
NeuroDB: Efficient, Privacy-Preserving and Robust
Query Answering with Neural Networks

Sepanta Zeighami
University of Southern California

zeighami@usc.edu

Cyrus Shahabi
University of Southern California

shahabi@usc.edu

Abstract

The Neural Database framework, or NeuroDB for short, is a novel means of query
answering using neural networks. It utilizes neural networks as a means of data
storage by training neural networks to directly answer queries. That is, neural
networks are trained to take queries as input and output query answer estimates.
In doing so, relational tables are represented by neural network weights and are
queried through a model forward pass. NeuroDB has shown significant practical
advantages in (1) approximate query processing, (2) privacy-preserving query
answering, and (3) querying incomplete datasets. The success of the NeuroDB
framework can be attributed to the approach learning patterns present in the query
answers, utilized to learn a compact representation of the dataset with respect to the
queries. This allows learning small neural networks that accurately and efficiently
represent query answers. Meanwhile, learning such patterns allows for improving
the accuracy in the presence of error, with such robustness to noise allowing for
improved accuracy in the case of private query answering and query answering on
incomplete datasets. This paper presents an overview of the NeuroDB framework
and its applications to the three aforementioned scenarios.

1 Introduction
The Neural Database framework, or NeuroDB for short, is a novel means of query answering using
neural networks [33, 31, 32]. Instead of iterating over the records in a dataset to answer queries, it
trains neural networks to predict query answers. The neural networks are trained in a supervised
learning fashion, where the model takes a query as input and outputs an estimate of the query answer.
Datasets are represented by neural network weights and are queried through a model forward pass.
NeuroDB has shown significant practical and theoretical advantages in three settings: (1) approximate
query processing [33], (2) privacy-preserving query answering [31], and (3) querying incomplete
datasets [32]. In this paper, we present an overview of the NeuroDB framework and its applications
to the aforementioned scenarios, summarizing the results in [33, 31, 32].

NeruoDB follows a function approximation view of database operations. For a database D, define
a query function fD(q) as a function that takes a query, q, as an input and outputs its correct query
answer. NeuroDB trains a neural network, f̂(q; θ), that takes a query q as its input and outputs
an estimate to the query answer. The training objective is to ensure f̂ and fD are similar, e.g.,∑

q∈Q |f̂(q; θ)− fD(q)| is minimized for a set of possible queries Q, so that query answer estimates
are accurate. Following this framework, to apply NeuroDB to a specific application scenario, we need
to specify a query representation, and a training procedure for the application. NeuroDB inherently
produces query answer estimates, not exact answers, and thus applies to scenarios where exact
answers are not required. This is true in the three scenarios mentioned above.

In the approximate query processing scenario, the goal is to provide efficient and approximate query
answers. We specifically consider answering range aggregate queries (RAQs), which are the building
block of many real-world applications (e.g., calculating net profit for a period from sales records.
RAQs filter a dataset by range predicate and ask for an aggregation of some attribute in the filtered
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dataset. Due to the large volume of data, exact answers can take too long to compute and fast
approximate answers may be preferred. There is a time/space/accuracy trade-off, where algorithms
can sacrifice accuracy for time or space. The results in [33] show that applying the NeuroDB
framework can provide better time/space/accuracy trade-offs than existing methods. Furthermore,
[33] theoretically analyzes the approach, showing novel theoretical characteristics in using a neural
network to perform database queries. Specifically, [33] theoretically shows how the accuracy of the
neural network can depend on data and query characteristics.

In the privacy-preserving query answering scenario, the goal is to answer queries on a database
while preserving the privacy of the users who contributed records to the dataset. Specifically, [31]
considers answering COUNT queries on location datasets, that is, answering how many people are in a
certain location. Such queries are common on location datasets, often collected from mobile apps and
used for various purposes such as optimizing traffic or studying disease spread. Differential privacy
is often used to protect privacy and ensure that the location of a specific user cannot be inferred
when releasing aggregate location information from such datasets. [31] shows how the NeuroDB
framework can be applied to this setting by training a model while preserving differential privacy to
answer the queries. Results in [31] show that using the NeuroDB framework, one can answer queries
much more accurately than existing methods, while providing the same privacy guarantees.

