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ABSTRACT

Generalisation to unseen contexts remains a challenge for embodied navigation
agents. In the context of semantic audio-visual navigation (SAVi) tasks, gener-
alisation includes both generalising to unseen indoor visual scenes as well as
generalising to unheard sounding objects. Previous SAVi task definitions do not
include evaluation conditions on truly novel sounding objects, resorting instead to
evaluating agents on unheard sound clips of known objects; meanwhile, previous
SAVi methods do not include explicit mechanisms for incorporating domain knowl-
edge about object and region semantics. These weaknesses limit the development
and assessment of models’ abilities to generalise their learned experience. In
this work, we introduce the use of knowledge-driven scene priors in the semantic
audio-visual embodied navigation task: we combine semantic information from
our novel knowledge graph that encodes object-region relations, spatial knowledge
from dual Graph Convolutional Networks, and background knowledge from a
series of pre-training tasks—all within a reinforcement learning framework for
audio-visual navigation. We define a new audio-visual navigation sub-task, where
agents are evaluated on novel sounding objects, as opposed to unheard clips of
known objects. We show state-of-the-art results on multiple semantic audio-visual
navigation benchmarks, within the Habitat-Matterport3D simulator, where we also
show improvements in generalisation to unseen regions and novel sounding objects.
We release our code, knowledge graph, and dataset in the supplementary material.

1 INTRODUCTION

Humans are able to make use of background experience, when navigating unseen or partially-
observable environments. Prior experience informs their world model of the semantic relationships
between objects commonly found in an indoor environment, the likely object placements, and the
properties of the sounds those objects emit throughout their object-object and object-scene interactions.
Artificial embodied agents, constructed to perform goal-directed behaviour in indoor scenes, should
be endowed with similar capabilities; indeed, as autonomous agents enter our homes, they will
need intuitive understanding about how objects are placed in different regions of houses, for better
interaction with the environment. Whereas external (domain) knowledge can yield improvements in
agent sample-efficiency while learning, generalisability to unseen environments during inference, and
overall interpretability in its decision-making, the goal of finding generalisable solutions for injecting
knowledge in embodied agents remains elusive (Oltramari et al., 2020; Francis et al., 2021).

The task of audio-visual navigation lends itself especially well to the use of domain knowledge, e.g.,
in the form of human-inspired background experience (encapsulated as a prior over regions and
semantically-related objects contained therein). Certain sounds can be associated with particular
places, e.g., a smoke alarm is more likely to originate in the kitchen, while telephone ringing sound
is more likely to come from the office. To infer such semantic information from sound inputs in an
environment, we propose the idea of knowledge-enhanced prior.

By using a prior enriched with general experiences, we hypothesise that the learned model would
generalize to novel sound sources. We adopt a modular training paradigm, which has been shown to
lead to improvements in cross-domain generalizability and more tractable optimisation (Chen et al.,
2021b; Chaplot et al., 2020b; Francis et al., 2021). To verify our hypothesis on generalizability, we
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evaluate the agent’s performance on a set of novel sounding objects that were not introduced during
training.

Contributions. First, we introduce the use of knowledge-driven scene priors in the semantic audio-
visual embodied navigation task: we combine semantic information from our novel knowledge graph
that encodes object-region relations, spatial knowledge from dual Graph Convolutional Networks, and
background knowledge from a series of pre-training tasks—all within a reinforcement learning frame-
work for audio-visual navigation. Second, we define a knowledge graph that encodes object-object,
object-region, and region-region interactions in a photorealistic 3D indoor navigation environment;
we use this knowledge graph to pre-train specialised components of our modular framework, for
goal specification and progress-monitoring. Next, we curate a multimodal dataset for additional
pre-training of a visual encoder, in order to encourage object-awareness in visual scene understanding.
Finally, we define a new task of semantic audio-visual navigation, where we assess agent perfor-
mance on the basis of their generalisation to novel sounding objects. We offer experimental results,
against strong baselines, and show improvements over these models on various performance metrics
in unseen contexts. We provide all code, dataset-generation utilities, and knowledge graph in the
supplementary.

