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Abstract

Transformer-based models are receiving increasingly popularity in the field of
computer vision, however, the corresponding interpretability study is less. As
the simplest explainability method, visualization of attention weights exerts poor
performance because of lacking association between the input and model decisions.
In this study, we propose a method, named Transition Attention Maps, to generate
the saliency map concerning a specific target category. The proposed approach con-
nects the idea of the Markov chain, to investigate the information flow across layers
of the Transformer and combine the integrated gradients to compute the relevance
of input tokens for the model decisions. We compare with other explainability meth-
ods using Vision Transformer as a benchmark and demonstrate that our method
achieves better performance in various aspects. We open source the implementation
of our approach at https://github.com/PaddlePaddle/InterpretDL.

1 Introduction

Self-attention-based architectures, specifically Transformers [1–3] are dominating the field of natural
language processing (NLP). More recently, Transformers have become an alternative architecture
against convolutional neural networks (CNN). Nevertheless, as other deep architectures, these models
are uninterpretable black boxes. The reasoning behind the prediction and decision of the model
is unseen. Although the Transformers can precisely classify images with very high accuracy, it is
unknown whether the correct and proper features have been learned, or the desired information has
been extracted, to recognize the visual objects. To address this issue, visualization of the deep model
decision process is an appropriate method to explain the model and gain insight into its internals.

In this paper, we set the Vision Transformer (ViT) [4], which is of the pure Transformer architecture
without CNN components, as a benchmark. Tokens for ViT are a sequence of image patches, treated
the same way as words in NLP tasks. Embeddings of tokens in ViT layers are the representations of
the image content and global position information. Similar to NLP tasks, an additional [class] token
is added in ViT for specifically the classification problem.
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To explain Transformers, the simplest and most widely used method is to investigate and visualize
the attention weights in the Transformer blocks [1, 5, 6]. Visualizing the relations between the [class]
token and other tokens seems direct and reasonable. However, attention weights are not convincingly
used as explanations for general attention-based models, proposed by some recent works. To cite
a few, Pruthi et al. [7], Jain and Wallace [8] illustrated that there are limitations in using attentions
as explanations, in terms of being incapable to provide fully faithful explanations concerning the
model decisions. In this work, we do not directly equate attentions with explanations but utilize it to
construct the information flow between the higher-level semantic information and the lower-level
image information.

The simplest method to use attention weights for interpretability is to use raw attention scores [1, 5,
6, 9, 10] of the class token over input tokens and restore to the original size of the image as a saliency
map. Abnar and Zuidema [11] raised the issue that the contextual information from tokens gets more
similar as going deeper into the model, leading to unreliable explanations using raw attentions. To
cope with this issue, the rollout method [11] was proposed to reassign the attribution scores to the
tokens through the linear combination of attention weights along with the layers of the Transformer,
to model the information flow in the deep model. Based on the idea of the rollout method, the
attribution method [12] computed the relevance scores of the tokens with the layer-wise relevance
propagation (LRP) [13], to visualize ViT’s decision process.

Following the lines of the above methods, we continue to explore the information flow in the
Transformer. In this work, we propose an approach named Transition Attention Maps, that relates the
information flow in the Transformer to the Markov process, using the hidden state for tokens at each
layer. These states start from an initial value and are recursively changing along with layers according
to the Transformer’s processing for tokens’ representations. When a data sample passes through the
self-attention-based blocks of the Transformer, traits are left in the computed attention scores. To
track the traits and investigate the information flow, our approach considers these attention weights
as transition matrices within the context of the Markov chain as they are naturally row-stochastic
matrices, with each row summing to 1. Therefore, the proposed approach propagates the information
from top to down and computes the relevance between high-level semantics and input features
using transitions of states. Furthermore, to exhibit the class discriminative ability, the proposed
approach combines the idea of attentions being transition matrices with Integrated Gradient [14] and
Grad-CAM [15], to assign the importance scores w.r.t. the predicted category to input features.

Extensive experiments are conducted to demonstrate the trustworthiness and localization ability of
our approach compared to other methods, using evaluations of quantitative metrics and visualiza-
tions. Three use cases based on the model interpretability with our approach are proposed to better
understand the decision process of Vision Transformers.

