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ABSTRACT

Neural networks produced by standard training are known to suffer from poor ac-
curacy on rare subgroups despite achieving high accuracy on average, due to the
correlations between certain spurious features and labels. Previous approaches
based on worst-group loss minimization (e.g. Group-DRO) are effective in im-
proving worse-group accuracy but require expensive group annotations for all the
training samples. In this paper, we focus on the more challenging and realistic
setting where group annotations are only available on a small validation set or are
not available at all. We propose BAM, a novel two-stage training algorithm: in
the first stage, the model is trained using a bias amplification scheme via intro-
ducing a learnable auxiliary variable for each training sample together with the
adoption of squared loss; in the second stage, we upweight the samples that the
bias-amplified model misclassifies, and then continue training the same model on
the reweighted dataset. Empirically, BAM leads to consistent improvement over
its counterparts in worst-group accuracy, resulting in state-of-the-art performance
in spurious correlation benchmarks in computer vision and natural language pro-
cessing. Moreover, we find a simple stopping criterion that completely removes
the need for group annotations, with little or no loss in worst-group accuracy.

1 INTRODUCTION

The presence of spurious correlations in the data distribution, also referred to as “shortcuts” (Geirhos
et al., 2020), is known to cause machine learning models to generate unintended decision rules that
rely on spurious features. For example, image classifiers can largely use background instead of
the intended combination of object features to make predictions (Beery et al., 2018). Similar phe-
nomenon is also prevalent in natural language processing (Gururangan et al., 2018) and reinforce-
ment learning (Lehman et al., 2020). In this paper, we focus on the group robustness formulation
of such problems (Sagawa et al., 2019), where we assume the existence of spurious attributes in the
training data and define groups to be the combination of class labels and spurious attributes. The
objective is to achieve high worst-group accuracy on test data, which would indicate that the model
is not exploiting the spurious attributes.

Under this setup, one type of method uses a distributionally robust optimization framework to di-
rectly minimize the worst-group training loss (Sagawa et al., 2019). While these methods are effec-
tive in improving worst-group accuracy, they require knowing the group annotations for all training
examples, which is expensive and oftentimes unrealistic. In order to resolve this issue, a line of re-
cent work focused on designing methods that do not require group annotations for the training data,
but need them for a small set of validation data (Liu et al., 2021; Nam et al., 2020; 2022; Zhang
et al., 2022). A common feature shared by these methods is that they all consist of training two
models: the first model is trained using plain empirical risk minimization (ERM) and is intended
to be “biased” toward certain groups; then, certain results from the first model are utilized to train
a debiased second model to achieve better worst-group performance. For instance, a representative
method is JTT (Liu et al., 2021), which, after training the first model using ERM for a few epochs,
trains the second model while upweighting the training examples incorrectly classified by the first
model.
The core question that motivates this paper is: Since the first model is intended to be biased, can
we amplify its bias in order to improve the final group robustness? Intuitively, a bias-amplified
first model can provide better information to guide the second model to be debiased, which can
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Figure 1: Using Grad-CAM (Selvaraju et al., 2017) to visualize the effect of bias amplification and
rebalanced training stages, where the classifier heavily relies on the background information to make
predictions after bias amplification but focuses on the useful feature (bird) itself after the rebalanced
training stage.

potentially lead to improving group robustness. To this end, we propose a new two-stage algorithm,
BAM (Bias AMplification), for improving worst-group accuracy without any group annotations for
training data:

• Stage 1: Bias amplification. We train a bias-amplified model by introducing a trainable
auxiliary variable for each training example, as well as using squared loss instead of cross-
entropy loss.

• Stage 2: Rebalanced training. We upweight the training examples that are misclassified in
Stage 1, and continue training the same model instead of retraining a new model.1

Evaluated on various benchmark datasets for spurious correlations, including Waterbirds (Wah et al.,
2011; Sagawa et al., 2019), CelebA (Liu et al., 2015; Sagawa et al., 2019), MultiNLI (Williams et al.,
2018; Sagawa et al., 2019), and CivilComments-WILDS (Borkan et al., 2019; Koh et al., 2021), we
find that BAM achieves state-of-the-art worst-group accuracy compared to existing methods that
only use group annotations on a validation set for hyperparameter tuning. We also conduct a de-
tailed ablation study and observe that every component in BAM (auxiliary variables, squared loss,
continued training) is crucial in its improved performance.

Furthermore, we explore the possibility of completely removing the need for group annotations. We
find that low-class accuracy difference (which does not require any group annotations to evaluate)
is strongly correlated with high worst-group accuracy. Using minimum class accuracy difference
as the stopping criterion, BAM outperforms the previous state-of-the-art annotation-free method,
GEORGE (Sohoni et al., 2020), by a considerable margin and closes the performance gap be-
tween GEORGE and fully-supervised Group-DRO by an average of 88% on the image classification
datasets.

