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Abstract
Chain-of-Thought reasoning has emerged as a
powerful approach for solving complex mathemat-
ical and logical problems. However, it can often
veer off track through incorrect or unsubstanti-
ated inferences. Formal mathematical reasoning,
which can be checked with a formal verifier, is
one approach to addressing this issue. However,
currently LLMs are simply not good enough to
solve complex problems in a formal way, and even
just formalizing an informal problem statement
can be challenging. Motivated by this fact, in this
work we consider the problem of learning reliable
verifiers for natural language Chain-of-Thought
reasoning. That is, given a problem statement and
step-by-step solution in natural language, the aim
of the verifier is to output [Yes] if the reasoning
steps in the solution are all valid, and [No] other-
wise. In this work we give a formal PAC-learning
framework for studying this problem. We pro-
pose and analyze several natural verification goals,
at different levels of strength, in this framework.
We provide sample complexity upper-bounds for
learning verifiers satisfying these goals, as well as
lower-bound and impossibility results for learn-
ing other natural verification objectives without
additional assumptions.

1. Introduction
With increasing use of LLMs to solve complex mathematical
and logical problems through chain-of-thought reasoning,
it has become crucial to develop verifiers that can check
the correctness of these generated solutions. In particular,
even with recent advances, Chain-of-Thought (CoT) rea-
soning is still widely believed to suffer from catastrophic
failures resulting from accumulated errors except for highly
limited scenarios (Ling et al., 2023; Stechly et al., 2024).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
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Models. Do not distribute.

It can be particularly challenging to detect subtle errors in
long sequences of reasoning, especially when presented via
informal natural expressions. This motivates the need for
designing effective verifiers for CoT reasoning in natural
language.

To study this problem, in this work we introduce a PAC-
learning framework for learning verifiers for sequential rea-
soners. Our learning algorithms are given a sample of some
problem statements and labeled reasoning sequences for the
problems, and are required to check the correctness of un-
seen reasoning sequences for unseen problems. We consider
several related but different verification goals and analyze
the sample complexity for learning verifiers satisfying these
criteria, giving both upper bounds and impossibility results.

For example, the simplest (weakest) verification goal we
consider is that given a random reasoning trace from some
underlying distribution D, the verifier should output whether
the reasoning is correct or faulty (and if faulty, where the
first error occurred), and it should have error rate at most
some given ϵ > 0. The aim is then, with probability≥ 1−δ,
to learn such a verifier from labeled data of correct and faulty
reasoning traces from the same distribution. One drawback
of this simple verification goal is that it is not secure against
adaptive use. For example, if an LLM reasoner is told by the
verifier that a reasoning trace x0, x1, ..., xt is incorrect at
the ith step, then a natural reaction is to back up and replace
xi with some other step x′

i and try again, and to keep trying
until a new reasoning trace is found that succeeds. But there
is now no guarantee the final trace produced is correct, both
due to the multiple rounds of querying and because the new
traces queried may now be out-of-distribution.

To address the above challenge, we also introduce a stronger,
more trustworthy verification goal, in which given some dis-
tribution D over problem instances x0, for most x0 ∼ D the
verifier should not accept any faulty reasoning trace from x0.
Of course, such a verifier should also accept at least some
correct reasoning traces from x0, and we give upper and
lower bounds depending on whether we allow the verifier to
just accept a designated gold standard reasoning trace g(x0)
or whether we require it accept a large fraction of all correct
reasoning traces from x0 without any additional assump-
tions. These verifiers are more robust to any distribution
shift in the reasoning traces compared to what was available
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in the training set.

Overall, our work introduces a principled framework for
designing verifiers for CoT reasoning using machine learn-
ing. Our learnability results highlight the usefulness of our
framework for designing verifiers with desirable properties
with bounded sample complexity and some fundamental
requirements for learning CoT verifiers.

1.1. Contributions

Concretely, we make the following contributions.

• We introduce a formal framework for studying verifiers
for Chain of Thought reasoning. Given any problem state-
ment and a sequence of reasoning steps for the problem,
we propose the problem of learning verifiers that examine
the steps for correctness, and for an incorrect reasoning
trace return the first faulty step in the reasoning.

• We formally define simple verifiers which have access to
random Chain of Thought reasoning sequences labeled
as “correct” or “incorrect” along with the first faulty step.
We establish sample complexity bounds for learning good
simple verifiers in a PAC sense for verifier classes that are
finite or have a finite VC dimension.

• We next introduce the more powerful trustable verifiers,
that only have access to random problems and a gold stan-
dard reasoner that provides a small number of guaranteed
correct reasoning traces for each sampled problem. We es-
tablish PAC learnability of designing verifiers that accept
all the gold standard reasoning traces on most problems
and never accept faulty reasoning traces, provided the
space of reasoning steps is finite.

• Finally, we extend our trustable verification goal to the
case where there may be a large number of gold stan-
dard reasoning traces, but only a random correct trace is
available to the learner. We establish upper and lower
bounds on the sample complexity of learning a verifier
that is always sound (i.e., never accepts an incorrect trace)
and accepts most of the gold standard traces on most
problems.

1.2. Related work

Chain-of-Thought generation. Chain-of-Thought and its
variants (Wei et al., 2022; Zhang et al., 2023; Wang et al.,
2023; Yao et al., 2023) are gaining popularity as paradigms
for studying LLM reasoning. (Joshi et al., 2025) study
the learnability of a time-invariant autoregressive generator
for CoT for a fixed generation length T , and obtain sam-
ple complexity logarithmic in T , improving over the linear
dependence for time-variant generation in (Malach, 2024).
Their work focuses only on in-distribution generalization. In
contrast, our trustable verification model is able to provide
strong verification guarantees even for out-of-distribution

reasoning, which is crucial in the context of typical CoT
generation where the generator may adapt to prompts or
feedback. We further note an equivalence between a special
case of our verification model and their generation model,
in the sense that an algorithm for one can be used to achieve
the other. Empirically, LLM based verifiers have been used
to solve specific tasks, even outperforming finetuning based
approaches (Cobbe et al., 2021).

Learning with one-sided error. Our strongest verification
model requires the verifier to not accept any incorrect proof
but possibly miss some legitimate proofs. The formulation
bears resemblance to prior work on learnability under one-
sided error (Natarajan, 1987; Kivinen, 1995; Bshouty &
Burroughs, 2005), and in particular our learning algorithm
is similar to the closure algorithm proposed in this litera-
ture. Further, we consider learning from only positively
labeled traces (Section 4.2). A related direction studies
learning from positive and unlabeled data for binary classifi-
cation (Denis, 1998; Denis et al., 2005).

Multiclass classification. Our verifiers not only predict
whether a proof is correct or faulty, but also indicate the
first incorrect step in the chain of reasoning. The output
of the classifier thus takes one of T + 1 values (correct, or
first fault at step i ∈ [T ]) and can be thought of as a spe-
cial type of structured multiclass classification. Multiclass
classification has been extensively studied to understand
how learnability is affected by the number of different label
classes (Natarajan, 2004; Tewari & Bartlett, 2007), with
a recent focus on infinite class size (Brukhim et al., 2022;
Hanneke et al., 2023; 2024). The latter raises an interesting
open question regarding learnability of CoT reasoners and
verifiers for arbitrarily long traces.

Formal methods and learning. Formal verification (Clarke
& Wing, 1996) is a sound approach used to verify correct-
ness of software or mathematical proofs written accord-
ing to precise formal specifications. While LLMs have
helped improve some formal verification systems (Cohen
& Peled, 2024), it is not clear if formal verification can be
used for verifying the natural language reasoning of modern
LLMs (Zhou et al., 2024).

