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ABSTRACT

Finding accurate Machine Learning pipelines is essential in achieving state-of-the-
art AI predictive performance. Unfortunately, most existing Pipeline Optimization
techniques rely on flavors of Bayesian Optimization that do not explore the deep
interaction between pipeline stages/components (e.g. between hyperparameters
of the deployed preprocessing algorithm and the hyperparameters of a classifier).
In this paper, we are the first to capture the deep interaction between components
of a Machine Learning pipeline. We propose embedding pipelines in a deep
latent representation through a novel per-component encoder mechanism. Such
pipeline embeddings are used with deep kernel Gaussian Process surrogates inside
a Bayesian Optimization setup. Through extensive experiments on three large-
scale meta-datasets, including Deep Learning pipelines for computer vision, we
demonstrate that learning pipeline embeddings achieves state-of-the-art results in
Pipeline Optimization.

1 INTRODUCTION

Machine Learning (ML) has proven to be successful in a wide range of tasks such as image clas-
sification, natural language processing, and time series forecasting. In a supervised learning setup,
practitioners need to define a sequence of stages comprising algorithms that transform the data (e.g.
imputation, scaling) and produce an estimation (e.g. through a classifier or regressor). The selection
of the algorithms and their hyperparameters, known as Pipeline Optimization (Olson & Moore, 2016)
or pipeline synthesis (Liu et al., 2020; Drori et al., 2021) is challenging. Firstly, the search space
contains conditional hyperparameters, as only some of them are active depending on the selected
algorithms. Secondly, this space is arguably bigger than the one for a single algorithm. Therefore,
previous work demonstrates how this pipeline search can be automatized and achieve competitive
results (Feurer et al., 2015; Olson & Moore, 2016). Some of these approaches include Evolutionary
Algorithms (Olson & Moore, 2016), Reinforcement Learning (Rakotoarison et al., 2019; Drori et al.,
2021) or Bayesian Optimization (Feurer et al., 2015; Thornton et al., 2012; Alaa & van der Schaar,
2018).

Pipeline Optimization (PO) techniques need to capture the complex interaction between the algorithms
of a Machine Learning pipeline and their hyperparameter configurations. Unfortunately, no prior
method uses Deep Learning to encapsulate the interaction between pipeline components. Prior work
trains performance predictors (a.k.a. surrogates) on the concatenated hyperparameter space of all
algorithms (raw search space), for instance, using random forests (Feurer et al., 2015) or finding
groups of hyperparameters to use on kernels with additive structure (Alaa & van der Schaar, 2018).
On the other hand, transfer learning has been shown to decisively improve PO by transferring efficient
pipelines evaluated on other datasets (Fusi et al., 2018; Yang et al., 2019; 2020). Our method is the
first to introduce a deep pipeline representation that is meta-learned to achieve state-of-the-art results
in terms of the quality of the discovered pipelines.

We introduce DeepPipe, a neural network architecture for embedding pipeline configurations on
a latent space. Such deep representations are combined with Gaussian Processes (GP) for tuning
pipelines with Bayesian Optimization (BO). We exploit the knowledge of the hierarchical search space
of pipelines by mapping the hyperparameters of every algorithm through per-algorithm encoders
to a hidden representation, followed by a Fully Connected Network that receives the concatenated
representations as input. Additionally, we show that meta-learning this network through evaluations
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on auxiliary tasks improves the quality of BO. Experiments on three large-scale meta-datasets show
that our method achieves the new state-of-the-art in Pipeline Optimization.

Our contributions are as follows:

• We introduce DeepPipe, a surrogate for BO that achieves peak performance when optimizing
a pipeline for a new dataset through transfer learning.

• We present a novel and modular architecture that applies different encoders per stage and
yields better generalization in low meta-data regimes, i.e. few/no auxiliary tasks.

• We conduct extensive evaluations against seven baselines on three large meta-datasets, and
we further compare against rival methods in OpenML datasets to assess their performances
under time constraints.

• We demonstrate that our pipeline representation helps achieving state-of-the-art results in
optimizing pipelines for fine-tuning deep computer vision networks.

2 RELATED WORK

Full Model Selection (FMS) is also referred to as Combined Algorithm Selection and Hyperparame-
ter optimization (CASH) (Hutter et al., 2019; Feurer et al., 2015). FMS aims to find the best model
and its respective hyperparameter configuration (Hutter et al., 2019). A common approach is to use
Bayesian Optimization with surrogates that can handle conditional hyperparameters, such as Random
Forest (Feurer et al., 2015), tree-structured Parzen estimators (Thornton et al., 2012), or ensembles of
neural networks (Schilling et al., 2015).

Pipeline Optimization (PO) is a generalization of FMS where the goal is to find the algorithms and
their hyperparameters for different stages of a Machine Learning Pipeline. Common approaches
model the search space as a tree structure and use reinforcement learning (Rakotoarison et al., 2019;
Drori et al., 2021; de Sá et al., 2017), evolutionary algorithms (Olson & Moore, 2016), Hierarchical
Task Networks (Mohr et al., 2018) for searching pipelines. Other approaches use Multi-Armed Bandit
strategies to optimize the pipeline, and combine them with Bayesian Optimization (Swearingen
et al., 2017) or multi-fidelity optimization (Kishimoto et al., 2021). Alaa & van der Schaar (2018)
use additive kernels on a Gaussian Process surrogate to search pipelines with BO that groups the
algorithms in clusters and fit their hyperparameters on independent Gaussian Processes, achieving an
effectively lower dimensionality per input. By formulating the Pipeline Optimization as a constrained
optimization problem, Liu et al (Liu et al., 2020) introduce a method based on alternating direction
method of multipliers (ADMM) (Gabay & Mercier, 1976).

Transfer-learning for Pipeline Optimization and CASH leverages information from previous
(auxiliary) task evaluations. Few approaches use dataset meta-features to warm-start BO with good
configurations from other datasets (Feurer et al., 2015; Alaa & van der Schaar, 2018). As extracting
meta-features demands computational time, follow-up works find a portfolio based on these auxiliary
tasks (Feurer et al., 2020). Another popular approach is to use collaborative filtering with a matrix of
pipelines vs task evaluations to learn latent embeddings of pipelines. OBOE obtains the embeddings
by applying a QR decomposition of the matrix on a time-constrained formulation (Yang et al., 2019).
By recasting the matrix as a tensor, Tensor-OBOE (Yang et al., 2020) finds latent representations via
the Tucker decomposition. Furthermore, Fusi et al. (2018) apply probabilistic matrix factorization for
finding the latent pipeline representations. Subsequently, they use the latent representations as inputs
for a Gaussian Process, and explore the search space using BO.

3 PRELIMINARIES

3.1 PIPELINE OPTIMIZATION

The pipeline of a ML system consists of a sequence of N stages (e.g. dimensionality reducer,
standardizer, encoder, estimator (Yang et al., 2020)). At each stage i ∈ {1 . . . N} a pipeline includes
one algorithm1 from a set of Mi choices (e.g. the estimator stage can include the algorithms

1AutoML systems might select multiple algorithms in a stage, however, our solution trivially generalizes by
decomposing stages into new sub-stages with only a subset of algorithms.
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{SVM, MLP, RF}). Algorithms are tuned through their hyperparameter search spaces, where λi,j
denotes the configuration of the j-th algorithm in the i-th stage. Furthermore, let us denote a
pipeline p as the set of indices for the selected algorithm at each stage, i.e. p := (p1, . . . , pN ),
where pi ∈ {1 . . .Mi} represents the index of the selected algorithm at the i-th pipeline stage. The
hyperparameter configuration of a pipeline is the unified set of the configurations of all the algorithms
in a pipeline, concretely λ(p) := (λ1,p1

, . . . , λN,pN
), λi,pi

∈ Λi,pi
. Pipeline Optimization demands

finding the optimal pipeline p∗ and its optimal configuration λ(p∗) by minimizing the validation loss
of a trained pipeline on a dataset D as shown in Equation 1.

(p∗, λ(p∗)) = argmin
p∈{1...M1}×···×{1...MN},
λ(p)∈Λ1,p1

×···×ΛN,pN

Lval(p, λ(p),D) (1)

From now we will use the term pipeline configuration for the combination of a sequence of
algorithms p and their hyperparameter configurations λ(p), and denote it simply as pλ := (p, λ(p)).

3.2 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) is a mainstream strategy for optimizing ML pipelines (Feurer et al., 2015;
Hutter et al., 2011; Alaa & van der Schaar, 2018; Fusi et al., 2018; Schilling et al., 2015). Let us start
with defining a history ofQ evaluated pipeline configurations asH = {(p(1)λ , y(1)), . . . , (p

(Q)
λ , y(Q))},

where y(q) ∼ N (f(p
(q)
λ ), σ2

q ) is a probabilistic modeling of the validation loss f(p(q)λ ) achieved with
the q-th evaluated pipeline configuration p(q)λ , q ∈ {1 . . . Q}. Such a validation loss is approximated
with a surrogate model, which is typically a Gaussian process (GP) regressor. We measure the
similarity between pipelines via a kernel function k : dom (pλ)× dom (pλ)→ R>0 parameterized
with θ, and represent similarities as a matrix K

′

q,ℓ := k(p
(q)
λ , p

(ℓ)
λ ; γ),K

′ ∈ RQ×Q
>0 . Since we

consider noise, we define K = K
′
+ σpI . A GP estimates the validation loss f∗ of a new pipeline

configuration pλ(∗) by computing the posterior mean E [f∗] and posterior variance V [f∗] as:

E
[
f∗ | pλ(∗),H

]
= KT

∗ K
−1y, V

[
f∗ | pλ(∗),H

]
= K∗∗ −KT

∗ K
−1K∗ (2)

where K∗,q = k
(
pλ

(∗), p
(q)
λ ; γ

)
,K∗ ∈ RQ

>0, and K∗∗ = k
(
pλ

(∗), pλ
(∗); γ

)
,K∗∗ ∈ R>0.

BO is an iterative process that alternates between fitting a GP regressor as described above and
selecting the next pipeline configuration to evaluate (Snoek et al., 2012). A description of how BO
finds pipelines using a GP surrogate is provided in Appendix I.

4 DeepPipe: BO WITH DEEP PIPELINE CONFIGURATIONS

To apply BO to Pipeline Optimization (PO) we must define a kernel function that computes the
similarity of pipeline configurations, i.e. k

(
p
(q)
λ , p

(ℓ)
λ ; θ

)
= ?. Prior work exploring BO for PO

use kernel functions directly on the raw concatenated vector space of selected algorithms and their
hyperparameters (Alaa & van der Schaar, 2018) or use surrogates without dedicated kernels for the
conditional search space (Feurer et al., 2015; Olson & Moore, 2016; Schilling et al., 2015).

However, we hypothesize that these approaches cannot capture the deep interaction between pipeline
stages, between algorithms inside a stage, between algorithms across stages, and between different
configurations of these algorithms. In order to address this issue we propose a simple, yet powerful
solution to PO: learn a deep embedding of a pipeline configuration and apply BO with a deep
kernel (Wistuba & Grabocka, 2021; Wilson et al., 2016).