2 RELATED WORKS

A variety of recent work discussed different realms of robustness, for instance, class imbalance (He
& Garcia, 2009; Huang et al., 2016; Khan et al., 2017; Johnson & Khoshgoftaar, 2019; Thabtah
et al., 2020), and robustness in distribution shift, where the target data distribution is different from
the source data distribution (Clark et al., 2019; Zhang et al., 2020; Marklund et al., 2020; Lee et al.,
2022; Yao et al., 2022). In this paper, we mainly focus on improving group robustness. Categorized
by the amount of information we have for training and validation, we discuss three directions below:

Improving Group Robustness with Training Group Annotations. Multiple works have used
training group annotations to improve worst-group accuracy (Byrd & Lipton, 2019; Khani et al.,
2019; Goel et al., 2020; Cao et al., 2020; Sagawa et al., 2020). Other works include minimizing the
worst-group training loss using distributionally robust optimization (Group-DRO) (Sagawa et al.,
2019), simple training data balancing (SUBG) (Idrissi et al., 2022), and retraining the last layer of the

1In Figure 1, we use Grad-CAM visualization to illustrate that our bias-amplified model from Stage 1
focuses more on the image background while the final model after Stage 2 focuses on the object target.
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model on the group-balanced dataset (DFR) (Kirichenko et al., 2022). These methods achieve state-
of-the-art performance on all benchmark datasets. However, the acquisition of spurious attributes of
the entire training set is extremely expensive and unrealistic in real-world datasets.

Improving Group Robustness with Validation Group Annotations Only. Acknowledging the
cost of obtaining group annotations, many recent works focus on the setting where training group
annotations are not available (Duchi & Namkoong, 2019; Oren et al., 2019; Levy et al., 2020;
Pezeshki et al., 2021). Taghanaki et al. (2021) proposes a transformation network to remove the
spurious correlated features from image datasets and then choose classifier architectures according
to the downstream task. Shu et al. (2019) utilizes a small set of unbiased meta-data to reweight data
samples. CVaR DRO (Duchi et al., 2019) introduces a variant of distributionally robust optimization
that dynamically reweights data samples that have the highest losses. In particular, the most popular
recent methods of achieving high worst-group accuracies involve training two models. CNC (Zhang
et al., 2022) first trains an ERM model to help infer pseudo group labels by clustering output fea-
tures and then adopts a standard contrastive learning approach to improve robustness. SSA (Nam
et al., 2022) uses a subset of the validation samples with group annotations for training to obtain
pseudo spurious attributes, and then trains a robust model by minimizing worst-group loss, the same
as Group-DRO. Similarly, DFRVal

Tr (Kirichenko et al., 2022) uses validation data with group annota-
tions for training and tuning hyperparameters, though it just requires retraining the last layer of the
model.

Approaches that are related to our method normally use the first model to identify minority samples
and then train a separate model based on the results predicted by the first model (Yaghoobzadeh et al.,
2019; Utama et al., 2020). LfF (Nam et al., 2020) train two models concurrently, where one model is
intentionally biased, and the other one is debiased by reweighting the gradient of the loss according
to a relative difficulty score. JTT (Liu et al., 2021) first trains an ERM model to identify minority
groups in the training set (similar to EIIL (Creager et al., 2021)), and then trains a second ERM
model with these selected samples to be upweighted. However, the above two-model approaches all
focus on the robust training of the second model and fail to consider the potential of accumulating
biased knowledge from the first model. Kim et al. (2022) introduces a multi-model approach that
proposes to identify hard-to-learn samples and obtain their weights based on consensus of member
classifiers of a committee, and simultaneously train a main classifier through knowledge distillation.
In addition, despite the reduced reliance, all these approaches still require a small amount of group-
annotated samples.

Improving Group Robustness without any Group Annotations. Relatively little work has been
done under the condition that no group information is provided for both training and validation.
Idrissi et al. (2022); Liu et al. (2021) observe a significant drop (10% - 25%) in worst-group test
accuracy if using the highest average validation accuracy as the stopping criterion without any group
annotations. One of the recent works, GEORGE (Sohoni et al., 2020), tries to separate unlabeled
classes in deep model feature spaces and then use the generated pseudo labels to train the model
via the distributionally robust optimization objective. Additionally, Seo et al. (2022) clusters the
pseudo-attributes based on the embedding feature of a naively trained model, and then define a
trainable factor to reweight different clusters based on their sizes and target losses. However, there
is a considerable performance gap between the unsupervised and the supervised methods.

3 PRELIMINARIES

We adopt the group robustness formulation for spurious correlation (Sagawa et al., 2019). Consider
a classification problem where each sample consists of an input x ∈ X , a label y ∈ Y , and a
spurious attribute a ∈ A. For example, in CelebA, X contains images of human faces and we want
to classify hair color into the labels Y = {blonde, not blonde}. Hair color may be highly correlated
with gender A = {male, female} which is a spurious feature that can also predict the label. We say
that each example belongs to a group g = (y, a) ∈ G = Y ×A.

Let f : X → Y be a classifier learned from a training dataset D = {(xi, yi)}ni=1. We hope that f
does not overly rely on the spurious feature a to predict the label. To this end, we evaluate the model
through its worst-group error:

Errwg(f) := max
g∈G

Ex,y|g[1[f(x) ̸= y]].
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We focus on the setting where no group annotations are available in the training dataset. We con-
sider two cases under this setting: (1) group annotations are available in a validation set solely for
the purpose of hyperparameter tuning, and (2) no group annotations are available at all. We will
distinguish between these cases when comparing them with existing methods.

