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ABSTRACT

Computational imaging plays a vital role in various scientific and medical appli-
cations, such as Full Waveform Inversion (FWI), Computed Tomography (CT),
and Electromagnetic (EM) inversion. These methods address inverse problems by
reconstructing physical properties (e.g., the acoustic velocity map in FWI) from
measurement data (e.g., seismic waveform data in FWI), where both modalities
are governed by complex mathematical equations. In this paper, we empirically
demonstrate that despite their differing governing equations, three inverse prob-
lems—FWI, CT, and EM inversion—share a hidden property within their latent
spaces. Specifically, using FWI as an example, we show that both modalities (the
velocity map and seismic waveform data) follow the same set of one-way wave
equations in the latent space, yet have distinct initial conditions that are linearly
correlated. This suggests that after projection into the latent embedding space, the
two modalities correspond to different solutions of the same equation, connected
through their initial conditions. Our experiments confirm that this hidden property
is consistent across all three imaging problems, providing a novel perspective for
understanding these computational imaging tasks.

1 INTRODUCTION
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Figure 1: Illustration of the hidden property. Different imaging problems share a common hidden
property in the latent space: the two modalities involved in each problem follow the same set of one-
way wave equations in the latent space, with different but linearly correlated initial conditions. For
instance, CT projection data p(d, s) and CT image f(x, y), once projected into the latent space,
become two distinct but linearly correlated initial conditions of the same wave equation ∂ζ

∂x = Λ∂ζ
∂y .

Computational imaging, encompassing applications such as Full Waveform Inversion (FWI), Com-
puted Tomography (CT), and Electromagnetic (EM) inversion, is foundational in many scientific
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and medical fields. These methods address inverse problems, which involve reconstructing physi-
cal properties from measured data, a process governed by linear or nonlinear mathematical equa-
tions (Kirsch et al., 2011). Accurate reconstruction of physical properties is essential for various
applications, including medical diagnostics, geophysical exploration, and non-destructive testing of
materials. Deep learning methods usually trade these problems as Image-to-Image translation tasks,
modeling them via encoder-decoder architectures, and achieve significant improvements (McCann
et al., 2017; Wu & Lin, 2019; Ongie et al., 2020; Song et al., 2022; Deng et al., 2022; Jin et al., 2022;
Feng et al., 2024b). However, while these methods construct latent space representations, typically
with a bottleneck in the network, they lack a deeper understanding of these latent representations.
Thus, we are curious about the question:

Whether an elegant mathematical relationship exists in the latent space, akin to that
in the original space?

This curiosity drives us to explore the structure of the latent space, specifically whether a simpler
mathematical relationship exists between the two modalities in these inverse problems.

Recently, Chen et al. demonstrated that, in the latent space, natural images can be described by
a set of one-way wave equations with learnable speeds (Chen et al., 2023b;a), where each image
corresponds to a unique solution of these wave equations, enabling high-fidelity reconstruction from
an initial condition. While this work links natural images to wave equation-based representations,
it is limited to single-modality image reconstruction. Motivated by this work, we aim to explore
the relationship between two modalities in computational imaging. Specifically, our exploration
is driven by three key questions: (1) Can two modalities share the same wave equations in the
latent space? (2) What is the relationship between their initial conditions? (3) Can this relationship
generalize across different computational imaging problems?

This paper answers these three questions above. Firstly, we show that the latent spaces of both
measurement data and target properties are governed by the same set of one-way wave equations,
characterized by identical wave speeds. The two modalities can be projected as different initial
conditions of these same equations. Secondly, building upon the work of Feng et al. (Feng et al.,
2022; 2024b), who discovered a linear correlation between the latent representations of two modal-
ities in geophysical inversion problems (e.g., FWI, EM inversion), we further reveal that when the
two modalities follow the same wave equations, the corresponding initial conditions also exhibit
a strong linear correlation, allowing one to be derived from the other via a linear transformation.
Finally, we demonstrate that this hidden property is common across different computational imag-
ing problems. As illustrated in Fig 1, we term this hidden property HINT (short for the HIddeN
properTy). The HINT transforms the relationships of physical properties, traditionally described by
distinct equations in the physical space, into a dual problem in the latent space described by this
common property across various tasks.

