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Abstract:

Reinforcement learning (RL) enables robots to learn skills from interactions with
the real world. In practice, the unstructured step-based exploration used in Deep
RL - often very successful in simulation — leads to jerky motion patterns on real
robots. Consequences of the resulting shaky behavior are poor exploration, or
even damage to the robot. We address these issues by adapting state-dependent ex-
ploration (SDE) [1] to current Deep RL algorithms. To enable this adaptation, we
propose two extensions to the original SDE, using more general features and re-
sampling the noise periodically, which leads to a new exploration method general-
ized state-dependent exploration (¢SDE). We evaluate gSDE both in simulation,
on PyBullet continuous control tasks, and directly on three different real robots:
a tendon-driven elastic robot, a quadruped and an RC car. The noise sampling
interval of gSDE enables a compromise between performance and smoothness,
which allows training directly on the real robots without loss of performance.

1 Introduction

One of the first robots that used artificial intelligence methods was called “Shakey”, because it
would shake a lot during operation [2]. Shaking has now again become quite prevalent in robotics,
but for a different reason. When learning robotic skills with deep reinforcement learning (DeepRL),
the de facto standard for exploration is to sample a noise vector ¢; from a Gaussian distribution
independently at each time step ¢, and then adding it to the policy output. This approach leads to the
type of noise illustrated to the left in Fig. 1, and it can be very effective in simulation [3, 4, 5, 6, 7].
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Figure 1: Left: unstructured exploration, as typically used in simulated RL. Right: gSDE provides smooth and
consistent exploration.
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Unstructured exploration has also been applied to robotics [8, 9]. But for experiments on real robots,
it has many drawbacks, which have been repeatedly pointed out [1, 10, 11, 12, 13]: 1) Sampling
independently at each step leads to shaky behavior [14], and noisy, jittery trajectories. 2) The jerky
motion patterns can damage the motors on a real robot, and lead to increased wear-and-tear. 3) In
the real world, the system acts as a low pass filter. Thus, consecutive perturbations may cancel each
other, leading to poor exploration. This is particularly true for high control frequency [15]. 4) It
causes a large variance which grows with the number of time-steps [10, 11, 12]

In practice, we have observed all of these drawbacks on three real robots, including the tendon-
driven robot David, depicted in Fig. 4a, which is the main experimental platform used in this work.
For all practical purposes, Deep RL with unstructured noise cannot be applied to David.

In robotics, multiple solutions have been proposed to counteract the inefficiency of unstructured
noise. These include correlated noise [8, 15], low-pass filters [16, 17], action repeat [18] or lower
level controllers [16, 9]. A more principled solution is to perform exploration in parameter space,
rather than in action space [19, 20]. This approach usually requires fundamental changes in the
algorithm, and is harder to tune when the number of parameters is high.

State-Dependent Exploration (SDE) [1, 11] was proposed as a compromise between exploring in
parameter and action space. SDE replaces the sampled noise with a state-dependent exploration
function, which during an episode returns the same action for a given state. This results in smoother
exploration and less variance per episode.

To the best of our knowledge, no Deep RL algorithm has yet been successfully combined with
SDE. We surmise that this is because the problem that it solves — shaky, jerky movement — is not as
noticeable in simulation, which is the current focus of the community.

In this paper, we aim at reviving interest in SDE as an effective method for addressing exploration
issues that arise from using independently sampled Gaussian noise on real robots. Our concrete
contributions, which also determine the structure of the paper, are:

1. Highlighting the issues with unstructured Gaussian exploration (Sect. 1).

2. Adapting SDE to recent Deep RL algorithms, and addressing some issues of the original
formulation (Sects. 2.2 and 3).

3. Evaluate the different approaches with respect to the compromise between smoothness and
performance, and show the impact of the noise sampling interval (Sects. 4.1 and 4.2).

4. Successfully applying RL directly on three real robots: a tendon-driven robot, a quadruped
and an RC car, without need of a simulator or filters (Sect. 4.3).

2 Background

In reinforcement learning, an agent interacts with its environment, usually modeled as a Markov
Decision Process (MDP) (S, A, p,r) where S is the state space, A the action space and p(s'[s, a)
the transition function. At every step ¢, the agent performs an action a in state s following its policy
7 : S — A. It then receives a feedback signal in the next state s”: the reward r(s, a). The objective
of the agent is to maximize the long-term reward. More formally, the goal is to maximize the
expectation of the sum of discounted reward, over the trajectories p, generated using its policy 7:
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where v € [0,1) is the discount factor and represents a trade-off between maximizing short-term
and long-term rewards. The agent-environment interactions are often broken down into sequences
called episodes, that end when the agent reaches a terminal state.

