 0.89% 7.7772 0.46%
POCCO-W-Aug 7.7827 0.25% 17.4460 0.79% 7.7602 0.24%

N Comparison with Tchebycheff Scalarization

Intuitively, our POCCO framework is applicable to any MOCOP where the objectives can be
scalarized using decomposition-based techniques, including weighted-sum (WS), Tchebycheff (TCH),
and penalty-based boundary intersection (PBI). This is because the preference signal between two
solutions is determined solely by the ordering of their scalarized objective values, regardless of the
specific scalarization method used.

To empirically demonstrate this generality, we added an experiment comparing POCCO-W trained
with WS and TCH scalarization methods. As shown in Table 14, WS consistently outperforms TCH
on Bi-TSP50 to Bi-TSP200, indicating that WS offers more robust performance across different
problem sizes. This observation is also consistent with findings in [6], which report that WS—despite
its simplicity—often outperforms TCH in the studied MOCOP setting. In general, however, WE-
CA (TCH) performs worse than WE-CA (WS), which achieves a score of 0.6392, and is further
outperformed by POCCO-W (TCH), which achieves 0.6395 on Bi-TSP50.

O GPU Memory Usage

We present a comparison of GPU memory usage between POCCO-W (ours), the backbone model
(WE-CA), and CNH in Table 15. All models are trained across problem instances with size n = 50.
As shown in Table 15, POCCO-W incurs higher GPU memory usage, approximately doubling that of

32

Table 14: HV of Different Decomposition Approaches on Bi-TSP Instances.
Problem Size WE-CA (WS) POCCO-W (WS) POCCO-W (TCH)

Bi-TSP50 0.6392 0.6411 0.6395
Bi-TSP100 0.7034 0.7055 0.7031
Bi-TSP150 0.7008 0.7033 0.6998
Bi-TSP200 0.7346 0.7371 0.7329

Table 15: Comparison of GPU Memory Usage.
Problem Size WE-CA CNH POCCO-W

Bi-TSP50 1051 MB 1077 MB 1849 MB
MOCVRP50 1790 MB 1501 MB 4522 MB

Bi-KP50 916 MB 916 MB 2417 MB
Tri-TSP50 1052 MB 1077 MB 2383 MB

the baselines WE-CA and CNH. However, this increased resource cost is accompanied by significant
improvements in solution quality, as demonstrated in our experimental results.

P Summary of Decomposition-based Neural MOCOP Solvers

Table 16 compares key features of decomposition-based neural MOCOP solvers. POCCO, which
establishes new SOTA performance, is a plug-and-play framework that augments any existing solver.
It inserts a CCO block that learns a diverse ensemble of policies, adding parameters yet surpassing
prior methods. Crucially, each subproblem activates only two experts (one of which may be a
parameter-free identity expert), so the extra computational load remains minimal. POCCO also
employs a pairwise preference learning approach that further boosts performance without introducing
additional parameters.

Table 16: Summary of the decomposition-based neural MOCOP solvers.
Method Learning method Paradigm #Parameters

DRL-MOA Transfer learning+RL one-to-one 133.37M
MDRL Meta learning+RL one-to-one 133.37M
EMNH Meta learning+RL one-to-one 133.37M
PMOCO RL one-to-many 1.50M
CNH RL one-to-many 1.63M
POCCO-C Preference learning one-to-many 2.16M
WE-CA RL one-to-many 1.47M
POCCO-W Preference learning one-to-many 2.00M

Q Broader Impacts

POCCO offers several positive societal impacts. By dynamically routing computation and learning
from preference signals, it accelerates multi-objective decision-making in logistics, manufacturing,
and energy planning, reducing costly trial-and-error loops and boosting operational efficiency. Its
conditional-computation design activates only the required network capacity for each subproblem,
cutting FLOP counts and energy consumption relative to dense models of comparable accuracy.
Finally, by encouraging exploration and adaptive capacity allocation, POCCO broadens the applica-
bility of neural solvers in complex optimization tasks, advancing both AI and operations research and
enabling practitioners to tackle larger, real-world problems with fewer computational resources.

33

R Licenses for Existing Assets

The used assets in this work are listed in Table 17. Where applicable, we reference publicly available
implementations for evaluation or reproduction purposes. Our source code is released under the MIT
License.

Table 17: Used assets, licenses, and their usage.

Type Asset License Usage

Code

LKH [20] Available for academic use Evaluation
DRL-MOA [34] No license (assumed all rights reserved) Evaluation

MDRL [67] No license (assumed all rights reserved) Evaluation
EMNH [7] No license (assumed all rights reserved) Evaluation

PMOCO [38] MIT License Evaluation
CNH [14] MIT License Revision

WE-CA [6] MIT License Revision

Datasets Chen et al.[6] MIT License Evaluation

34

	Introduction
	Related Works
	Preliminary
	MOCOP
	Subproblem Solving

	Methodology
	Overview
	Conditional Computational Block
	Preference-driven MOCO

	Experiments
	Experimental settings
	Experimental results

	Conclusion
	Details of MOCOP
	Theoretical Analysis
	Formulation of Loss Function
	Gradient Analysis

	MOCOP Solvers with POCCO
	POCCO-W
	POCCO-C
	Gating Mechanism

	Training Algorithm
	Decomposition Approaches
	Hypervolume
	Instance Augmentation
	Impact of Neutralizing Non-Dominated Pairs
	Detailed Results on Benchmark Instances
	Experimental Results on the Larger Problem Sizes
	Comparison with DPO
	Hyperparameter Study
	Experimental Results of Scalarized Subproblems
	Comparison with Tchebycheff Scalarization
	GPU Memory Usage
	Summary of Decomposition-based Neural MOCOP Solvers
	Broader Impacts
	Licenses for Existing Assets