2 Related work

We review the works that are related to the explanations and interpretations of deep models. Although
there are many other directions to interpret the deep model, we mainly focus on the methods that
generate heatmap or saliency maps highlighting the important part of input features on which the
deep model mainly relies.

Some gradient-based methods are usually used to highlight the areas in the input related to the
classification, while the vanilla gradients contain noises due to the saturation and artifacts of gradients
in activation functions. Smilkov et al. [16] proposed to remove the noises by adding noises on
the input and averaging the gradients w.r.t. noised inputs. Integrated Gradient [14] expects the
contribution of non-zero gradients in the non-saturated region to the decision importance through
integrating the gradients along different paths. More methods based on gradients w.r.t. inputs include
DeepLIFT [17], GradientSHAP [18], etc.

To compute the importance scores of input features, several popular approaches were proposed
without using gradients. LIME [19], Local Interpretable Model-agnostic Explanations, was proposed
to fit an interpretable model with samples generated in the vicinity of the original data point, which
will be used to explain the behaviors of the deep model in this local region. Layer-wise Relevance
Propagation (LRP) methods [13, 20, 21] propagate the relevance scores from the output layer to the
input features. Through using a set of purposely designed propagation rules, the contribution scores
of input features for the final decision will be obtained eventually.
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Figure 1: The pipeline of our proposed method Transition Attention Maps.

Some algorithms target intermediate features (or feature maps for CNN models). Class Activa-
tion Maps (CAM) [22] was proposed to highlight the important areas that contribute the most of
model decisions. Based on CAM, many variants have been established to improve faithfulness and
trustworthiness, such as Grad-CAM [15], Score-CAM [23], and others [24–27].

In terms of the Transformer interpretability, although some gradient-based and model-agnostic ones
can be applied, there are limited approaches that are specifically designed for them. Voita et al. [28]
identified the most important heads in each encoder layer using stochastic gates and a differentiable
relaxation of the L0 penalty to prune the least important heads. Hao et al. [29] proposed a self-
attention attribution method to interpret the information interactions inside Transformer through
constructing interaction trees. Abnar and Zuidema [11] proposed the rollout method that reassigns all
attention scores by considering the pairwise attentions and assuming that attentions are combined
linearly into subsequent contexts. However, we found that some common irrelevant features will
also be highlighted through this approach. The Transformer attribution method [12] assigns local
relevance scores based on LRP and propagates the relevance scores mixed with gradients through
layers.

Attention modules are one of the most important blocks in the Transformer architecture, both for
NLP and CV tasks. Investigations of attentions and explanations are capable of revealing much
information about the decision process. In this work, we propose to explore the information flow
inside ViT using Markov chains with the approach Transition Attention Maps.

3 Transition Attention Maps: Proposed Approach

In this section, we introduce the proposed explainability approach for Vision Transformers, to better
explain the decision process of the model.

3.1 Markov Chain in Transformer

A Markov chain is a stochastic process describing a sequence of random variables Xl in which the
probability of moving to the next state depends only on the current state. The single-step transition
probability (transition matrix) between random variables in a Markov chain can be defined in the
following form:

pl,l+1
ij = P [Xl+1 = j|Xl = i], (1)

3



where the subscripts i,j are the indices of states, the l, l + 1 indicates the step of the transition, and
specifically, P is the transition matrix.

The ViT model divides an image into hundreds of patches and considers each patch as a token
for input, with self-attention blocks to compute the representations of tokens. Considering the
representations of output tokens at each block as states, which only depend on the input tokens, we
can connect the decision process of ViT with the Markov process. We build the connection between
the input and output tokens through computing the transitions of states using attention weights, which
are the row-stochastic matrices:

∀i, j : Ai,j > 0, ∀i :
∑
j

Ai,j = 1. (2)

With attention weights as transition matrices for tokens, we can build an information flow from top to
bottom or any intermediate hidden layer and establish a link between the abstract semantic features
extracted by the model and the figurative information from the image, which can generate more
comprehensible explanations.