4 OUR APPROACH: BAM

Algorithm 1 BAM

Input: Training dataset D, number of epochs T in Stage 1, auxiliary coefficient λ, and upweight
factor µ.

Stage 1: Bias Amplification
1. Optimize R1(θ,B) (1) for T epochs and save the model parameters θ̂bias.
2. Construct the error set E (2) misclassified by f̂bias(·) = fθ̂bias

(·).
Stage 2: Rebalanced Training
3. Continue training the model starting from θ̂bias to optimize R2(θ) (3).
4. Apply a stopping criterion:

• If group annotations are available for validation, stop at the highest worst-group validation
accuracy;

• If no group annotations are available, stop at the lowest validation class difference (4).

We now present BAM, a two-stage approach to improving worst-group accuracy without any group
annotations at training time. In Stage 1, we train a bias-amplified model and select examples that this
model makes mistakes on. Then, in Stage 2, we continue to train the same model while upweighting
the samples selected from Stage 1.

4.1 STAGE 1: BIAS AMPLIFICATION

The key intuition behind previous two-stage approaches (e.g. JTT) is that standard training via ERM
tends to first fit easy-to-learn groups with spurious correlations, but not the other hard-to-learn
groups where spurious correlations are not present. Therefore, the samples that the model mis-
classified in the first stage can be treated as a proxy for hard-to-learn groups and used to guide the
second stage.

We design a bias-amplifying scheme in Stage 1 with the aim of identifying a higher-quality error
set to guide training in Stage 2. In particular, we introduce a trainable auxiliary variable for each
example and add it to the output of the network. Let fθ : X → RC be the neural network with
parameters θ, where C = |Y| is the total number of classes. We use the following objective function
in Stage 1:

R1(θ,B) =
1

n

n∑
i=1

ℓ(fθ(xi) + λbi, yi). (1)

Here, bi ∈ RC is the auxiliary variable for the i-th example in the training set, and the collection of
auxiliary variables B = (b1, . . . , bn) is learnable and is learned together with the network parameters
θ (B is initialized to be all 0). λ is a hyperparameter that controls the strength of the auxiliary
variables. We adopt the squared loss ℓ(z, y) = ∥z − ey∥22 where ey ∈ RC is the one-hot encoding
for the label y. Below we explain the main ideas behind our method.

The introduction of auxiliary variables makes it more difficult for the network fθ to learn, because
the auxiliary variables can do the job of fitting the labels. We expect this effect to be more pro-
nounced for hard-to-learn examples. For example, if in normal ERM training it takes a long time
for the network fθ to fit a hard-to-learn example (xi, yi), after introducing the auxiliary variable
bi, it will be much easier to use bi to fit the label yi, thus making the loss ℓ(fθ(xi) + λbi, yi) drop
relatively faster. This will prohibit the network fθ itself from learning this example. The such effect
will be smaller for easy-to-learn examples, since the network itself can still quickly fit the labels
without much reliance on the auxiliary variables. Therefore, adding auxiliary variables amplifies
the bias toward easy-to-learn examples, making hard examples even harder to learn.
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We note that the auxiliary variable was first introduced in Hu et al. (2020) for a different motivation
(learning with noisy labels). Hu et al. (2020) proved that it recovers kernel ridge regression when
using the squared loss and when the neural network is in the Neural Tangent Kernel (Jacot et al.,
2018) regime, and provided a theoretical guarantee for the noisy label learning problem. Empirically,
Hu et al. (2020) showed that squared loss works better than cross-entropy loss, which is why we use
the squared loss in (1). Additional evidence that squared loss can achieve competitive performance
for classification was summarized in Hui & Belkin (2020).

At the end of Stage 1, we evaluate the obtained model f̂bias(·) = fθ̂bias
(·) on the training set and

identify an error set: (note that auxiliary variables are now removed)

E = {(xi, yi) : f̂bias(xi) ̸= yi}. (2)

4.2 STAGE 2: REBALANCED TRAINING

In Stage 2, we continue training the model starting from the parameters θ̂bias from Stage 1, using a
rebalanced loss that upweights the examples in the error set E:

R2(θ) = µ
∑

(x,y)∈E

ℓCE(fθ(x), y) +
∑

(x,y)∈D\E

ℓCE(fθ(x), y), (3)

where ℓCE is the cross-entropy loss and µ is a hyperparamter (upweight factor).

We note that more complicated approaches have been proposed for Stage 2, e.g. Zhang et al. (2022),
but we stick with the simple rebalanced training method in order to focus on the bias amplification
effect in Stage 1.

4.3 STOPPING CRITERION WITHOUT ANY GROUP ANNOTATIONS – CLASS DIFFERENCE

When group annotations are available in a validation set, we can simply use the worst-group valida-
tion accuracy as a stopping criterion and to tune hyperparameters, similar to prior approaches (Nam
et al., 2020; Liu et al., 2021; Creager et al., 2021; Zhang et al., 2022). When no group annotations
are available, a naive approach is to use the validation average accuracy as a proxy, but this results
in poor worst-group accuracy (Liu et al., 2021; Idrissi et al., 2022).