The proposed hidden property can be easily implemented. We propose a unified framework that
learns the embedding of measurement data and target property together while simultaneously gen-
erating input reconstruction and target property prediction. Our approach begins by encoding the
measurement data P (e.g., waveform data in FWI) into a latent vector, denoted as vP , using a visual
encoder E . This latent vector vP is then linearly transformed to obtain the latent vector vψ of the
target property ψ (e.g., velocity map in FWI). Both vP and vψ are propagated through the same au-
toregression process (called multi-path FINOLA) governed by one-way wave equations (Chen et al.,
2023b;a) to generate larger size feature maps zP and zψ , respectively. Subsequently, decoders DP
and Dψ are employed to reconstruct the original input P from zP and to infer the corresponding ψ
from zψ . The network is trained with a combination of L1 and L2 loss. This integrated framework
captures both cross-domain and within-domain relationships in the latent space, offering a more pre-
cise and interpretable understanding of the latent space structure. The discovered hidden property
forms the core of the framework, serving as a hard constraint throughout the learning process. Based
on this architecture, the wave speed Λ of the hidden wave equations, along with the two solutions
(noted as ζP and ζψ), can be derived from the parameters of FINOLA, as well as the feature maps
zP and zψ . The detailed relationship will be explained in the next section.

We validate the proposed hidden property across three tasks: FWI (Deng et al., 2022), EM inver-
sion (Alumbaugh et al., 2021), and CT (Flanders et al., 2020). Across these tasks, our approach
matches or surpasses the performance of unconstrained methods. These results demonstrate that the
constrained latent space remains optimal for solving inverse problems, offering a simpler and more
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tractable latent space structure without compromising reconstruction accuracy. By leveraging the
hidden property, the proposed framework provides a new perspective on the relationship between
physical properties in their latent representations, paving the way for a further understanding of the
latent space.

2 THE HIDDEN PROPERTY

In this section, we provide a detailed introduction to the hidden property. First, we review three com-
putational imaging tasks, each involving predicting one modality (physical property) from another
modality (measurement data). Next, we demonstrate how to extend FINOLA from one modality
to two modalities that share the same one-way wave equations in the latent space and illustrate the
implementation details. Finally, we formally summarize the proposed hidden property.

2.1 REVIEW OF COMPUTATIONAL IMAGING TASKS

Full waveform inversion (FWI) is a well-known method to infer subsurface acoustic velocity maps
from seismic waveform data. Specifically, seismic waveform data are collected via seismic surveys,
during which receivers record reflected and refracted seismic waves generated by controlled sources.
Each receiver logs a 1D time series signal, and the collective signals from all receivers form the
waveform data. Let p(r, t) represent the waveform data, and c(r) is the velocity map. s(r, t) is the
source term. r = (x, y) is the spatial location for 2D slice data, in which x is the horizontal direction
and z is the depth, t denotes time, and ∇2 is the Laplacian operator. The process is mathematically
governed by the acoustic wave equation:

∇2p(r, t)− 1

c2(r)

∂2

∂t2
p(r, t) = s(r, t). (1)

In this task, the aim is to predict the velocity map c(r) (i.e., target property ψ) from the waveform
data collected by surface sensors (i.e., z = 0), abbreviated as p(x, t) (i.e., measurement data P ).

Computed Tomography (CT) is a vital imaging technique used to capture cross-sectional images
of an object’s internal structure. In CT, X-rays are passed through the object at various angles, and
the resulting attenuation is measured as projection data. Let f(x, y) represent the internal structure
(i.e., the attenuation coefficient), where (x, y) are the spatial coordinates. The projection data p(d, s)
is a function of the X-ray source position s = (xs, ys) and detector position d = (xd, yd), measuring
the total X-ray attenuation along the path between the source and detector. Let L(s,d) is the line
segment connecting the source s and the detector d, and ds is the differential element along this
line. Mathematically, the projection data is expressed as:

p(d, s) =

∫
L(s,d)

f(x, y) ds. (2)

In this task, the aim is to predict attenuation image f(x, y) (i.e., target property ψ) from the projec-
tion data p(d, s) (i.e., measurement data P ).

Electromagnetic (EM) inversion focuses on recovering subsurface conductivity from surface-
acquired electromagnetic measurements. Let E and H are the electric and magnetic fields. J and P
are the electric and magnetic sources. σ is the electrical conductivity and µ0 = 4π×10−7Ω ·s/m is
the magnetic permeability of free space. The governing equations here are time-harmonic Maxwell’s
Equations

σE−∇×H = −J,

∇×E+ iωµ0H = −M. (3)

In this task, the aim is to predict electrical conductivity σ (i.e., target property ψ) from the electric
and magnetic fields E and H (i.e., measurement data P ).