2 RELATED WORK

Modularity in goal-driven robot navigation. Goal-oriented navigation tasks have long been a topic
of research in robotics (Kavraki et al., 1996; Lavalle et al., 2000; Canny, 1988; Koenig & Likhachev,
2006). Classical approaches generally tackle such tasks through non-learning techniques for searching
and planning, e.g., heuristic-based search (Koenig & Likhachev, 2006) and probabilistic planning
(Kavraki et al., 1996). Although classical approaches might offer better generalisation and optimality
guarantees in low-dimensional settings, they often assume accurate state estimation and cannot
operate on high dimensional raw sensor inputs (Gordon et al., 2019). More recently, researchers
have geared toward data-driven techniques, e.g., deep reinforcement learning (Wijmans et al., 2020a;
Batra et al., 2020; Chaplot et al., 2020a; Yang et al., 2019; Chen et al., 2021b;a; Gan et al., 2020)
and imitation learning (Irshad et al., 2021; Krantz et al., 2020), to design goal-driven navigation
policies. End-to-end mechanisms have proven to be powerful tools for extracting meaningful features
from raw sensor data, and thus, are often favoured for this type of setting where agents are tasked
with learning to navigate toward goals in unknown environments using mainly raw sensory inputs.
However, as task complexity increases, this type of systems generally exhibit significant performance
drops specially in unseen scenarios and in long-horizon tasks (Gordon et al., 2019; Saha et al., 2021).

To address the aforementioned limitations, modular decomposition has been explored in recent
embodied tasks. Chaplot et al. (2020c) design a modular approach for visual navigation consisting
of a module that builds and updates a map of the environment, and a global and local policies to,
respectively, predict the next sub-goal using such map and the low-level actions to reach it. Irshad
et al. (2021) also leverage a hierarchical setup to disentangle Vision-Language Navigation (VLN)
(Anderson et al., 2018b) into a global policy tasked with grounding the input modalities and predicting
the next global step, and a local policy that performs motion control to navigate toward it. Gordon et al.
(2019) design a hierarchical controller that invokes different low-level controllers in charge of different
tasks such as planning, exploration and perception. Similarly, Saha et al. (2021) design a modular
mechanism for Vision-Language tasks that breaks down the task into multiple sub-tasks that include:
mapping, language understanding, modality grounding, and planning. The aforementioned modular
designs have shown to increase task performance and generalisability, especially in unexplored
scenarios, compared to their end-to-end counterparts. Motivated by the aforementioned, we develop a
modular framework for semantic audio-visual navigation, which includes pre-trained and knowledge-
enhanced scene priors, which enable improved unseen generalisation.

Knowledge graphs in visual navigation. Combining prior knowledge with machine learning
systems remains a widely-investigated topic in various research fields, such as natural language
processing (Ma et al., 2021; 2019; Francis et al., 2021), due to the improvements in generalisability
and sample-efficiency that symbolic representation promises for learning-based approaches. Histori-
cally, integrating symbolic knowledge with, e.g., navigation agents has proven non-trivial, yielding
a collection of research areas focusing on smaller components of the problem—such as finding
the appropriate representation of the knowledge (e.g., logical formalism, knowledge graphs, proba-
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bilistic graphical models), the appropriate type of knowledge that should be encoded (e.g., spatial
commonsense, declarative facts, etc.), and the best knowledge injection mechanism (e.g., graph
convolutional networks, grounded natural language, etc.) (Ma et al., 2019). Knowledge graphs have
gained popularity, due to their interpretability and general availability as existing large-scale resources,
such as ConceptNet (Speer et al., 2016) and VisualGenome (Krishna et al., 2016a). Fortuitously,
graph processing of structured data has experienced a surge of popularity in deep learning, in recent
years, leading to renewed interest in this neuro-symbolism (Oltramari et al., 2020; Wu et al., 2021).
Some works in visual navigation tasks exploit knowledge graphs, in the pursuit of generalisation
(Moghaddam et al., 2020; Yang et al., 2019; Lv et al., 2020; Du et al., 2020; Vijay et al., 2019).
Yang et al. (2019) create knowledge graphs based on the VisualGenome (Krishna et al., 2016b) and
inject features extracted from the graph as prior knowledge in visual navigation. In similar fashion,
Qiu et al. (2020) provide agents with knowledge of object-object relational semantics. Lv et al.
(2020) show improvements in goal-directed visual navigation, by injection 3D spatial knowledge into
learning-based agents. Inspired by these works, we construct a knowledge graph that includes both
object-object and object-region semantics, which enables the more complex reasoning path, sound
→ object→ region, in the audio visual navigation task. To our best knowledge, we therefore become
the first to study knowledge-driven scene priors for the audio-visual navigation task family.