2.1 Exploration in Action or Policy Parameter Space

In the case of continuous actions, the exploration is commonly done in the action space [21, 22, 23,
24,25, 5]. Ateach time-step, a noise vector ¢, is independently sampled from a Gaussian distribution
and then added to the controller output:

a; = pu(sg; 0,,) + €, et ~ N(0,0%) )



where p(s;) is the deterministic policy and 7(as|s;) ~ N (u(s:),o?) is the resulting stochastic
policy, used for exploration. ¢,, denotes the parameters of the deterministic policy.

For simplicity, throughout the paper, we will only consider Gaussian distributions with diagonal
covariance matrices. Hence, here, o is a vector with the same dimension as the action space .A.

Alternatively, the exploration can also be done in the parameter space [11, 19, 20]:
a; = p(s; 0, +€), e~ N(0,0%) 3)

at the beginning of an episode, the perturbation € is sampled and added to the policy parameters
6,,. This usually results in more consistent exploration but becomes challenging with an increasing
number of parameters [19].

2.2 State-Dependent Exploration

State-Dependent Exploration (SDE) [1, 11] is an intermediate solution that consists in adding noise
as a function of the state s;, to the deterministic action p(s;). At the beginning of an episode, the
parameters 6. of that exploration function are drawn from a Gaussian distribution. The resulting
action a; is as follows:

ar = ,LL(St; eu) + G(Sﬁ 06)7 Oc ~ N(07 02) “4)

This episode-based exploration is smoother and more consistent than the unstructured step-based
exploration. Thus, during one episode, instead of oscillating around a mean value, the action a for a
given state s will be the same.

SDE should not be confused with unstructured noise where the variance can be state-dependent but
the noise is still sampled at every step, as it is the case for SAC.

In the remainder of this paper, to avoid overloading notation, we drop the time subscript ¢, i.e. we
now write s instead of s;. s; or a; now refer to an element of the state or action vector.

In the case of a linear exploration function €(s; 6.) = 6.s, by operation on Gaussian distributions,
RiickstieB et al. [1] show that the action element a; is normally distributed:

m5(ajls) ~ N (5 (s), 95%) 5)
where & is a diagonal matrix with elements 6; = />, (0458;)*.

Because we know the policy distribution, we can obtain the derivative of the log-likelihood
log w(als) with respect to the variance o
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This can be easily plugged into the likelihood ratio gradient estimator [26], which enables adaptation
of o during training. SDE is therefore compatible with standard policy gradient methods, while
addressing most shortcomings of the unstructured exploration.

For a non-linear exploration function, the resulting distribution 7r(als) is most of the time unknown.
Thus, computing the exact derivative w.r.t. the variance is not trivial and may require approximate
inference. As we focus on simplicity, we leave this extension for future work.

3 Generalized State-Dependent Exploration

Considering Egs. (5) and (6), some limitations of the original formulation are apparent:

i The noise does not change during one episode, which is problematic if the episode length
is long, because the exploration will be limited [27].

ii The variance of the policy ¢; = /), (0;;5;)? depends on the state space dimension (it
grows with it), which means that the initial o must be tuned for each problem.

iii There is only a linear dependency between the state and the exploration noise, which limits
the possibilities.



iv The state must be normalized, as the gradient and the noise magnitude depend on the state
magnitude.

To mitigate the mentioned issues and adapt it to Deep RL algorithms, we propose two improvements:

1. We sample the parameters 6. of the exploration function every n steps instead of every
episode.

2. Instead of the state s, we can in fact use any features. We chose policy features z,,(s; 0, )
(last layer before the deterministic output yi(s) = 0,,2,,(s; 0,,)) as input to the noise func-
tion €(s; 0.) = 0.z, (s).

Sampling the parameters 6. every n steps tackles the issue i. and yields a unifying framework [27]
which encompasses both unstructured exploration (n = 1) and original SDE (n = episode_length).
Although this formulation follows the description of Deep RL algorithms that update their parame-
ters every m steps, the influence of this crucial parameter on smoothness and performance was until
now overlooked.

the noise € is non-linear and the variance of the policy only depends on the network architecture.
This makes gSDE more task-independent (as the network architecture is usually kept constant) and
saves a lot of parameters and computation when working with large state space such as images: the
number of parameters and operations is only a function of the last layer size and action dimension
and no more of the state space size. This formulation is therefore more general and includes the
original SDE description, when using state as input to the noise function or when the policy is
linear.