2.2 REVIEW OF FINOLA FOR IMAGES

Vanilla FINOLA for one modality: FINOLA (Chen et al., 2023b) is a First-Order Norm+Linear
Autoregressive process that generates a feature map z(x, y) by predicting each position using its

3
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Figure 2: Comparsion of Vanila FINOLA with the proposed HINT. The subfigure a) is the
framework for Vanilla FINOLA, which reconstructs images within one modality. The illustration
figures are from Chen et al. (2023b). The subfigure b) is the overview of our framework. Each
measurement P is firstly encoded into a single vector vP . The latent vector vψ is then obtained
from a linear transformation T . A shared multi-path FINOLA layer is applied to autoregress the
feature map zP and zψ , respectively. Finally, two separate decoders composed of upsampling and
3× 3 convolutional layers are used to reconstruct the measurement and to invert the target property.

immediate previous neighbor. An illustration of FINOLA is shown in Fig. 2 (a). It begins with
encoding an image to a single vector v. Then, this vector will be used as the initial condition, i.e.,
z(0, 0) = v, to regress the entire feature map via the following equations recursively:

∂z

∂x
= Aẑ(x, y),

∂z

∂y
= Bẑ(x, y), ẑ(x, y) =

z(x, y)− µz
σz

, (4)

where the matrices A and B are learnable parameters with dimensions C × C. ẑ(x, y) is the
normalized z(x, y) over C channels at position (x, y). The mean µz = 1

C

∑
k zk(x, y) and the

standard deviation σz =
√∑

k(zk(x, y)− µz)2/C are calculated at each position (x, y) over C
channels. Finally, a lightweight decoder is used to reconstruct the image.

Hidden wave explanation: The hidden waves phenomenon (Chen et al., 2023a) provides a new
interpretation of FINOLA through the lens of wave equations. The term “hidden” refers to the
speeds of waves that are latent but learnable. In particular, it needs to meet two conditions: (a) the
matrixB is invertible, and (b) the matrixAB−1 = V ΛV −1 is diagonalizable, whereV constitute a
basis of eigenvectors and Λ represent the corresponding eigenvalues, i.e., Λ = diag(λ1, λ2, ..., λC).
Then, let ζ = V −1z, the Eq. 4 can be simplified as

∂ζ

∂x
= Λ

∂ζ

∂y
, (5)

where each dimension of ζ follows a one-way wave equation, with initial condition ζ(0, 0) =
V −1v. Typically, the one-way wave equation involves time t; here, it is replaced by y. This formu-
lation allows each image to correspond to a solution of the one-way wave equations.

2.3 EXTENDING FINOLA TO TWO MODALITIES

In the subsection, we use FWI as an example to illustrate how to extend FINOLA to two modalities
(waveform data and velocity map). This extension can be applied to CT and EM in a straightforward
manner.

FINOLA for source modality (e.g., measurement): The measurement data (e.g., waveform data)
follows a similar process as vanilla FINOLA, illustrated by the blue arrow in Fig.2 (b). First, the
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measurement data P is encoded into into a latent vector vP = E(P ) with a Transformer encoder E .
An attention pooling (Lee et al., 2019; Yu et al., 2022; Chen et al., 2023b) is applied in the last layer
of the encoder to obtain the compressed vector. Then, used as the initial condition, vP is propagated
through a FINOLA layer to generate a larger feature map zP . Mathematically, it is represented as:

∂zP
∂x

= AẑP (x, y),
∂zP
∂y

= BẑP (x, y). (6)

In practice, we apply the multi-path FINOLA implementation, which divides the initial conditions
into multiple vectors, with each vector subjected to the FINOLA process. All these paths have the
same parameters. Subsequently, the resulting feature maps, each representing a special solution
that satisfies the necessary constraints, are aggregated to form the final solution zP . At the end,
a decoder DP is then employed to reconstruct the original input P = DP (zP ). The decoder is
designed with a series of upsampling layers followed by 3 × 3 convolutional layers equipped with
residual connections.