Finally, in the query answering on incomplete datasets scenario, the goal is to provide accurate
query answers while the observed dataset contains missing records. Real-world databases are often
incomplete for various reasons, including the cost of data collection, privacy considerations or as a
side effect of data integration/preparation. For instance, to know housing prices in an area, collecting
information for every house is costly, if not impossible, but Airbnb already provides a sample for free
[1] (dataset is a sample because it only contains Airbnb prices and not other housing sources). In
such scenarios, some records are entirely missing from the datasets. Meanwhile, OLAP applications
require answering aggregate queries on such incomplete datasets. [32] studies this problem, aiming to
provide accurate query answers while only having access to such an incomplete dataset. The results
in [32] show that the NeuroDB framework can provide much more accurate query answers than
existing methods. The challenge in such a scenario is to train a model using the incomplete dataset
that generalizes well to the complete dataset. This requires carefully designed query representation
and training procedures, as done in [32].

The success of the NeuroDB framework in the above scenarios can be attributed to the approach
learning patterns present in the query answers. Patterns in the query answers can be utilized to learn
a compact representation of the dataset with respect to the query. This allows learning small neural
networks that accurately and efficiently represent a query function. Meanwhile, learning such patterns
allows for improving the accuracy in the presence of error, with such robustness to noise allowing for
improved accuracy in the case of private query answering as well as query answering on incomplete
datasets. NeuroDB generalizes the recent trend of replacing different database components with
learned models [10, 13, 20, 18, 17, 27], where the main observation has been that a certain database
operation (e.g. retrieving a record’s location in indexing [14]) can be replaced by a learned model.
NeuroDB follows the overarching idea that answering the query itself can be performed by a model,
since query answering is a function that can be approximated.

The rest of this paper describes the application of the NeuroDB framework to each of the scenarios
discussed above. Sec. 2 presents results for approximate query processing, Sec. 3 presents results
for privacy-preserving query answering, Sec. 4 presents results for querying incomplete dataset and
Sec. 5 concludes the paper.

2 Answering Range Aggregat Queries

In this section, we provide an overview of [33], which shows an application of NeuroDB for answering
range aggregate queries. [33] also theoretically analyzes the approach, which we omit due to space.

2.1 Preliminaries

Problem Definition. Consider the following SQL query on a dataset D with n records and d̄
attributes, A1, ..., Ad̄. Assume, w.l.o.g, that the attribute values are in the range [0, 1] (or they can
otherwise be scaled).
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Figure 1: NeuroSketch Overview

SELECT AGG(Am) FROM D WHERE
c1 ≤ A1 < c1 + r1 AND ... AND cd̄ ≤ Ad̄ < cd̄ + rd̄

For any i, ci and ci + ri are the lower and upper bounds on the attribute Ai. ci and ri can be 0 and 1,
respectively, in which case there are no restrictions on the values of Ai in the query. AGG is a user
defined aggregation function, with examples including SUM, AVG and COUNT aggregation functions.
Am is called the measure attribute, where m is an integer between 1 and d̄. Let c = (c1, ..., cd̄) and
r = (r1, ..., rd̄) be d̄-dimensional vectors. We call the pair q = (c, r) a query instance. Different
query instances correspond to different range predicates for the measure attribute Am and aggregation
function AGG. We define the query function fD(.) so that for a query q, fD(q) is the answer to the
above SQL statement. Furthermore, define Q = {(c, r) ∈ [0, 1]d, ci + ri ≤ 1∀i} as the set of all
possible queries. The problem studied in this section is to answer the queries in Q efficiently and
accurately, that is, given an accuracy requirement, answer queries as fast as possible while providing
the desired accuracy level.