3.2 Transitions of States Using Attention Weight Matrices

Classification tasks are performed by Transformers through the embeddings of an additional [class]
token. Some works use the [class] attention weights of the last block to produce explanations, which
show poor interpretability. We think it is the semantic gap between the higher and lower layers that
causes this phenomenon. Therefore, we can leverage the state transition process mentioned above
to get the relevance between model decisions and the image patches. Based on this motivation,
we initialize the states of the Markov Chain states(0) to the relevance scores corresponding to the
attention weights of the [class] token in the last block,

states(0) = Eh[A
(B)
h ](class) ∈ R1×s, (3)

where Eh is the expectation across multiple heads in the attention module, we treat the multiple
heads equally, that is, averaging for multiple heads. (class) is an index representation of the row
corresponding to the [class] token, B is the index of the last block and s is the total number of tokens.

Attention weights in Transformer blocks indicate the correlation between tokens, where the tokens
include both image patches and the [class] token. We consider attention weights in each Transformer
block A(b) as the state transition matrix for the Markov chain.

Residual connections in Transformer: However, the residual connections in Transformer are not
presented by attention weights. To incorporate with the residuals, we add an identity transition (i.e.,
no transition) as residuals to the transition matrix, with the following recursive formula:

states(i) =

{
Eh[A

(B)
h ](class) if i = 0

1
2states

(i−1) + 1
2states

(i−1) · Â(B−i) otherwise
, (4)

where Â(B−i) = Eh[A
(B−i)
h ] is the expectation across heads, indicating the equal treatment in

multiple heads, B− i ∈ {lend, ..., B}. We remark that each block in Transformer has a corresponding
state(i) describing the information flow propagated to the current layer. Note that we set a hyper-
parameter lend to early stop the transitions for the reasons that the first layers are supposed to extract
local features, which contribute less to locate the high-level semantics for predictions. Without
early stopping using lend, our proposed approach produces better explanations than the rollout [11]
and attribution [12] methods. We have ablation studies and provide thorough analyses on this
hyper-parameter in Section 4.1.

3.3 Integrated Gradient for Patch-Level Importance

Since some noise and irrelevant features will be introduced during the transition process, we need
to use some methods to eliminate or diminish them. Simonyan et al. [30] illustrated that gradients
are a natural analog of the model parameters for deep networks, and Chefer et al. [12] proposed a
better explanation algorithm using the product of gradients and feature attributions. Furthermore,
Sundararajan et al. [14] suggested that an attribution method should satisfy the Sensitivity Axiom
because the lack of sensitivity causes gradients to focus on irrelevant features practically. Inspired
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by their work, we use the Integrated Gradient to get the relevant features from the gradients of the
attention module, and translate them with the weights for the states of the Markov chain to get the
class discriminative explanations. The reason for using integrated gradients rather than gradients is
that the integration process effectively retains the relevant parts and reduces the gradient self-induced
noise. By weighting the states, some noise in the model amplified by applying the transition process
will also be reduced or eliminated.

Following [14], we set the baseline to 0, i.e., a black image, and assume the path from the baseline
to input image X is a straight line. We compute the gradient of the output with respect to the last
attention module and get the attribution scores by accumulating these gradients from baseline to input.
Finally, the integration is discretized by the Riemann approximation:

W c
states = ReLU(

1

m

m∑
k=1

∂Fc( k
mX)

∂A(B)
)→ ReLU(

∫ 1

α=0

∂Fc(αX)

∂A(B)
dα), (5)

where W c
states represents the weights for the states of the category c, Fc(·) is the objective function

when c is the target class, and ∂Fc(αX)
∂A(B) is the gradient of model Fc(·) w.r.t. A(B). As α gradually

increases, the gradients corresponding to the truly relevant and significant features will accumulate
to large values. Note that only the positive part of the attributions is taken for removing noises,
following [14, 15], and that m is set to 20, which works well in practice.

