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ABSTRACT

Large autoregressive models like Transformers can solve tasks through in-context
learning (ICL) without learning new weights, suggesting avenues for efficiently
solving new tasks. For many tasks, e.g., linear regression, the data factorizes:
examples are independent given a task latent that generates the data, e.g., linear
coefficients. While an optimal predictor leverages this factorization by inferring
task latents, it is unclear if Transformers implicitly do so or if they instead exploit
heuristics and statistical shortcuts enabled by attention layers. Both scenarios
have inspired active ongoing work. In this paper, we systematically investigate the
effect of explicitly inferring task latents. We minimally modify the Transformer
architecture with a bottleneck designed to prevent shortcuts in favor of more
structured solutions, and then compare performance against standard Transform-
ers across various ICL tasks. Contrary to intuition and some recent works, we
find little discernible difference between the two; biasing towards task-relevant
latent variables does not lead to better out-of-distribution performance, in general.
Curiously, we find that while the bottleneck effectively learns to extract latent
task variables from context, downstream processing struggles to utilize them for
robust prediction. Our study highlights the intrinsic limitations of Transformers in
achieving structured ICL solutions that generalize, and shows that while inferring
the right latents aids interpretability, it is not sufficient to alleviate this problem.

1 INTRODUCTION

Recent achievements of large language models (LLMs) showcase the Transformer architec-
ture’s (Vaswani et al., 2017) capacity to extend beyond predictive modeling and solve novel tasks at
inference time (Bubeck et al., 2023). However, several papers (Tang et al., 2023; McCoy et al., 2019;
2023) find that rather than modeling the tasks themselves, Transformers rely on shortcuts that risk
generalizing poorly to new datasets and tasks. In this work, we aim to shed light on whether learning
the true task parameters over shortcuts is sufficient to aid generalization. In particular, we consider
the specific case of in-context learning (ICL): the ability of Transformers to leverage demonstrations
within their input sequence to adapt to novel queries, effectively learning from contextual cues.
ICL underpins much of the capabilities of modern LLMs, including prompt engineering and
chain-of-thought, but is difficult to study in LLMs directly due to the multitude of factors that affect
performance and lack of control over the training data. To disentangle the role that task latents
play in ICL from other aspects that influence large, pre-trained autoregressive models, we therefore
introduce controlled experimental settings that involve training Transformers from scratch on tasks
that are sufficiently complex, but where the relevant latent variables are well-understood.

Many tasks naturally admit a parametric approach to ICL that breaks the prediction mechanism
into two parts: 1) inferring the task-dependent latent variables from the context, and then 2) using
them to make predictions on novel queries. For instance, in a linear regression task, a model could
first try to infer the underlying weight vector used to generate the data, and subsequently use these
inferred weights to make predictions for query points. Another viable methodology, closer in spirit
to non-parametric approaches, is to directly compare the query point with the context through
a kernel-based mechanism – weighting predictions based on some learned measure of distance
between the different points. The two paradigms, parametric vs. non-parametric, reflect tradeoffs
between the potential for better generalization or increased flexibility (Russell & Norvig, 2010).
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Figure 1: We compare the benefits of the implicit (left) and the explicit (right) model. Explicit
models disentangle context aggregation and prediction into two separate functions with an inductive
bias for inferring generative latent variables in order to solve the task. Implicit models are more
expressive, but can learn non-parametric shortcut solutions that bypass latent variable inference.

Recent studies show that Transformers are indeed able to solve ICL tasks through the parametric
mechanisms in some cases (Hendel et al., 2023; Todd et al., 2024). However, in most cases, evidence
shows that they instead rely on non-parametric mechanisms where the prediction is made by directly
comparing the query point to exemplars in the context (Wang et al., 2023; Han et al., 2023), a mech-
anism very much related to induction heads (Olsson et al., 2022). This could be explained by the fact
that the functional form of attention operations is almost identical to that of kernel regression (Tsai
et al., 2019), making such solutions more natural for Transformers to express (Zhou et al., 2023).
These solutions are considered statistical shortcuts since they might not be able to generalize to OOD
contexts and queries – for e.g., learning the actual linear predictor for linear regression can generalize
to any distribution over training and test points, but nearest-neighbour based interpolation might not.

In this paper, we aim to test the hypothesis that a limiting factor of ICL in Transformers is
their tendency to prefer non-parametric shortcuts over more structured inference. To do so, we
perform a thorough analysis through tasks for which latent mechanisms are well understood, and
systematically analyse the impact of latent task representation on generalization. We minimally
modify the Transformer architecture to prevent such non-parametric shortcuts and compare the
OOD performance of the resulting model to that of a traditional Transformer on a large array of ICL
tasks. We call this altered architecture an explicit model by virtue of its inductive bias of explicitly
extracting structured latent variables to solve the tasks, and we call the traditional Transformer
architecture an implicit model. Specifically, the explicit model prevents the query from directly
attending to demonstrations in the context by introducing a bottleneck between the processing of the
context and the query (see Figure 1), similar to a conditional neural process (Garnelo et al., 2018a).

We find that the explicit model does not outperform the implicit one on OOD data, challenging the
aforementioned hypothesis that avoiding non-parametric solutions would enhance generalization.
Our investigation into this lack of improvement reveals that the issue often lies in the explicit
model’s prediction function, which is tasked with leveraging the inferred latent variables for
downstream predictions on the query. Our controlled experiments and analysis on the interpretable
nature of the bottleneck revealed strong evidence that while the explicit model often extracts
relevant task latents, these are not properly utilized by the prediction function.

While on one hand, our research demonstrates that using a simple bottleneck in a Transformer
can improve interpretability and explicitly extract task-relevant latent variables, it also suggests
that the limitations of Transformers in learning more structured and generalizable ICL solutions
are not solely due to non-parametric shortcuts that skirt latent variable inference, but due to more
fundamental architectural limitations.

In sum, our contributions are:

• Formalizing an experimental framework to evaluate the hypothesis that parametric ICL solu-
tions generalize better out-of-distribution.

• Analyzing the benefits, or lack thereof, of inferring the true latents explicitly.
• Identifying shortcomings in the prediction function and the downstream utilization of learned

latents in Transformers, which leads to poor generalization.
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2 NOTATION

Throughout the paper, we denote datasets with the symbol D which consists of a set of observations
with inputs denoted via x ∈ X and their corresponding outputs as y ∈ Y . A task is defined by a
functional mapping g : X ,Z → Y which maps observations x to labels y through some latents
or parameters z, eg. y = zTx for a linear regression task, or y ∼ N (·; zTx, σ2) for its stochastic
counterpart. To ease readability, we will reserve x∗ ∈ X for the query point, i.e. the test time
observation we want to generalize to, and y∗ ∈ Y its corresponding target. Finally, ψ denotes the
parameters of context aggregation component of explicit model, which inputs the dataset D and
infers the corresponding parameters zψ(D), and γ the parameters of the prediction model which
given a query x∗ and parameters z ∈ Z , provides the prediction. For the implicit model, these
operations are subsumed into a single model, with parameters φ.