We identify a simple heuristic when no group annotations are available, using minimum class dif-
ference, which we find to be highly effective and result in little or no loss in worst-group accuracy.
For a classification problem with C classes, we calculate the sum of pairwise validation accuracy
differences between classes as

ClassDiff =

C∑
i,j=1

|Acc(class i)− Acc(class j)|. (4)

ClassDiff can be calculated on a validation set without any group annotations. In all the datasets
(where C = 2 or 3) we experiment with, we observe that ClassDiff inversely correlates with worst-
group accuracy (see Section 5.4). Therefore, we can use ClassDiff as a stopping criterion and
completely remove the need for any group annotations.

Our algorithm is summarized in Algorithm 1. It has three hyperparameters: T (number of epochs in
Stage 1), λ (auxiliary variable coefficient), and µ (upweight factor). We provide full training details
in Appendix B.

5 EXPERIMENTS

In this section, we first briefly explain the experiment setup (Section 5.1). Next, we present our
main results and show that BAM improves worst-group accuracy compared to prior methods that are
trained without spurious attributes on the same benchmark datasets. BAM achieves state-of-the-art
performance when group annotations are either available or unavailable in the validation set (Section
5.2). Then, we conduct thorough ablation studies to verify the effectiveness of every component of
our proposed model (Section 5.3). Finally, we provide more detailed analyses of BAM’s behavior
(Section 5.4).
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5.1 SETUP

We conduct our experiments on four popular benchmark datasets containing spurious correlations.
Two of them are image datasets: Waterbirds and CelebA, and the other two are NLP datasets:
MultiNLI and CivilComments-WILDS. The full dataset details are in Appendix A. BAM is trained
in the absence of training group annotations throughout all experiments. We obtain the main results
of BAM via tuning with and without group annotations on the validation set, following Algorithm 1.

For a fair comparison, we adopt the general settings from previous methods (JTT) and stay con-
sistent with other approaches without extensive hyperparameter tuning (batch size, learning rate,
regularization strength in Stage 2, etc.). We use pretrained ResNet-50 (He et al., 2016) for image
datasets, and pretrained BERT (Devlin et al., 2019) for NLP datasets. More details can be found in
Appendix B.

Table 1: Average and worst-group test accuracies of different approaches evaluated on image
datasets (Waterbird and CelebA). We run BAM and JTT (in *) on 3 random seeds based on the
highest worst-group validation accuracies and minimum class differences, respectively, and report
the mean and standard deviation. Results of EIIL and Group-DRO are reported by Nam et al. (2022),
and results of other approaches come from their original papers. The best worst-group accuracies
under the same condition are marked in bold.

Annotation
free?

Annotation only
used for tuning

h-params?
Method Waterbird CelebA

Avg. Worst-group Avg. Worst-group

No

No
SUBG (Idrissi et al., 2022) - 89.1±1.1 - 85.6±2.3

GroupDRO (Sagawa et al., 2019) 91.8±0.48 89.2±0.18 93.1±0.21 88.5±1.16

SSA (Nam et al., 2022) 92.2±0.87 89.0±0.55 92.8±0.11 89.8±1.28

Yes

ERM 97.3 72.6 95.6 47.2
EIIL (Creager et al., 2021) 96.9 78.7 91.9 83.3
CNC (Zhang et al., 2022) 90.9±0.1 88.5±0.3 89.9±0.5 88.8±0.9

JTT∗ 89.9±0.41 86.8±1.61 91.3±0.36 78.7±1.15

BAM 91.4±0.44 89.7±0.26 88.0±0.37 83.5±0.94

Yes -
GEORGE (Sohoni et al., 2020) 95.7 76.2 94.8 52.4
JTT + ClassDiff∗ 88.5±1.47 87.1±0.24 91.8±0.76 75.4±3.28

BAM + ClassDiff 91.4±0.31 89.2±0.15 88.4±2.32 80.3±3.32

Table 2: Average and worst-group test accuracies of different approaches evaluated on natural lan-
guage datasets (MultiNIL and CivilComments-WILDS), following the same conventions in Table 1.

Annotation
free?

Annotation only
used for tuning

h-params?
Method MultiNLI CivilComments-WILDS

Avg. Worst-group Avg. Worst-group

No

No
SUBG (Idrissi et al., 2022) - 68.9±0.8 - 71.8±0.4

GroupDRO (Sagawa et al., 2019) 81.4±1.40 76.6±0.41 87.7±1.35 69.1±1.53

SSA (Nam et al., 2022) 79.9±0.87 76.6±0.66 88.2±1.95 69.9±2.02

Yes

ERM 82.4 67.9 92.6 57.4
EIIL (Creager et al., 2021) 79.4 70.9 90.5 67.0
CNC (Zhang et al., 2022) - - 81.7±0.5 68.9±2.1

JTT∗ 80.0±0.41 68.1±0.90 87.2±1.65 77.7±1.70

BAM 79.6±1.11 71.5±1.56 88.3± 0.76 79.3±2.69

Yes -
GEORGE (Sohoni et al., 2020) - - - -
JTT + ClassDiff∗ 81.2±0.56 66.5±0.56 87.2±1.65 77.7±1.70

BAM + ClassDiff 80.3±0.99 71.2±1.52 88.3±0.76 79.3±2.69

5.2 MAIN RESULTS

Tables 1 and 2 report the average and worst-group test accuracies of BAM and compare it against
standard ERM and recently proposed methods under different conditions, including SUBG (Idrissi
et al., 2022), JTT (Liu et al., 2021), SSA (Nam et al., 2022), CNC (Zhang et al., 2022), GEORGE
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Figure 2: (1) Comparison of BAM’s performance between training One-M and Two-M. (2) Compar-
ison of JTT’s performance between training One-M and Two-M. We find that One-M consistently
achieves better worst-group test accuracies than Two-M for BAM over all hyperparameter combina-
tions, while we do not observe the same result on JTT.