3.4 Transition Attention Maps for Transformer Interpretability and Visualizations

Algorithm 1: Transition Attention Maps
Input: Input Image X
Output: Rc

state
Parameters: lend, m(steps) ;
Initialization: ;
states← Eh[A

(B)
h ](class) ∈ R1×s ;

i← 1 ;
l← B − i ; // l ∈ [1, B]:block_index
while l > lend do

statesres ← states ;
Â(l) ← Eh[A

(l)
h ] ;

states← states · Â(B−i) ;
states← 1

2states+
1
2statesres ;

i← i+ 1 ;
l← B − i ;

end
W c

states ← ReLU( 1
m

∑m
k=1

∂Fc( k
mX)

∂A(B) ) ;
Rc

state ←W c
states ⊙ states ;

Return Rc
state

In summary, we propose the approach
named Transition Attention Maps, to ex-
plain the information flow inside the Vision
Transformers. This approach considers the
information flow inside ViT as a Markov
process and uses the states of tokens to de-
note the information at each layer. The
transitions of states can be described by
the matrices of attention weights, which
satisfy the definition of matrices of tran-
sitions. This approach thus tracks the in-
formation flow using the attention weights
and computes the attributions scores of to-
kens for the model’s decisions. For obtain-
ing class discriminative explanations, we
further combine the gradient information
using Integrated Gradients with the states
of tokens. This approach exploits the in-
formation flow through the attentions and
is able to explain the contributions of to-
kens with respect to the predictions. The
pipeline of the proposed approach is illus-
trated in Figure 1 with the pseudocode de-
scribed in Algorithm 1. More implemen-
tation details are referred to the repository:
https://github.com/XianrenYty/Transition_Attention_Maps.git.

4 Trustworthiness Evaluations

To assess the trustworthiness of explainability algorithms, we quantitatively evaluate the proposed
approach with comparisons to the state-of-the-art algorithms through the commonly-used evaluation
metrics. For implementation details, we experiment with the pretrained ViT-B/16 model [4], which
means "Base" variant (Layers:12, Hidden size:768, MLP size:3072, Heads:12) with non-overlaping
16 × 16 input patch size. The input images are resized to 224 × 224. The evaluation results
for more ViT variations are shown in the Appendix F. The code for evaluations is available at:
https://github.com/XianrenYty/Transition_Attention_Maps.git.
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Table 1: Evaluation results of ablation-study experiments.
Faithfulness Evaluation Localization Evaluation

Deletion & Insertion Perturbation test Segmentation

Variants Del. Ins. Pos. Neg. Acc. mIoU mAP

Original (lend=0) 13.07 61.92 20.30 59.94 76.21 58.54 85.29
w/o Integrated 13.96 60.63 21.36 57.97 71.32 53.08 83.06
w/o transition 15.91 57.92 22.37 56.30 77.29 52.50 84.44

different lend

13.10(1)
12.95(2)
12.91(3)
12.77(4)
12.74(5)
12.46(6)
12.72(7)
13.31(8)
13.69(9)

15.14(10)
16.24(11)

62.79(1)
62.96(2)
63.00(3)
63.23(4)
63.00(5)
62.40(6)
62.79(7)
61.36(8)
60.52(9)

59.11(10)
57.74(11)

20.03(1)
19.83(2)
19.73(3)
19.67(4)
19.77(5)
19.96(6)
20.31(7)
20.88(8)
21.28(9)
22.23(10)
22.58(11)

60.83(1)
61.20(2)
61.35(3)
61.53(4)
61.30(5)
60.93(6)
59.76(7)
58.56(8)
58.56(9)
57.14(10)
56.59(11)

78.71(1)
80.19(2)
81.02(3)
81.57(4)
81.40(5)
80.13(6)
76.61(7)
78.13(8)
77.09(9)

75.87(10)
77.29(11)

61.40(1)
62.61(2)
63.05(3)
63.37(4)
62.72(5)
59.89(6)
58.44(7)
55.43(8)
52.63(9)

49.21(10)
52.50(11)

86.18(1)
86.29(2)
86.19(3)
86.30(4)
85.96(5)
84.69(6)
83.71(7)
83.25(8)
83.28(9)

83.20(10)
84.44(11)

Deletion & Insertion metrics [31]. The deletion metric measures a decrease in the probability
of the predicted class as important pixels are sequentially removed, where the importance score is
obtained from the explanations. A sharp drop and thus a low area under the probability curve (AUC)
score indicates a good explanation. The insertion metric, on the other hand, takes a complementary
approach. It measures the increase in probability as important pixels are sequentially introduced, with
higher AUC scores indicate a better explanation.