3 IMPLICIT VS. EXPLICIT INFERENCE

We look at ICL in the context of algorithmic problems where the task is to predict the target y∗
from a query point x∗ when provided with some context examples D = {(xi, yi)}ni=1, sharing a
common underlying structure defined by the task latent z and a functional form g. The goal of ICL
is to learn a function that can utilize the context set D to provide predictions for new query points
x∗. To achieve this, the model is trained on different draws of context sets (D1,D2, ...) which share
the same underlying functional mapping g : x, z → y but different realizations of the latent z,
for example g(x, z) = zTx could be a linear regression system shared across different contexts
D1,D2, ..., but the underlying latents could be different, i.e. D1 is generated from z1 while D2

from z2, similar to Von Oswald et al. (2023). We emphasize that in this setup, we are not training
models to do next-token prediction as is done in language modeling; instead, given a fixed context
D that includes n samples, we are attempting to make a prediction on a single novel query x∗. We
therefore do not use a causal Transformer, and we allow all tokens to attend to each other.

Often, ICL solutions are learned via maximum likelihood, i.e.

argmax
φ

ED,x∗,y∗ [log pφ(y∗|x∗,D)] (1)

where pφ represents the Transformer model and D is sampled from the parametric family defined
through g. Thus, the transformer model pφ must not only learn the form of the prediction function
g, but also how to efficiently aggregate information from the context D to infer z for downstream
predictions on x∗. Thus, this general framework can be naturally decomposed into two distinct parts.

Context Aggregation. This component deals with inferring the task-dependent latent vari-
ables from the in-context examples such that the downstream prediction becomes conditionally
independent of the context, i.e. inferring z from D such that p(y∗ | x∗, z,D) = p(y∗ | x∗, z).

Predictive Modeling. This component refers to the process of estimating the predictive function
that leverages context D to infer y∗ from a query x∗. In the above example, it refers to learning the
functional mapping g once z has been extracted from context aggregation.

As discussed, Transformers do not have a clear incentive to make this explicit separation of
context aggregation and predictive modeling. Instead, given context D, they implicitly and jointly
model both the function g along with D-dependent latent variable z inference to directly provide
predictions for the query point x∗, in contrast to separately estimating g and an explicitly factorized
z. Thus, in order to enforce explicit representation of z, we propose the simplest architectural mod-
ification where the query x∗ cannot directly attend to the context, and the latent task representation
is forced to summarize the context efficiently. Formally, we compare the following two models,
which are illustrated in Figure 1.

Implicit Model. This refers to the traditional in-context learning computation performed by Trans-
former models. In this setup, given the set of observations D (context) and a query point x∗, the
prediction y∗ is modeled directly as pφ(y∗|x∗,D), where pφ is defined using a standard Transformer
with parameters φ and is tasked with modeling both context aggregation and predictive modeling.

Explicit Model. This represents the architectural variation which minimally modifies the Trans-
former architecture by separating context aggregation and predictive modeling. It first constructs a
task representation zψ(D) using the set of observations D and a context model zψ with parameters
ψ (context aggregation) and another network pγ to make a prediction for a new point x∗ (predictive
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a. Synthetic regression tasks

b. Synthetic classification tasks c. Compositional tasks
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Figure 2: Comparison of implicit and explicit models in-distribution (ID) and out-of-distribution
(OOD) across various domains: (a) synthetic regression, (b) classification, and (c) compositional
generalization tasks. Implicit models are in shown gray, explicit models with Transformer prediction
in blue, and with MLP prediction in orange. Further details about tasks is provided in Appendix B.

modeling) as pγ(y∗|x∗, zψ(D)). A key insight is that the task latents are invariant to the queries
when modeling prediction. The context model is implemented with a Transformer zψ with
weights ψ, and for the prediction function pγ , we study both Transformers and MLPs with weights
γ. Importantly, the output of the context model zψ(D) is a fixed-size vector with much lower
dimensionality than the full context D. This information bottleneck prevents the query x∗ from
attending directly to the context as in standard Transformers; instead, the context model must
summarize D into underlying generative factors, thus ruling out potential shortcut solutions that
bypass latent variable inference.

Implicit vs. Explicit. Assuming Transformers do in fact favour shortcut-based solutions, we first
hypothesize when each setup should perform better given different task characteristics. If the data is
generated with a linear model (i.e. y = zTx), the right predictor can be precisely described using the
weight vector z, making the explicit model better suited. In contrast, if the data is generated with a
Gaussian Process (GP), the implicit model should be superior since by construction query prediction
computes similarities with all points in the context. In this case, the task latents of GP-based data
with RBF kernel is infinite dimensional (i.e. a point in function space), which cannot be captured
in the finite-dimensional bottleneck of the explicit model. In general, we should expect the explicit
model to be superior when the underlying true model is parametric and low-dimensional, but in case
of a non-parametric or very high dimensional parametric model, the implicit model should be better.

Finally, we note that our aim is not to construct the best possible explicit model architecture – indeed,
more sophisticated ones already exist based on amortized Bayesian inference (Garnelo et al., 2018b;
Mittal et al., 2023). Instead, we are interested in investigating potential inductive biases for ICL
by minimally modifying the standard Transformer architecture to remove certain shortcuts from the
space of possible solutions. We leave the design of more performant architectures for future work.

We further refer the readers to Appendix A for a detailed discussion of related work.

4 EXPERIMENTS

Our goal is to use simple tasks that capture the key elements of ICL applications to tease
apart the effects of implicit and explicit models on generalization, both in-distribution (ID) and
out-of-distribution (OOD).

Task Setup. We conduct experiments across a variety of settings that admit task latents, from
synthetic regression and classification to reasoning-based problems. For reasoning tasks that require
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Figure 3: Performance comparisons on a subset of tasks where the true latent variable z and predic-
tion function g are known. Implicit models are in shown gray and explicit models with Transformer
prediction are in blue. Models in purple are trained with an auxiliary loss to predict the true latent
variable. Models in green are defined using the true prediction function. Using the known prediction
function leads to significantly better OOD performance.

compositional knowledge, we consider Raven’s Progressive Matrices (Raven’s PM) (John & Raven,
2003), Alchemy (Wang et al., 2021), and Gene Targeting (Norman et al., 2019). A brief description
of our tasks is provided below, with a more thorough explanation in Appendix B.