This is done by DeepPipe, which searches pipelines in a latent space using BO with Gaussian
Processes. We use a neural network ϕ(pλ; θ) : dom(pλ)→ RZ with weights θ to project a pipeline
configuration to a Z-dimensional space. Then, we measure the pipelines’ similarity in this latent
space as k

(
ϕ(p

(q)
λ ; θ), ϕ(p

(ℓ)
λ ; θ)

)
using the popular Matérn 5/2 kernel (Genton, 2002). Once we
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compute the parameters of the kernel similarity function, we can compute the GP’s posterior and
conduct PO with BO as specified in Section 3.2.

In this work, we exploit existing deep kernel learning machinery (Wistuba & Grabocka, 2021; Wilson
et al., 2016) to train the parameters θ of the pipeline embedding neural network ϕ, and the parameters
γ of the kernel function k, by maximizing the log-likelihood of the observed validation losses y of
the evaluated pipeline configurations pλ. The objective function for training a deep kernel is the log
marginal likelihood of the Gaussian Process (Rasmussen & Williams, 2006) with covariance matrix
entries kq,ℓ = k

(
ϕ(p

(q)
λ ; θ), ϕ(p

(ℓ)
λ ; θ)

)
.

4.1 PIPELINE EMBEDDING NETWORK
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Figure 1: An example architecture for DeepPipe on a search
space with 2 stages {Preprocessing,Classification}.

The main piece of the puzzle is: How
to define the pipeline configuration
embedding ϕ?

Our DeepPipe embedding is com-
posed of two parts (i) per-algorithm
encoders, and (ii) a pipeline aggrega-
tion network. A visualization exam-
ple of our DeepPipe embedding archi-
tecture is provided in Figure 1. We
define one encoder ξ(i,j) for the hy-
perparameter configurations of each
j-th algorithm, in each i-th stage, as
plain multi-layer perceptrons (MLP).
These encoders, each parameterized
by weights θenc

(i,j), map the algorithms’
configurations to a Li-dimensional
vector space:

ξ(i,j)
(
λi,j ; θ

enc
i,j

)
= MLP

(
λi,j ; θ

enc
i,j

)
, ξ(i,j) : Λi,j → RLi , ∀i ∈ {1 . . . N}, ∀j ∈ {1 . . .Mi} (3)

For a pipeline configuration pλ, represented with the indices of its algorithms p, and the configuration
vectors of its algorithms λ(p), we project all the pipeline’s algorithms’ configurations to their latent
space using the algorithm-specific encoders. Then, we concatenate their latent encoder vectors, where
our concatenation notation is RLi ⊕ RLk := RLi+Lk . Finally, the concatenated representation is
embedded to a final RZ space via an aggregating MLP ψ with parameters θaggr as denoted below:

ϕ (pλ) := ψ
(
ξ(1,p1)(λ1,p1)⊕ · · · ⊕ ξ(N,pN )(λN,pN

) | θaggr
)
, ψ : R

∑
i Li → RZ (4)

Within the i-th stage, only the output of one encoder is concatenated, therefore the output of the
Selector corresponds to the active algorithm in the i-th stage and can be formalized as ξ(i,pi)(λi,pi

) =∑Mi

j=1 I(j = a) · ξ(i,j) (λi,j), where a is the index of the active algorithm and I denotes the indicator
function. Having defined the embedding ϕ in Equations 3-4, we can plug it into the kernel function,
optimize it minimizing the negative log likelihood of the GP with respect to θ = {θenc, θaggr}, and
conduct BO as in Section 3.2.

4.2 META-LEARNING OUR PIPELINE EMBEDDING

In many practical applications, there exist computed evaluations of pipeline configurations on
previous datasets, leading to the possibility of transfer learning for PO. Our DeepPipe can be
easily meta-learned from such past evaluations by pre-training the pipeline embedding network.
Let us denote the meta-dataset of pipeline evaluations on T datasets (a.k.a. auxiliary tasks) as
Ht = {(pλ(t,1), y(t,1)), . . . , (pλ(t,Qt), y(t,Qt))}, t ∈ {1, . . . , T}, where Qt is the number of existing
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evaluations for the t-th dataset. As a result, we meta-learn our method’s parameters to minimize the
meta-learning objective of Equation 5. This objective function corresponds to the negative marginal
likelihood of the Gaussian Processes using DeepPipe’s extracted features as input to the kernel
(Wistuba & Grabocka, 2021; Patacchiola et al., 2020). Further details on the meta-learning procedure
of our pipeline configuration weights are provided in Appendix J.

argmin
γ,θ

T∑
t=1

y(t)
T
K(t)(θ, γ)−1y(t) + log

∣∣∣K(t)(θ, γ)
∣∣∣ (5)

5 EXPERIMENTS AND RESULTS

5.1 META-DATASETS

A meta-dataset is a collection of pipeline configurations and their respective performance evaluated
in different tasks (i.e. datasets). Information about the meta-data sets is provided on Appendix P,
their search spaces are clarified on Appendix R, and the splits of tasks per meta-dataset are found on
Appendix T. All the tasks in the meta-dataset correspond to classification. We use the meta-training
set for pre-training the Pipeline Optimization (PO) methods, the meta-validation set for tuning some
of the hyper-parameters of the PO method, and we assess their performance on the meta-test set. In
our experiments, we use the following meta-datasets.

PMF contains 38151 pipelines (after filtering out all pipelines with only NaN entries), and 553
datasets (Fusi et al., 2018). Although not all the pipelines were evaluated in all tasks, it has a total of
16M evaluations. The pipeline search space has 2 stages (preprocessing and estimator) with 2 and 11
algorithms respectively. Following the setup in the original paper (Fusi et al., 2018), we take 464
tasks for meta-training and 89 for meta-test. As the authors do not specify a validation meta-dataset,
we sample randomly 15 tasks out of the meta-training dataset.

Tensor-OBOE provides 23424 pipelines and 551 tasks (Yang et al., 2020). It contains 11M evalua-
tions, as there exist no evaluations for some combinations of pipelines and tasks. The pipelines include
5 stages: Imputator (1 algorithm), Dimensionality-Reducer (3 algorithms), Standardizer (1 algorithm),
Encoder (1 algorithm), and Estimator (11 algorithms). We assign 331 tasks for meta-training tasks,
110 tasks for meta-validation, and 110 tasks for meta-testing.

ZAP is a benchmark that evaluates deep learning pipelines on fine-tuning state-of-the-art computer
vision tasks (Ozturk et al., 2022). The meta-dataset contains 275625 evaluated pipeline configurations
on 525 datasets and 525 different Deep Learning pipelines (i.e. the best pipeline of a dataset was
evaluated also on all other datasets). From the set of datasets, we use 315 for meta-training, 45 for
meta-validation and 105 for meta-test, following the protocol of the original paper.

In addition, we use OpenML datasets. It comprises 39 curated datasets (Gijsbers et al., 2019) and
has been used in previous work for benchmarking (Erickson et al., 2020). This dataset does not
contain pipeline evaluations like the other three meta-datasets above. However, we use the OpenML
collection for evaluating the Pipeline Optimization in time-constrained settings (Ozturk et al., 2022).

5.2 BASELINES

Random Search (RS) selects pipeline configurations by sampling randomly from the search
space (Bergstra & Bengio, 2012).

Probabilistic Matrix Factorization (PMF) uses a surrogate model that learns a latent representation
for every pipeline using meta-training tasks (Fusi et al., 2018). We tuned this latent dimension for
the Tensor-OBOE dataset from a grid of {10, 15, 20} and found 20 to be the best setting. For the
PMF-Dataset, where the model was introduced, we used the default value of 20. We use the original
PMF implementation (Sheth, 2018).

OBOE also uses matrix factorization for optimizing pipelines, but they aim to find fast and informative
algorithms to initialize the matrix (Yang et al., 2019). We use the settings provided by the authors.
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Tensor-OBOE formulates PO as a tensor factorization, where the rank of the tensor is equal to 1+N ,
for N being the number of stages in the pipeline (Yang et al., 2020). We tuned the rank for the
Tucker decomposition from a grid of {20,30,40}, resulting in the best value being 30. All the other
hyper-parameters were set as in the original implementation (Yang et al., 2019).

Factorized Multilayer Perceptron (FMLP) creates an ensemble of neural networks with a factorized
layer (Schilling et al., 2015). The inputs of the neural network are the one-hot encodings of the
algorithms and datasets, in addition to the algorithms’ hyperparameters. We tuned the number of
base estimators for the ensemble from a grid {10, 50, 100}, with 100 being the optimal ensemble size.
Each network layer has 5 neurons and ReLU activations as highlighted in the author’s paper (Schilling
et al., 2015).

RGPE builds an ensemble of Gaussian Processes using auxiliary tasks (Feurer et al., 2018). The
ensemble weights the contributions of every base model and the new model fit on the new task. We
used the implementation from Botorch (Balandat et al., 2020).

Gaussian Processes (GP) are a standard and strong baseline in hyperparameter optimization (Snoek
et al., 2012). We tuned the kernel from {Gaussian, Matérn 5/2}, with Matérn 5/2 performing better.

DNGO uses neural networks as basis functions with a Bayesian linear regressor at the output
layer (Snoek et al., 2015). We use the implementation provided by Klein & Zela (2020), and its
default hyperparameters.

SMAC uses Random Forest for predicting uncertainties (Hutter et al., 2011). After exploring a grid
of {10, 50, 100} for the number of trees, we found 100 to be the best choice.

TPOT is an AutoML system that conducts PO using evolutionary search (Olson & Moore, 2016). We
use the original implementation but adopted the search space to fit the Tensor-OBOE meta-dataset
(see Appendix R).

5.3 RESEARCH HYPOTHESES AND ASSOCIATED EXPERIMENTS

Hypothesis 1: DeepPipe outperforms standard PO baselines.

Experiment 1: We evaluate the performance of DeepPipe when no meta-training data is available.
We compare against four baselines: Random Search (RS) (Bergstra et al., 2011), Gaussian Processes
(GP) (Rasmussen & Williams, 2006), DNGO (Snoek et al., 2015) and SMAC (Hutter et al., 2011).
We evaluate their performances on the aforementioned PMF, Tensor-OBOE and ZAP meta-datasets.
In Experiments 1 and 2 (below) we select 5 initial observations to warm-start the BO, then we run 95
additional iterations. The procedure for choosing these configurations is detailed in the Appendix G.

Hypothesis 2: Our meta-learned DeepPipe outperforms state-of-the-art transfer-learning PO methods.

Experiment 2: We compare our proposed method against baselines that use auxiliary tasks (a.k.a.
meta-training data) for improving the performance of Pipeline Optimization: Probabilistic Matrix
Factorization (PMF) (Fusi et al., 2018), Factorized Multilayer Perceptron (FMLP) (Schilling et al.,
2015), OBOE (Yang et al., 2019) and Tensor OBOE (Yang et al., 2020). Moreover, we compare to
RGPE (Feurer et al., 2018), an effective baseline for transfer HPO (Arango et al., 2021). We evaluate
the performances on the PMF and Tensor-OBOE meta-datasets.

Hypothesis 3: DeepPipe leads to strong any-time results in a time-constrained PO problem.