Perturbation Tests [32, 33]. The idea of perturbation metric is similar to the deletion and insertion
metrics. After obtaining the explanation results, we gradually mask out the pixels of the input image
and measure the mean top-1 accuracy. In the positive perturbation, pixels are masked from the highest
relevance to the lowest, and one expects to see a steep decrease in performance, which indicates
that the masked pixels are important to the classification score. In the negative version, pixels are
removed from lowest to highest, and a good explanation would maintain the accuracy of the model
while removing pixels that are not related to the class. In both cases, we measure the AUC scores, for
erasing between 0%− 90% of the pixels.

Segmentation. The segmentation tests consider each visualization as a semantic segmentation of the
image and compare it to the ground truth segmentation of the ImageNet-Segmentation dataset [34].
Performance is measured by (i) pixel accuracy, (ii) mean-intersection-over-union (mIoU), and (iii)
mean-Average-Precision (mAP). Note that (i) and (ii) are obtained after binarizing each visualization,
which depends on the pre-set threshold (30% of the max value is used in practice [12]), while (iii) is
threshold-free.

Energy-based Pointing Game. Localization evaluations using bounding-box-based annotations [23,
35] may be less accurate than segmentation tests, because the bounding box does not describe the
outline of the objects. To give a complete comparison, we have conducted such experiments and
report the performance of our proposed approach in comparison with baselines in the Appendix A.

4.1 Ablation Study

We provide the ablation-study experiments to validate the effectiveness of the proposed approach
from three aspects: (i) integrated gradients; (ii) the transitions of states; (iii) the affects of lend in the
proposed approach.

(i) Gradients. Instead of vanilla gradients, we adopt the integrated gradients for removing the spurs
and noises in vanilla gradients [14] in our proposed approach. With the metrics previously introduced,
we conduct the comparison experiments using these two gradients separately and obtain the results
in the first two rows of Table 1, which show the significant improvement for both faithfulness and
localization evaluations.

(ii) Transitions of States. Our proposed approach takes the states of tokens in each block of the
Transformer and computes their transitions using attention weights, for eventually explaining the
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Table 2: Comparison in terms of deletion (lower is better) and insertion (higher is better) scores.
Methods raw attention rollout[11] attribution[12] Ours Ours(lend=4)

Deletion 21.83 16.57 14.23 13.08 12.77
Insertion 50.82 59.47 60.02 61.92 63.23

Table 3: Comparison in terms of Positive (lower is better) and Negative (higher is better) perturbation
AUC scores.

Methods raw attention rollout[11] attribution[12] Ours Ours(lend=4)

Positive 28.04 24.10 21.06 20.30 19.67
Negative 49.72 57.79 58.73 59.94 61.53

decision processing. We design the experiments that do not use the transitions of states to compare
with the original approach. As shown in Table 1, the third row takes the same initial state as our
approach but does not perform the transition process. We compare this setting with our approach to
show the effectiveness of using transitions of states to present the information flow in the Transformer.
The experiment results support our claims.

(iii) lend. The rest rows in Table 1 investigate the affect of lend on the states of tokens. The hyper-
parameter lend, as mentioned previously, controls an early stopping for the transition and propagation.
Note that lend = 0 indicates no early stopping. Intuitively, the more layers of propagation the richer
the set of information. However, the algorithm works best in most cases when lend = 4. The reason
for this may be due to the fact that the information near the input is mainly the information of common
features, contributing little to the trustworthiness assessment experiment.

4.2 Evaluation Results: Comparisons with SOTA

The proposed approach produces better explanations than currently state-of-the-art algorithms [11,
12]. We conduct experiments for evaluating the trustworthiness of generated explanations through
transitions of states with attention weights and comparing with the SOTA approaches. The evaluations
are quantitatively measured by the metrics presented previously.

Deletion & Insertion [31]. Table 2 shows results of the deletion and insertion scores obtained by
the baselines and our approaches. Our approach significantly outperforms the previous approaches.
Moreover, with setting lend = 4 for an early stopping of transitions, the performance can be further
improved. Deletion & Insertion evaluations measure the trustworthiness of explanation results to the
model. These results demonstrate that our approach produces better results.

Perturbation Tests [32, 33]. Table 3 shows the results of the perturbation metric. The experiments’
result is similar to Table 2, which quantitatively demonstrates the effectiveness of our proposed
method.