Regression Tasks. We consider different data-generating processes, e.g., linear: prediction zTx
and latents z, nonlinear (MLP): prediction with a neural network g(x, z) and latents as its weights,
sinusoidal: prediction as a sum of sinusoids with different frequencies with latensts as their
amplitudes, etc.

Classification Tasks. Akin to the regression problems, we consider a linear and nonlinear (MLP)
prediction for classification using an additional sigmoid activation on the output.

Raven’s Progressive Matrices. A pattern-completion task used in IQ tests where individual object at-
tributes evolve according to different rules. The task is to complete a sequence of frames such that the
underlying rule, which is the latent variable and can be based on colors, shapes, etc., is maintained.

Alchemy. Here, an unknown latent causal graph describes how different stones and potions interact
to give rise to new stones. The task is to infer the next stone given a history of transitions.

Gene Targeting. It represents a real-world dataset of targeted gene knockouts and subsequent
observations of gene expressions across many cells. The underlying latent variable is the set of
genes that were knocked out in a given experiment, and the task is to infer the gene expressions of
certain cells in an experiment given those of other observed ones.

Reusable Modular Mixture of Experts (MoE). In this task, we apply a sequence of operations gl on
the input x, where the choice of expert applied at layer l is governed by a categorical latent zl. In
particular, we apply five operations sequentially leadiung y = gz5 ◦gz4 ◦. . .◦gz1(x). This represents
a reusable mixture of experts system with a hierarchical and compositional decomposition.

Training and Evaluation. Tasks based on regression utilize the mean-squared error loss, while
those based on classification use the cross entropy loss for training. Model architecture details are
provided in Appendix C.1. For ID evaluation, we consider the underlying task latent z, context
samples D, and queries x∗ to be sampled from the same distribution as during training. The
challenge in this case is simply to generalize from finite data. For OOD evaluation, we test two
different cases depending on the kind of task. For our synthetic regression and classification tasks,
the task latent z and context samples D are sampled from the same distribution as at training time,
but the queries x∗ are sampled from a Gaussian distribution with higher (3×) standard deviation,
thus testing a form of out-of-domain generalization. For our reasoning-based problems, we evaluate
on task latents z that weren’t seen at training. The task latent in each of these reasoning-based
problems is composed of parts (e.g., in the Gene Targeting experiment, the latent is a binary vector
of targeted genes), which allows us to test a form of compositional generalization (Wiedemer et al.,
2023) in which all parts have full marginal support at training time, but novel combinations of those
parts are evaluated at test-time.

For all tasks, implicit and explicit Transformer models were trained from scratch over a distribution
of tasks latents, and we always control for the number of network parameters to provide a systematic
comparison between the implicit and explicit models. To better understand the shortcomings of
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different models, we also compare with privileged oracles (known decoder – using ground-truth g
function, and known latent variable – using an auxiliary loss that includes the ground-truth z).
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Figure 4: We conduct experiments on
reusable modular MoE task where we only
train on a subset of combinations of experts,
shown on the X-axis. Our results indicate
that across different percentages of combina-
tions seen during training, the implicit model
consistently outperforms the explicit ones in
such a compositional generalization task.

Explicit models do not outperform the implicit
models. The first evaluation setting that we con-
sidered was the ID performance. In this case, we
should expect both implicit and explicit models to
perform equally well, even if implicit models learn
shortcuts rather than ground-truth task latents. This
is because those shortcuts are tuned to minimize
prediction error within the same data distribution
that is being evaluated. Across all our tasks, the
results indeed confirmed this prediction. Specifi-
cally, during ID evaluation, all models were capable
of making highly accurate predictions (Figure 2).
While the performance of the implicit model was
generally slightly better than that of the explicit
models, the benefits were marginal. Effectively, all
models solved the tasks similarly well.

While we expected that ID evaluation would be
insufficient to demonstrate potential benefits of the
explicit models, we expected to see differences in
OOD settings. Both implicit and explicit models are
sufficiently expressive to fit the training distribution.
However, if an explicit model successfully learns
the true task latents that generated the data while
an implicit model learns statistical shortcuts that
are specialized to the training distribution, we
should expect the explicit model to generalize better
OOD. As a reminder, for the synthetic regression and classification tasks in Figure 2 (a, b), OOD
evaluation was done by sampling x∗ from a normal distribution with wider standard deviation than
was used at training (3×), effectively evaluating if the models could extrapolate to points further
out along their domain despite only being trained within a narrow distribution near the origin. For
the compositional tasks in Figure 2 (c), we instead evaluated OOD performance by only training
on certain configurations of the true latent variable z while evaluating on unseen ones. Importantly,
at training time the models were shown data that included every possible value for each component
of z, but not every possible combination of these values were seen, thus evaluating a form of
compositional generalization (Wiedemer et al., 2023). We additionally also conduct a similar
experiment on the reusable modular MoE task in Figure 4 which highlights that across different data
starvation regimes where only a subset of combinations are seen during training, implicit models
still consistently outperform explicit ones even when evaluation is on all combinations.

Surprisingly, and counter to our predictions above, we found that the explicit model provided no
significant benefit in OOD settings. In synthetic regression tasks shown in Figure 2 (a), all models
failed to generalize and obtained substantially worse performance than during ID evaluation, with
the implicit model actually being the one that had a slightly lower degradation in performance. In
classification and compositional tasks shown in Figure 2 (b, c), all models generalized fairly well
OOD and with similar performance. In summary, explicit models appear to provide no benefit
across our tasks, both in terms of ID and OOD performance.

If the explicit model did learn the right latent variables in the bottleneck, it essentially implies that
either the implicit model learns benign shortcuts (if at all) or that learning the right latent variables
is not sufficient to improve generalization, both ID or OOD. In the following results, we see that the
explicit model does indeed learn the right task latents.

Explicit models learn to infer the correct latent variable, but not how to use it. Why didn’t the
explicit model provide any benefit? Our initial hypothesis was that the implicit model could be sus-
ceptible to learning shortcuts that are sufficient to reduce the training loss and easy to express using
self-attention between the query x∗ and context D. By summarizing the context in a bottleneck zψ ,
the explicit model should instead be forced to extract the true latent variable in order to minimize
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a. Decoding the true latent z

b. Counterfactual interventions

Transformer MLP Known

Implicit

Transformer
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yq
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Explicit

Transformer xq
z

D yq

Known z
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Figure 5: Explicit models are interpretable as the bottleneck allows us to (a) linearly decode the
true latent, and (b) intervene on it to obtain correct counterfactual predictions. Implicit models are
shown in gray, explicit models with Transformer prediction in blue, and with MLP prediction in
orange. Models in green use the true prediction function g, while models in purple use an additional
auxiliary loss based on ground-truth latents. To evaluate decoding performance in (a), we also build
a baseline by linearly decoding the true latent directly from concatenated context examples, which
yielded significantly worse performance than decoding from the bottleneck. Baseline performances
in units of the plots are – Linear regression: 0.49, Nonlinear regression (MLP): 0.94, Sinusoid
regression: 0.33, Linear classification: 0.86, Nonlinear classification (MLP): 0.97, Raven’s PM: 0.5,
and Gene targeting: 0.0. In (b), the “Relative accuracy” takes in account the baseline (details in C.4).

the training loss, thus learning a solution that is closer to the actual data-generating process. There
are then two possible explanations for our results: (1) the explicit models did not learn to extract
the true latent variable despite inductive biases to do so induced by the bottleneck, or (2) they did
extract the true latent variable but did not learn to use it in the correct way. We performed several
experiments to test these two possibilities, and found strong evidence for the second.