FINOLA for target modality (e.g., physical property): To deal with two modalities in computa-
tion imaging, we extend FINOLA to incorporate two modalities and force them to share FINOLA
parameters. It is shown in the orange arrow in Fig. 2 (b). To produce the latent vector vψ , which
corresponds to the target property ψ (i.e., velocity map), vP is linearly transformed, with the linear
lay T . Note that both vectors have the same dimensionality. Then, vψ is propagated through the
same FINOLA layer to generate the feature map zψ . Mathematically, this is represented as:

vψ = TvP
∂zψ
∂x

= Aẑψ(x, y),
∂zψ
∂y

= Bẑψ(x, y), (7)

where the matries A and B are shared across two modalities. To evaluate the quality of the latent
space, another convolutional decoder Dψ is employed to infer the target property ψ = Dψ(zψ).
Overall Structure: Combining the above two processes over two modalities, we proposed method
HINT (short for the Hidden Property), a unified framework that jointly learns the embeddings of
both measurement data and target property, while simultaneously performing input reconstruction
and target property prediction. The overall framework is illustrated in Fig. 2 (b). The network is
trained by combining both the reconstruction loss and prediction loss.

Empirical validation: We empirically validate the two key components of the above extension of
two modalities: the shared wave equations and the linear correlation between embeddings. First,
we compare using separate versus shared FINOLA layers on the FWI tasks. Results are shown in
Fig.3, Section 3.3. We see similar performance between models using two distinct FINOLAs and
those sharing one, confirming the efficiency of the shared configuration. Next, we test nonlinear
converters, including Maxout and MLP, against the linear converter. Results are shown in Fig.4,
Section 3.3. A nonlinear converter has no positive effect, affirming that a strong linear correlation
effectively captures the relationship between the two modalities without needing complex mappings.

2.4 HIDDEN PROPERTIES

The empirical validation above (i.e., shared FINOLA parameters across two modalities and the linear
correlation between latent vectors) reveals two hidden properties:

Empirical Property 1: Two modalities correspond to two solutions of a common set of one-way
wave equations. Following the hidden wave explanation for FINOAL in Eq. 5, letting AB−1 =
V ΛV −1, where Λ is the diagonal eigenvalues, we define

ζP = V −1zP , ζψ = V −1zψ. (8)

Then, based on Eq. 6 and 7, we can extend the hidden wave to both modalities that follow the same
set of one-way wave equations in the latent space, characterized by the same wave speeds Λ:

∂ζP
∂x

= Λ
∂ζP
∂y

,
∂ζψ
∂x

= Λ
∂ζψ
∂y

. (9)

This indicates that, despite representing different physical aspects, the two modalities correspond to
distinct solutions of the same set of one-way wave equations governed by the same wave dynamics.

5
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Empirical Property 2: The initial conditions of two modalities are linearly correlated. With
the wave equation format in Eq.9, both latent embeddings of two modalities are merely different
initial conditions of the same wave equations. One can be derived from the other through a linear
transformation. With the linear converter T , the relationship between the two initial conditions can
be formulated as

ζψ(0, 0) = TζP (0, 0), (10)

where the initial conditions are computed as ζP (0, 0) = V −1vP and ζψ(0, 0) = V −1vψ .

Difference with vanilla FINOLA: Unlike vanilla FINOLA, which is designed for single-modality
image reconstruction, our method extends to two modalities by sharing parameters across both do-
mains. While vanilla FINOLA captures single-domain image invariants, we use FINALO to model
the relationship between two domains in computational imaging, enabling the joint representation
of measurement data and target properties with wave equations.

3 EXPERIMENTS

In our experiments, we first examine the proposed hidden property through two key aspects: 1)
the shared wave equation and 2) the linear correlation, using the FWI task as an example. We then
evaluate our approach across three import computational imaging tasks, FWI, CT, and EM inversion,
to demonstrate the consistency of the hidden property across different tasks. Finally, we present an
ablation study of the feature map size generated via FINOLA.

3.1 DATASETS

FWI: For many scientific problems, like subsurface imaging, real data are extremely expensive and
difficult to obtain. Research often relies on full-physics simulations due to the lack of publicly
available real datasets. Thus, we verify our method on OpenFWI (Deng et al., 2022), the first
open-source collection of large-scale, multi-structural benchmark datasets for data-driven seismic
FWI. It contains 11 2D datasets with baseline, which can be divided into four groups: four datasets
in the “Vel Family” are FlateVel-A/B, and CurveVel-A/B; four datasets in the “Fault Family” are
FlateFault-A/B, and CurveFault-A/B; two datasets in“Style Family” are Style-A/B; and one dataset
in “Kimberlina Family” is Kimberlina-CO2. The first three families cover two versions: easy (A)
and hard (B), in terms of the complexity of subsurface structures. The following experiments are
conducted on the ten datasets of these first three families. We will use the abbreviations (e.g., FVA
for FlatVel-A). More details can be found in (Deng et al., 2022).