(Sohoni et al., 2020), and Group-DRO (Sagawa et al., 2019). We tune BAM and JTT according
to the highest worst-group validation accuracy (not annotation-free) and minimum class difference
(annotation-free).

First, compared with other methods that use group annotations only for hyperparameter tuning, BAM
consistently achieves higher worst-group accuracies across all datasets, with the exception of the
CelebA dataset on which CNC achieves better performance. We note that CNC primarily focuses
on improving Stage 2 with a more complicated contrastive learning method, while BAM uses the
simple upweighting method. It is possible that the combination of CNC and BAM could lead to
better results. Nevertheless, the result of BAM is promising on all other datasets, even surpassing the
weakly-supervised method SSA and the fully-supervised method Group-DRO on Waterbirds and
CivilComments-WILDS.

Second, if the validation group annotations are not available at all, BAM achieves state-of-the-art
performance on all four benchmark datasets and improves previous methods by a large margin.
Notably, BAM recovers a significant portion of the gap in worst-group accuracy between GEORGE
(previous state-of-the-art that requires no group annotations) and Group-DRO/SSA (previous state-
of-the-art requiring supervision) by an average of 88% on the image classification datasets.

BAM’s improved performance in worst-group accuracy comes at the expense of a moderate drop in
average accuracy. The tradeoff between average accuracy and worst-group accuracy is consistent
with the observation made by Liu et al. (2021); Sagawa et al. (2019). We note that our implementa-
tion of JTT follows directly from its published code, and we obtain a much higher performance on
the CivilComments-WILDS dataset than originally reported by Liu et al. (2021).

5.3 ABLATION STUDIES

We conduct thorough ablation studies on the Waterbirds dataset to test the effectiveness of every
component of our model (the use of auxiliary variable and the squared loss in Stage 1; continued
training in Stage 2). For consistent terminology, we define the approach that loads the model from
Stage 1 and continues training the same model in Stage 2 as One-M. We define the approach that
trains a separate ERM model in Stage 2 as Two-M. In this subsection, we first verify the effectiveness
of using One-M in Stage 2. Then, we study the necessity of using the combination of the auxiliary
variable and the squared loss in Stage 1. We have a total of 8 ablations: Train One-M using (1) cross-
entropy loss, (2) squared loss, (3) auxiliary variable (AUX.), and cross-entropy loss, (4) auxiliary
variable and squared loss in Stage 1; Train Two-M using (5) cross-entropy loss, (6) squared loss,
(7) auxiliary variable and cross-entropy loss, (8) auxiliary variable and squared loss in Stage 1. We
note that (1) & (5), (2) & (6), (3) & (7), and (4) & (8) share the same model in Stage 1 and have
the same error set to be upweighted. Notably, (4) recovers the standard procedure of BAM and (5)
recovers the standard procedure of JTT. For a fair comparison, we employ the same hyperparameters
throughout our ablation studies. Stage 2 of (1) - (8) are tuned with identical procedures. We use
the same stopping criterion (highest worst-group validation accuracy) for ablation studies. We tune
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Figure 3: Relation between absolute valdiation class difference and worst-group validation accuracy
in Stage 2 on Waterbirds, CelebA, CivilComments-WILDS, and MultiNLI. It can be observed that
minimizing absolute validation class difference is roughly equivalent to maximizing worst-group
accuracy in the validation set. Each dataset uses the same hyperparameters as employed in Table 1
and Table 2. Each line represents the value averaged over 3 different seeds and the shade represents
the standard deviation.

over T = {10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120} and µ = {50, 100, 140} for each setting, and
fix λ = 0.5 whenever auxiliary variables are involved. To reduce the influence of randomness, we
run all experiments using three different seeds and report the mean of the worst-group accuracies in
Tables 3 and 4. By analyzing the results, we have the following observations:

One-M is better than Two-M only after bias amplification We compare highest worst-group
accuracies between One-M and Two-M approaches under all different combinations of components
in Stage 1: the use of auxiliary variable and the choice of loss functions. Namely, we compare the
performance of the model (1) vs. (5), (2) vs. (6), (3) vs. (7), and (4) vs. (8), as shown in Table 3.

