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Abstract

We investigate the simultaneous daily forecasting of pH, temperature, dissolved
oxygen, and electrical conductivity using AI-based methods. These physicochem-
ical parameters can be retrieved from surface water and favor the reproduction
of parasitic worms responsible for Schistosomiasis. Wavelet Artificial Neural
Network (WANN ), Long Short Term Memory (LSTM ), and Support Vector
Regression (SV R) are used AI-based methods to build models with fifteen months
of collected raw datasets. They are evaluated through two metrics, such as root-
mean-square (RMSE) and mean absolute error (MAE). The built models take
as inputs the physicochemical parameters values observed the last two days and
provide as outputs the physicochemical parameters values expected the next day.
Overall, the results show that the three methods perform well. The most efficient
according to the metrics is the WANN-based model which shows a RMSE of 0.07,
0.13, 0.09, and 9.79 in forecasting respectively pH, temperature, dissolved oxygen,
and electrical conductivity.

1 Introduction

Schistosomiasis is an infectious disease caused by a parasitic worm called Schistosoma. The World
Health Organization (WHO) estimated in 2021 that at least 251.4 million people needed preventive
treatment against it. At least 90% of these people lived in Africa 1. Tropical and intertropical regions
are the preferred areas of prevalence of Schistosomiasis. It constitutes the second parasitic endemic
in the world after malaria 2.

Its transmission cycle starts with an infected person who releases parasite eggs through his urine or
faeces in water points. The released eggs in some appropriate physical and chemical characteristics
of water points hatch, penetrate, and develop in snails until a stage of the parasite. After snails release
these parasites, which enter the human body by skin contact where they develop until the adult stage
capable to lay eggs that humans will release again, causing the cycle to restart.

The quality of water points influences the biological cycle of snails and parasites [3]. Water quality
can be defined as the suitability of water for a particular application based on its chemical, biological,
and physical characteristics [4]. Predicting water quality comes to forecast its variation trend at a
certain time in the future. The main principle of water quality prediction (WQP ) is the estimation of
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one or more water parameter values in a short or long-term time, followed by an evaluation of a set of
conditions [5].

Many studies have addressed water quality prediction with the purpose to assess earlier pollution of
water points, which can cause water-related problems such as water-borne diseases and deaths of
aquatic animals and so on [5; 6]. Accuracy and long-term forecasting of WQP have been addressed
by many researchers. Some of them are reviewed in [6] and [7]. Although satisfactory results were
reached with certain AI-based methods, there is still a need to investigate some methods in this study
area. For instance, it has been stressed in [6] that Support Vector Machine SVM performance has
not yet been explored in comparison to other AI techniques.

Few studies have addressed water modeling quality on some specific water-borne diseases, especially
Schistosomiasis. In [8], the authors considered three Machine Learning techniques which are SVM ,
Random Forest (RF ), and Artificial Neural Network (ANN ) to build an earlier detection tool. They
aim to assess the suitability of water points for Schistosoma egg maturation and intermediate hosts
(snails) development. Based on fifteen days of collected data, the tool has been trained on different
sliding windows namely 1 hour, 2 hours, 3 hours, and 6 hours. SVM performs well over the two
other algorithms in all sliding windows. We note that the forecasting horizon doesn’t reach one day.

We investigate the use of AI methods to build models that can forecast water quality parameters, such
as pH, temperature, dissolved oxygen, and electrical conductivity, of a water point one day in advance.
We explore one day ahead horizon since the water quality prediction result is going to combine with
a mathematical model which can provide daily evolution of snails and parasite’s densities. We have
described the fusion conceptual framework in a previous work [9].

The objectives of our study here are twofold. Firstly, we investigate the forecasting of water
quality favorable to Schistosomiasis transmission one day ahead. Secondly, we address one of the
recommendations enumerated in [6] which is to pay more attention to the comparison of single AI
methods to hybrid ones such as WANN .

The rest of the paper is organized as follows. Section 2 gives an overview of the proposed system’s
structure and describes the principle of different AI methods explored. In section 3, we present the
determination of hyperparameters and different steps followed in model building. Section 4 presents
our experimental setup and results. Finally, we conclude and give perspectives in section 5.