2. Setup and Definitions
Let X denote a domain of possible problem statements. For
example, an x0 ∈ X could be a mathematical conjecture or
a Satisfiability problem instance or the description of an ini-
tial state in a Sudoku game or Einstein puzzle. Let Σ denote
a set of possible reasoning steps; we will think of a “step” as
a few tokens, such as [Suppose, for contradiction, that

√
2 =

a
b for integers a, b] or [Clauses (A∨B) and (A∨¬B) imply
(A)]. A verifier is a function h : X × Σ∗ → {YES,NO},
where given input (x0, τ = (x1, x2, ..., xt)) where x0 ∈ X
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and each xi ∈ Σ for i ≥ 1, the verifier should output
YES if xt is a legitimate inference from (x0, (x1, ..., xt−1))
and should output NO if xt is not a legitimate inference
from (x0, (x1, ..., xt−1)). Formally, we can allow h to out-
put arbitrarily if (x0, (x1, ..., xt−1)) itself contains a faulty
step: that is, a “correct” h only needs to output correctly on
(x0, (x1, x2, ..., xt)) if (x0, (x1, ..., xt−1)) is itself correct.

Given a full reasoning trace or proof (x0, (x1, ..., xT )), a
verifier h is “run” on the trace by running h on each prefix,
i.e., h(x0, (x1)), h(x0, (x1, x2)), ..., h(x0, (x1, ..., xT )). If
all of those runs output YES then we define h as saying the
reasoning is legitimate, and if any output NO then we define
h as saying the reasoning is faulty (and we output the first
NO as the location of the first faulty step). We will use H
to denote a family of verifiers.

3. Simple Verification
Let D be a distribution over problems and reasoning traces
(x0, (x1, ..., xt)) of length ≤ T , which includes both legiti-
mate reasoning traces and faulty reasoning traces. Assume
we have an i.i.d. training sample S of problems and rea-
soning traces drawn from D, and the traces are labeled
according to a perfect verifier h∗ ∈ H ⊆ {YES,NO}X×Σ∗

.
That is, a trace is labeled YES if every step in it is legit-
imate, and is labeled NO otherwise. Assume that for the
faulty traces, we are also told which is the first faulty step
in it. We aim to learn a verifier h from such a sample which
has small error over unseen samples from D. Note that we
make no assumptions on the size of Σ (the set of all possible
reasoning steps) for this result.

Goal: Given the training set S of reasoning traces drawn
i.i.d. from D, our goal is to learn a simple verifier h
with error at most ϵ over D. Specifically, given a new
trace (x0, (x1, . . . , xt)) ∼ D, we will run h(x0, (x1)),
h(x0, (x1, x2)), . . . , h(x0, (x1, . . . , xt)) and if all of them
output YES then we say the reasoning trace is “legitimate”
and if any output NO then we say the reasoning is “faulty”,
and we output the first NO as the location of the first faulty
step. We say that the learned verifier h is correct on trace
(x0, (x1, . . . , xt)) if either

(a) the entire trace consists of correct reasoning
steps (i.e., h∗(x0, (x1, . . . , xj)) = YES for all 1 ≤
j ≤ t) and all of h(x0, (x1)), h(x0, (x1, x2)), ...,
h(x0, (x1, . . . , xt)) output YES, or

(b) the trace is faulty reasoning and h correctly outputs
NO on the first faulty step (and outputs YES up until
the first faulty step).

Any other behavior is viewed as h making an error on the
given reasoning trace.

We will use f(h, (x0, τ = (x1, x2, ..., xt))) to denote
the smallest index j such that h(x0, (x1, . . . , xj)) = NO,
and set to t otherwise (if no such index exists). That is,
f(h, (x0, τ)) is the index of the reasoning trace τ where
h terminates its evaluation of (x0, τ), either by finding a
faulty step at some index j ∈ [t] or accepting the reasoning
as legitimate by evaluating to YES all the way through the
last index t. We use this to define the following loss function
which gives the 0-1 loss of verifier h on input (x0, τ)

ℓh(x0, τ) = ℓh∗(h, (x0, τ)) :=

I[h(x0, τj) ̸= h∗(x0, τj) for some j ≤ f(h∗, (x0, τ))].

Here τj = (x1, . . . , xj) denotes a sub-trace of τ =
(x1, . . . , xt). Formally, we have the following definition
for simply-verifiably-PAC learning a verifier from a class of
verifiers H .

Definition 3.1 (SVPAC-learnable). Let X denote the prob-
lem space and let H ⊆ {YES,NO}X×Σ∗

denote the class
of verifiers. Then a learner is said to simply-verifiably-PAC
learn H with sample size m = M(ϵ, δ) (sample complex-
ity is the smallest such m) if for any h∗ ∈ H , for any
ϵ, δ ∈ (0, 1), for any distribution D over X × Σ∗ realizable
by h∗ (i.e. legitimate inference is always given by h∗), given
a sample S ∼ Dm, the learner outputs a verifier h such that
with probability at least 1− δ over the draw of S,

Pr
(x0,τ=(x1,...,xt))∼D

[ℓh∗(h, (x0, τ)) = 1] ≤ ϵ.

The learner is said to be proper if h ∈ H .

Note that our definition above requires the learned verifier
h to match the behavior of the correct verifier h∗ (with high
probability) on any new reasoning trace drawn from D up
to the first faulty step (if one exists) pointed out by h∗. We
will now show that it is possible to learn such a verifier
with small sample complexity. First, for the case of finite
class of verifiers H , we observe that a simple union bound
based argument implies that we can learn a good verifier
with O(log |H|) trace samples.

Theorem 3.2. Any finite class of verifiers H is SVPAC-
learnable with sample complexity 1

ϵ (log(|H|) + log 1
δ ).

Proof. We will simply output any verifier h ∈ H that is
consistent with the training sample (i.e. makes no error) and
show that it achieves the desired low error for any sample
size that is larger than the stated sample complexity. Fix
some verifier h with error ≥ ϵ over D. This means that
for a random reasoning trace x = (x0, (x1, ..., xt)) ∼ D,
with probability ≥ ϵ, h makes a mistake, that is, ℓh(x) = 1.
So, this means that the probability that h does not make a
mistake on any example x ∈ S is at most (1 − ϵ)|S|. We

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

On Learning Verifiers for Chain-of-Thought Reasoning

now set this to δ/|H| and solve for |S| = 1
ϵ (log(|H|) +

log 1
δ ).

We further show that a finite VC dimension of the veri-
fier class is a sufficient condition to SVPAC-learn with re-
spect to H . Our sample complexity bounds in this case are
O(VCDim(H) log T ), scaling only logarithmically with the
maximum length T of a reasoning trace. We will select
h ∈ H by ERM (Empirical Risk Minimization) over the
training sample. Note that we will run a verifier h up to
T times on any sample trace to determine whether it runs
correctly on it. Our argument adapts the analogous proof in
(Joshi et al., 2025).
Theorem 3.3. Any class of verifiers H with finite VC-
dimension VCDim(H) is SVPAC-learnable with sample
complexity O

(
1
ϵ (VCDim(H) log T + log 1

δ )
)
.

Proof. We will select h ∈ H by ERM (Empirical Risk Min-
imization) over the training sample (in the realizable case
this corresponds to selecting a consistent verifier). Note that
we will run a verifier h up to T times on any sample trace
to determine whether it runs correctly on it. Our argument
adapts the analogous proof in (Joshi et al., 2025). Let τj be a
shorthand for a reasoning sub-trace (x1, ..., xj). Recall that
the loss function on a given input (x0, τ = (x1, x2, ..., xt))
is given as

ℓh(x0, τ) =

I[h(x0, τj) ̸= h∗(x0, τj) for some j ≤ f(h∗, (x0, τ))],

and we define the corresponding function class LH = {ℓh |
h ∈ H}.

Now given a sample S = ((x
(1)
0 , τ (1)), . . . , (x

(m)
0 , τ (m)))

of size m, we are interested in the number of different be-
haviors of functions h ∈ H over the sample. The shattering
coefficient

ΓLH(S)

= |{(ℓh(x(1)
0 , τ (1)), . . . , ℓh(x

(m)
0 , τ (m))) | h ∈ H}|

≤ |{(h(x(i)
0 , τ

(i)
j ))i∈[m],j∈[T ] | h ∈ H}|

≤ ΓH(mT ),

where we have used that if ℓh1
(x0, τ) ̸= ℓh2

(x0, τ) then
h1(x0, τj) ̸= h2(x0, τj) for some j ∈ [T ].