Table 3: Ablation on One-M versus Two-M
Ablation Worst-Group Acc.(%)

(1) One-M, Cross-Entropy Loss 86.4
(5) Two-M, Cross-Entropy Loss 86.8 (+0.4)
(2) One-M, Aux. Variable and Cross-Entropy Loss 88.7
(6) Two-M, Aux. Variable and Cross-Entropy Loss 86.7 (-2.0)
(3) One-M, Squared Loss 88.8
(7) Two-M, Squared Loss 86.6 (-2.2)
(4) One-M, Aux. Variable and Squared Loss 89.7
(8) Two-M, Aux. Variable and Squared Loss 87.0 (-2.7)

The experiment result shows that with
the same error set and hyperparame-
ters and using our proposed elements,
continuously training one model consis-
tently achieves higher worst-group ac-
curacies, averaging a performance gain
of 2.3%. However, One-M itself does
not provide improvement for JTT, as
shown in (1) vs. (5).

Figure 2 compares the highest worst-
group test accuracy between One-M
BAM/JTT and Two-M BAM/JTT over a
wide range of Stage 1 epochs T . The re-
sult suggests that One-M BAM outperforms Two-M BAM in every single Stage 1 epoch T , while
such findings do not apply to JTT. In other words, One-M is better than Two-M only after BAM’s
bias amplification. In particular, BAM outperforms JTT with much fewer epochs T needed in Stage
1, and the Two-M BAM has slightly better worst-group performance than JTT. Furthermore, similar
to Liu et al. (2021), the worst-group test accuracy of BAM only stays high for a range of epochs T
(10 - 25) in Stage 1 and degrades as T gets large.

Table 4: Ablation on auxiliary variable and loss functions

Ablation Worst-group Acc.(%)
(1) Baseline (Cross-Entropy Loss) 86.4
(2) Baseline + Aux. Variable 88.7 (+2.3)
(3) Baseline + Squared Loss 88.8 (+2.4)
(4) Baseline + Aux. Variable + Squared Loss 89.7 (+3.3)

Every component in Stage 1 helps
with improving group robustness
After illustrating the superior perfor-
mance of One-M, here we systemati-
cally investigate the necessity of the use
of our proposed components in Stage 1,
namely the combination of the auxiliary
variable and the loss function. In Ta-
ble 4, we apply One-M approach with
the same fair setup in all four experi-
ments in Stage 1. We consider the sole use of cross-entropy loss in Stage 1 as our baseline model.
The addition of the auxiliary variable and the substitution of the loss function is indicated with the
sign “+”. The results suggest that the isolated use of the auxiliary variable, squared loss and the
combination of both all contribute to non-trivial improvements in performances over the baseline
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model. In particular, the use of squared loss biases the model faster in Stage 1, achieving its best
performance with only T = 20 epochs compared to JTT’s 60 epochs in Stage 1, as illustrated by
Figure 2.

5.4 FURTHER ANALYSES

Relation between class difference and worst-group accuracy Figure 3 plots the trend of the
absolute class difference and the worst-group accuracy on the validation set in Stage 2 for the Wa-
terbirds, CelebA, MultiNLI and CiviComments datasets. Clearly, there is a strong inverse relation-
ship between the absolute class difference and worst-group accuracy in the validation set on all four
datasets, which justifies the use of class difference as a stopping criterion.

Table 5: Error set specific information. The statistics directly follow from our ablation studies in
Section 5.3. AUX or SQ respectively represents the sole use of auxiliary variable or squared loss
in Stage 1. Each entry is evaluated by calculating the mean of the error sets from three different
seeds. The last row indicates the best worst-group test accuracy evaluated using One-M and Two-
M approaches. It is reasonable to list them together because the one/two model ablation uses the
identical error set. We also experiment to train a model that only upweights the “minority examples”
(waterbirds in land and landbirds in water) according to our understanding.

Group Size Group Description JTT AUX SQ BAM Minority-Only

3498 Waterbird in Water 5 8 17 12 0
184 Waterbird in Land 63 76 85 81 184
56 Landbird in Water 47 46 36 35 56

1057 Landbird in Land 114 99 96 91 0

-/- Worst-group Accuracy
(One-M/Two-M) 86.4/86.8 88.7/86.7 88.8/86.6 89.7/87.0 79.2

Error Set Related Analysis In Table 5, all listed methods identify a large portion of minority
examples. After using our proposed components, the error set indicates that the classifier becomes
more “biased” towards the majority groups. This is manifested by the amount of majority and
minority examples misclassified by the classifier in Stage 1. BAM, AUX, and SQ all contribute to
more minority group examples (# waterbird in land + # landbird in water) and fewer majority group
examples (# waterbird in water + # landbird in land) misclassified compared with JTT. However, we
note that the combination of squared loss and auxiliary variable (BAM) does not guarantee a linearly
more “biased” error set compared to their isolated usages. Nevertheless, a seemingly more “biased”
error set does not necessarily guarantee optimal performance. The extreme condition, where only
the minority samples are upweighted, contributes to a worst-group test accuracy that is substantially
lower than every method listed in Table 5.

6 DISCUSSION

In this paper, we present BAM, a two-stage method that does not use any training group annotations
and achieves state-of-the-art worst-group performance. We also introduce a novel stopping criterion
that completely removes the need for any group annotations and is applicable to other methods as
well. We conclude our paper by proposing several directions for future work:

First, it is crucial to have a better theoretical understanding of our “bias amplification” scheme.
While we conduct thorough ablation studies and provide empirical evidence to support our proposed
method, the definition of “bias” and its effects on the model still needs to be understood theoretically.
It is also helpful to systematically investigate the influence of the loss functions.