Generalization to unseen contexts. Chen et al. (2020; 2021b;a) leverage the SoundSpaces (Chen
et al., 2020) simulation environment and dataset to design and assess Audio-Visual Navigation policies.
The dataset is based on photorealistic indoor environments from the Matterport3D (Chang et al., 2017)
and Replica (Straub et al., 2019) datasets, to which 102 sound sources commonly found in indoor
environments (e.g., household appliances, musical instruments, telephones, etc.) were incorporated.
The SoundSpaces dataset is split, such that indoor scenes encountered during testing are not found in
the episodes used during the training stage. However, sounds of objects encountered during training
may also appear during testing. Gan et al. (2020) also explore Audio-Visual Navigation, but using the
simulation platform AI2-THOR (Kolve et al., 2017). The authors introduce the Visual-Audio Room
(VAR) benchmark consisting of seven different indoor environments—two of which were used for
training and five for testing. The VAR benchmark incorporates three different audio categories: ring
tone, alert alarm, and clocks. Similar to the AVN task introduced before, sound sources are found
both in the training scenes, as well as and the testing scenes. In this paper, we argue that in the context
of Audio-Visual Navigation tasks, generalisation to unseen environments pertains to both generalising
to unseen visual scenes, as well as to unheard sounds. Current Audio-Visual benchmarks do not take
into consideration the latter. Thus, there is no direct assessment of generalisation performance to
unheard sounds. To tackle this limitation, we propose a curated version of the SoundSpaces dataset
where we evaluate our agent in two different settings: (1) seen scenes and unheard sounds, (2) unseen
scenes and unheard sounds.

3 PROBLEM DEFINITION

We consider the semantic audio-visual navigation (S-AVN) task proposed by Chen et al. (2021a).
In this task, the agent is initialised at a random location, in an unmapped 3D house environment,
containing a sounding object (e.g., piano). The agent’s task is to reach the sounding object using its
sensory inputs, consisting of visual and audio sensors. Two assumptions are made in this task: 1)
the target sound has a variable length and may not be available at each time step, so the sound may
stop during navigation (e.g., telephone ringing sound stops after some time); 2) the sounding object
has a visual embodiment, which is semantically meaningful (e.g., the sound produced by a spoon
dropping is associated with the spoon). These assumptions are realistic because sound events have a
variable length in the real world based on the semantics of the sounding object. For example, the
sound produce by a glass jar breaking would usually be shorter than a telephone ringing sound. Due
to the variable length nature of the sound, the agent cannot rely on the audio signal alone to reach the
sounding object. Instead, the agent needs to use the audio signal to predict its location and understand
the sounding object’s semantics. Moreover, the agent also needs to use the visual cues for associating
it with the sound semantics and reason about the object and region semantics to navigate effectively.

We further extend the S-AVN task by evaluating the agent on unheard (or novel) sounding objects. In
the initial task (Chen et al., 2021a), the agent was evaluated on unheard clips of the known sounding
objects, whereas in our task, the agent is evaluated on completely unknown sounding objects. More
formally, letH be the set of houses, let O be the set of sounding objects (e.g., shower, tv monitor),
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and let R be the set of regions (e.g., bathroom, living room). A house hi ∈ H has a set of regions
(ri1, ri2, . . . , rij) and a set of objects (oi1, oi2, . . . , oik), where there are k objects placed in j regions
of the house hi. Note that there are multiple instances of each sounding object o ∈ O and region
r ∈ R across all housesH. We divide the total set of possible housesH into two mutually exclusive
subsets: Hseen andHunseen. Similarly, we divide sounding objects O into two subsets: Oheard and
Ounheard. The houses in Hseen and the sounding objects in Oheard are only experienced by the
agent during the training phase; the agent is evaluated on unheard sounding objects Ounheard. Thus,
the agent must learn to reason about the novel sounds based on prior knowledge to solve this task.
Our work aims to enable the agent to reach the sounding object it has never experienced before.

4 KNOWLEDGE-DRIVEN SCENE PRIORS FOR AUDIO-VISUAL NAVIGATION

4.1 SEMANTIC AUDIO-VISUAL EMBODIED NAVIGATION

We introduce a knowledge-driven approach for semantic audio-visual embodied navigation
(K-SAVEN). K-SAVEN incorporates scene priors in knowledge graph form and extracts relational
features using Graph Convolutional Network (GCN) (Kipf & Welling, 2017) for audio and visual
modalities. GCN provides the agent reasoning capability using prior knowledge and dynamically
updates its belief according to the current observation, specific to the current environment. Our model
also incorporates Scene Memory Transformer (SMT) (Fang et al., 2019) that captures long-term
dependencies by recording visual features in memory and locating the goal by attending to acoustic
features. We use visual observations to compute visual features, including vision-based semantic
knowledge vector and features encoded from the vision encoder. Similarly, we use audio observations
to compute acoustic features, including audio-based semantic knowledge vector and location pre-
diction from location predictor. Thus, the prior knowledge-driven reasoning capability using GCNs,
with memory-based attention mechanism using SMT allow the agent to generalise to novel houses
and sounding objects, exploit spatio-temporal dependencies, and navigate to the goal efficiently.