CT: The CT dataset, provided by the Radiological Society of North America (RSNA) and ASNR,
includes large volumes of de-identified brain CT scans labeled by expert neuroradiologists (Stein
et al., 2019). It focuses on detecting acute intracranial hemorrhage, a critical condition that requires
rapid diagnosis. The dataset covers various hemorrhage types to enable AI algorithms to assist
in identifying hemorrhages for quicker and more accurate medical treatment. We randomly select
47000 samples as the training set and 6000 samples as the test set, with resolution 256 × 256. We
simulate CT measurements (projection) with a stationary head CT (s-HCT) system with three linear
CNT x-ray source arrays (Luo et al., 2021). This design has sparse and asymmetrical scans and
a non-circular geometry with a relatively low radiation dose, providing a unique challenge to the
reconstruction. An illustration of the geometry has been shown in the Supplementary Material.

EM Inversion: We also test our method on the subsurface electromagnetic (EM) inversion task
on the Kimberlina-Reservoir dataset, which recovers subsurface conductivity from surface-acquired
EM measurements. The geophysical properties were developed under DOE’s NRAP. It is based on
a potential CO2 storage site in the Southern San Joaquin Basin of California (Alumbaugh et al.,
2021). In this data, there are 780 EM data for geophysical measurement with the corresponding
conductivity. We use 750/30 for training and testing. EM data are simulated by finite-difference
method (Commer & Newman, 2008; Feng et al., 2022).

3.2 IMPLEMENTATION DETAILS

Training Details. The data are normalized to the range [-1, 1]. We employ AdamW (Loshchilov &
Hutter, 2018) optimizer with momentum parameters β1 = 0.9, β2 = 0.999 and a weight decay of

6
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Figure 3: Comparing HINT with a two-separate-FINOLAs network, where each embedding
has its own set of wave speeds, in terms of SSIM. Evaluated on OpenFWI.
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Figure 4: Comparing HINT with nonlinear converters, in terms of SSIM. Evaluated on Open-
FWI.

0.05. The initial learning rate is set to be 1×10−3, and decayed with a cosine annealing (Loshchilov
& Hutter, 2016). The batch size is set to 64. We use MAE plus MSE loss to train the model. We
implement our models in Pytorch, training on 8 NVIDIA Tesla V100 GPUs.

Architecture Details: For datasets in OpenFWI, the size of waveform data is 5 × 1000 × 70, and
the size of velocity maps is 70×70. We choose patch size (100×10) for the three-layer Transformer
encoder with the hidden size of 512, and the number of heads is 16. The feature map ζP will be
recovered to the same size as the encoder’s outputs before pooling (i.e., 10×7). We use the FINOLA
with a dimension of 512 and one path. The feature map of velocity maps, ζψ , has the size (7 × 7)
for Sec. 3.3, and (14× 14) for the rest.

For the CT dataset, the size of projection data is 3 × 45 × 1728, and the size of the CT image is
256 × 256. We choose patch size (9 × 36) for the three-layer Transformer with the hidden size
of 768, and the number of heads is 16. Then it will be pooled with two seeds, i.e., the dimension
of vP is 1536. For this larger dimension, we use the FINOLA with dimension 192 in the 8 paths.
The feature map ζP will be recovered to the same size as the encoder’s outputs before pooling (i.e.,
5× 48). The feature map, ζψ , has the size (32× 32).

Evaluation Metrics. We apply three metrics to evaluate the generated geophysical properties:
MAE, MSE, and Structural Similarity (SSIM). Following the existing literature (Wu & Lin, 2019;
Feng et al., 2022; Deng et al., 2022), MAE and MSE are employed to measure the pixel-wise error,
and SSIM is to measure the perceptual similarity since the target properties have highly structured
information, and degradation or distortion can be easily perceived by a human. We calculate them
on normalized data, i.e., MAE and MSE in the scale [−1, 1], and SSIM in the scale [0, 1].