Experiment 3: Oftentimes practitioners need AutoML systems that discover efficient pipelines within
a small time budget. To test the convergence speed of our PO method we ran it on the aforementioned
OpenML datasets for a budget of 10 minutes, and also 1 hour. We compare against five baselines:
(i) TPOT (Olson & Moore, 2016) adapted to the search space of Tensor-OBOE (see Appendix R),
(ii) OBOE and Tensor-OBOE (Yang et al., 2019; 2020) using the time-constrained version provided
by the authors, (iii) SMAC (Hutter et al., 2011), and (iv) PMF (Fusi et al., 2018). The last three had
the same five initial configurations used to warm-start BO as detailed in Experiment 1. Moreover,
they were pre-trained with the Tensor-OBOE meta-dataset and all the method-specific settings are
the same as in Experiment 2.

Hypothesis 4: Our novel encoder layers of DeepPipe enable an efficient PO when the pipeline search
space changes, i.e. when developers add a new algorithm to a ML system.
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Figure 2: Comparison of DeepPipe vs. standard PO methods (Experiment 1)
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Figure 3: Comparison of DeepPipe vs. transfer-learning PO methods (Experiment 2)

Experiment 4: A major obstacle to meta-learning PO solutions is that they do not generalize when
the search space changes, especially when the developers of ML systems add new algorithms. Our
architecture quickly adapts to newly added algorithms because only an encoder sub-network for
the new algorithm should be trained. To test the scenario, we ablate the performance of five
versions of DeepPipe and try different settings when we remove a specific algorithm (an estimator)
either from meta-training, meta-testing, or both.

Hypothesis 5: The encoders in DeepPipe introduce an inductive bias where latent representa-
tion vectors of an algorithm’s configurations are co-located, and located distantly from the repre-
sentations of other algorithms’ configurations. Formally, given three pipelines p(l), p(m), p(n) if
p
(l)
i = p

(m)
i , p

(l)
i ̸= p

(n)
i then ||ϕ(p(l))− ϕ(p(m))|| < ||ϕ(p(m))− ϕ(p(n))|| with higher probability

when using encoder layers, given that p(n)i is the index of the algorithm in the i-th stage. Furthermore,
we hypothesize that the less number of tasks during pre-training, the more necessary this inductive
bias is.

Experiment 5: We sample 2000 pipelines of 5 estimation algorithms on the TensorOBOE dataset.
Subsequently, we embed the pipelines using a DeepPipe with 0, 1 and 2 encoder layers, and
weights θ, initialized such that θi ∈ θ are independently identically distributed θi ∼ N (0, 1).
Finally, we visualize the embeddings with T-SNE (Van der Maaten & Hinton, 2008) and compute
a cluster metric to assess how close pipelines with the same algorithm are in the latent space:
Ep(l),p(m),p(n)(I(||ϕ(p(l)) − ϕ(p(m))|| < ||ϕ(p(m)) − ϕ(p(n))||)). To test the importance of the
inductive bias vs the number of pre-training tasks, we ablate the performance of DeepPipe for
different percentage of pre-training tasks (0.5%, 1%, 5%, 10%, 50%, 100%) under different values of
encoder layers.
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5.4 EXPERIMENTAL SETUP FOR DeepPipe

The encoders and the aggregated layers are Multilayer Perceptrons with ReLU activations. We keep an
architecture that is proportional to the input size. The number of neurons in the hidden layers for the
encoder of algorithm j-th in i-th stage with |Λi,j | hyperparameters is F · |Λi,j |, given an integer factor
F . The output dimension of the encoders of the i-th stage is defined asQi = maxj |Λi,j |. The number
of total layers (i.e. encoder and aggregation layers) is fixed to 4. The number of encoders is chosen
from {0,1,2}. The specific values of the encoders’ input dimensions are detailed in Appendix R.
We choose F ∈ {4, 6, 8, 10} based on the performance in the validation split. Specifically, we use
the following values for DeepPipe: (i) in Experiment 1: 1 encoder layer (all meta-datasets), F = 6
(PMF and ZAP) and F = 8 (Tensor-OBOE), (ii) in Experiment 2: F = 8, no encoder layer (PMF,
Tensor-OBOE) and one encoder layer (ZAP), (iii) in Experiment 3: F = 8 and no encoder layers,
(iv) in Experiment 4 we use F = 8 and {0, 1} encoder layers. Finally (iv) in Experiment 5 we use
F = 8 and {0, 1, 2} encoder layers. Additional details on the setup can be found in the Appendix G
and our source code2.

6 RESULTS

We present the results for Experiments 1 and 2 in Figures 2 and 3, respectively. In both cases,
we compute the ranks of the classification accuracy achieved by the discovered pipelines of each
technique, averaged across the meta-testing datasets. The shadowed lines correspond to the 95%
confidence intervals. Additional results showing the mean regret are included in Appendix L. In
Experiment 1 (standard/non-transfer PO) DeepPipe achieved the best performance for both meta-
datasets, whereas SMAC attained the second place. In Experiment 2 DeepPipe strongly outperforms
all the transfer-learning PO baselines in all meta-datasets. Given that DeepPipe yields state-of-the-art
PO results on both standard and transfer-learning setups, we conclude that our pipeline embedding
network computes efficient representations for PO with Bayesian Optimization. In particular, the
results on the ZAP meta-dataset indicate the efficiency of DeepPipe in discovering state-of-the-art
Deep Learning pipelines for computer vision.

Table 1: Average Rank of Accuracy on OpenML Datasets

Method 10 Mins 1 Hour
TPOT 3.2000 ± 0.1998 3.3527 ± 0.1911

Tensor-OBOE 4.3878 ± 0.1786 4.3624 ± 0.2008
OBOE 3.9909 ± 0.1935 4.0873 ± 0.2072
SMAC 3.2424 ± 0.1638 3.1682 ± 0.1484
PMF 3.0424 ± 0.1577 2.9336 ± 0.1523

DeepPipe 2.7424 ± 0.1277 2.8996 ± 0.1343

Experiment 3 conducted on the
OpenML datasets shows that Deep-
Pipe performs well under restricted
budgets (see Table 1). Although our
method does not incorporate any di-
rect way to handle time constraints,
it is interesting to note that it out-
performs other methods that include
heuristics for handling a quick con-
vergence, such as OBOE and Tensor-
OBOE.

Furthermore, the results of Experiment 4 indicate that our DeepPipe embedding quickly adapts to
incrementally-expanding search spaces, e.g. when the developers of a ML system add new algorithms.
In this circumstance, existing transfer-learning PO baselines do not adapt easily, because they assume
a static pipeline search space. As a remedy, when a new algorithm is added to the system after
meta-learning our pipeline embedding network, we train only a new encoder for that new algorithm.
In this experiment, we run our method on variants of the search space when one algorithm at a time
is introduced to the search space (for instance an estimator, e.g. MLP, RF, etc., is not known during
meta-training, but added new to the meta-testing).

In Tables 2 and 5 (in Appendix), we present the values of the average rank among five different
configurations for DeepPipe. We compare among meta-trained versions (denoted by ✓in the column
MTd.) that omit specific estimators during meta-training (MTr.=✓), or during meta-testing (MTe.=✓).
We also account for versions with one encoder layer denoted by ✓in the column Enc.

2The code is available in this repository: https://anonymous.4open.science/r/
DeepPipe-3DDF
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Figure 4: Embeddings of Pipelines produced by a random initialized DeepPipe (after applying T-
SNE). The color indicates the active algorithm in the Estimation stage of Tensor-OBOE Meta-Dataset.

The best in all cases is the meta-learned model that did not omit the estimator (i.e. algorithm known
and prior evaluations with that algorithm exist). Among the versions that omitted the estimator in
the meta-training set (i.e. algorithm added new), the best configuration was the DeepPipe which
fine-tuned a new encoder for that algorithm (line Enc=✓, MTd.=✓, MTr.=✓, MTe.=✗). This version
of DeepPipe performs better than ablations with no encoder layers (i.e. only aggregation layers
ϕ), or the one omitting the algorithm during meta-testing (i.e. pipelines that do not use the new
algorithm at all). The message of the results is simple: If we add a new algorithm to a ML system,
instead of running PO without meta-learning (because the search space changes and existing transfer
PO baselines are not applicable to the new space), we can use a meta-learned DeepPipe and only
fine-tune an encoder for a new algorithm.

Table 2: Average rank among DeepPipe variants for newly-added algorithms (Tensor-OBOE)

Enc. MTd. Omitted in Omitted Estimator

MTr. MTe. ET GBT Logit MLP RF lSVM KNN DT AB GB/PE

✓ ✓ ✓ ✓ 3.2398 3.1572 3.0503 3.1982 3.4135 3.3589 3.2646 3.2863 3.1580 3.3117
✓ ✗ ✓ ✗ 3.5319 3.0934 3.6362 3.4780 3.4712 3.3829 3.6312 3.3691 3.6333 3.4642
✓ ✓ ✗ ✗ 2.5582 2.6773 2.7086 2.5761 2.6485 2.6938 2.6812 2.5596 2.5936 2.5546
✗ ✓ ✓ ✗ 2.9247 3.0743 2.8802 3.0423 2.6691 2.8026 2.7408 2.9161 2.9214 2.8689
✓ ✓ ✓ ✗ 2.7455 2.9978 2.7248 2.7054 2.7978 2.7619 2.6822 2.8688 2.6938 2.8007

The effect of the inductive bias introduced by the encoders (Experiment 5) can be appreciated in
Figure 4. The pipelines with the same active algorithm in the estimation stage, but with different
hyperparameters, lie closer in the embedding space created by a random initialized DeepPipe, forming
compact clusters characterized by the defined cluster metric (value below the plots). We formally
demonstrate in Appendix S that, in general, a single encoder layer is creating more compact clusters
than a fully connected linear layer. In additional results (Appendix F), we observe that the average
rank on the test-tasks improves for DeepPipe versions with deeper encoder layers (keeping the total
number of layers fixed), if the number of meta-training tasks gets lower. This occurs because the
objective function (Equation 5) makes possible to learn embeddings where pipelines with similar
performance are clustered together (see Appendix O) given enough meta-training data. Otherwise,
the inductive bias introduced by the encoders becomes more relevant.

7 CONCLUSION

In this paper, we have shown that efficient Machine Learning pipeline representations can be com-
puted with deep modular networks. Such representations help discovering more accurate pipelines
compared to the state-of-art approaches, because they capture the interactions of the different pipelines
algorithms and their hyperparameters. Moreover, we show that introducing per-algorithm encoders
helps in the case of limited meta-trained data, or when a new algorithm is added to the search space.
Overall, we demonstrate that our method DeepPipe achieves the new state-of-the-art in Pipeline
Optimization.

9



Under review as a conference paper at ICLR 2023

Limitations. Our representation network does not model complex parallel pipelines (in that case
the embedding will be a graph neural network), and/or pipelines involving ensembles. We plan to
investigate these important points in our future work.

Reproducibility Statement. To guarantee the reproducibility of or work, we include an anonymized
repository to the related code. The code for the baselines is included also, and we reference the original
implementations if it is the case. All the meta-datasets are publicly available and correspondingly
referenced.
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A POTENTIAL NEGATIVE SOCIETAL IMPACTS

The meta-training is the most demanding computational step, thus it can incur in high energy
consumption. Additionally, DeepPipe does not handle fairness, so it may find pipelines that are
biased by the data.