The K-SAVEN policy, as shown in Figure 1, consists of 5 modules: 1) Pre-trained models that,
given the audio and visual observations from the environment, predict objects and regions; 2) Graph
Convolutional Networks that compute audio-semantic and visual-semantic feature embeddings; 3)
Vision Encoder that projects the visual observations at each step to an embedding space; 4) Location
Predictor that, given the acoustic signal from the sounding object, predicts its relative distance and
direction from the agent; 5) Scene Memory Transformer that uses an attention-based policy network,
which computes a distribution over actions, given the encoded observations in scene memory and the
current observation that captures goal information from acoustic events. In the following sections, we
discuss each module in more detail.

4.1.1 MODULAR PRE-TRAINING

In our task, the agent relies on audio observations to set its goal and uses visual observation to
navigate to that goal. Therefore, the agent must detect objects and regions in a given observation. To
this end, we trained audio (fac ) and vision (fvc ) classification models to predict classification scores
for objects and regions in a given observation. More specifically, fac and vision fvc predict a score for
each object o ∈ O (the likelihood that the object o produced the observation) and region r ∈ R (the
likelihood that the observation correspond to region r). These models are used as a backbone for the
other models in our proposed architecture.

The acoustic event has variable length and may not be present at each time step, so the agent cannot
rely on the current audio observation, alone, as a persistent signal. Thus, our model aggregates the
current prediction ĉat with the previous prediction cat−1, cat = fλ(ĉat , c

a
t−1) = (1 − λ)ĉat + λcat−1,

where λ is the weighting factor set to 0.5. When the acoustic event stops (i.e., zero sound intensity),
the agent uses its latest estimate cat .

4.1.2 KNOWLEDGE GRAPH CONSTRUCTION

Our knowledge graph captures the relationships of object-to-object and object-to-region. It is denoted
by undirected graph G = (V,E), where V and E denote vertices and edges respectively. Here, each
vertex denotes an object label or a type of room. We employ 21 object categories and 24 region
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Figure 1: K-SAVEN’s system overview. Visual observation vt is fed to two modules: vision encoder
fve , which encodes the visual observation, and pre-trained vision model fvc , which, given the visual
observation, predicts classification scores cvt for objects and regions. These scores are used by the
vision-based graph convolutional network GCNv to compute visual-semantic feature embeddings.
The outputs of these two models are stored in memory M . Audio observation at is also fed to two
models: location predictor faloc, which predicts distance and direction of the sounding object from the
agent (lt), and pre-trained audio model fac , which, given the audio observation, predicts classification
scores cat for objects and regions. These scores are used by the audio-based graph convolutional
network GCNa to compute audio-semantic feature embeddings. The attention-based policy network
conditions the encoded visual information Me on the acoustic information, enabling the agent to
associate visual cues with acoustic events and predict the state representation st, which contains
spatial and semantic cues helpful to reach the goal faster. The actor-critic network, given the state
st, predicts the next action at. When the agent executes the action in the environment, it receives a
reward and observations.

categories; its detail is described explicitly in the subsection 5.1. Edges represent occurrence of
object-to-object or object-to-region; edges are connected when a pair of nodes coexists in an image.
To construct the knowledge graph, we use images from Matterport3D dataset (Chang et al., 2017).

4.1.3 GRAPH ENCODER

We use a Graph Convolutional Network (GCN) (Kipf & Welling, 2017) to extract a graph feature
from our knowledge graph. A GCN follows this layer-wise propagation rule below.

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l)),

where H(l) is the representation of nodes at the layer l. Ã = A+ IN , and A is the adjacency matrix
of the undirected graph G. IN denotes the identity matrix, D̃ is the degree matrix of Ã, and W (l)

are learned parameter weights at layer l. Let σ denote the activation function, which is ReLU in
our implementation. As shown in Figure 2, our GCN takes joint embedding composed of word
embeddings of the object or the region name and image embeddings from the vision encoder.

4.1.4 VISION ENCODER AND LOCATION PREDICTOR

Our vision encoder fve encodes the visual observations, consisting of egocentric RGB and depth
images from the agent’s perspective. We used the pre-trained vision model described in section 4.1.1
as the vision encoder’s backbone architecture.