Related Works. This problem has been extensively studied in the approximate query processing
(AQP) literature. Existing methods can be divided into sampling-based methods [11, 3, 5, 22] and
model-based methods [7, 26, 17, 27, 13]. Sampling-based methods use different sampling strategies
(e.g., uniform sampling, [11], stratified sampling [5, 22]) and answer the queries based on the samples.
Model-based methods develop a model of the data that is used to answer queries. The models can be
of the form of histograms, wavelets, data sketches (see [7] for a survey) or regression and density
based models [17, 27, 13]. Generally, these works follow two steps: first, a model of the data is
created, and second, a method is proposed to use these data models to answer the queries. The results
in [17, 27, 13] show that learned methods outperform other existing approaches.

2.2 NeuroSketch Overview

Rather than creating models of the data, as done in the related work [17, 27, 13], we learn neural
networks to directly estimate query answers. This helps improve performance as small models are
trained to perform a specific task. Specifically, in NeuroSketch [33], the goal is to learn neural
networks, f̂(.; θ), to approximate the query function, fD(.). Such neural networks take as input an
RAQ, q. A model forward pass outputs an answer, f̂(q; θ). The goal is to train neural networks so
that its answer to the query, f̂(q; θ), is similar to the ground-truth, fD(q). If such neural networks
are small and can be evaluated fast, we can use them to directly answer the RAQ efficiently and
accurately, by performing a model forward pass.

The key idea behind NeuroSketch design is that, even on the same database, some queries can be more
difficult to answer than others. By allocating more model capacity to queries that are more difficult,
we can improve the performance. We do so by partitioning the query space and training independent
neural networks for each partition. The partitioning allows diverting model capacity to harder queries.
By creating models specialized for a specific part of the query space, query specialization allows us
to control how model capacity is used across query space.

Fig. 1 shows an overview of NeuroSketch. During a pre-precessing step, (1) we partition and index
the query space using a kd-tree. The partitioning is done based on our query specialization principle,
with the goal of training a specialized neural network for different parts of the query space. (2) To
account for the complexity of the underlying function in our partitioning, we merge the nodes of the
kd-tree that are easier to answer, so that our model only has to specialize for the certain parts of the
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Figure 2: RAQs on different datasets

space that are estimated to be more difficult. (3) After some nodes of the kd-tree have been merged,
we train a neural network for all the remaining leaves of the kd-tree. Finally, to answer queries at
query time, we traverse the kd-tree to find the leaf node a query falls inside, and perform a forward
pass of the neural network. We describe each step next.

Partitioning & Indexing. To partition the space, we choose partitions that are smaller where the
queries are more frequent and larger where they are less frequent. This allows us to divert more
model capacity to more frequent queries, thereby boosting their accuracy if workload information is
available. We achieve this by partitioning the space such that all partitions are equally probable. To
do so, we build a kd-tree on our query set, Q, where the split points in the kd-tree can be considered
as estimates of the median of the workload distribution (conditioned on the current path from the
root) along one of its dimensions.

Merging. We merge some of kd-tree leaves based on some notion of difficulty of query answering.
Specifically, we use Average Query function Change, AQC, as a proxy for function approximation
difficulty, defined as AQC = 1

(|Q|
2 )

∑
q,q′∈Q

|f(q)−f(q′)|
∥q−q′∥ , where Q ⊆ Q is a set of queries sampled

from all possible queries. AQC is defined based on theoretical results in [33] showing that magnitude
of function change correlates with function approximation difficulty. This is also empirically verified,
where [33] show AQC is correlated with the error of neural networks. To use AQC, we merge leaf
nodes of the kd-tree that have the least AQC value, until a desired number of leaves are left.