B LICENCE CLARIFICATION

The results of this work (code, data) are under license BSD-3-Clause license. Both PMF dataset
Sheth (2018) and Tensor-OBOE dataset Akimoto & Yang (2020) hold the same license.

C DISCUSSION ON NUMBER OF EVALUATED PIPELINES

Table 3: Average Number of Observed Pipelines on OpenML
Datasets

Method 10 Mins 1 Hour
TPOT 45.48 ± 46.25 70.56 ± 41.67

Tensor-OBOE 84.43 ± 57.61 178.95 ± 69.04
OBOE 120.35 ± 70.35 467.09 ± 330.34
SMAC 80.76 ± 115.04 452.35 ± 637.08
PMF 126.37 ± 197.61 523.71 ± 663.07

DeepPipe 94.51 ± 128.62 356.71 ± 379.62

Based on results from Experiment
3, we report the average (and stan-
dard deviation) of the number of ob-
served pipelines among all the com-
pared methods in 10 and 60 minutes
on Table 3. This is an important
metric to understand the optimization
overhead introduced by the method.
For instance, a method that explores
few pipelines during a fixed time win-
dow, might use expensive computa-
tions during the pipeline optimization.
We notice that DeepPipe achieves the best results (see Table 1) by using a reasonable amount of
pipelines, i.e. the optimization overhead introduced our method is small compared to other approaches
such as TPOT and OBOE.

D DISCUSSION ON THE INTERACTIONS AMONG COMPONENTS

5 20 40 60 80 100
No. of Explored Pipelines
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1-Enc./0-Agg.

2-Enc./0-Agg

1-Enc./1-Agg.

0-Enc./0-Agg.

Figure 5: Average rank for DeepPipe with and
without encoder and and aggregation layers.

The encoder and aggregation layers capture
interactions among the pipeline components,
and therefore are important to attain good per-
formance. These interactions are reflected in
the features extracted by these layers, i.e. the
pipelines representations obtained by DeepPipe.
These representations lie on a metric space that
captures relevant information about the pipelines
and which can be used on the kernel for the
Gaussian Process. Using the original input space
does not allow to extract rich representations.
To test this idea, we meta-train four version of
DeepPipe with and without encoder and aggre-
gation layers on our TensorOBOE meta-train
set and then test on the meta-test split. In Fig-
ure 5, we show that the best version is obtained
when using both encoder (Enc.) and aggregation
(Agg.) layers (green line), whereas the worst ver-
sion is obtained when using the original input
space, i.e. no encoder and no aggregation layers.
Having encoder helps more than not having en-
coder, thus it is important to capture interactions among hyperparameters in the same stage. As having
an aggregation layer is better than not, it is important to capture interactions among components from
different stages.
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Figure 6: Comparison with Structured Kernel Learning (SKL)

Table 4: Comparison with AutoPrognosis

EBO Method Avg. Rank Std. Rank Avg. Acc. Std. Acc. Avg Time Std. Time

50 AutoProg. 1.5588 0.4416 0.8637 0.1143 19324 12934
DeepPipe 1.4411 0.4416 0.8692 0.1113 903 1548.

100 AutoProg. 1.5133 0.4694 0.8715 0.0949 18502 11176
DeepPipe 1.4866 0.4694 0.8727 0.0972 2221 5405

E COMPARISON WITH STRUCTURED KERNEL LEARNING (SKL) AND
AUTOPROGNOSIS

AutoPrognosis (Alaa & van der Schaar, 2018) uses Structured Kernel Learning (SKL) and meta-
learning to account for the interactions among the pipelines components. SKL decomposes the
original input space by making up N group of pipelines components, e.g. Random Forest and SVM
in a group separated from Linear Regression and Logistic Regression. The hyperparameters of every
group of pipelines components is then passed through a kernel, and then the N resulting kernels are
added. This effectively builds up a kernel with additive structure (Gardner et al., 2017), however they
are not using a feature extractor like DeepPipe. We compare SKL against a non-pretrained DeepPipe
on Figure 6 on three meta-datasets, where it is noticeable that our method outperforms this strategy.

Additionally we compare DeepPipe with the whole algorithm introduced by AutoPrognosis 2.0 (Imrie
et al., 2022) on the Open ML datasets for 50 and 100 BO iterations (EBO). We report the average and
standard deviation for the rank, accuracy and time. DeepPipe achieves the best average rank, ie. lower
average rank than AutoPrognosis. This is complemented with the having the highest average accuracy.
Interestingly, our method is approximately one order of magnitude faster than AutoPrognosis. We
notice this is due to the time overhead introduced by the Gibbs sampling strategy for optimizing the
structured kernel, whereas our approach uses gradient-based optimization.

Experimental Set-Up for DeepPipe. For our comparison with SKL, we use the same hyperparame-
ters and architecture as for the Experiment 1. When comparing with AutoPrognosis, we use the same
hyperparmeters and architecture as for the Experiment 2, pre-trained on the Tensor-OBOE meta-train
split.

Experimental Set-Up for SKL and AutoPrognosis For SKL we used the default strategy with
N = 3 (Alaa & van der Schaar, 2018). For AutoPrognosis, we use the implementation in the
respective author’s repository 3. We ran it with the default configuration, but limited the search space
of classifiers to match the classifiers on the Tensor-OBOE meta-dataset 4.

3https://github.com/ahmedmalaa/AutoPrognosis
4Specifically, the list of classifiers is: Random Forest, Extra Tree Classifier, Gradient Boosting", Logist

Regression, MLP, linear SVM, kNN, Decision Trees, Adaboost, Bernoulli Naive Bayes, Gaussian Naive Bayes,
Perceptron.
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F DISCUSSION ON THE INDUCTIVE BIAS VS. PRE-TRAINING EFFECT

How shallow/deep should the encoder networks be compared to the aggregation network? We
hypothesize that deeper encoders help in the transfer-learning setup where there exist only a few
evaluated pipeline configurations on past datasets. To test this hypothesis, we assess the performance
of DeepPipe with different network sizes and meta-trained with different percentages of meta-training
tasks: 0.5%, 1% , 5%, 10%, 50%, and 100%. As we use the Tensor-OBOE meta-dataset, this
effectively means that we use 1, 3, 16, 33, 165, and 330 tasks respectively.
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Figure 7: Comparison of the average rank for DeepPipe with
different number of encoders under different percentages of
meta-train data. The total number of layers is always the
same.

The results of these experiments are
shown in Figure 7. Here we ablate
DeepPipe with different numbers of
encoder layers while pre-training on
different fractions of the meta-training
tasks. We ran the experiment for three
values of F . The presented scores
are the average ranks among the three
DeepPipe configurations (row-wise).
The average rank is computed across
all the meta-test tasks and across 100
BO iterations. The results indicate
that deeper encoders achieve a bet-
ter performance when a small num-
ber of meta-training tasks is available.
In contrast, shallower encoders are
needed if more meta-training tasks are
available. Apparently the deep aggre-
gation layers ϕ already capture the in-
teraction between the hyperparameter configurations across algorithms when a large meta-dataset of
evaluated pipelines is given. The smaller the meta-data of evaluated pipeline configurations, the more
inductive bias we need to implant in the form of per-algorithm encoders.

G ADDITIONAL INFORMATION ON EXPERIMENTAL SET-UP

In all experiments (except Experiment 1), we meta-train the surrogate following Algorithm 1 in
Appendix J for 10000 epochs with the Adam optimizer and a learning rate of 10−4, batch size
1000, and the Matérn Kernel. During meta-testing, when we perform BO to search for a pipeline,
we fine-tune only the kernel parameters γ for 100 gradient steps. In the non-transfer experiments
(Experiment 1) we use an architecture with F = 8 and fine-tuned the network for 10000 iterations.
The rest of the training settings are similar to the transfer experiments. In Experiment 5 we fine-
tune the whole network for 100 steps when no encoders are used. Otherwise, we fine-tune only
the encoder associated with the omitted estimator and freeze the rest of the network. We ran all
experiments on a CPU cluster, where each node contains two Intel Xeon E5-2630v4 CPUs with
20 CPU cores each, running at 2.2 GHz. We reserved a total maximum memory of 16GB. We
discuss how we implemented DeepPipe efficiently as a MLP with masked layers5 in Appendix N.
We associate algorithms with no hyperparameters to the same encoder. We found that adding the
One-Hot-Encoding of the selected algorithms per stage as an additional input is helpful. Therefore,
the input dimensionality of the aggregated layers is equal to the dimension after concatenating the
encoders output F ·

∑
i(Qi +Mi). Further details on the architectures for each search space are

specified in Appendix M. Finally, we use the Expected Improvement as acquisition function for
DeepPipe and all the baselines.

Initial Configurations For the experiments with the PMF-Dataset, we choose these configurations
with the same procedure as the authors Fusi et al. (2018), where they use dataset meta-features to
find the most similar auxiliary task to initialize the search on the test task. Since we do not have
meta-features for the Tensor-OBOE meta-dataset, we follow a greedy initialization approach Metz
et al. (2020). This was also applied to the ZAP-Dataset. Specifically, we select the best-performing

5We make our code available in https://anonymous.4open.science/r/DeepPipe-E19E
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pipeline configuration by ranking their performances on the meta-training tasks. Subsequently, we
iteratively choose four additional configurations that minimize

∑
t∈Tasks r̂t, where r̂t = minp∈X rt,p,

given that rt,p is the rank of the pipeline p on task t.

H ADDITIONAL RELATED WORK

Hyperparameter Optimization (HPO) has been well studied over the past decade (Bergstra &
Bengio, 2012). Techniques relying on Bayesian Optimization (BO) employ surrogates to approximate
the response function of Machine Learning models, such as Gaussian Processes (Snoek et al., 2012),
Random Forests (Bergstra et al., 2011) or Bayesian Neural Networks (Snoek et al., 2015; Springenberg
et al., 2016). Further improvements have been achieved by applying transfer learning, where existing
evaluations on auxiliary tasks help pre-training or meta-learning the surrogate. In this sense, some
approaches use pre-trained neural networks with uncertainty outputs (Wistuba & Grabocka, 2021;
Perrone et al., 2018; Wei et al., 2021b), or ensembles of Gaussian Processes (Feurer et al., 2018).

Deep Kernels propose combining the benefits of stochastic processes such as Gaussian Processes
with neural networks (Calandra et al., 2016; Garnelo et al., 2018; Wilson et al., 2016). Follow-up
work has applied this combination for training few-shot classifiers (Patacchiola et al., 2020). In the
area of Hyperparameter Optimization, (Snoek et al., 2015) achieved success on BO by modeling
the output layer of a deep neural network with a Bayesian linear regression. Perrone et al. (2018)
extended this work by pre-training the Bayesian network with auxiliary tasks. Recent work proposed
to use non-linear kernels, such as the Matérn kernel, on top of the pre-trained network to improve the
performance of BO (Wistuba & Grabocka, 2021; Wei et al., 2021a).