The audio observation contains information about the relative distance and direction from the
agent to the sounding object. Thus, we trained a location predictor faloc to predict a location
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Figure 2: Graph Convolutional Networks. Each vertex denotes an object category or region category.
The initial node features which are fed into the GCN are initialized with the joint embedding
obtained by concatenating word embeddings of object or region name and image embeddings. Node
information propagates through the three layers of the GCN, and the output of the GCN is graph
embedding, which is stored as a memory in visoion networks.

l̂at = (∆x,∆y) relative to the current pose pt of the agent. Similar to the pre-trained audio model,
location predictor model also aggregates the current prediction l̂at with the previous prediction lat−1,
lat = fλ(l̂at , l

a
t−1,∆pt) = (1− λ)l̂at + λfp(l

a
t−1,∆pt), where fp(·) transforms the previous location

prediction lat−1 based on the last pose change ∆pt, and λ is the weighting factor set to 0.5. The agent
uses its latest estimate lat = fp(l

a
t−1,∆pt) when the acoustic event stops. We used the pre-trained

audio model described in section 4.1.1 as the backbone architecture for training the location predictor.

4.1.5 POLICY NETWORK

We used attention-based transformer architecture for our reinforcement learning policy network,
which stores observations in memory M . At each time step, our model encodes each visual ob-
servation, evt = fve (vt) and ev−gcnt = GCNv(fvc (vt)) to save in the memory. Our model also
stores p, the agent’s pose defined by its location and orientation (x, y, θ) with respect to its starting
pose p0 in the current episode, and at−1, the previous executed action, in the memory. Thus, the
observation encoding vector stored in memory is eOt = [evt , e

v−gcn
t , pt, at−1]. The model stores these

observations encoding up to time t in memory M = {eOt : i = max{0, t− SM}, . . . , t}, where SM
is the memory size.

The transformer uses the memory M stored so far in the episode and encodes these visual observation
embeddings with a self-attention mechanism to compute the encoded memory Me = Encoder(M).
Then, using the audio observation embeddings, a decoder network attends to all cells in the encoded
memory Me to calculate the state representation st = Decoder(Me, c

a
t , l

a
t ). Using this attention

mechanism, the agent captures long-term spatio-temporal associations between the acoustic-driven
goal prediction and the visual observations. Moreover, our model preserves the most relevant
information to reach the goal by conditioning visual-semantic embeddings stored in Me on audio-
semantic embeddings computed using current audio observation. The actor-critic network uses st
to predict the value of the state and action distribution. Finally, the action sampler samples the next
action at from this action distribution to select the agent’s next action.

4.2 LEARNING AND OPTIMISATION

To train the vision classification model fvc , we collect a dataset using 85 Matterport3D houses,
consisting of 82,828 images, each corresponding to a location and rotation angle in the SoundSpaces
simulator. Each image has 128 x 128 resolution and 4 modalities: RGB image, depth image, object
semantic image, and region semantic image. We filter out some images and only use 45,233 images
to train our model (refer to appendix C for more details). We use the binary cross-entropy loss for
optimizing the vision classification model and train it as a standard multi-label classifier.
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To train the audio classification model fac , we use the SoundSpaces simulator to generate 1.5M
spectrograms using different source and receiver positions, each corresponding to a sounding object
present in one of the 85 Matterport3D houses. One spectrogram corresponds to a sounding object,
which could be present in multiple regions. For example, a sink can be present in the kitchen and
bathroom regions. Thus, we treat detecting sounding objects as a multi-class classification problem
and detecting regions in which that sounding object could be present as a multi-label classification
problem. Furthermore, we optimize the audio classification model using cross-entropy loss for
sounding object detection and binary cross-entropy loss for detecting regions.

Our vision classification model takes an RGB image as input, and the audio classification model
takes 1 second sound clip represented as two 65 × 26 binaural spectrograms as input. We trained both
vision classification and audio classification models using a ResNet-18 (He et al., 2015) architecture
pre-trained on ImageNet to predict a score to 21 objects and 24 regions. These models are pre-trained
before training the agent and kept frozen during policy training.

For training the location predictor faloc to predict a relative location of the sounding object, we use
the ResNet-18 architecture and initialize it with the weights of the pre-trained audio classification
model. Location predictor is trained during policy training using the same experience collected for
policy training. We optimize the location predictor using the mean squared error loss and update it
with the same frequency as the policy network.