Segmentation [34]. Segmentation tests measure the alignment between the segmentation ground
truth and the explanation results. This is a simple way to visualize the important input features and
explore the reasons behind the decision-making process of the Transformer-based models. Table 4
shows the results of segmentation tests. Our approach gets the best mIoU scores compared to other
baselines, and comparative performance in the other two metrics. However, with lend = 4, our
approach achieves the best performance in all segmentation tests.

5 Use Cases

5.1 Visualizing Model Decisions

Selvaraju et al. [15] proposed that a good visual explanation of the model should be (a) class-
discriminative (i.e. localize the category in the image) and (b) high-resolution (capture fine-grained
details). The most direct application of explainability algorithms is to determine whether the basis for
the model decision is reasonable. Many samples contain more than one category, the explainability
algorithms should be able to highlight the basis on which the model classifies that image as a specific
class. As shown in Figure 2, the rollout method [11] is not class-discriminative but highlights

7



Table 4: Comparison concerning Segmentation performance (higher is better) on the ImageNet-
segmentation dataset [34].

Methods raw attention rollout[11] attribution[12] Ours Ours(lend=4)

Pixel accuracy 67.42 74.95 79.12 76.21 81.57
mIoU 38.16 57.17 55.70 58.54 63.37
mAP 80.24 84.76 86.03 85.29 86.30

fine-grained details in the images. The attribution method [12] can extract category-related features
and part of the target region but is not comprehensive and complete. Our approach can discriminate
multiple categories, not only highlights the entire region of the target category but also highlight the
stripes and something important for predicting the target category. More samples can be found in the
Appendix B.

elephant→

zebra→

raw attention rollout[11] attribution[12] Ours Ours (lend=4)

Figure 2: Illustration of class discriminative ability by different methods.

On the other hand, the algorithm should be able to highlight the complete region and fine-grained
features of the specific category, regardless of whether there are single or multiple target objects in
the image, as Figure 3 shows. More samples can be found in the Appendix C.

goose

albatross

raw attention rollout[11] attribution[12] Ours Ours (lend=4)

Figure 3: Localization of fine-grained features and object regions for a single-class image by different
methods.

5.2 Explaining the Misclassification and Debugging the Model

One main objective for the research in model interpretability is to understand/debug why the model
makes unexpected decisions and to improve the model with explanations. In the image classification
task, we can figure out why the model misclassifies the samples and find out whether the problem
is caused by the confusing labeling of the sample or the model itself. Figure 4 shows us one
misclassification sample, visualized by different methods.
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images raw attention rollout[11] attribution[12] Ours Ours (lend=4)

Target label: 339
Top 5 classes:

912 : worm fence, snake fence, snake-rail fence, Virginia fence value = 12.663 prob = 93.7%
339 : sorrel value = 9.824 prob = 5.5%
716 : picket fence, paling value = 6.884 prob = 0.3%
425 : barn value = 5.168 prob = 0.1%
355 : llama value = 5.155 prob = 0.1%

Figure 4: Illustration of explaining the model misclassification by different methods.

Below the images, we can see the target label, the top 5 predictions and probabilities given by the
model. The target label is provided by ImageNet [36], which is ’sorrel’ while the predicted label
is ’worm fence’ for the given image. We can see that both the attribution method [12] and ours
can localize the ’worm fence’ part well, explaining why the model made this decision. The rollout
[11] method only highlights some fine-grained details in the image but is not relative to the model’s
decision. More samples in the Appendix D show the same conclusion.

5.3 Weakly-Supervised Semantic Segmentation

In the weakly-supervised setting, the dataset consists of images and corresponding annotations that
are relatively easy to obtain, such as tags/labels of objects present in the image. Weakly supervised
semantic segmentation (WSSS) with image-level labels has been widely studied because image-level
labels are much less costly than pixel-level labels. A good visual explanation should have high-
resolution (capture fine-grained detail) which embodies the localization ability of the networks, which
is also a great benefit for WSSS.