To test whether or not the explicit models failed because they did not extract the correct latent
variable, we first attempted to encourage them to do so more directly by training an additional linear
model which took zψ as input and attempted to predict the true latents z. The loss of this linear
model was then backpropagated through the context model along with the task loss. Results in
Figure 3 (purple) show that this auxiliary loss provided no improvement apart from minor increases
in accuracy on Raven’s PM, suggesting that incorrect latent variable inference does not explain
the explicit model’s suboptimal performance. Indeed, when we did not use the auxiliary loss as a
training signal for the explicit model and just evaluated the quality of the latent variables learned via
linear readouts on zψ , we found that we could still accurately decode the true latent variable (see
Figure 5 (a)). This means that in the absence of any explicit training signal to predict the true latent
variable, the explicit model still learns to extract it in order to minimize prediction loss on the query.

Given that the explicit model correctly infers the true latent variable in its bottleneck, we study
whether the prediction function is suboptimally learned. In other words, despite the explicit
model having access to the true z, we hypothesize that pγ(y∗|x∗, zψ) does not learn the true
data-generating process y∗ = g(x∗, z), where g is the true prediction function – e.g., for linear
regression g(x∗, z) = zTx∗. To validate this hypothesis, we trained explicit models with the
prediction function g hard-coded as an oracle. For instance, in the linear regression task, the zψ
output by the context model was linearly projected to the same dimensionality as the true weights
z, after which the prediction function took its dot product with queried input x∗. In this setting,
if the explicit model extracts the correct latent variable, it should generalize perfectly both in and
out of distribution. Our results in Figure 3 confirm that using the correct prediction function indeed
provides substantially better OOD generalization and effectively solves most tasks. This finding
has significant implications: it suggests that while learning the true task latents may be a necessary
condition for generalization, this must also be supplemented with significant inductive biases in the
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b. Decoding the true latent z

Figure 6: We analyze (a) Linear regression OOD task performance and (b) latent variable linear
decoding performance as a function of model and task parameters. Task performance scales simi-
larly for implicit (gray) and explicit models with Transformer prediction (blue). Models in green use
the true prediction function g. Latent variable decoding accuracy scales as a function of the latent
variable’s inherit uncertainty (data dimensionality and context length) and the model’s size.

prediction function – for instance, through novel architectures – so that these task latents can be
leveraged correctly. In the absence of such inductive biases, inferring the correct task latent appears
to provide no benefits in practice. We do note that our nonlinear regression tasks, where z represents
the weights of an underlying MLP generating the data, were an exception to the results described
here in that using an oracle prediction function performed poorly. In this case, we conjecture that the
underlying latent variable is too difficult to accurately infer from the context, while shortcut-based
solutions would avoid latent variable inference altogether to provide robust solutions.

Explicit models are easily interpretable. While explicit models do not provide performance
benefits, the ability to extract the correct latent and summarize it in a single bottleneck can still
be useful for interpretability. On tasks with a known underlying latent variable, we were able to
linearly decode it from zψ with high accuracy in most cases, meaning that the information is not
only present but also easily accessible (Figure 5 (a)). The exceptions were on complex nonlinear
regression tasks where the latents are difficult to infer and classification tasks where more context
samples are needed to precisely identify the true decision boundaries. In contrast, finding such clear
task-relevant latents is immensely challenging in an ordinary Transformer trained to do ICL, given
that they can be distributed across a mixture of many layers and token positions.

Furthermore, even when latent variables appear to be successfully identified using a linear decoder
in some hidden layer of a Transformer, one often finds that the relationships merely amount to spuri-
ous correlations (Ravichander et al., 2021). For instance, if one manually modifies the activations in
this hidden layer such that a different latent variable is predicted by the linear decoder, the model’s
predictions do not generally change in a way that is “counterfactually” consistent with this new la-
tent (i.e., the prediction is not what it should have been under the new latent variable). We therefore
used the Distributed Alignment Search (DAS) method from Geiger et al. 2023b (see Appendix C.4)
to search for units in the implicit and explicit models that can be manipulated to obtain correct
counterfactual predictions. For the explicit model, we limited this search to the bottleneck zψ .
We found that using the explicit model, we were indeed able to manipulate zψ and obtain correct
counterfactual predictions, but we were not able to successfully do this using the implicit model, as
shown in Figure 5 (b). Explicit models might therefore be useful for both mechanistic interpretabil-
ity and scientific discovery (Geiger et al., 2023a), where we do not know the underlying task latents
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Figure 8: We analyze sinusoid regression where during training, the query is either sampled from
the normal distribution (left) or close to the context points (right). At evaluation, query points
are sampled far from the context. Our results indicate that when queries are sampled close to the
context, implicit models can rely more on kernel-regression based nearest-neighbor solutions which
don’t generalize far from context, while explicit models do.

and want to be able to easily uncover them from the trained model, and subsequently obtain a good
predictor for an intervened system zero-shot given some knowledge about the intervention.

Scaling Trends across Different Properties. To better compare the implicit and explicit models,
we investigated their OOD task performance on linear regression as we varied the different
properties of the task (input dimensionality and context length) and the size of the model used
(Figure 6 (a)). We found that performance in both models scaled similarly, but that the implicit
model reliably outperformed the explicit one unless it used the known prediction function g. We
also looked at the latent variable linear decoding accuracy in the explicit model as a function of
these task and model properties (Figure 6 (b)). As expected, we found that the latent variable was
easier to decode from the explicit model’s bottleneck when there was less inherit uncertainty about
its value (lower data dimensionality, longer context length) and when the explicit model was given
more capacity. However, throughout the different settings, we see that while the explicit model does
learn the true latent well, it is not sufficient to get a performance boost over the implicit models.
Further details on the setup of these scaling experiments is provided in Appendix C.2.
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0.40

M
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Model
aux_decoded
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Figure 7: We analyze the difference between
using the auxiliary ground-truth task latent loss
directly on the output of context aggregation,
i.e. zψ(D) which gets fed to the prediction net-
work (aux direct), or to a linear decoding from it
(aux decoding).