We call the resulting approach generalized State-Dependent Exploration (gSDE).

Deep RL algorithms Integrating this updated version of SDE into recent Deep RL algorithms,
such as those listed in the appendix, is straightforward. For those that rely on a probability distribu-
tion, such as SAC or PPO, we can replace the original Gaussian distribution by the one from Eq. (5),
where the analytical form of the log-likelihood is known (cf. Eq. (6)).

4 Experiments

In this section, we study gSDE to answer the following questions:

* How does gSDE compares to the original SDE? What is the impact of each proposed
modification?

* How does gSDE compares to other type of exploration noise in terms of compromise be-
tween smoothness and performance?

* How does gSDE performs on a real system?

4.1 Compromise Between Smoothness and Performance

Experiment setup In order to compare gSDE to other type of exploration in terms of compromise
between performance and smoothness, we chose 4 locomotion tasks from the PyBullet [28] envi-
ronments: HALFCHEETAH, ANT, HOPPER and WALKER2D. They are similar to the one found in
OpenAl Gym [29] but the simulator is open source and they are harder to solve'. In this section, we
focus on the SAC algorithm as it will be the one used on the real robot, although we report results
for additional algorithms such as PPO in the appendix.

To evaluate smoothness, we define a continuity cost C = 100 x E; {(%)

2] which yields values

between 0 (constant output) and 100 (action jumping from one limit to another at every step). The
continuity cost of the training Cy,,;y, is a proxy for the wear-and-tear of the robot.

"https://frama.link/PyBullet-harder-than-MuJoCo
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We compare the performance of the following configurations: (a) no exploration noise, (b) unstruc-
tured Gaussian noise (original SAC implementation), (c) correlated noise (Ornstein—Uhlenbeck pro-
cess [30] with 0=0.2, OU noise in the figure), (d) adaptive parameter noise [19] (¢=0.2), (¢) gSDE.
To decorrelate the exploration noise from the one due to parameter update, and to be closer to a real
robot setting, we apply the gradient updates only at the end of each episode.

We fix the budget to 1 million steps and report the average score over 10 runs together with the
average continuity cost during training and their standard error. For each run, we test the learned
policy on 20 evaluation episodes every 10000 steps, using the deterministic controller p(s;). Re-
garding the implementation, we use a modified version of Stable-Baselines3 [31] together with the
RL Zoo training framework [32]. The methodology we follow to tune the hyperparameters and
their details can be found in the appendix. The code we used to run the experiments and tune the
hyperparameters can be found in the supplementary material.

Algorithm HALFCHEETAH ANT HOPPER WALKER2D
SAC ‘ Return 1 Cirain 4 ‘ Return Cirain ‘ Return 1 Cirain 4 ‘ Return Cirain 4
w/0 noise 2562 +/-102 2.6 +/- 0.1 | 2600 +/- 364 2.0 +/-0.2 | 1661 +/-270 1.8+/-0.1 | 2216 +/-40 1.8 +/-0.1
w/ unstructured 2994 +/-89 48 +/-0.2 | 3394 +/-64 5.1 +/-0.1 | 2434 +/-190 3.6 +/-0.1 | 2225+/-35 3.6+/-0.1
w/ OU noise 2692 +/-68 2.9 +/-0.1 | 2849 +/-267 2.3 +/-0.0 | 2200 +/-53 2.1 4/-0.1 | 2089 +/-25 2.0 +/-0.0
w/ param noise 2834 +/-54  29+/-0.1 | 3294 +/-55  21+/-0.1 | 1685+/-279 22+/-0.1 | 2294 +/-40 1.8 +/-0.1
w/ gSDE-2 2987 +/-85  4.1+/-0.2 | 3366 +/-50 4.7 +/-0.1 | 2532+/-70 2.8 +4/-0.1 | 2237 +/-55 2.8+/-0.1
w/ gSDE-4 2798 +/-41 4.1 +/-0.2 | 3227 +/- 182 3.8 +/-0.2 | 2541 +/-49 2.6 +/-0.1 | 2322 +/-69 2.6 +/-0.1
w/ gSDE-8 2850 +/-73  4.1+4/-0.2 | 3459 +/-52 3.9+/-02 | 2646 +/-45 2.4 +/-0.1 | 2341 +/-45 25+/-0.1
w/ gSDE-64 2970 +/- 132 3.5+/-0.1 | 3160 +/- 184 3.5+/-0.1 | 2476 +/-99 2.0 +/-0.1 | 2324 +/-39 2.3 +/-0.1
w/ gSDE-Episodic | 2741 +/- 115 3.1 +/-0.2 | 3044 +/- 106 2.6 +/-0.1 | 2503 +/-80  1.8+/-0.1 | 2267 +/-34 2.2 +/-0.1