Most WSSS methods are CNN-based and use CAMs [22] to obtain segmentation masks using
image-level supervision. The study on WSSS based on Transformer explainability methods is scarce.
In our work, we follow the setting in [37] to train the ViT-B/16-224 [4] classifier with image-level
labels on the PASCAL VOC dataset [38], which contains 20 semantic classes and the background,
and is split into 1464 training images, 1449 validation images, and 1456 test images. We leverage
our explainability approach to generate the segmentation masks of each class and set a threshold
to generate the background mask. The segmentation map is obtained from the probability of these
masks.

Since the raw attention and rollout [11] methods are not class discriminative, we only use the
attribution method [12] as a comparison. The visualizations of the segmentation maps and qualities
in IoU score are shown in Figure 5. The performance of our method in terms of mIoU scores on
the PASCAL VOC val (test) set is 49.58% (51.28%) better than 31.92% (32.77%) of the attribution
method [12].

6 Conclusions

In this work, we propose a novel approach, Transition Attention Maps, to explain the information
flow through Vision Transformers. Instead of directly visualizing the attention weights, this approach
addresses the semantic gap between the top and bottom layers. Further, we obtain more accurate
category regions by accumulating the gradient information of the target categories.

To assess the trustworthiness of explainability methods, we performed quantitative evaluations of
faithfulness and localization on the ImageNet validation set. As shown by the experimental results,
our approach can better display the features, contours, and multi-category information of the objects
of the specified category compared with state-of-the-art explainability approaches.
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origin

IoU(dog)
IoU(cat)
IoU(sofa)

ground truth

→
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→

attribution[12]

27.93
16.71
34.79

Ours

66.07
51.01
37.25

Figure 5: Visualization of predicted weakly-supervised semantic segmentation results from the
attribution approach and ours.

Our approach does not require any model changes and can be directly applied to the Transformer-
based models. The interpretability provided by our approach gives an efficient and effective way to
debug and improve the Transformer-based models. Furthermore, we show some interpretability use
cases with examples of our approach. Based on these applications, we can explore more aspects of
Transformer-based models in the field of computer vision.
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A Results of the Energy-based Pointing Game

Energy-based Pointing game [35] extracts maximum point in the saliency map to see whether the max-
imum falls into the object bounding box. Instead of using only the maximum point, they compute the
quantity of energy concerning the saliency map that falls into the target object bounding box. The met-
rics for the energy-based pointing game can be denoted as Precision =

∑
Lc

(i,j)∈bbox∑
Lc

(i,j)∈bbox
+
∑

Lc
(i,j)/∈bbox

.

We complete this evaluation by adding recall (Recall =
∑

Lc
(i,j)∈bbox∑

P(i,j)∈bbox
) and F1 score. Evaluations are

done on the ImageNet validation set.

Table 5 shows that the rollout method [11] leads to a higher recall due to a smoother distribution,
while the attribution method [12] highlights significant areas, resulting in a low recall. Our approach
gets results that are comparable to the attribution method in terms of precision, but with a higher
recall score.

Table 5: Comparison in terms of Energy-based Pointing Game (higher is better) on the ImageNet
validation set [36].

Methods raw attention rollout[11] attribution[12] Ours Ours(lend=4)

Precision 53.09 54.07 55.83 55.26 55.76
Recall 3.11 20.17 1.26 9.43 5.62
F1 score 2.96 25.17 3.12 14.47 9.35
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B Visualization of Class Discriminative Performance for different methods

tiger cat→

bull mastiff→

zebra→

elephant→

dog→

bird→

dog→

cat→

raw attention rollout[11] attribution[12] Ours Ours (lend=4)

Figure 6: Performance of Class Discriminative Ability for different methods
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C Visualization of Localization Performance for different methods

kite

magpie

lipstick

Border collie

tiger

gyromitra

raw attention rollout[11] attribution[12] Ours Ours (lend=4)

Figure 7: Localization of Fine-grained feature and Object Region of a single class for different
methods
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D Visualization of Explanation of misclassification for different methods

Target label: 99
Top 5 classes:

975 : lakeside, lakeshore value = 9.200 prob = 50.3%
100 : black swan, Cygnus atratus value = 8.768 prob = 32.7%
99 : goose value = 7.360 prob = 8.0%
130 : flamingo value = 4.868 prob = 0.7%
449 : boathouse value = 4.053 prob = 0.3%