Second, aside from the success on the four benchmark datasets, it would be interesting to see if the
class difference can be applied to other datasets, especially those with much more classes.

Finally, while we use simple upweighting in Stage 2, it is possible to combine our approach in Stage
1 with other recently developed methods for Stage 2, such as CNC (Zhang et al., 2022). Any future
work that focuses on improving Stage 2 could also use our general framework.
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A DATASET DETAILS

Waterbirds (Wah et al., 2011; Sagawa et al., 2019): Waterbirds is an image dataset consisting of
two types of birds on different backgrounds. It contains images of birds directly cut and pasted on
real-life images of different landscapes. We aim at classifying Y = {waterbird, landbird}, which
is spuriously correlated with the background A = {water, land}. The train/validation/test splits is
followed from Sagawa et al. (2019).

CelebA (Liu et al., 2015): CelebA is an image dataset consisting of celebrities with two types of hair
color and different genders. we aim at classifying celebrities’ hair color Y = {blond, not blond},
which is spuriously correlated with the gender A = {male, female}. The train/validation/test splits
is followed from Sagawa et al. (2019).

MultiNLI (Williams et al., 2018): MultiNLI is a natural language processing dataset, where each
sample consists of two sentences and the second sentence is entailed by, neutral with, or contra-
dicts the first sentence, with the presence or absence of negation words. We aim at classifying the
sentence relationship Y = {entailment, neutral, contradiction}, which is spuriously correlated with
the negation words A = {negation, no negation}. The train/validation/test splits is followed from
Sagawa et al. (2019).

CivilComments-WILDS (Borkan et al., 2019; Koh et al., 2021) CivilComments-WILDS is a nat-
ural language processing dataset consisting of online comment that is toxic or non-toxic, with
or without the mentions of certain demographic identities (male, female, White, Black, LGBTQ,
Muslim, Christian, and other religions). We aim at classifying whether the sentence is toxic
Y = {toxic, non-toxic}, which is spuriously correlated with the mentions of (demographic) identi-
ties A = {identity, no identity}. The train/validation/test splits is followed from Koh et al. (2021).

B TRAINING DETAILS

In this section, we provide details about the model selection and the hyperparameter tuning for
different datasets. As claimed in the main text, in order to make a fair comparison with previous
methods, we use the same pretrained models. Namely, we use ResNet-50 pretrained from Image-net
weights for Waterbirds and CelebA, and pretrained BERT for MultiNLI and CivilComments. We
use the Pytorch implementation for ResNet50 and the HuggingFace implementation for BERT.
We tune BAM and JTT according to class difference and worst-group accuracies in the validation set
in Stage 2.

Table 6: Hyperparameters tuned over 4 datasets.
Dataset Auxiliary coefficient (λ) #Epochs in Stage 1 (T ) Upweight factor (µ)

Waterbirds {0.05, 0.5, 5} {10, 15, 20} {50, 100, 140}
CelebA {0.05, 0.5, 5} {1, 2} {50, 70, 100}
MultiNLI {0.05, 0.5, 5} {1, 2} {4, 5, 6}
CivilComments {0.05, 0.5, 5} {1, 2} {4, 5, 6}

In general, our setting follows closely from Liu et al. (2021), with some minor discrepancies.
For the major hyperparameters, We tuned over λ = {0.05, 0.5, 5}, T = {1, 2, 10, 15, 60} and
µ = {4, 5, 6, 50, 70, 100, 140} for BAM. Despite the three choices for λ, we actually fix λ = 0.5
throughout our studies since it yields the best result and in fact, all three of λ’s yield very similar
output under similar conditions. We note that BAM is fairly insensitive with the choice of λ. We
tune over T = {1, 2} and µ = {4, 5, 6, 50, 70, 100, 140} for JTT for fair comparisons. We tuned the
major hyperparameters according to Table 6. More details are provided below:

Waterbirds We use the learning rate 1e-5 and batch size 64 for two stages of training. We use the
stochastic gradient descent (SGD) optimizer with momentum 0.9 throughout the training process.
We use ℓ2 regularization 1 for Stage 2 rebalanced training. We apply the same above setting for both
JTT and BAM. Notably, as illustrated by Figure 3, when tuned for the minimum absolute validation
class difference, the curve may fluctuate abnormally after the first 30 epochs and it is clear that the
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model is not learning anything useful. We tackle this problem by smoothing out abrupt changes in
class difference (neglect the result if the difference between consecutive class differences is greater
than 10%). The best result for JTT occurs when T = 60 and µ = 140. The best result for BAM
occurs when T = 20 and µ = 140. We train for a total of 360 epochs

CelebA We use the learning rate 1e-5 and batch size 128 for two stages of training. We use the
stochastic gradient descent (SGD) optimizer with momentum 0.9 throughout the training process.
We use ℓ2 regularization 0.1 for Stage 2 rebalanced training. We apply the same above setting for
both JTT and BAM. The best result for JTT occurs when T = 1 and µ = 70. The best result for
BAM occurs when T = 1 and µ = 50. We train for a total of 60 epochs.