I BAYESIAN OPTIMIZATION (BO)

In BO we fit a surrogate iteratively using the observed configurations and their response. Posteriorly,
its probabilistic output is used to query the next configuration to evaluate (observe) by maximizing an
acquisition function. A common choice for the acquisition is Expected Improvement, defined as:

EI(pλ|H) = E [max {µ(pλ)− ymax, 0}] (6)

where ymax is the largest observed response in the history H and µ is the posterior of the mean
predicted performance given by the surrogate, computed using Equation 2. A common choice as
surrogate is Gaussian Process, but for Pipeline Optimization we introduce DeepPipe.

J DeepPipe META-TRAINING

Given a task t with observations Ht = {(pλ(t,1), y(t,1)), . . . , (pλ(t,Qt), y(t,Qt))}, t ∈ {1, . . . , T},
the objective function to minimize can be derived from the negative log marginal likelihood from the
Gaussian Process p(Ht) ∼ N (0,KT ), where K(t) is the covariance matrix induced by DeepPipe
with parameters θ, γ. Specifically, the negative log marginal likelihood is (Rasmussen & Williams,
2006):

− log p (Ht) = − logN (0,K(t)) = y(t)
T
K(t)(θ, γ)−1y(t) + log

∣∣∣K(t)(θ, γ)
∣∣∣ (7)

The Equation 5 is the multi-task objective function that involves all the meta-learning tasks with
indices t ∈ {1..., T}.
We use auxiliary tasks to learn a good initialization for the surrogate. We sample batches from the
meta-training tasks, and make gradient steps that maximize the marginal log-likelihood in Equation
5, similar to previous work (Wistuba & Grabocka, 2021). The training algorithm for the surrogate is
detailed in Algorithm 1. Additionally, we apply Early Convergence by monitoring the performance
on the validation meta-dataset. Every epoch, we perform the following operations for every task
t ∈ 1...T : i) Draw a set of b observations (pipeline configuration and performance), ii) Compute the
negative log marginal likelihood (our loss function) as in Equation 7, iii) compute gradient of the loss
with respect to the DeepPipe parameters and iv) updated DeepPipe parameters.
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Algorithm 1: DeepPipe Meta-Training

Input: Learning rates η, meta-training data with T tasksH =
⋃

t=1..T H(t), number of epochs
E, batch size b

Output: Parameters w and θ
1 Initialize w and θ at random;
2 for E times do
3 for t ∈ {1, ..., T} do
4 Sample batch B = {(p(t,i)λ , y(t,i))}i=1,...,b ∼ H(t);
5 Compute negative log-likelihood L on B. (Objective Function in Equation 5);
6 θagg ← θagg − η∇θaggL;
7 θenc ← θenc − η∇θencL;
8 γ ← γ − η∇γL;
9 end

10 end

Algorithm 2: Bayesian Optimization (BO) with DeepPipe

Input: Learning rate η, initial observationsH = {(p(i)λ , y(i))}i=1,...,I , pretrained surrogate with
parameters θ and γ, number of surrogate updates ETest, BO iterations EBO, search
space of pipelines P

Output: Pipeline Configuration p∗λ
1 Function FineTune (H, γ, η, Etest):
2 for ETest times do
3 Compute negative log-likelihood L on D. (Objective function in Equation 5 with T = 1);
4 γ ← γ − η∇γL;
5 end
6 return γ
7 Function BO(H, η, θ, γ, Etest, EBO):
8 for EBO times do
9 γ′ ← FineTune(H, γ, η, ETest);

10 Compute p′λ ∈ argmaxpλ∈P EI(pλ, γ′, θ) ;
11 Observe performance y′ of pipeline p′λ ;
12 Add new observationH ← H∪ {(p′λ, y′)} ;
13 end
14 Compute best pipeline index i∗ ∈ argmaxi∈{1...|H|} yi ;

15 return p(i∗)λ ;

K DeepPipe META-TESTING

When a new pipeline is to be optimized on a new dataset (task), we apply BO (see Algorithm 2). Every
iteration we update the surrogate by fine-tuning the kernel parameters. However, the parameters of
the MLP layers θ can be also optimized, as we did on the Experiment 1, in which case the parameters
were randomly initialized.

L ADDITIONAL RESULTS

In this section, we present further results. Firstly, we show an ablation of the factor that determines
the number of hidden units (F ) in Figure 8. It shows that F = 8 attains the best performance after
exploring 100 pipelines in both datasets. Additionally, we present the average regret for the ablation
of F , and the results of Experiment 1 and 2 in Figures 9, 10 and 11 respectively.

Table 5 present the extended results of omitting estimators in the PMF Dataset. From these, we draw
the same conclusion as in the same paper: having encoders help to obtain better performance when a
new algorithm is added to a pipeline.
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Figure 8: Comparison of different F values in DeepPipe (Rank).
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Table 5: Average rank among DeepPipe variants for newly-added algorithms (PMF)

Enc. MTd. Omitted in Omitted Estimator

MTr. MTe. ET RF XGBT KNN GB DT Q/LDA NB

✓ ✓ ✓ ✓ 3.1527 3.1645 3.2109 3.2541 3.2874 3.2741 3.1911 3.0263
✓ ✗ ✓ ✗ 3.2462 3.3208 3.2592 3.3180 3.2376 3.2249 3.3557 3.3993
✓ ✓ ✗ ✗ 2.5710 2.5996 2.4011 2.5947 2.6301 2.5664 2.6252 2.6214
✗ ✓ ✓ ✗ 3.0464 2.8550 3.0850 2.8845 2.9397 3.0316 2.9530 3.0596
✓ ✓ ✓ ✗ 2.9838 3.0601 3.0439 2.9486 2.9051 2.9029 2.8750 2.8934

We carry out an ablation to understand the difference between the versions of Deep Pipe with/without
encoder and with/without transfer-learning using ZAP Meta-dataset. As shown in Figure 12, the
version with transfer learning and one encoder performs the best, thus, highlighting the importance of
encoders in transfer learning our DeepPipe surrogate.

M ARCHITECTURE DETAILS

The input to the kernel has a dimensionality of Z=20. We fix it, to be the same as the output
dimension for PMFs. The number of neurons per layer, as mentioned in the main paper, depends on F .
Consider an architecture with with no encoder layers and ℓa aggregation layers, and hyperparameters
Λi,j , i ∈ {1 . . . N}, j ∈ {1 . . .Mi} (following the notation in section 4.1) with Qi = maxj |Λi,j |,
then the number of weights (omitting biases for the sake of simplicity) will be:

∑
i,j

|Λi,j |

 ·(F ·∑
i

Qi

)
+ (ℓa − 1)

(
F ·
∑
i

Qi

)2

(8)
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Figure 10: Comparison of DeepPipe vs. non transfer-learning PO methods in Experiment 1 (Regret)
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Figure 11: Comparison of Regret in DeepPipe vs. transfer-learning PO methods in Experiment 2
(Regret)

If the architecture has ℓe encoder layers and ℓa aggregation layers, then number of weights is given
by:

∑
i,j

|Λi,j | · (F ·Qi) + (ℓe − 1)
∑
i

Mi · (F ·Qi)
2
+ ℓa

(
F ·
∑
i

Qi

)2

(9)
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Figure 13: Number of weights in the MLP for a given value of F and encoder layers.

In other words, the aggregation layers have F ·
∑

iQi hidden neurons, whereas every encoder from
the i-th stage has F ·Qi neurons per layer. The input sizes are

∑
i,j |Λi,j | and |Λi,j | for both cases

respectively. The specific values for |Λi,j | and Qi per search space are specified in Appendix R.

In the search space for PMF, we group the algorithms related to Naive Bayers (MultinomialNB,
BernoulliNB, GaussianNB) in a single encoder. In this search space, we also group LDA and QDA.
In the search space of TensorOboe, we group GaussianNB and Perceptron as they do not have
hyperparameters. Given these considerations, we can compute the input size and the weights per
search space as function of ℓa, ℓe, F as follows:

(i) Input size:

# Input size (PMF) =
∑
i,j

|Λi,j | = 72

# Input (TensorOboe) =
∑
i,j

|Λi,j | = 37

# Input (ZAP) =
∑
i,j

|Λi,j | = 35

(10)

(ii) Number of weights for architecture without encoder layers:

# Weights (PMF) = 720 · F + 256 · (ℓa − 1) · F 2

# Weights (TensorOboe) = 444 · F + 144 · (ℓa − 1) · F 2

# Weights (ZAP) = 1085 · F + 961 · (ℓa − 1) · F 2

(11)

(iii) Number of weights for architecture with encoder layers:

# Weights (PMF) = 886 · F + (1376 · (ℓe − 1) + 256 · ℓa) · F 2

# Weights (TensorOboe) = 161 · F + (271 · (ℓe − 1) + 144 · ℓa) · F 2

# Weights (ZAP) = 35 · F + (965 · (ℓe − 1) + 961 · ℓa) · F 2

(12)

According the previous formulations, Figure 13 shows how many parameters (only weights) the MLP
has given a specific value of F and of encoder layers. We fix the total number of layers to four. Notice
that the difference in the number of parameters between an architecture with 1 and 2 encoder layers
is small in both search spaces.

N COMPUTATIONAL IMPLEMENTATION

DeepPipe’s architecture (encoder layers + aggregated layers) can be formulated as a Multilayer
Perceptron (MLP) comprising three parts (Figure 14). The first part of the network that builds the
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Figure 14: Example of the Implementation of DeepPipe as MLP. λ(k)i,j indicates the k-th hyperparam-
eter of the j-th algorithm in the i-th stage. In this architecture, the first stage has two algorithms, thus
two encoders. The algorithm 1 is active for stage 1. The second stage has only one algorithm.

layers with encoders is implemented as a layer with masked weights. We connect the input values
corresponding to the hyperparameters λ(i,j) of the j-th algorithm of the i-th stage to a fraction of
the neurons in the following layer, what builds the encoder. The fraction of neurons, as explained
in section 5.4 is F · maxj |λ(i,j)|. The rest of the connections are dropped. The second part is a
layer that selects the output of the encoders associated with the active algorithms (one per stage), and
concatenates their outputs (Selection & Concatenation). The layer’s connections are fixed to be either
to one or zero during forward and backward pass. Specifically, they are one if they are connecting
outputs of encoders of active algorithms, and zero otherwise. The last part, an aggregation layer, is a
fully connected layer that learn interactions between the concatenated output of the encoders. By
implementing the architecture as a MLP instead of a multiplexed list of nodes (e.g. with a module list
in PyTorch), faster forward and backward passes are obtained. We only need to specify the selected
algorithms in the forward-pass so that the weights in the Encoder Layer are masked and the ones in
the Selection & Concatenation are accordingly set. After this implementation, notice that DeepPipe
is a MLP with sparse connections.