Training Neural Networks. We train an independent model for each of the remaining leaf nodes
after merging. For a leaf node, N , the training process is a typical supervised learning procedure. The
ground-truth answer to queries for training can be collected through any known algorithm, where a
typical algorithm iterates over the points in the database, pruned by an index, and for a candidate data
point checks whether it matches the RAQ predicate or not. This pre-processing step is only performed
once to train our model. Once trained, NeuroSketch is much smaller than data and expected to fit in
memory, so it will be much faster than disk-based solutions.

Answering Queries. To answer a query, q, first, the kd-tree is traversed to find the leaf node that the
query q falls into. The answer to the query is a forward pass of the neural network corresponding to
the leaf node.
2.3 Experimental Results
We compare NeuroSketch with other learned methods DBEst [17] and DeepDB [13], which learn a
model of the data and use that model to answer queries. This is in contrast to NeuroSketch that learns
a model that directly estimates the query answers. We also compare our approach with two sampling
based approaches VerdictDB [22] and TREE-AGG, where the latter is a baseline that builds an R-Tree
on the sampled data points for faster search. The datasets used are PM [16] (contains Fine Particulate
Matter measuring air pollution and other statistics), TPC-DS [19] (a synthetic benchmark dataset,
with scale factors 1 and 10), Veraset (which contains anonymized location signals of cell-phones
across the US collected by Veraset [2]) and GMMs (5, 10 and 20 dimensional Gaussian mixture
models with 100 components and random mean and co-variance, referred to as G5, G10 and G20).
Experiments presented here answer AVG queries with range predicates sampled uniformly at random.

Fig. 2 (a) shows the error on different datasets, where NeuroSketch provides a lower error rate than
the baselines. Fig. 2 (b) shows that NeuroSketch achieves this while providing multiple orders of
magnitude improvement in query time. Due to NeuroSketch’s use of small neural networks, we
observe that model inference time for NeuroSketch is very small and in the order of few microseconds,
while DeepDB and DBEst answers queries multiple orders of magnitude slower. Furthermore, the
R-tree index of TREE-AGG often allows it to perform better than the other baselines, especially for
low dimensional data. Finally, Fig. 2 (c) shows the storage overhead of each methods. NeuroSketch
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Figure 3: SHN Overview

answers queries accurately by taking less than one MB space, while DeepDB’s storage overhead
increases with data size, to more than one GB.

3 Answering Spatial Range Count Queries while Preserving Privacy
In this section, we provide an overview of [31] which shows an application of NeuroDB for answering
range count queries on location datasets while preserving privacy. [31] contains further discussion on
model training and hyperparmeter tuning while preserving privacy, which we omit due to space.

3.1 Preliminaries
Problem Definition. We consider a special case of queries answered by NeuroSketch. We focus on
the case when the aggregation function is COUNT and the dataset, D consists of users’ geo-coordinates
(i.e., D is two dimensional consisting of latitude and longitude records). That is, we consider
answering range count queries (RCQs) on a spatial database. The goal is to answer an unbounded
number of RCQ queries on this dataset while satisfying ε-Differential Privacy [9].

The typical way to solve the problem of answering an unbounded number of RCQs is to design an
ε-DP mechanism M and a function f̂ such that (1) M takes as an input the database D and outputs a
differentially private representation of the data, θ; and (2) the function f̂(q; θ) takes the representation
θ, together with any input query q, and outputs an estimate of f(q). In practice, M is used exactly
once to generate the representation θ. Given such a representation, f̂(q; θ) answers any RCQ, q,
without further access to the database. For instance, in [24], M is a mechanism that outputs noisy
counts of cells of a 2-dimensional grid overlaid on D. Then, to answer an RCQ q, f̂(q; θ) takes the
noisy grid, θ, and the RCQ, q, as inputs and returns an estimate of f(q) using the grid. The objective
is to design M and f̂ such that the relative error between f̂(q; θ) and f(q) is minimized, that is, to
minimize Eθ∼MEq∼Q[∆(f̂(q; θ), f(q))], where ∆(ŷ, y) denotes the relative error of an estimate ŷ
when the true answer is y.