We train the policy network using the decentralized distributed proximal policy optimization (DD-
PPO) (Wijmans et al., 2020b), which consists of a value network loss, policy network loss, and
an entropy loss to encourage exploration (Schulman et al., 2017). We adapt the two-step training
procedure proposed in Fang et al. (2019) for effectively training the vision networks (fve , GCNv). In
the first step, the SMT policy is trained without attention by setting the memory size sM = 1 and
storing the latest observation embeddings. In the second step, the memory size is set to sM = 150,
and the parameters of the vision networks are frozen. Training SMT requires enormous computational
power, and due to limited computational resources, we were not able to complete the second step
of training the SMT policy. Thus, the results for our method and the SAVi baseline correspond to
the policy after the 20,000 updates of the first training step. Moreover, the results for the rest of the
baselines also correspond to the policy after 20,000 updates. We emphasize that this may not be a fair
comparison because some policy converges sooner than other.

The input to the vision encoder fve is 64× 64 RGB, and depth images are cropped from the center.
We optimise our model using Adam (Kingma & Ba, 2015) with a learning rate of 2.5× 10−4 for the
policy network and 1× 10−3 for the pre-trained audio and vision networks using PyTorch (Paszke
et al., 2019).

5 EXPERIMENTS

5.1 ENVIRONMENT

Simulator and Semantic Sounds. We use SoundSpaces (Chen et al., 2020), a visually- and
acoustically-realistic simulation platform, to simulate an agent navigating in 3D house environ-
ments. The simulator renders sounds at any pair of source (sounding object) and receiver (agent)
locations on a uniform grid of nodes spaced by 1 meter. While, SoundSpaces supports two real-world
environment scans (Replica (Straub et al., 2019) and Matterport3D (Chang et al., 2017)), we used
Matterport3D as it provides a larger number of houses and object-region semantics therein. We use the
same 21 object categories as Chen et al. (2021a) for Matterport3D: chair, table, picture, cabinet, cush-
ion, sofa, bed, chest of drawers, plant, sink, toilet, stool, towel, tv monitor, shower, bathtub, counter,
fireplace, gym equipment, seating, and clothes. These object categories are visually present in the 24
regions (balcony, bathroom, bedroom, closet, dining room, entryway/foyer/lobby, familyroom/lounge,
hallway, junk, kitchen, laundryroom/mudroom, living room, lounge, meetingroom/conferenceroom,
office, other room, porch/terrace/deck, rec/game, spa/sauna, toilet, utilityroom/toolroom, and work-
out/gym/exercise) of the 85 Matterport3D houses. We use the publicly available sound clips from the
experiment performed by Chen et al. (2021a), in which audio clips from freesound.org database
were used. We generate sound by rendering the specific sound that semantically matches the object at
the locations in Matterport3D houses. For example, the water-dropping sound will be associated with
the sink in the kitchen.
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Rewards and Episodes. The agent receives a sparse reward of +10 when it reaches the goal
successfully, a dense reward of +1 for reducing the geodesic distance to the goal, and an equivalent
negative reward for increasing it. To encourage trajectory efficiency, we also assign a negative reward
of−0.01 per time step. To avoid simpler episodes, in which it is easy to reach goal (e.g., straight paths
or short distance), we used 2 conditions while sampling episodes: 1) the ratio of geodesic distance
to euclidean distance must be greater than 1.1; 2) the geodesic distance from the start location to
the goal location must be greater than 4 meters. We sample 367,155 episodes for training and 1000
episodes for each of the testing settings.

Action space and sensors. There are 4 actions in the agent’s action space: MoveForward, TurnLeft,
TurnRight, and Stop. MoveForward changes the agent’s current location to the node in front of it
only if that node is reachable without collision. Stop can be used by the agent to report sounding
objects and terminal the episode. The TurnLeft, TurnRight, and Stop actions can always be executed
successfully. There are 4 sensory inputs: egocentric binaural sound (two-channel audio waveforms),
RGB image, depth image, and the agent’s current pose relative to the starting pose of the episode.
The resolutions of the RGB and depth images are 128× 128.

Episode specification and success criteria. An episode of semantic audio-visual embodied naviga-
tion task is defined by a house, a start location, and rotation angle of the agent, a goal location, a
sounding object, and duration of the audio event. In each episode, the start location and rotation of
the agent is randomly selected. For selecting the sounding object, an instance of an object category
in the house is also chosen randomly. We define a set of viewpoints within 1 meter of the object’s
boundary for each sounding object. When the agent executes Stop action at any of these viewpoints,
the episode will be successfully completed.