Impact of auxiliary loss on decoding from
bottleneck. Additionally, we perform an
experiment where instead of using an auxiliary
loss obtained between the ground-truth task
latents z and a decoding from the explicit
model’s bottleneck (called aux decoded), we
instead force the bottleneck itself to be directly
close to the ground-truth (called aux direct).
Since the prediction function relies on the
bottleneck and not its decoding, removing this
extra layer when providing additional supervi-
sion might allow the bottleneck to better reflect
the task latents and thereby aid prediction. Our
results, however, indicate that doing so does
not lead to any benefits on OoD evaluation
for linear regression, further strengthening the
conclusion that effective task latent inference
is not the biggest problem in such models.

Extreme Shortcut Injection. Finally, we test whether injecting some extreme shortcuts during
training pushes implicit models to learn nearest-neighbor styled kernel-regression shortcuts as op-
posed to uncovering the underlying functional form. To study this, we leverage the sinusoid task
where we contrast training on queries sampled either arbitrarily or specifically close to the context;
with evaluation on query coming far from the context. Our results in Figure 8 indicate that while im-
plicit models perform well generally, they suffer considerably more in the presence of such injected
shortcuts since explicit models distill the task latent from context independent of the query.

We further refer the readers to Appendix D for additional analysis into our empirical results.
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5 CONCLUSION

A commonly believed hypothesis is that Transformers do ICL through brittle statistical shortcuts
rather than by inferring the underlying generative latent variables of the task, and that this
explains their inability to generalize outside of the training distribution. Here, we empirically
tested this hypothesis by minimally modifying the Transformer architecture through the use of a
bottleneck that factorized the model into separate context aggregation and prediction functions,
creating an inductive bias for explicit latent variable inference. While we confirmed that this
model indeed learned to infer the correct latent variables across many ICL tasks, it surprisingly
gave no improvement in performance for either in-distribution or out-of-distribution evaluation.
Contrary to common belief, then, we showed that simply learning the correct latent variables for
the tasks is not sufficient for better generalization because end-to-end optimization does not learn
the right prediction model to leverage these latent variables. Indeed, when we substituted the
prediction function with a known oracle, we often saw significant advantages in OOD performance.
Importantly, we were able to make such findings because we performed controlled experiments on
simple tasks with known latent variables and prediction functions, thus avoiding the complexities
and confounding variables that come with natural language and pre-trained LLMs. Our results point
to a line of future work that incorporates inductive biases in the prediction model to better leverage
the inferred latent variables, and motivates current efforts in improving (a) amortized methods for
in-context prediction (e.g., Garnelo et al., 2018a;b; Kim et al., 2019; Hollmann et al., 2022) and
(b) neurosymbolic AI which tries to combine flexible LLMs for inference with highly structured
functions for prediction (e.g., Wong et al., 2023; Mialon et al., 2023; Ellis, 2023).

Limitations. While our work investigates potential reasons behind the shortcomings of current ICL
approaches, overcoming those shortcomings is an entirely different and bigger problem which is a
relevant future direction but not an achievement of the current work. We also look at ICL solely
from the perspective of algorithmic tasks with models trained from scratch, without exploring in
detail the connections with ICL in pre-trained models.

Broader Impact. Our approach paves the way into an interpretable model for in-context learning,
which could prevent harmful use of such models by additionally encoding constraints on the inter-
pretable bottleneck. Additionally, our work provides a better understanding about ICL which can
lead to safer future models.
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A RELATED WORK

In-Context Learning. In-Context learning (ICL) is an ability of certain trained models to take an
entire task’s dataset as input and parameterize solutions directly in their layer activations, which
then condition subsequent computation on novel inputs from those same tasks. Generally, this
ability is found in sequence models such as Transformers where the task dataset, or “context”,
corresponds to an earlier part of the sequence. ICL was first observed in large-scale pre-trained
LLMs (Brown et al., 2020), and is similar in many respects to meta-learning (Chan et al., 2022).
These LLM findings were subsequently expanded to more controlled settings outside of the
language modality, where Transformer models were directly trained on task distributions such
as linear regression (Von Oswald et al., 2023; Garg et al., 2023), hidden Markov models (Xie
et al., 2022), compositional grammars (Hahn & Goyal, 2023), regular languages (Akyürek et al.,
2024) and Turing machines (Grau-Moya et al., 2024), with a set of task observations defining
the “context”. These works highlight that Transformers are indeed able to model many types
of complex task distributions, approaching in many cases the performance of the Bayes-optimal
predictor, the a-priori optimal solution (Xie et al., 2022). Our work lies along similar lines but using
more complex tasks and a systematic study into the differences between modeling the predictive
space directly, or through a two-step process involving explicit inference of task latents.

Shortcuts in ICL. Shortcut learning is a phenomenon that has widely been observed in machine
learning (Geirhos et al., 2020), and refers to where a model solves a task through statistical corre-
lations that are accidental and thus not robust to even slight distribution shifts. A classical example
of this in image classification is the usage of background cues to classify objects (Ribeiro et al.,
2016). Similar mistakes are know to be very common in NLP (McCoy et al., 2019), specifically in
reasoning tasks (Zhang et al., 2022). Particularly relevant to our work, many authors have shown
that has shown that Transformers are very prone to relying on shortcuts when performing ICL Tang
et al. (2023). For instance, Olsson et al. (2022); Singh et al. (2024) have shown that induction heads
play in important role in ICL by predicting that the continuation of a token will be the same as last
time (i.e. [a][b] . . . [a] → [b]). As shown by Von Oswald et al. (2023) this motif can be used to do
linear regression, and can generally be seen as a form of kernel regression (i.e. p(yq|xq, x1:n) ∝∑
iK(xi, xq)yi, (Han et al., 2023)). This observation draws a link between those types of solutions

and non-parametric inference methods in statistics (Hastie, 2009), of which kernel regression is a
member. In contrast (Hendel et al., 2023; Todd et al., 2023) have concurrently shown that in some
cases Transformers encode a “task vector” that they infer from the context and then use to do the
prediction. There is therefore a need to better understand the nature of shortcuts in ICL and whether
or not they can be easily avoided for better generalization. Our work explores this very question.