3.3 INSPECTION OF THE HIDDEN PROPERTY

In this part, we validate two key components of our hidden property: the shared set of wave equations
and the linear correlation between two embeddings. We test them one by one to assess how well they
hold in maintaining the quality of latent representations, which impacts the overall performance.

Shared wave speed V.S. Separate wave speed. We conducted experiments to compare the model
using two separate sets of wave speeds with our approach, which shares a single set of wave speeds

7
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across all ten datasets in the OpenFWI dataset. The SSIM for both methods is presented in Fig. 3.
Models using two distinct FINOLAs exhibited similar performance, with differences being less than
1%. The results demonstrate that the latent representations produced by the shared FINOLA are of
comparable quality to those generated by using two separate FINOLAs, validating the effectiveness
of the proposed property. These findings confirm that the two latent representations share the same
set of wave speeds without compromising the model’s effectiveness.

Linear Converter V.S. Non-Linear Converter. We evaluate networks with more complicated non-
linear converters on OpenFWI. We test a two-piece Maxout and a two-layer MLP. The results are
provided in Fig 4. As the results indicate, the nonlinear mapping performs at a similar level to the
linear converter, showing no overall positive effect on final performance. This outcome aligns with
our conclusion that a strong linear correlation is sufficient to capture the underlying relationships
between the embedding of two modalities.

3.4 VALIDATION ACROSS MULTIPLE COMPUTATIONAL IMAGING TASKS
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Figure 5: Illustration of results on OpenFWI,
compared with InversionNet and Auto-Linear.

FWI: To demonstrate the broad applicability of
the hidden property, we train our model across
all ten datasets in OpenFWI together. Fig 6
shows the comparison results with Inversion-
Net (Wu & Lin, 2019) and Auto-Linear (Feng
et al., 2024a). For a fair comparison, we used
the BigFWI version of InversionNet (Jin et al.,
2024), which is also trained on all ten datasets.
Our model delivers overall performance that is
generally similar to BigFWI, though slightly
better. However, it only has three-quarters of
the model size (18.2M related to inversion vs.
24.4M). It consistently outperforms Auto-Linear
in all three metrics. Detailed quantitative re-
sults are available in the Supplementary Mate-
rial. Figure 5 illustrates the velocity maps in-
verted by each method. From the figure, we
can observe: 1) Our model’s superior perfor-
mance is reflected not only in the quantitative
results but also in the visual quality of the re-
sults; 2) On certain datasets (e.g., CFB), pat-
terns from other datasets seem to influence the
results, which could indicate a limitation in how
the model handles dataset-specific features when
trained jointly across multiple datasets.

In Table 1, we show the reconstruction error of
our model. The low reconstruction error, along
with the high inverse accuracy, proves that the
hidden property holds that the same set of wave
equations can be shared for two embeddings.
Abvoe’s two experiments show that, for the set
of wave equations in the latent space, the wave
speed can not only be shared across embeddings
of different physical quantities but can also be
shared across datasets with very different sub-
surface structures.

CT: For the CT task, we choose simulta-
neous iterative reconstruction techniques
(SIRT) (Van Aarle et al., 2016) and a modified
InversionNet as the baselines. For the modified
InversionNet, we double the network dimension
with a deeper decoder to fit the larger CT data.
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Figure 6: Results for FWI, compared with BigFWI and Auto-Linear for MAE, MSE, and SSIM.
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Figure 7: Illustration of results on RSNA for CT, compared with InversionNet and SIRT.

Table 2 shows the results of prediction. HINT outperforms InversionNet in all three metrics,
demonstrating its enhanced ability to manage the complex structure of CT data. While SIRT
achieves the lowest MSE, HINT delivers the best MAE, suggesting that the hidden property holds
in CT data as well. Figure 7 illustrates the CT images inferred by each method. The figure shows
that our model produces smoother results, which may lack some fine details. In contrast, SIRT
retains more detail but introduces noticeable artifacts. Each method has its advantages, with our
approach providing cleaner reconstructions and SIRT capturing more structural information at the
cost of increased noise. The poor performance of InversionNnet and the comparable performance
between HINT and SIRT also highlight the challenges posed by the specific CT geometry with
sparse and asymmetrical scans and relatively low radiation dose.