Table 1: Detailed return and continuity cost results for SAC with different type of exploration on PyBullet
environments. We report the mean and standard error over 10 runs of 1 million steps. For each benchmark, we
highlight the results of the method(s) with the best mean when the difference is statistically significant.
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4.2 Comparison to the Original SDE

In this section, we investigate the contribution of the proposed modifications to the original SDE:
sampling the exploration function parameters every n steps and using policy features as input to the
noise function.

Sampling Interval gSDE is a n-step version of SDE, where n allows interpolating between the
unstructured exploration n = 1 and the original SDE per-episode formulation. This interpolation
permits a compromise between performance and smoothness at train time (cf. Table 1 and Fig. 2).
Fig. 3b shows the importance of that parameter for PPO on the WALKER2D task. If the sampling
interval is too large, the agent would not explore enough during long episodes. On the other hand,
with a high sampling frequency n ~ 1, the issues mentioned in Sect. 1 arise.
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Figure 3: Impact of gSDE modifications over the original SDE on PyBullet tasks. (a) Influence of the input to
the exploration function e(s; 6.) for SAC and PPO: using latent features from the policy z,, (Latent) is usually
better than using the state s (Original). (b) The frequency of sampling the noise function parameters is crucial
for PPO with gSDE.

Policy features as input  Fig. 3a shows the effect of changing the exploration function input for
SAC and PPO. Although it varies from task to task, using policy features (“latent” in the figure) is
usually beneficial, especially for PPO. It also requires less tuning and no normalization as it depends
only on the policy network architecture. Here, the PyBullet tasks are low dimensional and the state
space size is of the same order, so no careful per-task tuning is needed. Relying on features also
allows learning directly from pixels, which is not possible in the original formulation.

Compared to the original SDE, the two proposed modifications are beneficial to the performance,
with the noise sampling interval n having the most impact. Fortunately, as shown in Table 1
and Fig. 2, it can be chosen quite freely for SAC. In the appendix, we provide an additional ab-
lation study that shows gSDE is robust to the choice of the initial exploration variance.

4.3 Learning to Control a Tendon-Driven Elastic Robot
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Figure 4: (a) The tendon-driven robot [33] used for the experiment. The tendons are highlighted in orange. (b)
The model-based controller and the RL agent performs similarly on an evaluation trajectory.

Experiment setup To assess the usefulness of gSDE, we apply it on a real system. The task is
to control a tendon-driven elastic continuum neck [33] (see Fig. 4a) to a given target pose. Con-
trolling such a soft robot is challenging because of the nonlinear tendon coupling, together with the
deformation of the structure that needs to be modeled accurately. This modeling is computationally
expensive [34, 35] and requires assumptions that may not hold in the physical system.



The system is under-actuated (there are only 4 tendons), hence, the desired pose is a 4D vector: 3
angles for the rotation 0, 0, 8, and one for the position z. The input is a 16D vector composed
of: the measured tendon lengths (4D), the current tendon forces (4D), the current pose (4D) and the
target pose (4D). The reward is a weighted sum between the negative geodesic distance to the desired
orientation and the negative Euclidean distance to the desired position. The weights are chosen such
that the two components have the same magnitude. We also add a small continuity cost to reduce the
oscillations in the final policy. The action space consists in desired delta in tendon forces, limited
to 5 N. For safety reasons, the tendon forces are clipped below 10 N and above 40 N. An episode
terminates either when the agent reaches the desired pose or after a timeout of 5s. The episode is
considered successful if the desired pose is reached within a threshold of 10 mm for the position
and 5° for the orientation. The agent controls the tendons forces at 30 Hz, while a PD controller
monitors the motor current at 3 kHz on the robot. Gradient updates are directly done on a 4-core
laptop, after each episode.

Results We first ran the unstructured exploration on the robot, but had to stop the experiment early:
the high-frequency noise in the command was damaging the tendons and would have broken them
due to their friction on the bearings. Therefore, as a baseline, we trained a policy using SAC with a
hand-crafted action smoothing (2 Hz cutoff Butterworth low-pass filter) for two hours.