2 Structure of proposed system and used AI methods backgrounds

Figure 1 indicates the general structure of the proposed system, constituted of an IoT-based system
for capturing data and an AI-based model which relies on previous data of some physicochemical
parameters to forecast their future values.

Figure 1: Structure of proposed system

We focus on this paper on the AI-based model building. We have explored some AI methods in that
purpose, namely support vector regression (SV R), long-term short memory (LSTM ), and wavelet
artificial neural networks (WANN ). SV R is a variant of support vector machine (SVM ) dedicated
to regression problems [10]. It aims to find an approximation function that allows for the estimation
of target values while keeping the deviation within a specified tolerance level ϵ.

Long Short-Term Memory (LSTM ) is a specific recurrent neural network (RNN ) architecture that
was designed to model temporal sequences and their long-range dependencies more accurately than
conventional RNNs [11]. The specificity of LTSM resides in the structure of neurons. Neurons
are designated as blocks. Each block is constituted of a cell and three gates that control the cell.
The presence of the cell permits to handle long term dependency and vanishing/exploding problems
encountered with RNN architecture. For more details, one can refer to [12].
WANN is a hybrid technique which employs wavelet transform (WT ) and artificial neural network
(ANN ). Based on the definition given in [13], we can stress that WT is a method that can be used to
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convert a temporal signal into another form which makes certain features (trend, noise, changes, etc.)
more amenable to study. There are two major transforms, continuous wavelet transform (CWT ) and
discrete wavelet transform (DWT ).

DWT fits with time series as they use discrete time. It decomposes time series into sub-time series.
One of them represents the slow changing of the time series and the others designate the fast changing.
The slow changing or the trend is characterized by approximations coefficients and the fast-changing
(variations) by details coefficients. These sub-times serve as inputs to an ANN architecture. ANN
is a computational system of interconnected nodes inspired by the biological neural networks of the
human brain. A typical ANN contains numerous nodes arranged in a series of different layers: input
layer, hidden layer, and output layer.

3 Models training steps and hyperparameters determination

Multiple parallel input and multistep output is the scheme of forecasting investigated. It consists in
the case of multivariate time series to estimate simultaneously in certain future the values of each
series separately.

Various steps have been followed in model training. Firstly, data have been preprocessed by removing
negative and out-of-range values. Secondly, data have been resampled in one-day frequency. To
handle missing values, we have designated thirdly an algorithm that consists of filling missing
values with an average value calculated with the values separating each missing period in the series.
Fourthly, data are transformed from time series into cross-sectional data. It means that the lagged
observations of different parameters are considered independent variables or predictors. And the
ahead observations are considered dependent variables. Finally, data have been split into training
set (from April 2020 to March 2021); validation set (from March 2021 to April 2021); test set (from
May 2021 to July 2021).

The training models require some hyperparameters. After trial and error, three layers have been
adopted for LSTM and WANN . One input, one hidden, and one output layer. The number of
nodes for input and output layers is determined dynamically through forecast horizon which ranges
from 1 to 7 and lag length which ranges also from 1 to 7.

The number of series of the dataset is also considered. It equals 4 as we deal with four parameters.
Especially for WANN , the decomposition level has to be considered according to the number of
dataset samples ( denoted N). It is determined by equation 1.

level = int(logN ) (1)

The number of nodes for input and output layers of WANN and LSTM is summarized in table 1.

Table 1: Number of nodes of input and output layers
Method Input Layer Output Layer
WANN (i+ 1) ∗ n H ∗ n
LSTM L ∗ n H ∗ n

Based on table 1, H , L,n, i represents respectively the forecasting horizon, the lag length, the
number of series, the level of decomposition. The number of epochs and nodes of hidden layers are
determined by trial and error. Both equal 100 in this study.

SV R algorithm’s hyperparameters concern the used kernel, the width of this kernel (γ), the ϵ tube’s
width, and the regularization parameter C. These hyperparameters are presented in Table 2.

Table 2: SVR hyperparameters
Kernel ϵ C Γ

Gaussian 0.001 5 0.001

The value of C was determined after testing different values such as 0.01,0.1,1,5,10, and 100. SV R
does not support multi-output directly. It has then been wrapped in a specific class of scikit-learn
MultiOutputRegressor which gives it the ability to predict separately many outputs [14].
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4 Evaluation

4.1 Study area and data

An assembled device constituted of an Arduino microcontroller and low-cost sensors has been
placed in a backwater to measure its characteristics namely pH, Temp, EC, DO, turbidity, flow, and
total dissolved solids. The backwater is located in Panamasso which is a village of the district of
Houet in Burkina Faso. Its coordinates are latitude 11◦23’0”North and longitude 4◦12’0”West.