O VISUALIZING THE LEARNT REPRESENTATIONS

We train a DeepPipe with 2-layer encoders, 2 aggregation layers, 20 output size and F = 8. To
visualize the pipelines embeddings, we apply TSNE (T-distributed Stochastic Neighbor Embedding).
As plotted in Figure 15, the pipelines with the same estimator and dimensionality reducer are creating
clusters. The groups in this latent space are also indicators of the performance on a specific task. In
Figure 16 we show the same embeddings of the pipelines with a color marker indicating its accuracy
on two meta-testing tasks. Top-performing pipelines (yellow color) are relatively close to each other
in both tasks, building up regions of good performing pipelines. These groups of good pipelines
are different in both cases, which indicates that there is not a single pipeline that works for all
tasks. DeepPipe maps the pipelines to an embedding space where it is easier to assess the similarity
between pipelines and to search for good-performing pipelines. However, the type of pipeline (good
performing pipelines, bad performing pipelines) depends on the task.
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Figure 15: Learnt representations in 2 dimensions for estimators (left) and dimensionality reducers
(right) from the Tensor-OBOE meta-dataset.
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Figure 16: Learnt representations for two tasks with different accuracy levels.
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P META-DATASET PREPROCESSING

We obtained the raw data for the meta-datasets from the raw repositories of PMF 6 and TensorOBOE 7.
PMF repo provides an accuracy matrix, while Tensor-OBOE specifies the error. We take the pipelines’
configurations and concatenate the hyperparameters in both meta-datasets. Then we proceed with the
following steps: 1) One-Hot encode the categorical hyperparameters, 2) apply a log transformation
xnew = ln(x) to the hyperparameters whose value is greater than 3 standard deviations, 3) scale all
the values to be in the range [0,1]. The variables coming from categorical hyperparameters are named
original-variable-name_category.

Q ABBREVIATIONS

(i) Abbreviations in Table 2:

1) ET: ExtraTrees, 2) GBT: Gradient Boosting, 3) Logit: Logistict Regression 4) MLP: Multilayer
Perceptron 5) RF: Random Forest, 6) lSVM: Linear Support Vector Machine, 7) kNN: k Nearest
Neighbours, 8) DT: Decision Trees, 9) AB: AdaBoost, 10) GB/PE= Gaussian Naive Bayes/Perceptron.

(ii) Abbreviations in Table 3:

1) ET: ExtraTrees, 2) RF: Random Forest , 3) XGBT: Extreme Gradient Boosting, 4) kNN: K-Nearest
Neighbours, 5) GB: Gradient Boosting, 6) DT: Decision Trees, 7) Q/LDA: Quadratic Discriminant
Analysis/ Linear Discriminant Analysis, 8) NB: Naive Bayes.

R META-DATASET SEARCH SPACES

We detail the search spaces composition in Tables 6 and 7. We specify the stages, algorithms,
hyperparameters, number of components per stage Mi, the number of hyperparameters per algorithm
|λi,j |, and the maximum number of hyperparameters found in an algorithm per stage Qi. For the
ZAP meta-dataset, we defined a pipeline with two stages: (i) Architecture, which specifies the type
or architecture used (i.e. ResNet18, EfficientNet-B0, EfficientNet-B1, EfficientNet-B2), and (ii)
Optimization-related Hyperparameters that are shared by all the architectures.

6https://github.com/rsheth80/pmf-automl
7https://github.com/udellgroup/oboe/tree/master/oboe/defaults/TensorOboe
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Table 6: Search Space for PMF Meta-Dataset

Stage Qi Mi Algorithm |Λi,j | Hyperparameters

Preprocessor 3 2 Polynomial 3 include_bias, interaction_only, degree

PCA 2 keep_variance, whiten

Estimator 13 8

ExtraTrees 9 bootstrap, min_samples_leaf, n_estimators, max_features,
min_weight_fraction_leaf, min_samples_split, max_depth

RandomForest 10
bootstrap, min_samples_leaf, n_estimators, max_features,
min_weight_fraction_leaf, min_samples_split, max_depth,
criterion_entropy, criterion_gini

XgradientBoosting 13

reg_alpha, col_sample_bytree, colsample_bylevel, scale_pos_weight,
learning_rate,
max_delta_step, base_score, n_estimators, subsample,
reg_lambda, min_child_weight, max_depth, gamma

kNN 4 p, n_neighbors, weights_distance, weights_uniform

GradientBoosting 10
max_leaf_nodes, learning_rate, min_samples_leaf,
n_estimators, subsample, min_weight_fraction_leaf, max_features,
min_samples_split, max_depth, loss_deviance

DecisionTree 9
max_leaf_nodes, min_samples_leaf, max_features,
min_weight_fraction_leaf, min_samples_split, max_depth,
splitter_best, criterion_entropy, criterion_gini

LDA 6 shrinkage_factor, n_components, tol, shrinkage_-1,
shrinkage_auto, shrinkage_manual

QDA 1 reg_param

BernoulliNB 2 alpha, fit_prior

MultinomialNB 2 alpha, fit_prior

GaussianNB 1 apply_gaussian_nb

Table 7: Search Space for Tensor-OBOE Meta-Dataset

Stage Qi Mi Algorithm |Λi,j | Hyperparameters

Imputer 4 1 SimpleImputer 4 Strategy_constant, Strategy_mean,Strategy_median,
Strategy_most_frequent

Encoder 1 1 OneHotEncoder 1 Handle_unknown_ignore

Scaler 1 1 StandardScaler 1 -

Dim. Reducer 1 3
PCA 1 N_components

SelectKBest 1 K

VarianceThreshold 1 -

Estimator 5 10

ExtraTrees 3 min_samples_split, criterion_entropy, criterion_gini

Gradient Boosting 4 learning_rate, max_depth, max_features_None,
max_features_log2

Logit 5 C, penalty_l1, penalty_l2, sovler_liblinear, solver_saga

MLP 5 alpha, learning_rate_init, learning_rate_adaptive,
solver_adam, solver_sgd

Random Forest 3 min_samples_split, criterion_entropy, criterion_gini

lSVM 1 C

kNN 2 n_neighbors, p

Decision Trees 1 min_samples_split

AdaBoost 2 learning_rate, n_estimators

GaussianNB 1 -

Perceptron 1 -
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Table 8: Search Space for ZAP Meta-Dataset

Stage Qi Mi Algorithm |Λi,j | Hyperparameters

Architecture 1 4

ResNet 1 IsActive

EfficientNet-B0 1 IsActive

EfficientNet-B1 1 IsActive

EfficientNet-B2 1 IsActive

Common Hyperparameters 31 1 - 31

early_epoch, first_simple_model,
max_inner_loop_ratio,
skip_valid_score_threshold, test_after_at_least_seconds,
test_after_at_least_seconds_max,
test_after_at_least_seconds_step,
batch_size, cv_valid_ratio, max_size,
max_valid_count, steps_per_epoch,
train_info_sample,
optimizer.amsgrad, optimizer.freeze_portion, optimizer.lr,
optimizer.min_lr, optimizer.momentum, optimizer.nesterov,
optimizer.warm_up_epoch,
warmup_multiplier, optimizer.wd,
simple_model_LR, simple_model_NuSVC, simple_model_RF,
simple_model_SVC, optimizer.scheduler_cosine,
optimizer.scheduler_plateau,
optimizer.type_Adam,
optimizer.type_AdamW

S THEORETICAL INSIGHT OF HYPOTHESIS 5

Here, we formally demonstrate that the DeepPipe with encoder layers is grouping hyperparameters
from the same algorithm in the latent space, better than DeepPipe without encoders, formulated on
Corollary S.4, which is supported by Proposition S.3.

Lemma S.1. Given w ∈ RM , a vector of weights with independent and identically distributed
components wi ∈ {w1, ..., wM} such that wi ∼ p(w), the expected value of the square of the norm
Ep(w)(||w||2) is given by M · (µ2

w + σ2
w), where µw and σw are the mean and standard deviation of

p(w) respectively.

Proof.

Ep(w)

(
||w||2

)
= Ep(w)

(
M∑
i=1

w2
i

)
(13)

=

M∑
i=1

Ep(w)(w
2
i ) (14)

=

M∑
i=1

µ2
w + σ2

w (15)

=M · (µ2
w + σ2

w) (16)

Lemma S.2. Consider a linear function with scalar output z = wTx where w ∈ RM×1 is the
vector of weights with components wi, i ∈ {1, ...,M}, x ∈ RM×1 are the input features. Moreover,
consider the weights are independently and identically distributed wi ∼ p(w). The expected value of
the norm of the output is given by Ep(w)

(
||wTx||2

)
= (µ2

w +σ2
w) · ||x||2 +µ2

w ·
∑M

i=1

∑i−1
j=1 xi ·xj .
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Proof.

Ep(w)

(
(wTx)2

)
= Ep(w)

(
M∑
i=1

wi · xi

)2

(17)

= Ep(w)

 M∑
i=1

(wi · xi)2 +
M∑
i=1

i−1∑
j=1

wi · wj · xi · xj

 (18)

=

M∑
i=1

Ep(w)(w
2
i ) · x2i + 2 ·

M∑
i=1

i−1∑
j=1

Ep(w)(wi · wj) · xi · xj (19)

(20)

Since wi, wj are independent then Ep(w)(wi · wj) = Ep(w)(wi) · Ep(w)(wj) = µ2
w. Moreover, with

a slight abuse in notation, we denote
∑M

i=1

∑i−1
j=1 xi · xj = x⊗ x. Given lemma S.1, we obtain:

Ep(w)

(
(wTx)2

)
= (µ2

w + σ2
w) · ||x||2 + 2 · µ2

w · x⊗ x = Dw(x) (21)

(22)

where Dw(·) is introduced as an operation to simplify the notation.

Proposition S.3. Consider two vectors x′, x̂ ∈ RM , and two weight vectors ŵ and w′,
ŵT x̂ ∈ R,w′Tx′ ∈ R, such that the weights are iid. Then Ep(w)

(
(ŵT x̂−w′Tx′)2

)
>

Ep(w)

(
(ŵT x̂− ŵTx′)2

)
.

Proof. Using lemma S.2 and decomposition the argument within square:

Ep(w)((ŵ
T x̂−w′Tx′)2) = Ep(w)

(
(ŵT x̂)2 + (w′Tx′)2 − 2 · ŵT x̂ ·w′Tx′

)
(23)

= Dw(x̂) +Dw(x
′)− 2 · Ep(w)(ŵ

T x̂ ·w′Tx′) (24)

= Dw(x̂) +Dw(x
′)− 2 · Ep(w)(

M̂∑
i=1

ŵi · x̂i
M ′∑
j=1

wj
′ · xj ′) (25)

= Dw(x̂) +Dw(x
′)− 2 · Ep(w)(

M̂∑
i=1

M ′∑
j=1

wj
′ · xj ′ · ŵi · x̂i) (26)

= Dw(x̂) +Dw(x
′)− 2 ·

M̂∑
i=1

M ′∑
j=1

Ep(w)(wj
′ · ŵi) · xj ′ · x̂i (27)

Since ŵ and w′ are independent, then Ep(w)(wj
′ · ŵi) = Ep(w)(wj

′) · Ep(w)(ŵi) = µ2
w. Thus,

Ep(w)

(
(ŵT x̂−w′Tx′)2

)
= Dw(x̂) +Dw(x

′)− 2 · µ2
w ·

M̂∑
i=1

M ′∑
j=1

xj
′ · x̂i (28)

When computing Ep(w)

(
(ŵT x̂− ŵTx′)2

)
, we see that the weights are not independent, thus

Ep(w)(ŵi · ŵi) = µ2
w + σ2

w, and
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Ep(w)

(
(ŵT x̂− ŵTx′)2

)
= Dw(x̂) +Dw(x

′)− 2 · (µ2
w + σ2

w) ·
M̂∑
i=1

M ′∑
j=1

x′j · x̂i (29)

< Dw(x̂) +Dw(x
′)− 2 · µ2

w ·
M̂∑
i=1

M ′∑
j=1

xj
′ · x̂i (30)

< Ep(w)

(
(ŵT x̂−w′Tx′)2

)
(31)

Corollary S.4. A random initialized DeepPipe with encoder layers induces an assumption that
two hyperparameter configurations of an algorithm should have more similar performance than
hyperparameter configurations from different algorithms.