Related Work. Most related work create a DP-compliant representation of a spatial dataset by
partitioning the data domain into bins, and then publish a histogram with the noisy count of points
that fall within each bin. At query time, the noisy histogram is used to compute answers, by
considering the counts in all bins that overlap the query. When a query partially overlaps with a
bin, the uniformity assumption is used to estimate what fraction of the bin’s count should be added
to the answer. This is referred to domain partitioning, commonly adopted by existing work. For
example, [24] proposes partitioning the domain into grid cells and releasing a noisy count for each
cell. QuadTree [8] first generates a quadtree, and then employs the Laplace mechanism to inject noise
into the point count of each node and Privtree [34] is another hierarchical method, but allows variable
node depth in the indexing tree.

3.2 SNH Overview

Rather than creating a hand-designed data representation, Spatial Neural Histograms (SNH) learns
neural networks to answer RCQs while preserving differential privacy, using neural network parame-
ters as the data representation. Results from NeuroSketch, discussed in Sec. 2, show that learning can
exploit data patterns to accurately and compactly represent the data. As such, learning can be used to
combat data modelling errors, present in the domain partitioning methods and amplified due to the
impact of differential privacy noise. Nonetheless, the challenge here, compared with NeuroSketch,
is that the training process has to satisfy ε-DP. This means that the training process cannot ask an
arbitrary number of queries from the database (as asking each query from the database consumes
privacy budget) to train neural networks. As such, two new steps are introduced in the training
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Figure 4: Impact of privacy budget: VS, SPD-VS and CABS datasets

process, specifically, data collection and data augmentation. Thus, the SNH framework, illustrated in
Figure 3, consists of three steps: (1) Data collection, (2) Model Training, and (3) Model Utilization.
We provide a summary of each step below.

Data Collection. This step partitions the space into non-overlapping RCQs that are directly answered
with DP-added noise. The advantage of non-overlapping queries is that, due to the parallel compo-
sition property of differential privacy, one only need to spend privacy budget once to answer any
number of non-overlapping queries. The output of this step is a data collection query set, QD, and a
set YD which consists of the differentially private answers to RCQs in QD. This is the only step in
SNH that accesses the database. In Fig. 3 for example, the query space is partitioned into four RCQs,
and a differentially private answer is computed for each.

Training. Our training process consists of two stages. First, we use spatial data augmentation to
create more training samples based on QD. An example is shown in Fig. 3, where an RCQ covering
both the red and yellow squares is not present in the set QD, but it is obtained by aggregating its
composing sub-queries (both in QD). The data augmentation is important because, due to differential
privacy, one can collect a limited number of queries for training. Thus, this data augmentation
step utilizes the characteristic of database queries (e.g., that two queries can be combined to create
a new query) to augment the training set. Second, the augmented training set is used to train a
function approximator f̂ that captures fD well. f̂ consists of a set of neural networks, each trained to
answer different query sizes. This, similar to NeuroSketch, follows our query specialization principle
discusses in Sec. 2, where multiple models are trained, each specialized to answer specific quereis.

Model Utilization. After training, models are used to directly answer queries. For a query, we first
decide which model to use to answer queries from based on the query range, and use that model to
obtain the final query answer estimate.

3.3 Experimental Results

We compared SNH with various existing methods, PrivTree [34], Uniform Grid (UG) [24], Adaptive
Grid (AG) [24] and Data and Workload Aware Algorithm (DAWA) [15]. all of which release
two-dimensional noisy histograms but utilize various means of domain partitioning (no existing
method utilizes learned data representation), as well as an additional baseline, STHoles, which is a
modification of [4], a non-private workload-aware algorithm, to satisfy DP. The experiments consider
answering RCQs on tree datasets: CABS [23] is derived from the GPS coordinates of approximately
250 taxis collected over 30 days in San Francisco, VS is derived from anonymized location signals of
cell-phones across the US collected by Veraset [2] and SPD-VS is a processed version of VS that only
keeps users stay-points following [29] (i.e., removes the points where users are driving/walking/etc.).