MultiNLI We use batch size 32 for two stages of training. We apply an initial learning rate of 2e-5
for Stage 1 and 1e-5 for Stage 2. We use the SGD optimizer without clipping for Stage 1 and the
AdamW optimizer with clipping for Stage 2. We use ℓ2 regularization 0.1 for Stage 2 rebalanced
training. We apply the same above setting for both JTT and BAM. The best result for JTT occurs
when T = 2 and µ = 4. The best result for BAM occurs when T = 2 and µ = 6. We train for a
total of 10 epochs.

CivilComments-WILDS We use batch size 16 for two stages of training. We apply an initial
learning rate of 2e-5 for Stage 1 and 1e-5 for Stage 2. We use the SGD optimizer without clipping
for Stage 1 and the AdamW optimizer with clipping for Stage 2. We use ℓ2 regularization 0.01 for
Stage 2 rebalanced training. We apply the same above setting for both JTT and BAM. The best
result for JTT occurs when T = 1 and µ = 4. The best result for BAM occurs when T = 1 and
µ = 4. We train for a total of 10 epochs.

C ADDITIONAL FIGURES AND STATISTICS

C.1 SUPPLEMENTARY FIGURES

Figure 4 shows some supplementary plots to Figure 2, where from (1) and (2) it can be observed
that using different upweight factors µ in Stage 2 will not change our findings that One-M on BAM
performs better than Two-M, while Two-M on JTT performs better than One-M. In addition, Figure 5
shows that even in the case without any group annotations, BAM can still have a comparable result
with JTT by stopping when achieving minimum class difference on the validation set.
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Figure 4: (1) Comparison of performance of BAM between training one model and two models
through different upweight factor µ on Waterbirds. (2) Comparison of performance of JTT between
training one model and two models through different upweight factor µ on Waterbirds.
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Figure 5: Comparison of performance of BAM
against JTT by stopping at the minimum class dif-
ference on validation data by choosing their best
set of hyperparameters separately. We can see
BAM outperforms JTT with fewer epochs T in
Stage 1

C.2 LESS VALIDATION SET

Table 7: Worst-group accuracy on Waterbirds with varying size of validation set with group anno-
tations. BAM maintains high worst-group test accuracies even when tuned with very few numbers
of group-annotated validation set. However, we note that with a fewer size of validation set with
annotations, the performance is actually worse than when tuned for a full-size validation set without
any annotations.

Size of Annotated
Validation Set 100% 20% 10% 5%

Worst-Group
Acc.(%) 89.8 89.1 88.4 86.2
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D REBUTTAL UPDATES

D.1 VISUALIZATION OF AUXILIARY VARIABLES
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Figure 6: Distributions of the auxiliary variable w.r.t. the waterbird class (left) and landbird
class(right) on the training set stopping at T = 20. We use two distinct colors to illustrate dis-
tributions of two groups in each class. The coordinates of data sample i relative to the origin show
the bias learned by the aux. variable.
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Figure 7: Corresponding KDE plot of Figure 6.

In Figure 6, we have two observations regarding the distribution of auxiliary variables on the train-
ing set. First, values of data samples in the majority and the minority group have clear distinctions
for each class. This shows that the auxiliary variables differentiate between easy-to-learn and hard-
to-learn examples. Second, auxiliary variables for majority group examples are in general closer to
the origin, while those in minority groups tend to have larger (positive) logit values on the ground
truth class they actually belong to and have smaller (negative) logit values on the class they do not
belong to. The visualization shows that the auxiliary variables help with fitting hard-to-learn sam-
ples, which corroborates the intuition described in Section 4.1. We observe the same trend for any
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λ ∈ {0.5, 5, 20, 50, 70, 100} as well as any T in Stage 1 in {20, 50, 100}, which strongly supports
our claims that “adding auxiliary variables amplifies the bias toward easy-to-learn examples” in
Section 4.1.

D.2 HOW AUX. VARIABLE CHANGES AS TRAINING PROCEEDS
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Figure 8: Distribution changes of the auxiliary variable w.r.t. the waterbird class (upper) and land-
bird class(lower) on the training set stopping at T = 5 (left), T = 20 (middle), and T = 50 (right).

In Figure 8, we observe that as training proceeds, the magnitudes of auxiliary variables get larger,
and the minority group and majority group within each class can be easier to split apart.

D.3 STABILITY OF T AND ROBUSTNESS OF λ

First, we find that BAM is robust to the choice of λ, and below we present the best test accuracies
obtained from a wide range of λ using the waterbird dataset.

Table 8: Robustness of λs
λ Best worst group test accuracy

0.5 89.9
10 89.8
30 89.7
35 90.2
40 89.5
50 89.5
70 88.8

100 88.6

The main benefit of using a larger λ eliminates the need to carefully tune over T . As originally
reported in Figure 2, we observe a degradation of performance as T increases with a small choice
of λ. Nevertheless, as we experiment with larger λ that can yield comparable best worst-group
accuracies, we find that it helps with preventing the original model from overfitting. Moreover,
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Table 9: Robustness of worst group test accuracy with different T s
λ T Worst group test accuracy
50 80 88.6
50 100 88.2
50 120 86.9
70 80 88.8
70 100 88.8
70 120 88.5

there is no longer a need to carefully tune over T . Table 9 illustrates that even trained until full
convergence, an appropriate choice of λ can still guarantee a state-of-the-art performance.
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