Neural Processes. The problem of solving new tasks in a zero-shot manner directly at inference
is also closely tied to amortized Bayesian models (Kingma & Welling, 2013; Rezende et al.,
2014; Radev et al., 2020; Geffner et al., 2023; Mittal et al., 2023). Conditional Neural Processes
(CNPs) (Garnelo et al., 2018a) provide a framework akin to the explicit model, where the posterior
predictive distribution is modeled through a bottleneck zψ , i.e. pθ(y∗|x∗,D) = pθ(y∗|x∗, zψ(D)).
However, CNPs do not look at the relevance of zψ to the true latent z, and use the DeepSets (Zaheer
et al., 2017) architecture to model zψ , though recent research generalizes this setting to use
Transformers Nguyen & Grover (2023) and other architectural backbones as well (Kim et al.,
2019; Gordon et al., 2019). Our approach with the explicit model, however, is to precisely question
whether task-specific latents are encoded via zψ which is now instead modeled using a Transformer
architecture. Analogously, Neural Processes (NPs) (Garnelo et al., 2018b; Pakman et al., 2020) aug-
ment CNPs with probabilistic modeling, where z is now modeled explicitly as a latent-variable in
the Bayesian sense, i.e. the likelihood is now modeled as pθ(y|x∗,D) =

∫
pθ(y|x, z)pθ(z|D)dz,

where z represents the latent variable and θ the parameters of the likelihood model. The model
is trained via the Evidence Lower-Bound (ELBO) with the amortized variational approximation
qφ(·|D). Once trained, predictions for new datasets can be made by simply performing inference
over the encoder qφ to obtain z, and then leveraging this latent variable to eventually give the
predictions via pθ(y|x∗, z). Hence, while CNPs and the explicit model to share similarities in
architecture, our goal is orthogonal in that we specifically use the explicit model to understand the
impact of task-specific latent variable inference on ICL setups.

Meta-Learning. Meta-learning (Hospedales et al., 2020b;a) studies systems that can learn over
two levels: rapidly through an inner-loop that is meta-learned using a slower outer-loop. The goal
in such methods is to learn a good initialization common to the parameterized family of tasks, in
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Transformer

Implicit
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yq
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Figure 9: Same experiment as Figure 5b but with the linear regression task. Specifically, we use
Distributed Alignment Search (DAS, Geiger et al. (2023b), see Appendix C for details) to find the
10 dimensional subspace in each model with best simulates counterfactual interventions on the task
vector (in this case, the weight of the linear regression). In both explicit model, the subspace is taken
at the bottleneck. In the implicit one, we perform the DAS at all layer of the query token and report
the best one. The reported metric is the MSE of the intervened model on the intervened regression
problem (i.e. using the same query x but y’s coming from the intervened linear regression weights,
Appendix C for details).

a manner that obtaining a particular solution for a new task is fast from this initial point. The inner
loop provides an optimization trajectory for a randomly drawn task from some initialization, which
in itself is optimized in the outer loop to a good solution applicable for the global set of tasks.
Typically, evaluation is done on some meta-validation set of tasks not seen during training. Task
distributions can for example be a set of different classification/regression tasks (few shot learning,
Vettoruzzo et al. (2023)) or variations of a reinforcement learning (meta-RL, Beck et al. (2023)).
The goal is similar to ICL approaches in the sense that given a novel context D, one wants to make
predictions for some query x∗. However, a big difference is that ICL approaches bypass modeling
a common initialization by working directly on the prediction side (implicit), or instead predict the
optimal parameters directly zero-shot through inference on the context model (explicit).

Mechanistic Interpretability. Mechanistic interpretability is interested in understanding deep neu-
ral network’s computations through interpretable abstraction, akin to what computational neuro-
science does with the brain. Alain & Bengio (2018) introduced the foundational technique of linear
“probes”, which are linear models trained on the hidden state of a network to predict an abstract fea-
ture of the input; the success of which suggests that such a feature is used by the model. Since then,
this naı̈ve approach has been criticized for being potentially misleading (Ravichander et al., 2021); in
many cases a feature can be linearly decoded from a model without the model using it. More reliable
methods grounded in causality (Vig et al., 2020; Geiger et al., 2024) have now became the gold stan-
dard, and their use applied to Transformers has been exploding in popularity (Elhage et al., 2021).

B TASKS

We consider the following tasks for our evaluations, specified by the data-generating prediction
function g : x, z → y which is used to generate the ICL dataset, where z represents the task-
specific latent variable.

B.1 REGRESSION TASKS

For regression tasks, since y ∈ R, we use the mean-squared-error loss to train the model.

Linear Regression. This refers to the task where y is obtained from an affine transformation on the
input x. In particular, y = g(x, z) = zTx, where z ∈ Ri×j ∼ N (0, I). For our experiments, we
set dim(x) = 1 and dim(y) = 1.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Nonlinear Regression using MLPs. Here, the labels y are obtained from a neural network which
takes x as an input. In particular, y = g(x, z) = fz(x), where fz is modeled as a Multi-Layer
Perceptron (MLP) network with a 64 dimensional single hidden layer and ReLU nonlinearity. The
distribution of the weights of the neural network is z ∼ N (0, I). For our experiments, we set
dim(x) = 2 and dim(y) = 1.

Sinusoid Regression. For this task, the label y is obtained as a summation of sine functions with
different frequencies and amplitudes, taking x as an input. Mathematically, we structure the system

as y = g(x, z) =
K∑
i=1

αi sin (2πλix), where λi’s denote the frequencies and αi’s the amplitudes.

The parameters for the system can be seen as z = {α1:K} while λ1:K remains fixed throughout.
Additionally, for our experiments we set K = 3, and consider the distributions – λi ∼ U(0, 5) and
αi ∼ U(−1, 1), and set dim(x) = 2 and dim(y) = 1.

Gaussian Process Regression. While the other tasks considered had a parametric nature to it,
this task on the other hand has more of a non-parametric nature. Here, the task is that Y ∼
N (0,K(X,X)), i.e. the set of labels is sampled from a joint Gaussian distribution, akin to drawing
a random function through a Gaussian Process (GP) prior and then evaluating it at different points
X; with K defining the kernel in the GP. In our case, we consider K(x,x′) = exp

(
−∥x−x′∥2

2σ2

)
as the RBF kernel and X = (Xc,Xq),Y = (Yc,Yq) are the combined points for both the context
and the queries, which are split after this sampling. Here the latents z has to store the kernel compu-
tations between the query and all the context points Xc, as well as the corresponding context labels
Yc. Storing this either involves storing the high-dimensional mapping of Xc which is defined by the
kernel K, or storing all the points Xc themselves. This is thus very high dimensional and weakly
structured.