Using Sauer’s lemma, for any m ≥ VCDim(H)
T , we have

ΓLH(m) ≤ ΓH(mT ) ≤
(

emT

VCDim(H)

)VCDim(H)

A standard lemma (e.g. (Anthony & Bartlett, 1999),
Appendix 1) now implies that VCDim(LH) ≤
VCDim(H) log T , where T is the maximum length
of a reasoning trace.

Our model for simple verifiers above allows for learning
a verifier from an arbitrary unknown fixed distribution D
over the reasoning traces. However, a major limitation of
this model is that the guarantees only apply to traces drawn
according to D. If a reasoning model is told that there is a
faulty step in its reasoning chain (x1, . . . , xn), then it might
modify its reasoning slightly to (x1, . . . , x

′
n). But the new

trace is no longer from D and a verifier trained over samples
from D is not guaranteed to work well on this modified rea-
soning trace. In other words, the feedback from the verifier
may be the very reason why there is a distribution shift. In
the following sections, we introduce a more powerful model
for learning verifiers that are robust to distribution shifts
that may be induced as a natural consequence of receiving
feedback from the verifier.

4. Trustable Verification
As discussed above, designing a verifier that only works
well for in-distribution reasoning traces may not be
desirable in typical scenarios. Motivated by this, we
introduce a model for learning more powerful verifiers
which provide strong guarantees for any reasoning trace, as
long as the problem statements come from a distribution. In
particular, we require that for most problem statements, the
learned verifiers do not accept any false traces; that is, the
learner should be sound. However, we potentially relax the
requirement that the learner must accept all correct traces.
It turns out we observe two distinct regimes for learnability
depending on whether the number of correct reasoning
traces is small or large.

Assumptions. We will make two additional assumptions
in order to achieve the above stronger verification guar-
antee. First, we assume that correct proofs on any prob-
lem x are given to the learner by a gold standard reasoner
g : X → 2Σ

T

. That is, g(x) denotes a set of correct rea-
soning traces for the problem x, and we will have access
to some reasoning traces (made more precise below) gen-
erated by g in our training set. For example, |g(x)| = 1
corresponds to there being a single correct gold standard
reasoning trace for the problem x, which will be available
if the problem x is sampled in the training set. A caveat is
that we would not be able to verify reasoning traces that are
not generated by the gold standard reasoner available to us,
even if they may be legitimate. Second, we will assume that
the set of legal reasoning steps |Σ| is finite.

Goal: Our training set S will consist of m problems drawn
i.i.d. from some distribution D. For each problem x in the
training set, we will run g to create the gold-standard traces,
which will be our positive examples. If the number of
correct traces is small, we can create negative examples for
each way of deviating from the tree of gold-standard proofs
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(See Section 4.1). Given these examples, our goal is to learn
a trustable verifier h that, given a new problem x ∼ D and
a proposed reasoning trace τ for it, is able to verify (with
high probability) if the reasoning trace is correct according
to g. That is, h is correct on x if it will reject all faulty traces
on x, and will correctly accept most (or even all) traces that
match the gold standard g. In terminology familiar from
formal logic, we define the goal for our learned verifiers in
terms of soundness and completeness below.

Definition 4.1 (γ-complete w.r.t. g and D̃|x and sound ver-
ifier). Given a problem x ∈ X , a set of correct reasoning
traces g(x) ⊆ ΣT for the problem, and a distribution D̃|x
over traces in g(x), a verifier h : X × ΣT → {YES,NO}
is said to γ-completely verify x w.r.t. g and D̃|x if Ch(x) =
{τ ∈ ΣT | h(x, τ) = YES} satisfies ED̃|x

[Ch ∩ g(x)] ≥ γ,
and soundly verifies x if Ch ⊆ g(x).

1-completeness corresponds to the learner essentially accept-
ing all the traces that the gold reasoner g deems as correct.
We will say 1-completeness w.r.t. g, i.e., omit the conditional
distribution D̃|x, to mean the above definition holds for all
conditional distributions (meaning the verifier says YES ex-
actly for g(x)). Later, we will relax 1-completeness to γ =
1− η completeness for small η in some more challenging
learning settings, but will always insist on perfect soundness.

4.1. Sample complexity when the number of correct
proofs is small

In this section, we will assume that the number of gold
standard reasoning traces for any problem of interest in X
is small. That, is |g(x)| is bounded by a small constant k for
any x ∈ X1. In this case, it is reasonable to expect that we
have access to all the gold standard proofs for any problem
x in the training sample. We show how to create training
samples for learning a verifier using g and establish sample
complexity bounds for learnability of verifier classes that
are finite or have finite VC dimension.

Formally, for each problem x in the training sample S ∼
Dm, we will run g to generate all the gold standard proofs.
These will be our positive examples. To generate negative
examples, we consider the first step of deviation from any
correct trace for x and add a negative example corresponding
to it. Let Tg(x) denote the tree of positive traces on the
problem instance x. The root of the tree is the problem
statement x, and each node represents a valid reasoning
step according to one of the positive traces in g(x). By
assumption on |g(x)|, Tg(x) has at most k leaf nodes. Now
we create negative examples for each internal node xi of
Tg(x) as follows. Let (x̃0 = x, x̃1, . . . , x̃i = xi) denote the

1A natural example for the case k = 1 could be a SAT-solver or
an Mixed Integer Program solver where the gold-standard solver g
uses a deterministic branching rule that we know works pretty well.

path from the root to xi on Tg(x), and Xi ⊂ Σ denote its
set of child nodes. Then for every x′ ∈ Σ \Xi, we create a
faulty trace (x̃0, x̃1, . . . , x̃i−1, x

′) and add it as a negatively
labeled example for the problem x.

Finally, we formally state the definition of trustable verifi-
cation. Notably, we require the learned verifier to be both
complete (w.r.t. the gold standard g) and sound on problems
drawn from D. In contrast to simple verifiers, the traces that
we expect a trustable verifier to verify can be arbitrary.

Definition 4.2 (TVPAC-learnable). Let X denote the prob-
lem space and let H ⊆ {YES,NO}X×Σ∗

denote the
class of verifiers. Let g(x) ⊆ ΣT denote the set of cor-
rect reasoning traces for any x ∈ X . Then a learner
is said to trustably-verifiably-PAC learn H with sample
size m = M(ϵ, δ) (sample complexity is the smallest
such m) if for any h∗ ∈ H , for any ϵ, δ ∈ (0, 1), for
any distribution D over X realizable by h∗ (i.e. for all
x, g(x) = Ch∗(x) = {τ ∈ ΣT | h∗(x, τ) = YES}),
given a sample S ∼ Dm and for each x ∈ S given ac-
cess to the set g(x), the learner outputs a verifier h such
that with probability at least 1 − δ over the draw of S,
Prx∼D[h is 1-complete w.r.t. g and sound for x] ≥ 1 − ϵ.
The learner is said to be proper if h ∈ H .

For the case of a finite verifier class H , we can still show
a O(log |H|) upper bound on the sample complexity of
learning a good verifier.

Theorem 4.3. Any finite class of verifiers H is TVPAC-
learnable with sample complexity 1

ϵ (log(|H|) + log 1
δ ).

Proof. We will simply output any verifier H that makes no
error on the training sample. Assume that h has error ≥ ϵ
over D. This means that for each x0 ∈ S, with probability
≥ ϵ, h will make a mistake on at least one of the examples
created from x0. To make this claim we are using the fact
that if h accepts any other reasoning trace f(x0) /∈ g(x0),
then h must say YES to at least one of the negative exam-
ples in S that was produced from x0; specifically, it must
have mistakenly accepted one of the traces (x0, ..., xi−1, x

′
i)

where i is the index of the first step where f(x0) deviates
from Tg(x0). So, the probability that h does not make a
mistake on any example x0 ∈ S is at most (1− ϵ)|S|. We
now set this to δ/|H| and solve for |S|.