Proof. Given two hyperparameter configurations λ(l), λ(m) from an algorithm, and a third hyper-
parameter configuration λ(n) from a different algorithm, every random initialized encoder layer
from DeepPipe maps the hyperparameters λ(l), λ(m) to latent dimensions z(l), z(m) that are closer
to each other than to z(n), i.e. the expected distance among the output of the encoder layer will be
Ep(w)(||zl − zm||) < Ep(w)(||zl − zn||) based on Proposition S.3. Since DeepPipe uses a kernel
such that κ(x,x′) = κ(x− x′), their similarity will increase, when the distance between two config-
urations decreases. Thus, according to the Equation 2, they will have correlated performance.

T META-DATASET SPLITS

We specify the IDs of the task used per split. The ID of the tasks are taken from the original
meta-dataset creators.

(i) PMF Meta-Dataset

Meta-training: 4538, 824, 1544, 1082, 1126, 917, 1153, 1063, 722, 1145, 1106, 1454, 4340, 477,
938, 806, 866, 333, 995, 1125, 924, 298, 755, 336, 820, 1471, 1120, 1520, 1569, 829, 958, 997, 472,
1442, 1122, 868, 313, 928, 921, 1446, 1536, 1025, 4534, 480, 723, 835, 1081, 950, 300, 1162, 821,
469, 933, 343, 766, 936, 1568, 785, 31, 164, 395, 761, 1534, 1056, 685, 1459, 230, 867, 828, 161,
742, 1136, 385, 877, 11, 1066, 1532, 1533, 941, 468, 1542, 795, 329, 792, 782, 1131, 796, 4153, 448,
1508, 1065, 1046, 1014, 54, 780, 748, 1150, 793, 1441, 1531, 717, 819, 1151, 287, 1016, 4135, 874,
162, 1148, 1005, 956, 1528, 23, 1516, 446, 1567, 41, 729, 910, 1156, 32, 1041, 1501, 955, 1129, 827,
937, 180, 1038, 973, 36, 44, 1496, 855, 400, 754, 1557, 1413, 758, 817, 1563, 181, 1127, 43, 444,
277, 1141, 715, 725, 884, 790, 880, 853, 155, 223, 1529, 1535, 6, 1009, 744, 1107, 1158, 830, 859,
947, 1475, 813, 734, 976, 227, 1137, 762, 777, 751, 784, 886, 885, 843, 1055, 1486, 1237, 225, 39,
778, 721, 392, 312, 857, 457, 1450, 209, 779, 479, 718, 801, 770, 1049, 391, 12, 730, 759, 1013, 338,
719, 988, 974, 787, 60, 741, 865, 1050, 735, 1079, 1482, 1143, 954, 1020, 1236, 814, 1048, 892, 879,
745, 971, 913, 1152, 694, 1133, 765, 905, 804, 848, 40477, 846, 334, 791, 923, 377, 1530, 889, 1163,
1006, 749, 922, 10, 59, 1541, 310, 461, 1538, 398, 870, 1481, 970, 1036, 1044, 1068, 187, 476, 1157,
40478, 1124, 1045, 845, 62, 915, 1167, 1059, 458, 815, 28, 797, 462, 21, 952, 467, 1505, 375, 882,
1011, 1460, 964, 1104, 275, 732, 189, 478, 1464, 979, 40474, 772, 720, 1022, 823, 811, 463, 61,
1451, 1067, 1165, 184, 716, 962, 978, 916, 1217, 935, 900, 925, 919, 871, 808, 335, 1457, 799, 983,
1169, 1004, 837, 1507, 4134, 890, 1062, 1510, 818, 728, 1135, 1147, 1019, 450, 1561, 40476, 816,
1562, 740, 864, 942, 151, 713, 953, 737, 1115, 1123, 1545, 1498, 850, 873, 959, 951, 987, 991, 1132,
1154, 294, 1040, 894, 26, 878, 307, 881, 746, 679, 872, 863, 943, 18, 1537, 767, 794, 1121, 1448,
401, 14, 1026, 833, 875, 1488, 383, 914, 20, 1043, 1116, 292, 847, 1540, 1069, 1155, 1015, 1238,
1149, 1546, 841, 1565, 1556, 1527, 682, 465, 1144, 769, 1517, 756, 834, 912, 807, 904, 16, 1061,
386, 805, 3, 775, 464, 50, 1455, 1021, 1160, 1140, 1489, 1519, 946, 994, 46, 22, 1443, 339, 969, 965,
30, 977, 860, 1500, 1064, 776, 822, 182, 743, 934, 1060, 803, 980, 1539, 346, 788, 1444, 1467, 727,
1509, 903, 832.

Meta-Test: 906, 789, 1159, 1600, 48, 1453, 876, 929, 1012, 891, 1164, 726, 459, 37, 812, 909, 927,
774, 278, 279, 1054, 918, 763, 394, 948, 40, 1100, 736, 1503, 1071, 1512, 1483, 53, 869, 285, 773,
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1518, 197, 926, 836, 826, 907, 920, 1080, 1412, 276, 764, 945, 1543, 1472, 996, 908, 896, 851, 397,
783, 1084, 731, 888, 733, 1473, 753, 683, 893, 825, 902, 750, 1078, 8, 1073, 1077, 475, 724, 1513,
384, 388, 887, 714, 771, 1117, 1487, 337, 1447, 862, 838, 949, 800, 931, 911.

Meta-Validation: 1075, 747, 901, 1452, 389, 387, 752, 932, 768, 40475, 849, 1564, 1449, 895, 183.

(ii) TensorOBOE Meta-Dataset

Meta-Training 210, 20, 491, 339, 14, 170, 483, 284, 543, 220, 493, 64, 524, 485, 120, 81, 495, 362,
243, 545, 538, 532, 160, 541, 238, 436, 320, 272, 497, 412, 51, 195, 191, 116, 345, 400, 164, 106,
376, 63, 105, 308, 523, 490, 319, 93, 468, 517, 198, 145, 150, 39, 502, 364, 253, 303, 471, 2, 221,
518, 146, 241, 457, 114, 372, 176, 168, 536, 350, 338, 136, 416, 254, 337, 311, 464, 424, 255, 232,
133, 33, 88, 290, 44, 61, 199, 492, 529, 500, 343, 218, 302, 297, 73, 295, 35, 344, 29, 432, 410, 417,
309, 527, 217, 27, 402, 351, 156, 403, 414, 138, 212, 104, 438, 415, 421, 215, 466, 189, 214, 508,
204, 234, 259, 67, 24, 216, 300, 223, 129, 458, 111, 166, 505, 477, 40, 274, 427, 79, 375, 380, 327,
13, 287, 326, 496, 251, 228, 420, 161, 83, 117, 25, 110, 149, 152, 16, 407, 331, 109, 441, 422, 139,
237, 260, 352, 428, 317, 323, 484, 248, 449, 467, 19, 328, 296, 454, 269, 363, 226, 465, 3, 542, 125,
280, 286, 77, 184, 371, 455, 540, 275, 294, 521, 182, 32, 80, 307, 258, 11, 360, 447, 86, 266, 36, 193,
58, 41, 270, 411, 50, 209, 481, 480, 504, 503, 123, 222, 419, 62, 456, 377, 130, 187, 23, 451, 479, 43,
370, 394, 0, 383, 201, 405, 368, 515, 98, 387, 349, 304, 418, 292, 178, 369, 256, 94, 197, 95, 535,
163, 169, 69, 305, 48, 341, 373, 397, 207, 279, 514, 227, 148, 143, 334, 180, 356, 460, 131, 127, 47,
452, 262, 324, 203, 84, 426, 121, 544, 520, 534, 398, 384, 91, 82, 430, 267, 119, 358, 291, 57, 425,
487, 321, 257, 442, 42, 388, 335, 273, 488, 53, 522, 128, 28, 183, 459, 510, 151, 244, 265, 288, 423,
147, 177, 99, 448, 431, 115, 72, 537, 174, 87, 486, 314, 396, 472, 70, 277, 9, 359, 192

Meta-Test 118, 159, 548, 453, 385, 31, 512, 353, 247, 179, 332, 379, 10, 489, 112, 293, 219, 395,
281, 65, 409, 126, 401, 526, 342, 346, 413, 137, 366, 7, 381, 506, 289, 539, 282, 101, 97, 278, 54, 30,
298, 49, 100, 474, 461, 322, 283, 56, 144, 60, 6, 8, 507, 310, 336, 225, 261, 38, 329, 365, 445, 429,
513, 188, 469, 124, 154, 340, 59, 312, 473, 498, 546, 528, 263, 194, 55, 171, 236, 206, 158, 196, 34,
408, 18, 501, 250, 533, 52, 74, 26, 173, 92, 167, 4, 382, 181, 208, 354, 249, 450, 5, 141, 525, 200,
135, 531, 122, 22, 68

Meta-Validation 85, 446, 96, 172, 134, 37, 392, 90, 509, 389, 378, 435, 66, 391, 530, 333, 462, 231,
330, 301, 325, 268, 434, 318, 233, 213, 549, 140, 264, 482, 155, 235, 175, 157, 113, 165, 245, 246,
15, 361, 547, 470, 17, 306, 190, 153, 357, 45, 443, 162, 475, 186, 224, 494, 393, 399, 444, 550, 439,
516, 433, 230, 108, 89, 406, 46, 102, 463, 21, 107, 374, 211, 103, 71, 75, 316, 78, 240, 205, 386, 202,
142, 313, 252, 348, 511, 437, 347, 478, 355, 476, 242, 276, 519, 499, 285, 271, 229, 1, 390, 12, 132,
299, 404, 440, 239, 185, 76, 367, 315