Hodgkin-Hoxley ODE Prediction. This is an example of the task where the context D is not
composed of iid entries, but instead observations from the Hodgkin-Huxley temporal dynamics
model of neural activity unrolled through time :

Cm
dV

dt
= g1 (E1 − V )+ḡNam

3h (ENa − V )+ḡKn
4 (EK − V )+ḡMp (EK − V )+Iinj+ση (t)

Above, V represents the membrane potential which is the target of interest, t represents the different
points at which observations are provided, Cm is the membrane capacitance, gl is the leak conduc-
tance, El is the membrane reversal potential, ḡc is the density of channels of type c (Na+, K+, M),
Ec is the reversal potential of c, (m, h, n, p) are the respective channel gating kinetic variables, and
ση(t) is the intrinsic neural noise. The right hand side of the voltage dynamics is composed of a leak
current, a voltage-dependent Na+ current, a delayed-rectifier K+ current, a slow voltage-dependent
K+ current responsible for spike-frequency adaptation, and an injected current Iinj. Channel gat-
ing variables q have dynamics fully characterized by the neuron membrane potential V , given the
respective steady-state q∞(V ) and time constant τq(V ) (details in Pospischil et al. (2008)).

Importantly, in our experiments, we fix all parameters but (ḡNa, ḡK) to values in Tejero-Cantero
et al. 2020 and solve the differential equation for 6,400 pairs (ḡNa, ḡK) ∈ [0, 40]2 from t = 0 to
t = 120 with 1000 time-steps. In other words, the Transformer has to regress to solutions of ordinary
differential equations, where the task latents are z = {ḡNa, ḡK ]}, the observations are x = t and
y = V , such that y = g(x, z). Here g represents the unrolling of the differential equation.

B.2 CLASSIFICATION TASKS

For classification tasks, since y is a categorical measure, we use a cross-entropy loss for training.

Linear Classification. Akin to linear regression, here we consider the case that y is obtained by an
affine transformation of x followed by a sigmoid function and a consequent sampling step. That is,
y = g(x, z) ∼ Categorical(Softmax(zTx)) where z ∈ Ri×j ∼ N (0, I). For our experiments, we
set dim(x) = 2 and y ∈ {0, 1}.

Nonlinear Classification Using MLPs. Here, the logits for the labels are instead obtained through
a neural network taking x as an input, and not an affine transformation. Mathematically, this can
be seen as y = g(x, z) ∼ Categorical(Softmax(fz(x))) where fz is modeled as a Multi-Layer
Perceptron (MLP) network with a 64 dimensional single hidden layer and ReLU nonlinearity. The
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distribution of the weights of the neural network is z ∼ N (0, I). For our experiments, we set
dim(x) = 2 and y ∈ {0, 1}.

B.3 COMPOSITIONAL TASKS

Reusable Modular Mixture of Experts (MoE). We consider a modular task which consists of
sequential application of a choice of K experts g1, . . . gK over the input x. In particular, the com-
putational graph consists of L layers where at each layer l, expert zl operates on the output of the
preceding layer to give the successive output, i.e. xl = gzl

(xl−1). This task is compositional in
nature because at each layer, any of the K experts can be called upon to perform a unit of com-
putation and the choice of the expert is defined by the underlying task latent z1, . . . ,zL, each of
which are categorical with K possibilities. In our specific implementation, we set L to be 5, K to
be 5, x ∈ R4 and y ∈ R4. Each expert gi is parameterized as a linear layer followed by the tanh
activation function. We enumerate all KL possible combinations and then only use a subset of them
during training, while randomly sampling all for evaluation.

Alchemy. Alchemy is a meta-reinforcement learning benchmark Wang et al. (2021) where each
environment is defined by a set z = (GRAPH, POTION MAP, STONE MAP) of rules about how some
set of potions transforms some stones. We extracted from it an ICL classification dataset consisting
of transformations x = (STONE, POTION) → y = STONE. The transformations are compositional
and symbolic; each potion affects only one of the three properties of stones (size, shape and color).
An environment is specified by how observable stones and potions MAP to latent stones and potions,
along with a GRAPH over these latent stones which specify the result of the Transformations. In total
there is 109 GRAPH, 48 POTION MAP and 32 STONE MAPS, making for 167424 environments. We
reserve 100,000 environments for evaluation and train of the remaining ones.

Raven’s Progressive Matrices. Raven’s Progressive Matrices (Raven’s PM) is a reasoning task
used for IQ tests (John & Raven, 2003). It consists of a 3x3 grid where each cell contains simple
objects varying in a small number of attributes (number, shape, size, color), but the bottom right cell
is left empty. Subjects must notice a pattern in how the cells change from left to right in the first two
rows of the grid, and then use that same pattern to complete missing cell in the bottom row. This
is done by selecting one answer among N possible provided options for the missing cell. We use a
symbolic version of the dataset that addresses bias in the original version (Guo et al., 2023). In this
dataset, objects at a cell have 4 discrete attributes with 40 possible values each. In our models, the
context consists of the first two rows of the grid, the query consists of the last row with a masked out
final cell, and the ground-truth latent variable is the underlying rule that generates a particular grid.
Each rule is composed of a set of sub-parts, and we evaluate on unseen compositions.

Gene Targeting. We use Perturb-seq dataset collected by Norman et al. (2019) where researchers
performed several genetic intervention experiments using CRISPR (Gilbert et al., 2014). In each
experiment, either one or two genes were targeted and the resulting expressions across 5000 genes
were observed across several cells. Here, we consider each CRISPR intervention experiment as
a different context, the resulting cell genetic expressions as 5000-dimensional observations, and a
left-out cell with half of the genetic expressions randomly masked out as the query. The task is
to predict the missing genetic expressions for the queried cell. We evaluate on held on held out
CRISPR experiments with novel pairs of targeted genes.

C MODEL DETAILS

In the following section, we describe the standard architectural details used for all the tasks, as well
as specific differences in the architecture used for the scaling experiments. Finally, we also provide
details about the distributed alignment search mechanism.

C.1 GENERAL DETAILS

For our implicit model, we use a standard Transformer with 8 layers. In the explicit model, for
context aggregation we parameterize zψ(D) using a standard Transformer with 4 layers, 256 di-
mensions latent, 512 dimensions MLP, and 4 heads. For the predictor pγ , we consider two options:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Illustration of the DAS training procedure

a ReLU-actiavtion based MLP with three hidden layers of size 512 and a Transformer with the same
configuration as zψ(D).

For the implicit model, we format the prompt for prediction as [x1, y1] . . . [xn, yn][xq, ∅], where
every [·] represents a token. We use a distinct mask token ∅ to represent the target (which is the thing
being predicted). For the explicit model, we first compute [x1, y1] . . . [xn, yn] to zψ(D) with the
context Transformer, then we give [zψ(D)][xq] to the predictor Transformer or [zψ(D),xq] to the
MLP.

For our experiments, the number of context points n is uniformly sampled from 16 to 128 for both
training and evaluation. Training is done with new data being synthetically generated on the fly,
and evaluation either based on the test set provided for real-world tasks or simulated data of 1000
different contexts for synthetic tasks. All the models were trained with a learning rate of 10−4 using
the Adam optimizer (Kingma & Ba, 2014) for a 1000 epochs.