We further show that it is possible to TVPAC-learn any
verifier class with finite VC-dimension.

Theorem 4.4. Any class of verifiers H with finite VC-
dimension VCDim(H) is TVPAC-learnable with sample
complexity O

(
1
ϵ (VCDim(H) log(kT |Σ|) + log 1

δ )
)
, where

k is a bound on the number of correct proofs generated by g.

Proof. We select h ∈ H by Empirical Risk Minimization
over the augmented training sample (with positive and neg-
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ative examples created using g(x)) described above (by
realizability this corresponds to returning any consistent ver-
ifier). Note that we will run a verifier h up to kT |Σ| times
on any sample trace to determine whether it runs correctly
on it. The proof is similar to that of Theorem 3.3. Let τj be
a shorthand for a reasoning sub-trace (x1, ..., xj). Define a
loss function on a given input (x0, τ = (x1, x2, ..., xt)) as

ℓh(x0, τ) := I[h(x0, τj) ̸= h∗(x0, τj)] for some j ∈ [T ],

where h∗ is the verifier in H that accepts exactly the correct
traces according to g, and let the corresponding function
class be L = {ℓh | h ∈ H}.

Now given a sample S =

((x
(1)
0 , g(x

(1)
0 )), . . . , (x

(m)
0 , g(x

(m)
0 ))) of size m, we

are interested in the number of different behaviors of
functions h ∈ H over the sample. Given a collection of
correct traces g(x0), define τ1g (x0) as the collection of
all the sub-traces of traces in g(x0) along with one-step
deviations of these sub-traces. Notice |τ1g (x0)| ≤ kT |Σ|
for any x0. The shattering coefficient

ΓL(S)

= |{(ℓh(x(1)
0 , g(x

(1)
0 )), . . . , ℓh(x

(m)
0 , g(x

(m)
0 ))) | h ∈ H}|

≤ |{(h(x(i)
0 , τ̃))

i∈[m],τ̃∈τ1
g (x

(i)
0 )
| h ∈ H}|

≤ ΓH(mkT |Σ|),

where we have used that if ℓh1
(x0, τ) ̸= ℓh2

(x0, τ) then
h1(x0, τ̃) ̸= h2(x0, τ̃) for some τ̃ ∈ τ1g (x0).

Using Sauer’s lemma, for any m ≥ VCDim(H)
kT |Σ| , we have

ΓL(m) ≤ ΓH(mkT |Σ|) ≤
(

emkT |Σ|
VCDim(H)

)VCDim(H)

.

A standard lemma (e.g. (Anthony & Bartlett, 1999),
Appendix 1) now implies that VCDim(L) ≤
VCDim(H) log kT |Σ|, where T is the maximum length of
a reasoning trace.

Some remarks are in order. Our trustable verification model
has an interesting property that good verifiers in our models
for any problem x not only guarantee correctness of the
reasoning steps so far, but also prompt the reasoner away
from possibly legitimate reasoning steps which may not
however result in a solution for the problem x. This ad-
ditional stronger property about our verifiers makes them
more challenging to learn. In fact, for the special case
|g(x)| = k = 1, our verification model is equivalent to
the Chain-of-Thought autoregressive generation model of
(Joshi et al., 2025). This is surprising as verifying a proof
is usually believed to be easier than generating it (although
formally an open question, for instance P ̸= NP), but the

strong “guiding” abilities of our verifiers can be used for
generation.
Remark 4.5. For k = 1, our trustable verification model is
equivalent to the generation model of (Joshi et al., 2025)
provided |Σ| is finite, in the sense that an efficient algorithm
for verification implies an efficient algorithm for generation,
and vice versa. To see this, given a verifier h that is guar-
anteed to accept only the single gold standard trace g(x),
we can generate the correct proof using h as follows. Run
h(x, τ0) for each τ0 ∈ Σ until one of them, say x1, yields
YES. Now run h(x, (x1, τ1)) for each τ1 until acceptance,
and so on. Doing this T times generates a proof for x that
matches g(x). Conversely, to verify if a generator is correct
on a problem x, we can simply match its reasoning trace
against g(x). An interesting consequence of this is that we
can hope to use a good verifier to train a good reasoner.

4.2. Linear sample complexity for any number of
correct proofs

We will now consider an extension to our trustable model
where we no longer assume a small bound on the number
of gold standard traces for every problem x ∈ X . This
would make it unreasonable to expect the gold standard rea-
soner g to generate all proofs for a given problem instance x.
Instead, we would only require it to generate a random cor-
rect proof. For an example, one could think of randomized
solvers for constraint satisfaction problems. We will relax
the goal of being perfectly complete w.r.t. g (Definition 4.1)
to being almost perfectly complete, while still requiring the
verifier to be sound.

Our training set S will consist of problem-trace pairs (x, τ)
where τ is a random correct trace from g(x). We learn from
only positively labeled examples. Formally, we have the
following modification for Definition 4.2.

Definition 4.6 (γ-TVPAC-learnable). Let X denote the
problem space and let H ⊆ {YES,NO}X×Σ∗

denote
the class of verifiers. Let g(x) ⊆ ΣT denote the set of
correct reasoning traces for any x ∈ X . Then a learner is
said to γ-trustably-verifiably-PAC learn H with sample
size m = M(ϵ, δ) (sample complexity is the smallest
such m) if for any h∗ ∈ H , for any ϵ, δ ∈ (0, 1), for any
distribution D over X realizable by h∗, given a sample
S ∼ Dm and for each x(i) ∈ S given access to one
random trace τx(i) ∈ ΣT sampled according to D̃|x(i)

over g(x(i)), the learner outputs a verifier h such that with
probability at least 1− δ over the draw of S and the traces,
Prx∼D[h is γ-complete w.r.t. g and D̃x, and sound for x] ≥
1− ϵ.

An interesting special case is where D̃|x is the uniform dis-
tribution over g(x) for all x. Here, g would uniformly select
one of its correct proofs when queried for generating the

6
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training set, and γ-completeness corresponds to accepting
at least a γ fraction of the correct proofs of g. For this more
challenging setting, we first show the existence of an im-
proper learner that achieves learnability in the case where
the verifier class H is finite. Our algorithm (Algorithm 1)
outputs the intersection (agreement region) of all consistent
verifiers with the training set. We show a bound on the
sample complexity of Algorithm 1 which is linear in |H|.
Theorem 4.7. Let η ∈ (0, 1). For any finite class of veri-
fiers H , Algorithm 1 (1− η)-TVPAC-learns H with sample

complexity O
(

1
ηϵ (|H|+ log 1

δ )
)

. Moreover, Algorithm 1
never accepts a faulty trace for any problem x ∈ X .

Proof. Overview. Let D+ denote the joint distribution over
problem-trace pairs (x, τ) induced by the marginal distribu-
tion D and the conditional distribution D̃ used to sample
positive traces from g(x). We will show that the expected
error of the verifier learned using Algorithm 1 on a test pair
(x, τ) ∼ D+ is at most O

(
|H|+log 1

δ

m

)
with probability at

least 1 − δ. We will further show that the errors are one-
sided, i.e. we never accept a faulty trace for any problem x.
Finally, using the law of total expectation, we show that this
implies the stated bound on the sample complexity.

Bound on generalization error. We define the popula-
tion error of h ∈ {YES,NO}X×Σ∗

(any verifier, not
necessarily in H) on positive examples as LD+(h) :=
Pr(x,τ)∼D+ [h(x, τ) = NO]. For each verifier hi ∈ H , let
phi = Pr(x,τ)∼D+ [hi(x, τ) = NO and h∗(x, τ) = YES]
be the probability that hi incorrectly rejects a valid
reasoning trace.