Target label: 578
Top 5 classes:

872 : tripod value = 8.563 prob = 44.8%
578 : gown value = 7.549 prob = 16.2%
862 : torch value = 5.799 prob = 2.8%
447 : binoculars, field glasses, opera glasses value = 5.543 prob = 2.2%
843 : swing value = 5.404 prob = 1.9%

Target label: 811
Top 5 classes:

545 : electric fan, blower value = 14.275 prob = 87.9%
811 : space heater value = 12.259 prob = 11.7%
827 : stove value = 7.756 prob = 0.1%
753 : radiator value = 6.547 prob = 0.0%
556 : fire screen, fireguard value = 5.082 prob = 0.0%

Target label: 641
Top 5 classes:

822 : steel drum value = 7.103 prob = 21.9%
641 : maraca value = 6.016 prob = 7.4%
762 : restaurant, eating house, eating place, eatery value = 5.652 prob = 5.1%
860 : tobacco shop, tobacconist shop, tobacconist value = 4.946 prob = 2.5%
577 : gong, tam-tam value = 4.887 prob = 2.4%

Figure 8: Performance of Explaining Model Misclassification for different methods
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E Visualization of Segmentation results for different methods

origin

IoU(person)

IoU(cat)
IoU(pottedplant)
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IoU(aeroplane)
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IoU(aeroplane)

ground truth

→

→
→

→
→
→

→
→

→

attribution[12]

32.98

12.79
57.48

53.03
41.48
48.65

28.94
52.50

28.94

Ours

75.15

86.64
40.73

74.31
86.52
52.95

57.33
20.32

52.50

Figure 9: Visualization of predicted weakly-supervised semantic segmentation results from the
attribution approach and ours.
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F Results on ViT variations

We furthermore evaluate our approach on other variants of ViT (ViT-L/16-224, ViT-B/16-384) [4]
and Data-efficient image Transformer (DeiT) [39], compared with SOTA approaches. The details of
Vision Transformer model variants are shown in Tabel 6.

The experiments on deletion & insertion metrics and segmentation tests are conducted to assess the
trustworthiness and localization ability of explainability algorithms respectively. Results in Tables 7
and 8 show that our approach outperforms others.

Table 6: Details of ViT variations
Model Layers Hidden size D MLP size Heads Patch_size Img_size

ViT-B/16-224 12 768 3072 12 16 224
DeiT-B/16-224 12 768 3072 12 16 224
ViT-L/16-224 24 1024 4096 16 16 224
ViT-B/16-384 12 768 3072 12 16 384

Table 7: Comparison in terms of deletion (lower is better) and insertion (higher is better) scores.
(i) DeiT-B/16-224

Methods raw attention rollout[11] attribution[12] Ours(lend=4)

Deletion 21.05 26.39 9.38 8.82
Insertion 25.48 25.44 36.14 36.95

(ii) ViT-L/16-224
Methods raw attention rollout[11] attribution[12] Ours(lend=4)

Deletion 27.14 20.97 19.37 15.39
Insertion 48.80 58.01 58.30 62.71

(iii) ViT-B/16-384
Methods raw attention rollout[11] attribution[12] Ours(lend=4)

Deletion 25.59 17.69 16.32 14.28
Insertion 60.50 69.34 69.79 71.54

Table 8: Comparison concerning Segmentation performance (higher is better) on the ImageNet-
segmentation dataset [34].

(i) DeiT-B/16-224
Methods raw attention rollout[11] attribution[12] Ours(lend=4)

Pixel accuracy 65.77 46.43 80.09 75.89
mIoU 34.78 29.48 57.81 58.89
mAP 76.51 67.98 86.07 85.98

(ii) ViT-L/16-224
Methods raw attention rollout[11] attribution[12] Ours(lend=4)

Pixel accuracy 67.37 54.26 74.60 76.81
mIoU 37.68 37.18 49.33 59.00
mAP 74.75 79.18 81.24 84.42

(iii) ViT-B/16-384
Methods raw attention rollout[11] attribution[12] Ours(lend=4)

Pixel accuracy 67.75 68.63 80.19 82.02
mIoU 40.80 50.56 58.17 65.14
mAP 80.13 81.92 85.97 85.79
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