Fig. 4 presents the error of SNH and competitors when varying ε for test datasets VS, SPD-VS and
CABS. Recall that a smaller ε means stronger privacy protection.For VS and SPD-VS, we observe
that SNH outperforms the state-of-the-art by up to 50% at all privacy levels (Fig. 4 (a)-(d)). This
shows that SNH is effective in utilizing machine learning to improve accuracy of privately releasing
proprietary datasets. Fig. 4 (e) shows that SNH also outperforms other approaches on CABS dataset
in almost all settings, the advantage of SNH being more pronounced for smaller ε values. Stricter
privacy regimes are particularly important for location data, since such datasets are often released at
multiple time instances with smaller privacy budget per release.

4 Answering Aggregate Queries on Incomplete Relational Databases

In this section, we provide an overview [32] which shows an application of NeuroDB for answering
aggregate queries on incomplete datasets.
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4.1 Preliminaries

Problem Definition. The setting here is more general than the previous two scenarios discussed.
Here we consider a general relational database setting. Consider a relational database, D, with k
tables, T1, ..., Tk. Foreign key relationships connect (some of) the tables. Each table has a primary
key which uniquely identifies the rows within each table. We consider aggreagate queries, q, on this
database. Informally, q asks for an aggregation of an attribute in some table, where the records in the
table are filtered based on some predicate (optionally containing JOIN or GROUP BY clauses).

We consider the case when we only have access to a subset of records, T̄i of the table Ti for some
i ∈ {1, ..., k}. We refer to table Ti as incomplete or partially observed and refer to tables Tj , j ̸= i
as complete or fully observed. We let the incomplete database D̄ be the database consisting of T̄i

and Tj for all j. We often refer to D as the true database and D̄ as observed database. The observed
query function, f̄(q) is the function that takes a query as an input and outputs the query answers
based on the observed databse. We consider the case when the observed database is a biased sample
of the true database, i.e., ED̄∼D[f̄(q)] ̸= f(q). Thus the error in answering queries on the observed
database isn’t only due to the variance in sampling, but also due to its bias. We denote by n = |Ti|
and n̄ = |T̄i|, the size of the observed table and true table, respectively.

The goal is to, given the observed database, D̄, answer a query q so that its answer is similar to
f(q). However, performing the query on the observed database, D̄, provides an inaccurate answer
f̄(q). Instead, using D̄, we train a model f̂(.; θ) that takes the query as an input and outputs an
estimate of its answer. The model is trained given only D̄, but its answer is expected to be similar
to performing queries on D. The asked queries can have arbitrary predicates, a fixed aggregation
function AGG and a fixed measure attribute M . Let Q be the set of all such queries from a query
workload. Given access only to an observed incomplete database D̄, our goal is to train a model,
f̂ , so that 1

|Q|
∑

q∈Q |f̂(q; θ)− f(q)| is minimized, where f is the query function corresponding to
the complete database D. We follow the setup of [12] and ask the users to (1) annotate tables with
missing records and (2) annotate rows that have complete foreign key relationships, where for such
rows, the foreign keys are not missing.

Related Work. There has been recent effort in answering queries on incomplete datasets [12, 21, 30,
28, 25, 6]. With existing approaches generating data either through data imputation [12, 30, 28, 25, 6]
or synthetic data generation. The only approach directly applicable to this setting is ReStore [12]
which considers synthesizing entire records to complete the observed dataset. ReStore [12] utilizes
foreign key relationships to synthesize new data records, and the synthetically generated data is added
to the database. After data generation, the query is answered as in a typical relational database.