C.2 SCALING EXPERIMENTS

For the scaling experiments, we only consider the linear regression case with a base configuration
of: (a) x of dimensionality 100, (b) context size being sampled uniformly from (75, 125), and (c) 8
heads, 8 layers, 512 hidden dimensions and 256 bottleneck dimension for the transformer models.

From this base configuration, we changed only one of the configurations at each time to test for
scaling trends for each property independently. In particular, we ablated over (50, 100, 250) for the
dimensionality of x, (50, 100, 250) for the context length which was sampled from a ±25 range and
the model size. The smallest model size considered had 4 heads, 4 layers, 256 hidden dimensions
and 128 feature dimensions. The medium multiplied each of these properties by 2×, and the biggest
model subsequently multiplied it by 2× again. For the explicit models, we considered the same
scaling paradigms with the number of layers being split by half to accommodate a separate context
model and prediction model.

All the models were trained with a learning rate of 10−5 using the Adam optimizer for 5000 epochs.

C.3 COMPUTE DETAILS

We train most of our models on single RTX8000 NVIDIA GPUs, where it takes roughly 3-6 hours
for each experiment to run. Our scaling experiments on the other hand often required 1-2 days on
single GPUs for training each model.
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Figure 11: To further understand the difference between the explicit and implicit model, we utilize an
implicit proxy model which shares the same architecture as the explicit model with MLP prediction
with just one key difference: the task latent z depends on the query xq as well. This task latent z
can be understood as the final attention layer output of the implicit model, after which an additional
MLP is utilized to provide prediction. Our findings on linear and sinusoidal regression demonstrate
that as we move further and further out-of-distribution, the implicit proxy model performs better
than the explicit model (left figures), but recovers the underlying true task latents worse (two right
figures). This provides additional validation of our hypothesis.

C.4 DISTRIBUTED ALIGNMENT SEARCH DETAILS

To find subspace causally associated with a task latent in Alchemy, we use a method based on
Distributed Alignment Search (DAS) by Geiger et al. (2023b). This procedure is performed for a
location L = Rd (e.g. the bottleneck) and latent i ∈ {1, 2, 3} (GRAPH, STONE MAP, POTION MAP).

First, we run with the model on Dz and Dz̄ for every possible query x∗. We call z the base and
z̄ the source and only differ by the ith latent. For every run, we record the activity of the source
model at the location lz ∈ L̄. Then, we run the base model again but this time fixing the subspace
of l defined by the orthogonal projection Π ∈ Rd×10 to it’s value in lz . A single projection Π is
learned over all possible combination z, z̄ and x∗ with a cross-entropy loss between the prediction
of the base (intervened) model and the true counter-factual result of changing the latent zi to z̄i.
See Figure 10 for an illustration of the process. A subspace is evaluated by looking at the accuracy
of the counterfactual interventions over a dataset of held-out z, z̄ pairs; a quantity called the Inter-
change Intervention Accuracy (IIA). In Figure Figure 5 (b) we report the validation IIA relative to a
baseline corresponding to the counterfactual accuracy if we don’t perform any intervention (because
changing the latent sometimes doesn’t change the prediction) IIA−BASELINE

1−BASELINE
.

D ANALYSIS OF EXPERIMENTS

Based on the empirical evidence presented in Section 4, we finally provide details and analysis into
the results to further the understanding of the conclusions. In particular, our key analysis includes

Explicit Models sufficiently uncover task latents. We see that in problems where the context
provides enough evidence to uncover the true task latents, explicit models are able to do so. In
particular, this hints at the fact that explicit models do perform downstream prediction based on true
task latents whenever these latents can be sufficiently identified from the context examples.

Explicit Models do not generalize better than implicit ones. Our analysis also reveals that while
explicit models often do uncover the right task latents, they are still not able to surpass implicit
models even on OOD generalization. This could be due to implicit models also uncovering the
true underlying prediction function but in a distributed fashion, or explicit models not being able to
leverage the learned latents in downstream prediction.

Learned downstream prediction is often sub-optimal. Our results indicate that it is indeed the
case that while the explicit models do uncover the right latents, they fail to generalize well OOD
because the downstream prediction function fails to generalize.

Classification tasks vs. regression tasks. OOD performance is generally strong (across all mod-
els) for classification because decision boundaries are within the training domain and do not change
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Figure 12: Plate diagram for the implicit model (left), implicit proxy model (middle) and the ex-
plicit model (right), where gray blocks refer to observed variables and white refers to unobserved
variables. Trainable parameters are indicated without circles. In the explicit model case, z is cur-
rently modeled as a dirac measure defined via the trainable parameters ψ. One can see the implicit
proxy model as very similar to the implicit model where output of the last attention layer corre-
sponding to the query token is further processed to give prediction. Its similarity to the explicit
model is also clear as it shares exactly the same parameterization.

beyond it. In contrast, for regression tasks, the function continues to change beyond the observed
training domain, making OOD prediction more difficult. This is also why known prediction func-
tions give little benefit in classification tasks: they are already solved well OOD with ordinary
implicit and explicit models.

The explicit model with known prediction function does not give benefits in nonlinear (MLP)
regression. This is because the problem of inferring an MLP’s weights given some context examples
is too difficult, so the explicit model opts for a different, non-parametric solution. This is supported
by the latent variable decoding results in Fig. 5 (previously Fig. 4), which show that even with a
known prediction function the explicit model does not learn to infer the correct latent variable for
the nonlinear (MLP) regression task.

E MATHEMATICAL FORMALISM

In this section, we provide a formal distinction between the implicit and explicit model. In both the
approaches, the goal is to model the true posterior predictive p(y|x,D); however the two methods
model it through different conditional independence setup.

Implicit Model. In this setup, we model the predictive distribution as pφ(y|x,D), where the training
is done as

argmax
φ

Ex,y,D [log pφ(y|x,D)] (2)

and then given a query x and dataset D, the inference is done simply by sampling or estimating the
mean of p(y|x,D).

Explicit Model. Contrary to the implicit model, the explicit model parameterizes the predictive
distribution as pγ(y|x, zψ(D)), with a similar training procedure as above. Note that the predictive
distribution only interacts with the dataset D through the latent zψ(D) while the implicit model
allows unconstrained access to D.

Implicit Proxy Model. To better understand the differences that play a role from architectural
differences and parameterizations, we use exactly the same architecture as the explicit model to
obtain a version of the implicit model. Such a model parameterizes the predictive distribution as
pγ(y|x, zψ(D,x)), with a similar training procedure as above. Note that the only difference with
the explicit model here is that the conditional dependence of the query and the task latents is broken.

We refer the reader to Figure 12 for a plate diagram of the corresponding architectures.
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