The raw datasets have been collected regularly in five minutes frequency from April 2020 to
July 2021. But we stress that the device has encountered sometimes some dysfunctions which
cause data missing during certain periods. In this study, we consider only values of pH, Temp,
DO, and EC for as we have mentioned due to some dysfunctions, some sensors haven’t provided
good data. Collected data are stored in an IoT platform (thingspeak.com) accessible at this link:
https://thingspeak.com/channels/963425.

4.2 Results and discussion

The number of models built for each method is 49. We obtain 49 models for each method because
we explore lag lengths and forecast horizons ranging from 1 to 7 days. To distinguish the mod-
els, we used a notation taking into account the lag length and forecast horizon. The notation is
METHODLx_Hy with x and y ranges [1− 7]. METHOD being WANN or LSTM or SV R.
If x = 3 and y = 2, for example, it means that the model has used three lagged days observations to
forecast two days values.

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are used metrics to assess the
models. RMSE penalizes a model’s errors, therefore more attention is paid to this metric. If two
models have the same RMSE, MAE is considered to decide between them. The reader can refer to
[15] for more details.
For methods assessment, we select for each method the model with the minimum RMSE among the
models obtained. We note that each method, it is the model L2_H1 which presents the minimum
RMSE. Afterward, we compare these three models as presented in Table 3 to retain the one which
performs well over the others.

Table 3: Models performances

Metric PH Temp OD EC Model
RMSE 0.07 0.13 0.09 9.79 WANN L2_H1MAE 0.05 0.06 0.06 7.15
RMSE 1.04 1.00 0.34 37.40 LSTM L2_H1MAE 0.62 0.73 0.22 27.63
RMSE 0.91 1.06 0.02 11.40 SVR L2_H1MAE 0.53 0.71 0.01 8.45

Considering the values of metrics in Table 3, the WANN model L2_H1 performs well over the
other models.
SV R does not support inherently multistep output. This may explain its relative bad performance
over WANN and LSTM . LSTM handles well temporal sequence. Its performance is surprising,
but one must note that it is a deep learning technique that performs well when the volume of data
is huge. The quantity of data in this study could explain its relative bad performance compared to
WANN . WANN is a hybrid method that is presented as an efficient technique in the literature [6].
The result achieved here is not contradictory. Its capacity to transform a time series into its trend
and variations parts and consider these parts as ANN inputs could explain the good performance
achieved with this technique.

The performance of the models developed in this study is consistent with the findings of previous
research, which has shown that AI-based methods are effective for predicting water quality [6]. The
models developed in this study can simultaneously predict pH, temperature, dissolved oxygen, and
electrical conductivity. This differs from previous models, which have typically focused on predicting
individual physicochemical parameters [6; 7].

4



5 Conclusion

AI-based methods can be employed to build efficient water quality prediction models. We have
investigated in this study the performance of three methods, namely SV R, LSTM , and WANN . It
is on data collected from an endemic place of Schistosomiasis that the methods have been applied to
build models. The scheme of forecasting is multiple parallel inputs and multistep output. We have
determined the hyperparameters of the investigated methods by trial and error. WANN which is a
hybrid model outperforms SV R and LTSM which are single AI methods.

WANN based model gives good RMSE in the horizon of one-day simultaneous forecasting of
pH, Temperature, dissolved oxygen, and electrical conductivity which are respectively 0.07, 0.13,
0.09, and 9.79. The obtained result is satisfactory, since it is possible with a WANN -based model
to assess accurately one day ahead the appropriate conditions that influence the biological cycle of
snails and parasitic worms responsible for Schistosomiasis.

Nevertheless, we have not considered some physicochemical parameters which can influence also the
biological snail’s cycle and parasites such as water flow and turbidity due to some dysfunctions of a
couple of device acquisitions. It would be interesting to consider these parameters and investigate the
behaviors of the models when the number of physicochemical parameters increases.
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