Table 1: Quantitative results of waveform data reconstruction on OpenFWI.
Metric FVA FVB CVA CVB FFA FFB CFA CFB SA SB
MAE↓ 0.0014 0.0059 0.0088 0.0195 0.0031 0.0122 0.0052 0.0188 0.0050 0.0089
MSE↓ 1.09e-5 0.0001 0.0003 0.0013 6.96e-5 0.0007 0.0002 0.0012 0.0001 0.0003
SSIM↑ 0.9998 0.9981 0.9879 0.9757 0.9978 0.9783 0.9953 0.9585 0.9967 0.9867

EM Inversion: For the EM Inversion task, we also compare our method with InversionNet
and Auto-Linear. Table 3 shows the results. Note that, to maintain consistency with previous
works (Feng et al., 2024a), the MAE and MSE reported below were calculated after denormal-
izing to the original range of [0, 0.65]. We observe that our proposed HINT yields much better
performance than those obtained using Auto-Linear and InversionNet. These results demonstrate
that the discovered hidden property is consistent across various computational imaging tasks.

3.5 VALIDATION ACROSS DIFFERENT RESOLUTIONS

In this ablation, We empirically validate the wave equations by assessing HINT’s performance across
various feature map resolutions. Fig. 8 displays SSIM across different feature map resolutions eval-
uated on OpenFWI. The performance remains consistent across most resolutions, with slightly re-
duced performance at 35×35. This decrease is primarily due to a significantly shallow decoder. The
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Table 2: Quantitative results for CT. MAE
and MSE are calculated after denormalizing to
their original range ([−1000, 32700])

Model MAE↓ MSE↓ SSIM↑
HINT 31.95 9754.48 0.9843

InversionNet 63.27 274350.78 0.9684
SIRT 45.67 6510.67 0.9918

Table 3: Quantitative results for EM inver-
sion. MAE and MSE are calculated after denor-
malizing to their original range ([0, 0.65]).

Model MAE↓ MSE↓ SSIM↑
HINT 0.0018 3.34e-5 0.9937

Auto-Linear 0.0044 1.92e-4 0.9700
InversionNet 0.0133 8.55e-4 0.9175
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Figure 8: Validation across multiple zψ resolutions, in terms of SSIM. Evaluated on OpenFWI.

quantitative results are shown in the Supplementary Material. These results demonstrate that the two
modalities share wave equation representations consistently across different feature map resolutions
(i.e., different wave propagation steps), affirming the validity of the revealed hidden property.

4 RELATED WORKS

Recently, data-driven methods for inverse problems have emerged, treating it as an image-to-image
translation problem with an encoder-decoder architecture. Wu & Lin (2019); Zhang et al. (2019)
utilized a CNN to address FWI, while Jin et al. (2022) combined forward modeling with deep neural
networks in an unsupervised learning framework. Diffusion models have also emerged as competi-
tive solutions for inverse problems, requiring pre-training of a prior model and integrating the mea-
surement process into the denoising process (Song et al., 2021; Tewari et al., 2023). Unlike them,
our work focuses on uncovering the underlying mathematical relationships within the latent space.
Similarly, Feng et al. (2022; 2024a) decoupled the training of the encoder and decoder, demonstrat-
ing a strong linear correlation between the latent representations of two modalities in geophysical
inversion. We go further by proposing that the linear correlation exists even when both modalities
follow the same wave equations in the latent space.

FINOLA (Chen et al., 2023b;a), a recent advancement in modeling image invariance in latent space,
models latent features using a first-order autoregressive process. It focuses on treating each image
as a unique solution of the wave equations. This approach not only has the ability for image recon-
struction but also extends to self-supervised learning tasks with Masked Image Modeling (MIM).
In MIM (Bao et al., 2021; Xie et al., 2022), networks are challenged to reconstruct missing parts of
an image. Recently, MAE (He et al., 2022) adopts an asymmetric encoder-decoder architecture to
recover pixels from highly masked images, demonstrating its ability to learn robust representations.
A more detailed comparison of our work with FINOLA is shown in Sec. 2

5 CONCLUSION

In this paper, we empirically reveal a hidden property in the latent space of computational imag-
ing. This property, characterized by a shared set of one-way wave equations and a strong linear
correlation between the latent representations of measurement data and target properties, enables a
unified framework across different computational imaging tasks. Our experiments validate the hid-
den property across different computational imaging tasks. It shows that an elegant mathematical
relationship exists in the latent space, akin to that in the original space.
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