By the realizability assumption, h∗ ∈ HS for any sample
S (recall that HS is the set of verifiers consistent with S,
Algorithm 1). Since h′(x, τ) = ∧h∈HS

h(x, τ), the error of
h′ occurs only when at least one h ∈ HS incorrectly rejects
a valid trace. Thus,

LD+(h′) = Pr
(x,τ)∼D+

[h′(x, τ) = NO and h∗(x, τ) = YES]

= Pr
(x,τ)∼D+

[∃h ∈ HS s.t. h(x, τ) = NO and

h∗(x, τ) = YES]

≤
∑

h∈HS

Pr
(x,τ)∼D+

[h(x, τ) = NO and

h∗(x, τ) = YES] (by union bound)

=
∑

h∈HS

ph.

For any λ > 0, by Markov’s inequality, Pr[LD+(h′) ≥
ε] ≤ E[eλ·L

D+(h′)
]

eλε .

Using the independence of samples, E[eλ·LD+ (h′)] ≤

Algorithm 1 Intersection of Consistent Verifiers
Require: Set of positively labeled problem-trace examples

S = {(x(1), τ (1)), . . . , (x(m), τ (m))} where x(i) i.i.d.∼
D, τ (i)

i.i.d.∼ D̃|x(i) , verifier class H .
1: HS ← {h ∈ H | h(x, τ) = 1 for all (x, τ) ∈ S}.

{Set of verifiers consistent with S}
2: return h′ : (x, τ) 7→ ∧h∈HS

h(x, τ).
{predict YES only when every consistent h says YES}

E[eλ·
∑

h∈HS
ph ] = E

[∏
h∈H(eλph)I[h∈HS ]

]
.

For each h ∈ H , h ∈ HS with probability (1 − ph)
m.

Setting λ = m,

E[(emph)I[h∈HS ]]

= (1− ph)
m · emph + (1− (1− ph)

m) · 1
= 1 + (1− ph)

m(emph − 1)

≤ 1 + (emph − 1)e−mph

= 2− e−mph ≤ 2.

Therefore, E[em·LD+ (h′)] ≤
∏

h∈H E[(emph)I[h∈HS ]] ≤
2|H|. Plugging back into our Markov inequality with
λ = m and solving for ε when the bound equals
δ, that is Pr[LD+(h′) ≥ ε] ≤ 2|H|

emε = δ, gives

ε =
|H| ln 2+ln 1

δ

m . Therefore, with probability at least 1− δ,

LD+(h′) ≤ |H| ln 2+ln 1
δ

m .

We never accept a faulty trace. By construction, h′(x, τ) =
∧h∈HS

h(x, τ). This means h′(x, τ) = YES only if all h ∈
HS output YES for (x, τ). Since HS is set to be the set of all
verifiers consistent with the training data S, and we assume
by the realizability assumption that h∗ ∈ H , we have h∗ ∈
HS . Therefore, if h′(x, τ) = YES, then h∗(x, τ) = YES
as well. This guarantees that h′ never accepts an invalid
reasoning trace, i.e., h′ has zero false positive rate.

Sample complexity bound. We say that x ∈ X is a bad
problem if h′ is not (1 − η)-complete w.r.t. g on x (i.e.,
h accepts fewer than (1 − η) fraction of correct traces in
g(x) in expectation according to D̃|x). We say that τ is
a bad trace for a problem x, if τ is valid according to g
but not according to h′. If h′ makes an error on (x, τ),
then either x is a bad problem, or x is not bad but τ is
bad for x. Let ϵ = PrD[x is bad]. The total error of h′,
LD+(h′) ≥ ϵPrD̃|x

[τ is bad | x is bad] ≥ ϵη. Using the
above bound on LD+(h′), we get with probability 1− δ,

ϵη ≤ LD+(h′) ≤
|H| ln 2 + ln 1

δ

m
,

which implies the claimed sample complexity bound.

Note that our upper bound above makes no assumption
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on H , other than it is finite. If H is intersection-closed
(that is, intersection of verifiers in H is also in H), Algo-
rithm 1 corresponds to the closure algorithm and h′ ∈ H .
In this case, we have much nicer bounds on the sample
complexity—Õ(log |H|) for finite H and Õ(VCDim(H))
for H with finite VC dimension (see Appendix A). As a sim-
ple example, suppose the set of reasoning steps Σ consists
of n axioms. The verifier class H consists of 2n verifiers—
corresponding to each subset σ ⊆ Σ, there is hσ ∈ H such
that hσ only accepts traces that consist of reasoning steps
from σ. In this case, the sample complexity of Algorithm 1
is O(n) instead of O(2n).

Lower Bounds. We further show that the linear depen-
dence on |H| in our upper bounds on the sample complexity
of trustable verification (given random access to positive
proofs in the sense of Definition 4.6) is unavoidable without
further assumptions on H . Roughly, if we do not have a
bound on the number of correct reasoning traces from any
given x0, and if we want to learn a verifier h ∈ H such
that for most x0, we have both (a) h accepts at least half
of the correct reasoning traces from x0 and (b) h rejects
all faulty reasoning traces from x0, then without further
assumptions on which traces are correct, in the worst case
we will need a training set with Ω(|H|) reasoning traces,
for any |H| ≤ |Σ|T . This is in contrast to the O(log |H|)
bound in Section 4.1 when we had only a single correct
trace (or a few correct traces) per x0.

Our first result states that if we want to output a sound proper
verifier, i.e. h ∈ H and we only require condition (b) above,
then we already need at least Ω(|H|) samples to achieve
TVPAC learnability for any learning algorithm.

Theorem 4.8. Let |Σ| ≥ 2. For each size 3 ≤ H ≤ |Σ|T
there exists a finite class H with |H| = H such that any
proper learner that ϵ̃-TVPAC learns H (for any ϵ̃ ≥ 0, i.e.
the learned verifier is only required to be sound) has sample
complexity at least Ω(|H|).

Proof. Select an arbitrary problem x0 ∈ X and set D to
be the constant distribution with support {x0}. Also set
the conditional trace generating distribution D̃|x0

to be the
uniform distribution over g(x0) (we will set g later). Let
|Σ| = b ≥ 2, so there are bT possible reasoning traces
of length T from x0. Given H ≤ bT , arbitrarily partition
the bT reasoning traces into H disjoint sets S1, ..., SH, each
of size at least ⌊ b

T

H
⌋. Now, define the verifier class H =

{h1, ..., hH} where hi accepts all reasoning traces except
those in Si. That is, if Ch = {t ∈ ΣT | h(t) = YES}
denotes the set of traces accepted by h, then Chi

= ΣT \Si.
Since we have no assumptions on which or how many traces
are correct besides realizability, we stipulate that all bT

traces are correct except for those in Si∗ for some uniformly
randomly chosen index i∗.

Now, a proper learner must output some hi ∈ H . Suppose
that the size of the training set S is at most H/2. The
learning algorithm which is required to output some
hi ∈ H can correctly choose hi = hi∗ with probability
at most 2/H since it is equally likely that any of the
consistent verifiers is the right one. Note that in our
construction hi∗ is the only sound verifier in H . Thus,
Pr[h is not sound] ≥ 1 − 2

H
≥ 1 − 2

3 = 1
3 . Thus, it is

impossible to achieve error ϵ < 1
3 using m ≤ H/2 samples,

establishing the desired lower bound of Ω(H).

We next show that if we further require the learner to even
accept at least a constant fraction of the correct traces (say
1
2 -completeness), in addition to soundness, then the linear
lower bound on sample complexity holds even for represen-
tation independent learning, i.e. even if we allow the learner
to output verifiers that are not in the verifier class H .

Theorem 4.9. Let |Σ| ≥ 2. For each size H ≤ |Σ|T there
exists a finite class H with |H| = H such that any (proper
or improper) learner that 1

2 -TVPAC learns H has sample
complexity at least Ω(|H|).

Proof. Our initial setup is similar to the proof of Theorem
4.8. That is, we have the same X = {x0}, D, D̃|x0

, g and
H . For simplicity, assume that H is a multiple of 4.