5.2 BASELINES

We compare the performance of our model with the following baselines:

1. Random walk, a baseline which uniformly samples one of the three navigation actions and
executes Stop automatically when the target sounding object is reached within 1m radius.

2. AudioGoal (Chen et al., 2020), an end-to-end RL policy based on the PointGoal task
(Wijmans et al., 2020a) based on a Seq2Seq mechanism which uses a GRU state encoder
that leverages colour and depth images to navigate the unknown environments. In contrast
to PointGoal which uses GPS sensing to guide the agent toward its goal, this baseline uses
audio spectrograms.

3. AudioObjectGoal a Seq2Seq mechanism similar to (2) but the agent is also provided with
the semantic label of the target object.

4. SAVi (Chen et al., 2021a), a transformer-based model that uses a goal descriptor network,
which predicts both spatial and semantic properties of the target sounding object. It is the
state-of-the-art deep reinforcement learning model for the semantic audio-visual embodied
navigation task.

5. K-SAVEN, the model proposed in this paper.

5.3 EVALUATION METRICS AND RESULTS

We considered the following metrics for evaluating agent performance: 1) success rate: the proportion
of episodes in which the agent stops exactly at one of the viewpoints of the sounding object on the
grid; 2) success rate normalized by the inverse path length (SPL): a standardised metric (Anderson
et al., 2018a) for capturing information about trajectory length-efficiency; 3) success rate normalized
by the inverse number of actions (SNA) (Chen et al., 2021b): this metric penalises in-place rotation
actions and collisions which do not lead to path changes, as a proxy for action-efficiency; 4) average
distance to goal (DTG): the average distance between the agent and the goal when episodes are
finished; 5) success when silent (SWS): the proportion of successful episodes when the agent reaches
the target sounding object after the end of the acoustic event.

We analyse the generalisation ability of our method by evaluating it on unheard sounding objects.
More specifically, we evaluate our model on the following testing settings: 1) test on seen houses
with unheard sounding object categories as the navigation target; and 2) test on unseen houses with
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Table 1: Results of baseline models and our proposed approach on the Semantic Audio-Visual
Embodied Navigation (SAVEN) task, under SoundSpaces simulation (Chen et al., 2020).

SEEN HOUSES, UNHEARD SOUNDS UNSEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

Random 6.75 1.58 0.67 16.86 6.75 6.94 2.04 0.87 15.20 6.64

AudioGoal (Chen et al., 2020) 11.47 10.78 7.52 14.06 3.62 12.49 11.63 7.86 14.16 3.83

AudioObjectGoal 11.47 10.67 8.18 14.73 2.69 15.00 13.97 9.62 13.06 4.53

SAVi (Chen et al., 2021a) 13.33 7.91 7.60 11.26 6.82 10.47 5.75 4.80 11.85 5.94

K-SAVEN (ours) 16.63 8.64 5.41 9.42 14.57 15.71 6.52 3.77 10.49 13.90

unheard sounding object categories. We randomly split the houses and sounding objects for training
and testing. More specifically, we use 68 seen houses, 17 unseen houses, 16 heard sounding objects,
and 5 unheard sounding objects. We average the results over 1,000 episodes for each testing setting.

Results. Table 1 shows the results of the experiments conducted on the baselines introduced on the
previous section. The Random baseline exhibits the lowest performance, compared against all other
baselines, due to the challenging nature of the task. Nonetheless, despite having no learning com-
ponents, it is able to achieve around 7% success rate. The AudioGoal and AudioObjectGoal
baselines perform comparably in all metrics and in both of the experimental setups. Both of the
aforementioned learning-based approaches were trained on a single training stage for 6M steps, until
convergence.

Conversely, for both SAVi and our model, K-SAVEN, we present the results of the pre-training
stage of the models. These results show that our approach outperforms the baselines in most of the
evaluation metrics. Both, SPL and SNA were the two metrics where our model was outperformed
by the Seq2Seq baselines. We highlight that during the pre-training stage of K-SAVEN, the agent
is encouraged to explore the environments. Thus, at this stage our agent performs a higher number
of steps (175 on average) per episode, compared to the AudioGoal and AudioObjectGoal
baselines (50). Moreover, our model also performs significantly better than random. This shows that
our model enables the agent to reason about the semantics of objects and regions, and navigate to a
completely novel and unheard sounding object more efficiently. Once we complete the entire training
process, we expect to see a significant improvement in performance for our model.