Then, we trained a controller using SAC with gSDE for the same duration. We compare both
learned controllers to an existing model-based controller (passivity-based approach) presented
in [34, 35] using a pre-defined trajectory (cf. Fig. 4b). On the evaluation trajectory, the controllers
are equally precise (cf. Table 2): the mean error in orientation is below 3° and the one in position
below 3 mm. However, the policy trained with the low-pass filter is much more jittery than the two
others. We quantify this jitter as the mean absolute difference between two timesteps, denoted as
continuity cost in Table 2.

Unstructured gSDE Low-pass filter Model-Based
noise
Position error (mm) N/A 2.65 +/- 1.6 1.98 +/- 1.7 1.32+/-1.2
Orientation error (deg) N/A 2.85+4/-29  3.53+/-4.0 290 +/-2.8
Continuity cost (deg) N/A 0.20 +/- 0.04  0.38 +/- 0.07 0.16 +/- 0.04

Table 2: Comparison of the mean error in position, orientation and mean continuity cost on the evaluation
trajectory. We highlight best approaches when the difference is significant. The model-based and learned
controllers yield comparable results but the policy trained with a low-pass filter has a much higher continuity
cost.
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Figure 5: Additional robots successfully trained using SAC with gSDE directly in the real world.
Additional Real Robot Experiments We also successfully applied SAC with gSDE on two ad-

ditional real robotics tasks (see Fig. 5a): training an elastic quadruped robot to walk (learning curve
in Fig. 5b) and learning to drive around a track using an RC car. Both experiments are fully done on



the real robot, without the use of simulation nor filter. We provide in the supplementary material the
videos of the trained controllers.

5 Related Work

Exploration is a key topic in reinforcement learning [36]. It has been extensively studied in the
discrete case and most recent papers still focus on discrete actions [37, 38].

Several works tackle the issues of unstructured exploration for continuous control by replacing it
with correlated noise. Korenkevych et al. [15] use an autoregressive process and introduce two
variables that allows to control the smoothness of the exploration. In the same vein, van Hoof
et al. [27] rely on a temporal coherence parameter to interpolate between the step- or episode-based
exploration, making use of a Markov chain to correlate the noise. This smoothed noise comes at a
cost: it requires an history, which changes the problem definition.

Exploring in parameter space [10, 39, 11, 12, 40] is an orthogonal approach that also solves some
issues of the unstructured exploration. It was successfully applied to real robot but relied on motor
primitives [41, 12], which requires expert knowledge. Plappert et al. [19] adapt parameter explo-
ration to Deep RL by defining a distance in the action space and applying layer normalization to
handle high-dimensional space.

Population based algorithms, such as Evolution strategies (ES) or Genetic Algorithms (GA), also ex-
plore in parameter space. Thanks to massive parallelization, they were shown to be competitive [42]
with RL in terms of training time, at the cost of being sample inefficient. To address this problem,
recent works [20] proposed to combine ES exploration with RL gradient update. This combination,
although powerful, unfortunately adds numerous hyperparameters and a non-negligible computa-
tional overhead.

Obtaining smooth control is essential for real robot, but it is usually overlooked by the DeepRL
community. Recently, Mysore et al. [14] integrated a continuity and smoothing loss inside RL
algorithms. Their approach is effective to obtain a smooth controller that reduces the energy used at
test time on the real robot. However, it does not solve the issue of smooth exploration at train time,
limiting their training to simulation only.

6 Conclusion

In this work, we highlighted several issues that arise from the unstructured exploration in Deep RL
algorithms for continuous control. Due to those issues, these algorithms cannot be directly applied
to learning on real-world robots.

To address these issues, we adapt State-Dependent Exploration to Deep RL algorithms by extending
the original formulation: we sample the noise every n steps and replace the exploration function in-
put by learned features. This generalized version (gSDE), provides a simple and efficient alternative
to unstructured Gaussian exploration.

gSDE achieves very competitive results on several continuous control benchmarks, while reducing
wear-and-tear at train time. We also investigate the contribution of each modification by performing
an ablation study: the noise sampling interval has the most impact and allows a compromise between
performance and smoothness. Our proposed exploration strategy, combined with SAC, is robust to
hyperparameter choice, which makes it suitable for robotics applications. To demonstrate it, we
successfully apply SAC with gSDE directly on three different robots.

Although much progress is being made in sim2real approaches, we believe more effort should be
invested in learning directly on real systems, even if this poses challenges in terms of safety and
duration of learning. This paper is meant as a step towards this goal, and we hope that it will revive
interest in developing exploration methods that can be directly applied to real robots.
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