Suppose the training set S has size at most H/4 (i.e. there
are at most H/4 labeled reasoning traces available, selected
uniformly at random from g(x0)). Any learned verifier h
that is 1

2 -complete (i.e. accepts at least half of the reasoning
traces accepted by hi∗) must accept traces from at least
H/4 distinct sets Si that were not observed in training data.
Notice that these H/4 sets constitute at least 1/3 of the 3H/4
sets Si not observed in the training traces. This means
that for i∗ randomly selected from these 3H/4 values, with
probability at least 1/3, h accepts a trace in Si∗ . Thus any 1

2 -
complete verifier fails to be sound with probability at least 1

3 .
Thus, it is impossible to achieve error ϵ < 1

3 using m ≤ H/4
samples, establishing the desired lower bound of Ω(H).

5. Examples
Here we will see several examples to illustrate our verifi-
cation model. We start with a simple interval-based toy
example which shows that SVPAC and γ-TVPAC learning
may be possible even when H and Σ are infinite.

Example 5.1 (A toy example with interval verifiers). Let
X = Σ = R. The verifier class consists of functions

H ={hr1,r2 : (x0, τ = (x1, . . . , xi)) 7→

I[r1 ≤ x0 −
i∑

j=1

xj ≤ r2] | r1, r2 ∈ R≥0, r1 ≤ r2}.

8
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That is, all reasoning traces for which the sum of reasoning
steps is at some distance from x0 that is within an unknown
interval [r1, r2] are valid. Notably, both Σ and H are infinite
here. But VCDim(H) ≤ 2. For example, the training set
consisting of the following reasoning traces

S = {(0, (1)), (1, (3)), (2, (2, 3))}

cannot be labeled {YES,NO,YES} by any h ∈ H . This
is because the distance of the trace sum from the problem
x0−

∑i
j=1 xj for the training points are 1, 2, and 3 respec-

tively. So, any hr1,r2 which labels (0, (1)) and (2, (2, 3))
as YES must also label (1, (3)) as YES. The finite VC di-
mension bound implies H is SVPAC learnable with sample
complexity O

(
1
ϵ log

1
δ

)
by Theorem 3.3. Our results in Sec-

tion 4.1 for 1-complete and sound verification do not apply
as |Σ| is not finite, but interestingly, the verifier class is still
γ-TVPAC learnable (by Theorem A.4) with sample complex-
ity O

(
1
ϵ log

1
δ

)
since H is intersection-closed.

The following example is a simple extension of the
autoregressive linear thresholds studied as a family of
Chain-of-Thought generators by (Joshi et al., 2025).
Intuitively, for token space Σ = {0, 1}, a linear threshold
w ∈ Rd looks at the last l = min{|x|, d − 1} bits of
the text x generated so far and generates the next bit as
I[w1 + w[−l :]x[−l :]] ≥ 0, where a[−l :] denotes the last
l elements (coordinates or tokens) of a. Instead, here we
use linear thresholds for verification of reasoning traces as
described below. In this case, the binary classes induced
by the linear thresholds more naturally correspond to the
outcomes {YES, NO} of verification (while generation
beyond binary tokens needs some extension).

Example 5.2 (Linear threshold verifiers). Let X = R, Σ ⊂
R, |Σ| = s. The verifier class consists of functions induced
by d-dimensional linear thresholds

H = {hw,w0 : (x0, τ) 7→ I[w0+w1x0+w[−l :]τ [−l :] ≥ 0]

| w ∈ Rd, w0 ∈ R, l = min{|τ |, d− 1}}.

Thus on a given problem and reasoning trace (x0, τ), the
verifier applies a linear threshold to the problem x0 and
the last d − 1 reasoning steps (or all reasoning steps if
|τ | ≤ d− 1). Note that H is SVPAC learnable with sample
complexity O

(
1
ϵ (d+ log 1

δ )
)

by Theorem 3.3. Similarly,
we get a sample complexity of O

(
1
ϵ (d log(ksT ) + log 1

δ )
)

for TVPAC learning using Theorem 4.4.

We can use the discreteness of Σ to give a bound on the num-
ber of distinct functions in H . Indeed, there are |Σ|d distinct
values of (x0, τ [−l :]) that would determine the number of
distinct behaviors of any hw,w0 ∈ H . By Sauer’s lemma, we

have ΓH(sd) ≤
(

2esd

d+1

)d+1

= sO(d2). This allows us to use

Theorem 4.3 to give a bound of O
(
1
ϵ (d

2 log(s) + log 1
δ )
)

on the sample complexity for TVPAC learning that is inde-
pendent of the length T of the trace.

Since one of our main motivations is to learn good verifiers
for Chain-of-Thought reasoning, for which Large Language
Models (LLMs) have been proposed as good candidate gen-
erators, it is natural to try to understand our results for ver-
ification of natural language reasoning produced by these
generators. In the following example, we suppose that we
have a finite collection of K verifiers which are also LLMs.

Example 5.3 (Finite set of LLM verifiers). Let A de-
note the (finite) set of tokens in a natural language. Let
X = Σ = AR, where R is the maximum number of to-
kens allowed in a single problem statement or reasoning
step. Let H be a collection of K LLM verifiers. Under
realizability, our results imply that the sample complexity
of learning a verifier with small error is Õ

(
logK

ϵ

)
for SV-

PAC and TVPAC learning, and Õ
(

K
(1−γ)ϵ

)
for γ-TVPAC

learning (using Theorem 3.2, Theorem 4.3, and Theorem 4.7
respectively). We show sample complexity bounds without
the realizability assumption in Appendix C.

See Appendix B for additional examples.

6. Discussion
Verification that can be trusted is a strong candidate
approach towards powerful automated benchmarks for
Chain-of-Thought reasoning. While verification using
formal methods has been successfully deployed for testing
software and proofs in formal systems, the task of verifying
natural language reasoning seems more challenging. We
propose a learning-based approach to designing such
verifiers and introduce various verification models with
different strengths of guarantees.

Our simplest framework consists of verifiers that learn from
random proofs from some fixed unknown distribution D
annotated with their first faulty step (or correct, if the entire
proof is good). Such a verifier would be able to correctly
annotate new reasoning sequences from the same distribu-
tion, but is not robust to distribution shifts (for example, due
to adaptive editing of proofs by incorporating the feedback
from the verifier). We next address a stronger type of veri-
fiers that guarantee to reject any faulty reasoning (possibly
very different from the incorrect proofs seen in the train-
ing set), by accepting only proofs that adhere to a certain
gold standard. We call these trustable verifiers and show
two distinct regimes for their learnability—small sample
complexity when there is a small number of gold standard
proofs for any problem, and an unavoidable larger sample
complexity linear in the size of the verifier class without
this assumption.
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A. Intersection-closed Verifier Classes and γ-TVPAC Learning
The learnability of intersection-closed concept classes in the standard PAC model is a well-studied problem (Helmbold et al.,
1990; Auer & Cesa-Bianchi, 1998; Auer & Ortner, 2007; Darnstädt, 2015). Optimal sample complexity for these classes
was known before Hanneke established the celebrated optimal bounds for (improper) PAC learning of arbitrary concept
classes (Hanneke, 2016). Here we will show that our lower bounds on sample complexity of arbitrary γ-TVPAC learning in
Section 4.2 can be circumvented for intersection-closed verifier classes H . We will use X := X × Σ∗ to denote the domain
of the verifiers. We start with some standard definitions restated in the context of verifier classes.

Definition A.1 (Closure operator of a set). For any set S ⊆ X and any verifier class H ⊆ 2X , the closure of S with
respect to H , denoted by ClosH(S) : 2X → 2X , is defined as the intersection of all verifiers in H that contain S, that is,
ClosH(S) =

⋂
h∈H,S⊆h

h.

In other words, the closure of S is the smallest verifier in H which contains S. If {h ∈ H : S ⊆ h} = ∅, then ClosH(S) = X .
This allows us to formally define intersection-closed verifier classes.

Definition A.2 (Intersection-closed classes). A verifier class H ⊂ 2X is intersection-closed if for all finite S ⊆ X ,
ClosH(S) ∈ H . That is, the intersection of all verifiers in H containing an arbitrary subset of the domain belongs to H . For
finite verifier classes, this is equivalent to saying that for any h1, h2 ∈ H , the intersection h1 ∩ h2 is also in H (Natarajan,
1987).