4.2 NeuroComplete Overview

NeuroComplete proposes a fundamentally different approach to answering queries on incomplete
data. Rather than generating new data it proposes to learn a model that directly estimates the query
answers. This is done in three steps. First, it generates a set of training queries for which accurate
answers can be computed given the incomplete dataset. Next, NeuroComplete extracts a set of
features for each of these queries. Each feature corresponds to the contextual information available
about the query answers in the database, and is computed based on how related a database record is
to the query. Finally, NeuroComplete trains a neural network in a supervised learning fashion to learn
a mapping from the embedding space (i.e., query features) to query answers. The learned model then
generates accurate answers to new queries at test time, exploiting the generalizability of the learned
model in the embedding space.

Figure 5 shows an overview of this approach. NeuroComplete embeds queries into a space Z and
trains a model, f̂ , from Z to query answers. To do so, NeuroComplete defines an embedding function
ρ that takes a query q as an input and outputs an embedding z. To answer any query, q, we first find
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Figure 6: Results for AVG Rental Prices Figure 7: Results for AVG Response Rate

z = ρ(q) and then provide the estimate f̂(z; θ) for the query answer. The input to the neural network
is a query embedding, which represents the query in terms of the observed information related to the
query. Intuitively, the embedding function ρ aggregates the observed database rows based on how
related they are to the query, to represent the query in terms of such relevant information. As shown
in Fig. 5, during training, NeuroComplete follows three steps. (1) It creates a set, Q, of queries for the
purpose of training whose answer can be accurately obtained from the observed database. Intuitively,
any query that is “restricted” such that its answer only depends on the data in the incomplete database
can be answered accurately. (2) It uses the embedding function, ρ, to find the query embedding for
the queries in Q, and (3) uses the queries together with their answer (computed on the observed
database) to train a neural network f̂ in a supervised learning setting. The neural network learns a
mapping from the embedding space to query answers. To answer a query, NeuroComplete first finds
its query embedding and performs a forward pass of the trained neural network with the embedding
as its input to provide an estimate of the query answer.

4.3 Experimental Resuls
We compare NeuroComplete with Restore [12], which generates new data to complete the database
and answers queries based on the generated data, as well as Sample which is the method that merely
answers queries on the observed dataset. The results are on a database of Airbnb listings (containing
information such as the apartment type, price, its neighbourhood and landlord) obtained from [1].
We consider two queries, asking for AVG rental prices of listings and AVG response rate of landlords
for different predicates (e.g., listings with different numbers of rooms). To evaluate the methods,
we select a biased portion of the original dataset (keep rate denotes the percentage of the original
dataset that was kept) where the bias is introduced based on rental prices and response rates (e.g.,
only apartments with higher rental prices are kept). Bias factor denotes how non-uniform the samples
are (the larger the bias factor, the more the bias). All the algorithms only have access to this biased
subset, but the goal is to predict the actual rental prices on the original dataset.

Figs. 6-7 compare NeuroComplete with other methods across settings for AVG queries. Each figure
shows, for a setting, how the error changes for different keep rates and bias factors. For NeuroCom-
plete, the shaded area shows one standard deviation above/below error, where standard deviation
is over 5 training runs. We observe that NeuroComplete outperforms the baselines across settings
in almost all cases, improving accuracy of state-of-the-art by up to a factor of 4. Furthermore,
NeuroComplete is the most effective when bias factor is less than 1 and when keep rate is less than
80%. When bias factor is 1, NeuroComplete does not see enough variation in query answers during
training to be able to accurately extrapolate to unseen queries. On the other hand, when keep rate is
80%, Sample itself is very accurate, and inherent modeling errors do not allow for much improvement
for NeuroComplete over observed values.

5 Conclusion
We have presented the NeuroDB framework, and discussed its application to approximate query
processing, privacy-preserving query answering and query answer on incomplete datasets, showing
the benefits of this framework in the three application scenarios. The discussion has shown how
different query representations and training procedures can be utilized, together with the NeuroDB
framework, to answer queries in a variety of applications. Future work includes applying the
furthermore to different application scenarios such as similarity search, studying how the model
should be updated in the case of dynamic datasets and extending the theoretical understanding of
why and in which scenarios the NeuroDB framework performs well.
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