6 DISCUSSION AND CONCLUSION

We introduce a framework for leveraging knowledge-enhanced scene priors, in the form of object
and region semantics, for the semantic audio-visual navigation task. Notably, we show performance
improvements over strong baselines in multiple unseen contexts, particularly in conditions where the
agent needed to find novel sounding objects. We also provid a knowledge graph for training models,
a curated visual dataset, and a new task definition–all guided towards developing and assessing model
generalisation performance in unseen environments.

We recognise future improvements of our work, e.g., in the selection of the knowledge resource
used for encouraging scene priors in the semantic audio-visual navigation task. We would consider
constructing a knowledge resource that characterises sound-object relations (i.e., with descriptions
of the sound that is generated by various objects), more befitting of pre-training the acoustic GCN
stream. Furthermore, we can consider using scene priors as additive modules on frameworks in
other tasks, particularly within the family of embodied multimodal planning. Finally, sounds are not
merely a product of individual objects, but of different types of interactions (e.g., sitting, dropping,
playing music) that often involve multiple objects and/or people. Therefore, in future work, we plan
to incorporate such semantic knowledge about sounds, objects, and interactions in our knowledge
graphs to further improve performance.
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A ADDITIONAL KNOWLEDGE GRAPH DETAILS

Knowledge Graph Construction Our knowledge graph captures object-to-object, object-to-region,
region-to-object and region-to-region relations. To compute these relations, we use the semantic labels
of objects and regions in Matterport3D. The heuristic we use to find these relations is frequency-based.
The main idea is to connect an object with another object if they frequently exist in different regions.
Similarly, connect a region with another region if they both have similar objects placed in them.

B ADDITIONAL MODEL IMPLEMENTATION DETAILS

Hyperparameters. For all experiments, we implemented models using the PyTorch deep learning
library, version 1.8.0. We directly utilised standard implementations of the Adam optimiser Kingma
& Ba (2014), with a learning rate of 0.003. During training, we used a batch size of 256 for all
implementations.

Computing hardware. For rendering the simulator and performing local agent verification and
analysis, we used a single GPU machine, with the following CPU specifications: Intel(R) Core(TM) i5-
4690K CPU @ 3.50GHz; 1 CPU, 4 physical cores per CPU, total of 4 logical CPU units. The machine
includes a single GeForce GTX TITAN X GPU, with 12.2GB GPU memory. For generating multi-
instance experimental results, we used a dual-GPU machine, with the following CPU specifications:
Intel(R) Core(TM) i9-9920X CPU @ 3.50GHz; 1 CPU, 12 physical cores per CPU, total 24 logical
CPU units. The machine includes two NVIDIA Titan RTX GPUs, each with 24GB GPU memory.

C VISION DATASET GENERATION DETAILS

To train the vision classification model fvc , which given an RGB image predicts a score for objects
and regions, we collect a vision dataset using the SoundSpaces simulator as described in Section
4.2. Initially, we collected 82,828 images across 85 Matterport3D houses, which is the maximum
number of images possible as there are a total of 20,707 nodes and 4 rotation angles in SoundSpaces.
However, we faced the following challenges with the scans and semantic labeling in the Matterport3D:
1) objects are not clearly visible because of glitches in scans (see RGB image in Figure 3); 2) object
and region semantic labels are improper (see object and region semantic images in Figure 3); 3)
objects are not semantically placed (see Figure 4).

To address these challenges, we filtered some images and only used 45,233 images to train our vision
classification model fvc . We use the following filtration criteria: 1) Filter out an image in which 75%
of the pixels or more are black (zero value); 2) There are 42 objects in Matterport3D, and we are
interested in only 21 objects in our experiments, so we filter out an image if it does not contain any of
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Figure 3: Examples of issues with the scans and semantic labeling in the Matterport3D. The images
shown correspond to the scene ID aayBHfsNo7d and node: (93, 270). (A) shows an RGB image
example in which the objects are not clearly visible due to glitches in the scan. (B) shows the semantic
labels of 14 objects, and (C) shows the semantic labels of 4 regions; however, these objects and
regions are not clearly visible in the corresponding RGB image.

Figure 4: Examples of unusual semantically placed objects in scene ID 2n8kARJN3HM of Matter-
port3D. In the image show, a bathtub is placed in the living room, and chairs are kept on the top of a
table, which is unusual placement of these objects.
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those 21 objects; 3) Filter out an image if the most frequent object is taking less than 3% of the total
pixels in the image; 4) Filter some of the semantic labels of an image based on a threshold (0.18 for
object and 0.2 for region). First, for each semantic label in the image, we compute the ratio of its
proportion of the pixels to the proportion of the most frequent semantic label in that image. Then,
semantic labels with ratios less than the threshold are filtered out.
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