Examples of intersection-closed classes include axis-parallel d-dimensional hyperrectangles, intersections of halfspaces,
k-CNF boolean functions, and subspaces of a linear space.

The Closure algorithm is a learning algorithm that generates a verifier by taking the closure of the positive examples in a
given dataset, and negative examples do not influence the generated verifier (in fact, negative examples are not available in
our γ-TVPAC model). The verifier returned by this algorithm is always the smallest verifier consistent with all of the positive
examples seen so far in the training set. Note that Algorithm 1 is exactly the closure algorithm for intersection-closed verifier
classes.

Definition A.3 (Closure algorithm (Natarajan, 1987; Helmbold et al., 1990)). Let S = {(x1, y1 = f∗(x1)), . . . , (xm, ym =
f∗(xm))} be a set of labeled examples, where f∗ ∈ H , xi ∈ X and yi ∈ {0, 1}. The verifier hc

S produced by the closure
algorithm is defined as:

hc
S(x) =

{
1, if x ∈ ClosH ({xi ∈ S : yi = 1}) ,
0, otherwise.

Here, ClosH ({xi ∈ S : yi = 1}) denotes the closure of the set of positive examples in S with respect to H .

The closure algorithm learns intersection-closed classes with VC dimension d with an optimal sample complexity of
Θ
(
1
ϵ (d+ log 1

δ )
)

(Auer & Ortner, 2007; Darnstädt, 2015). We can use this to establish γ-TVPAC learning for arbitrary
intersection-closed verifier classes with a finite VC dimension. Note that our sample complexity bounds in this case are
independent of the length T of the reasoning trace.

Theorem A.4. Let η ∈ (0, 1). Let H be a class of verifiers that is intersection-closed and has a finite VC dimension

VCDim(H). Algorithm 1 (1 − η)-TVPAC-learns H with sample complexity O
(

1
ηϵ (VCDim(H) + log 1

δ )
)

. Moreover,
Algorithm 1 never accepts a faulty trace for any problem x ∈ X .

Proof. Let D+ denote the joint distribution over problem-trace pairs (x, τ) induced by the marginal distribution D and
the conditional distribution D̃ used to sample positive traces from g(x). Note that in Algorithm 1 the intersection of
consistent verifiers h′ ∈ H since H is intersection-closed. We define the population error of h ∈ H on positive examples
as LD+(h) := Pr(x,τ)∼D+ [h(x, τ) = NO]. Let ph′ = Pr(x,τ)∼D+ [h′(x, τ) = NO and h∗(x, τ) = YES] be the probability
that h′ incorrectly rejects a valid reasoning trace.

By construction, h′(x, τ) = YES only if all consistent h ∈ HS output YES for (x, τ). Since we assume by the realizability
assumption that h∗ ∈ H , we have h∗ ∈ HS which is the set of all verifiers consistent with the sample S. Therefore, if
h′(x, τ) = YES, then h∗(x, τ) = YES as well. Or, h′ never accepts an invalid reasoning trace.
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Thus, LD(h′) = LD+(h′) = ph′ . But, by known results for PAC learning of intersection-closed classes (Auer & Ortner,
2007; Darnstädt, 2015), m = O

(
1
ε (VCDim(H) + log 1

δ )
)

training examples are sufficient to ensure LD+(h′) ≤ ε. As
argued in the proof of Theorem 4.7, we have ηϵ ≤ LD+(h′), which establishes the claimed sample complexity.

We have the following corollary for learning finite and intersection-closed verifier classes H .

Corollary A.5. For finite intersection-closed H , Algorithm 1 (1 − η)-TVPAC-learns H with sample complexity

O
(

1
ηϵ (log(|H|) + log 1

δ )
)

.

B. Examples
As an example of a naturally discrete and finite setting, where the problems, the reasoning steps and the verifiers all come
from finite sets, consider the following example.

Example B.1 (Valid reasonings on a graph). In this example, valid reasonings are paths in a graph, part of which is given
by x0 and part of which is implicit, defined by an unknown ground-truth verifier h∗. Formally, let G = (V,E) denote the
complete graph on n nodes. Let X = V × 2E and Σ = E. The verifier class consists of functions

H = {hẼ : (x0 = (v0, E0), (x1 = (v0, v1), . . . , xi =(vi−1, vi)))

7→ I[∧j∈[i]{xj ∈ E0 ∪ Ẽ}] | Ẽ ⊆ E}

that verify whether each step (xj−1, xj) of the reasoning trace is valid, where a valid step is either an edge from E0 specified
in the problem x0, or in the (unknown) set of edges E∗ corresponding to h∗ = hE∗ . Note that H is intersection-closed
and |H| = 2|E| = 2n(n−1)/2. The natural approach of building an estimate Ê of E∗ by collecting only the edges in the
positively labeled traces in the training examples that are not already included in the problem x0 corresponds to the closure
algorithm. Therefore, we have SVPAC, TVPAC and γ-TVPAC learning with Õ(n2/ϵ) sample complexity (using Theorem 3.2,
Theorem 4.3, and Corollary A.5).

We conclude this section with an example where it is possible to learn a verifier online with a bounded number of mistakes.

Example B.2. The problem space is X = Rd×n, that is, each problem x0 consists of a finite number of vectors in Rd.
Reasoning steps are also vectors in Σ = Rd. h∗ is also given by a set of vectors in Rd (unknown to the learner). For a
given problem x0, a reasoning step xi is said to be valid if it lies in span(x0, h

∗), the subspace spanned by the problem x0

and the hidden vectors h∗, and incorrect otherwise. The verifier is presented by a sequence of problem-reasoning pairs
(x

(1)
0 , x

(1)
1 ), (x

(2)
0 , x

(2)
1 ), . . . , and gives an assessment YES or NO for each pair. The verifier is said to suffer a mistake if

either it accepts a faulty reasoning x
(i)
1 /∈ span(x

(i)
0 , h∗), or says NO for a valid reasoning x

(j)
1 ∈ span(x

(j)
0 , h∗).

First, we make a simplifying assumption that all problem vectors in any problem x0 lie in a space orthogonal to span(h∗).
For this case, we will show an online learner that is sound (i.e. never accepts a faulty reasoning) and makes at most
dim(span(h∗)) ≤ d mistakes. We initialize h = {} and will maintain the invariant that span(h) is a subspace of
span(h∗). Given (x

(i)
0 , x

(i)
1 ), we accept the reasoning if x(i)

1 lies in span(x
(i)
0 , h), and reject otherwise. Our invariant

span(h) ⊆ span(h∗) implies that we never accept an invalid reasoning. If we make a mistake on (x
(i)
0 , x

(i)
1 ), then we

add the component of x(i)
1 orthogonal to span(x

(i)
0 , h) (i.e., x(i)

1 − proj(x
(i)
1 , span(x

(i)
0 , h)), where proj(v, S) denotes

the projection of vector v onto the subspace S) to h. This increases dim(span(h)) by 1 and maintains our invariant
span(h) ⊆ span(h∗). Therefore, this algorithm makes at most dim(span(h∗)) ≤ d mistakes.

Next, we show a small mistake bound even when we remove the orthogonality assumption above. Any problem x0 is given
by a finite collection of vectors in Rd as above, and assume that h∗ is given by a single vector in Rd. In this case, we will
show a mistake bound of d+ 1, but will allow two-sided error (in the previous case, our algorithm never resulted in false
positives). Let S∗ denote a subspace maintained by the algorithm that has the invariant that it always contains h∗. Initialize
S∗ = Rd. Given a problem (x0, x1), we first check if x1 ∈ span(x0), and return YES if so (which is always correct). Else,
we return NO until the first mistake. At this point we set S∗ = span(x0, x1). For any new instance (x0, x1), we update S∗

upon mistakes. We consider the following cases.

1. S∗ ⊆ span(x0, x1).

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

On Learning Verifiers for Chain-of-Thought Reasoning

a. S∗ ⊆ span(x0). In this case, h∗ ∈ span(x0) or span(x0, h
∗) = span(x0). Thus, it suffices to output YES iff

x1 ∈ span(x0). We do not make any mistakes in this case.
b. S∗ ⊈ span(x0). In this case, we say YES. Since h∗ ∈ S∗ ⊆ span(x0, x1), we can write h∗ = a.x0 + bx1. If

we made a mistake, then x1 /∈ span(x0, h
∗). This implies b = 0 and h∗ ∈ span(x0). Thus, we can set S∗ to

S∗ ∩ span(x0). The dimension is reduced by at least one, since we assumed S∗ ⊈ span(x0).

2. S∗ ⊈ span(x0, x1). In this case, we say I[x1 ∈ span(x0)]. We don’t make a mistake when we say YES. If we made
a mistake, then x1 ∈ span(x0, h

∗) and x1 /∈ span(x0). This implies x1 = a.x0 + bh∗ with b ̸= 0. Therefore,
h∗ ∈ span(x0, x1). Thus, we can safely update S∗ to S∗ ∩ span(x0, x1), and the dimension of S∗ goes down by at
least 1.

Thus, dim(S∗) goes down by 1 every time we make a mistake except possibly for the first time, for a total mistake bound of
d+ 1.

C. Beyond Realizability
The main focus of our work is the realizable case, where a perfect h∗ lies in our verifier class H which makes no mistakes
on any problem-trace pair (i.e., accepts exactly the right reasoning traces for all problems in X). This property is particularly
desirable for verification. However, it might be the case that our search space for verifiers is limited and no verifier in H
perfectly verifies all the reasoning traces for all the problems of interest. This is known as the agnostic setting in PAC
learning terminology, and the goal is to learn a verifier h that has error almost as small as the verifier with the smallest
error in H . Here we will formally define agnostic SVPAC and TVPAC learning and use arguments from standard PAC
learning theory to show sample complexity bounds for agnostic learning of verifiers. Note that the corresponding question
for Chain-of-Thought generation was left open by prior work (Joshi et al., 2025).

C.1. Agnostic simple verifiers

The “label” for a problem-trace pair (x0, τ = (x1, x2, ..., xt)) is given by y = (y1, . . . , yt) ∈ {YES,NO}t. Given
y ∈ {YES,NO}T let f(y) denote the smallest index i ∈ [T ] such that yi = NO (and f(y) = T if yi = YES for all i). For a
verifier h ∈ H define its loss w.r.t. label y as

ℓh(x, τ = (x1, ..., xT ); y = (y1, . . . , yT )) := I[h(x0, (x1, ..., xj)) ̸= yj ] for some j ≤ f(y).

That is, we penalize the verifier for rejecting a trace while it is still correct according to the label y, or failing to reject at
the first index that the label indicates as faulty (the rest of the label does not matter in this case). Formally, we have the
following definition for agnostic learning.

Definition C.1 (agnostic SVPAC-learnability). Let X denote the problem space and H ⊆ {YES,NO}X×Σ∗
denote the

class of verifiers. Then a learner is said to be an agnostic simply-verifiably-PAC learner for H with sample size m = M(ϵ, δ)
(sample complexity is the smallest such m) if for any ϵ, δ ∈ (0, 1), for any distribution D over X × ΣT × {YES,NO}T ,
for h∗ ∈ argminh∈HE(x0,τ,y)∼D[ℓh(x, τ ; y)], given a sample S ∼ Dm, the learner outputs a verifier h such that with
probability at least 1− δ over the draw of S,

E(x0,τ,y)∼D[ℓh(x0, τ, y)− ℓh∗(x0, τ, y)] ≤ ϵ.

The learner is said to be proper if h ∈ H .

We now show that it is possible to agnostically SVPAC learn a verifier with small sample complexity for any finite class of
verifiers H . A simple Hoeffding’s bound based argument familiar from standard agnostic PAC learning implies that we can
learn a good verifier with Õ

(
1
ϵ2 log |H|

)
labeled problem-trace samples.

Theorem C.2. Any finite class of verifiers H is agnostically SVPAC-learnable with sample complexity
O
(

1
ϵ2 (log(|H|) + log 1

δ )
)
.

Proof. We use ERM, i.e. simply output any verifier ĥ ∈ H that achieves the smallest total loss ℓh on the training sample
and show that it achieves the stated sample complexity. Since the examples in the training sample S are iid draws from D,
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the loss of a fixed h on the examples is an iid {0, 1}-valued variable. By Hoeffding’s bound,

Pr

∣∣∣∣∣ED[ℓh(x, τ ; y)]−
1

|S|
∑

(x(i),τ(i),y(i))∈S

ℓh(x
(i), τ (i); y(i))

∣∣∣∣∣ ≥ ϵ

2

 ≤ 2e
−|S|ϵ2

2 .

By a union bound,

Pr

∃h ∈ H s.t.

∣∣∣∣∣ED[ℓh(x, τ ; y)]−
1

|S|
∑

(x(i),τ(i),y(i))∈S

ℓh(x
(i), τ (i); y(i))

∣∣∣∣∣ ≥ ϵ

2

 ≤ 2|H|e
−|S|ϵ2

2 .

Applying this to ERM ĥ and h∗, and noting that the error of ĥ on S is no larger than that of h∗, implies that

E(x0,τ,y)∼D[ℓĥ(x0, τ, y)− ℓh∗(x0, τ, y)] ≤ ϵ,

with failure probability δ ≤ 2|H|e
−|S|ϵ2

2 . Solving for |S| gives the desired bound.

Since our proof for Theorem 3.3 involves bounding the relevant shattering coefficient, we can also readily adapt the proof
of the fundamental theorem of PAC learning to establish a Õ( 1

ϵ2VCDim(H) log T ) bound on the sample complexity of
agnostic SVPAC-learning for verifier classes H with a finite VC dimension.

C.2. Agnostic trustable verifiers

We give a similar agnostic extension for TVPAC learning where the learner has access to a gold standard reasoner that
provides up to k correct reasoning traces for any problem x ∈ X , and when Σ is finite. For a verifier h, we denote its
population error as

errD(h) := 1− Pr
x∼D

[h is 1-complete w.r.t. g and sound for x].

Definition C.3 (agnostic TVPAC-learnability). Let X denote the problem space and H ⊆ {YES,NO}X×Σ∗
denote the

class of verifiers. Let g(x) ⊆ ΣT denote the set of correct reasoning traces for any x ∈ X . Then a learner is said to be an
agnostic trustably-verifiably-PAC learner for H with sample size m = M(ϵ, δ) (sample complexity is the smallest such m)
if for any ϵ, δ ∈ (0, 1), for any distribution D over X , for h∗ ∈ argminh∈HerrD(h) and OPT = errD(h∗), given a sample
S ∼ Dm and for each x ∈ S given access to the set g(x), the learner outputs a verifier h such that with probability at least
1− δ over the draw of S, errD(h) ≤ OPT + ϵ. The learner is said to be proper if h ∈ H .

We show that ERM on the samples constructed using the gold standard reasoner in Section 4.1 is an agnostic SVPAC learner
with small sample complexity for any finite class of verifiers H . The argument is similar to that of Theorem C.2.

Theorem C.4. Any finite class of verifiers H is agnostically TVPAC-learnable with sample complexity
O
(

1
ϵ2 (log(|H|) + log 1

δ )
)
.

Proof. The key observation is that our training sample S = (x(i), g(x(i)))i∈[m] allows us to determine
I[h is 1-complete w.r.t. g and sound for x] for any problem x in the sample, by using the tree Tg(x) and finiteness of
Σ. This gives us the 0-1 loss of h on x which can be used to implement the ERM, and we can apply the same argument as in
the proof of Theorem C.2 for this loss to conclude the proof.

As before, we can use the bound on the shattering coefficient in our proof of Theorem 4.4 and adapt the proof of the
fundamental theorem of PAC learning to establish a Õ( 1

ϵ2VCDim(H) log kT |Σ|) bound on the sample complexity of
agnostic TVPAC-learning for verifier classes H with a finite VC dimension.
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