(iii) ZAP Meta-Dataset

Meta-Train 0-svhn_cropped, 1-svhn_cropped, 2-svhn_cropped, 3-svhn_cropped, 4-
svhn_cropped, 5-svhn_cropped, 6-svhn_cropped, 7-svhn_cropped, 8-svhn_cropped, 9-
svhn_cropped, 10-svhn_cropped, 11-svhn_cropped, 12-svhn_cropped, 13-svhn_cropped, 14-
svhn_cropped, 0-cycle_gan_apple2orange, 1-cycle_gan_apple2orange, 2-cycle_gan_apple2orange,
3-cycle_gan_apple2orange, 4-cycle_gan_apple2orange, 5-cycle_gan_apple2orange, 6-
cycle_gan_apple2orange, 7-cycle_gan_apple2orange, 8-cycle_gan_apple2orange, 9-
cycle_gan_apple2orange, 10-cycle_gan_apple2orange, 11-cycle_gan_apple2orange, 12-
cycle_gan_apple2orange, 13-cycle_gan_apple2orange, 14-cycle_gan_apple2orange, 0-cats_vs_dogs,
1-cats_vs_dogs, 2-cats_vs_dogs, 3-cats_vs_dogs, 4-cats_vs_dogs, 5-cats_vs_dogs, 6-cats_vs_dogs, 7-
cats_vs_dogs, 8-cats_vs_dogs, 9-cats_vs_dogs, 10-cats_vs_dogs, 11-cats_vs_dogs, 12-cats_vs_dogs,
13-cats_vs_dogs, 14-cats_vs_dogs, 0-stanford_dogs, 1-stanford_dogs, 2-stanford_dogs, 3-
stanford_dogs, 4-stanford_dogs, 5-stanford_dogs, 6-stanford_dogs, 7-stanford_dogs, 8-
stanford_dogs, 9-stanford_dogs, 10-stanford_dogs, 11-stanford_dogs, 12-stanford_dogs, 13-
stanford_dogs, 14-stanford_dogs, 0-cifar100, 1-cifar100, 2-cifar100, 3-cifar100, 4-cifar100,
5-cifar100, 6-cifar100, 7-cifar100, 8-cifar100, 9-cifar100, 10-cifar100, 11-cifar100, 12-
cifar100, 13-cifar100, 14-cifar100, 0-coil100, 1-coil100, 2-coil100, 3-coil100, 4-coil100,
5-coil100, 6-coil100, 7-coil100, 8-coil100, 9-coil100, 10-coil100, 11-coil100, 12-coil100, 13-
coil100, 14-coil100, 0-omniglot, 1-omniglot, 2-omniglot, 3-omniglot, 4-omniglot, 5-omniglot,
6-omniglot, 7-omniglot, 8-omniglot, 9-omniglot, 10-omniglot, 11-omniglot, 12-omniglot,
13-omniglot, 14-omniglot, 0-cars196, 1-cars196, 2-cars196, 3-cars196, 4-cars196, 5-cars196,
6-cars196, 7-cars196, 8-cars196, 9-cars196, 10-cars196, 11-cars196, 12-cars196, 13-cars196,

29



Under review as a conference paper at ICLR 2023

14-cars196, 0-horses_or_humans, 1-horses_or_humans, 2-horses_or_humans, 3-horses_or_humans,
4-horses_or_humans, 5-horses_or_humans, 6-horses_or_humans, 7-horses_or_humans, 8-
horses_or_humans, 9-horses_or_humans, 10-horses_or_humans, 11-horses_or_humans, 12-
horses_or_humans, 13-horses_or_humans, 14-horses_or_humans, 0-tf_flowers, 1-tf_flowers,
2-tf_flowers, 3-tf_flowers, 4-tf_flowers, 5-tf_flowers, 6-tf_flowers, 7-tf_flowers, 8-tf_flowers,
9-tf_flowers, 10-tf_flowers, 11-tf_flowers, 12-tf_flowers, 13-tf_flowers, 14-tf_flowers, 0-
cycle_gan_maps, 1-cycle_gan_maps, 2-cycle_gan_maps, 3-cycle_gan_maps, 4-cycle_gan_maps, 5-
cycle_gan_maps, 6-cycle_gan_maps, 7-cycle_gan_maps, 8-cycle_gan_maps, 9-cycle_gan_maps, 10-
cycle_gan_maps, 11-cycle_gan_maps, 12-cycle_gan_maps, 13-cycle_gan_maps, 14-cycle_gan_maps,
0-rock_paper_scissors, 1-rock_paper_scissors, 2-rock_paper_scissors, 3-rock_paper_scissors,
4-rock_paper_scissors, 5-rock_paper_scissors, 6-rock_paper_scissors, 7-rock_paper_scissors,
8-rock_paper_scissors, 9-rock_paper_scissors, 10-rock_paper_scissors, 11-rock_paper_scissors,
12-rock_paper_scissors, 13-rock_paper_scissors, 14-rock_paper_scissors, 0-cassava, 1-cassava,
2-cassava, 3-cassava, 4-cassava, 5-cassava, 6-cassava, 7-cassava, 8-cassava, 9-cassava, 10-cassava,
11-cassava, 12-cassava, 13-cassava, 14-cassava, 0-cmaterdb_devanagari, 1-cmaterdb_devanagari,
2-cmaterdb_devanagari, 3-cmaterdb_devanagari, 4-cmaterdb_devanagari, 5-cmaterdb_devanagari,
6-cmaterdb_devanagari, 7-cmaterdb_devanagari, 8-cmaterdb_devanagari, 9-cmaterdb_devanagari, 10-
cmaterdb_devanagari, 11-cmaterdb_devanagari, 12-cmaterdb_devanagari, 13-cmaterdb_devanagari,
14-cmaterdb_devanagari, 0-cycle_gan_vangogh2photo, 1-cycle_gan_vangogh2photo, 2-
cycle_gan_vangogh2photo, 3-cycle_gan_vangogh2photo, 4-cycle_gan_vangogh2photo,
5-cycle_gan_vangogh2photo, 6-cycle_gan_vangogh2photo, 7-cycle_gan_vangogh2photo,
8-cycle_gan_vangogh2photo, 9-cycle_gan_vangogh2photo, 10-cycle_gan_vangogh2photo,
11-cycle_gan_vangogh2photo, 12-cycle_gan_vangogh2photo, 13-cycle_gan_vangogh2photo,
14-cycle_gan_vangogh2photo, 0-cycle_gan_ukiyoe2photo, 1-cycle_gan_ukiyoe2photo,
2-cycle_gan_ukiyoe2photo, 3-cycle_gan_ukiyoe2photo, 4-cycle_gan_ukiyoe2photo, 5-
cycle_gan_ukiyoe2photo, 6-cycle_gan_ukiyoe2photo, 7-cycle_gan_ukiyoe2photo, 8-
cycle_gan_ukiyoe2photo, 9-cycle_gan_ukiyoe2photo, 10-cycle_gan_ukiyoe2photo, 11-
cycle_gan_ukiyoe2photo, 12-cycle_gan_ukiyoe2photo, 13-cycle_gan_ukiyoe2photo, 14-
cycle_gan_ukiyoe2photo, 0-cifar10, 1-cifar10, 2-cifar10, 3-cifar10, 4-cifar10, 5-cifar10,
6-cifar10, 7-cifar10, 8-cifar10, 9-cifar10, 10-cifar10, 11-cifar10, 12-cifar10, 13-cifar10, 14-cifar10, 0-
cmaterdb_bangla, 1-cmaterdb_bangla, 2-cmaterdb_bangla, 3-cmaterdb_bangla, 4-cmaterdb_bangla,
5-cmaterdb_bangla, 6-cmaterdb_bangla, 7-cmaterdb_bangla, 8-cmaterdb_bangla, 9-cmaterdb_bangla,
10-cmaterdb_bangla, 11-cmaterdb_bangla, 12-cmaterdb_bangla, 13-cmaterdb_bangla, 14-
cmaterdb_bangla, 0-cycle_gan_iphone2dslr_flower, 1-cycle_gan_iphone2dslr_flower, 2-
cycle_gan_iphone2dslr_flower, 3-cycle_gan_iphone2dslr_flower, 4-cycle_gan_iphone2dslr_flower, 5-
cycle_gan_iphone2dslr_flower, 6-cycle_gan_iphone2dslr_flower, 7-cycle_gan_iphone2dslr_flower, 8-
cycle_gan_iphone2dslr_flower, 9-cycle_gan_iphone2dslr_flower, 10-cycle_gan_iphone2dslr_flower,
11-cycle_gan_iphone2dslr_flower, 12-cycle_gan_iphone2dslr_flower, 13-
cycle_gan_iphone2dslr_flower, 14-cycle_gan_iphone2dslr_flower, 0-emnist_mnist, 1-emnist_mnist,
2-emnist_mnist, 3-emnist_mnist, 4-emnist_mnist, 5-emnist_mnist, 6-emnist_mnist, 7-emnist_mnist,
8-emnist_mnist, 9-emnist_mnist, 10-emnist_mnist, 11-emnist_mnist, 12-emnist_mnist, 13-
emnist_mnist, 14-emnist_mnist, 0-eurosat_rgb, 1-eurosat_rgb, 2-eurosat_rgb, 3-eurosat_rgb,
4-eurosat_rgb, 5-eurosat_rgb, 6-eurosat_rgb, 7-eurosat_rgb, 8-eurosat_rgb, 9-eurosat_rgb, 10-
eurosat_rgb, 11-eurosat_rgb, 12-eurosat_rgb, 13-eurosat_rgb, 14-eurosat_rgb, 0-colorectal_histology,
1-colorectal_histology, 2-colorectal_histology, 3-colorectal_histology, 4-colorectal_histology,
5-colorectal_histology, 6-colorectal_histology, 7-colorectal_histology, 8-colorectal_histology,
9-colorectal_histology, 10-colorectal_histology, 11-colorectal_histology, 12-colorectal_histology,
13-colorectal_histology, 14-colorectal_histology, 0-cmaterdb_telugu, 1-cmaterdb_telugu, 2-
cmaterdb_telugu, 3-cmaterdb_telugu, 4-cmaterdb_telugu, 5-cmaterdb_telugu, 6-cmaterdb_telugu, 7-
cmaterdb_telugu, 8-cmaterdb_telugu, 9-cmaterdb_telugu, 10-cmaterdb_telugu, 11-cmaterdb_telugu,
12-cmaterdb_telugu, 13-cmaterdb_telugu, 14-cmaterdb_telugu, 0-uc_merced, 1-uc_merced,
2-uc_merced, 3-uc_merced, 4-uc_merced, 5-uc_merced, 6-uc_merced, 7-uc_merced, 8-uc_merced,
9-uc_merced, 10-uc_merced, 11-uc_merced, 12-uc_merced, 13-uc_merced, 14-uc_merced, 0-kmnist,
1-kmnist, 2-kmnist, 3-kmnist, 4-kmnist, 5-kmnist, 6-kmnist, 7-kmnist, 8-kmnist, 9-kmnist, 10-kmnist,
11-kmnist, 12-kmnist, 13-kmnist, 14-kmnist

Meta-Test 0-cycle_gan_summer2winter_yosemite, 1-cycle_gan_summer2winter_yosemite,
2-cycle_gan_summer2winter_yosemite, 3-cycle_gan_summer2winter_yosemite, 4-
cycle_gan_summer2winter_yosemite, 5-cycle_gan_summer2winter_yosemite, 6-

30



Under review as a conference paper at ICLR 2023

cycle_gan_summer2winter_yosemite, 7-cycle_gan_summer2winter_yosemite, 8-
cycle_gan_summer2winter_yosemite, 9-cycle_gan_summer2winter_yosemite, 10-
cycle_gan_summer2winter_yosemite, 11-cycle_gan_summer2winter_yosemite, 12-
cycle_gan_summer2winter_yosemite, 13-cycle_gan_summer2winter_yosemite, 14-
cycle_gan_summer2winter_yosemite, 0-malaria, 1-malaria, 2-malaria, 3-malaria, 4-malaria,
5-malaria, 6-malaria, 7-malaria, 8-malaria, 9-malaria, 10-malaria, 11-malaria, 12-malaria,
13-malaria, 14-malaria, 0-cycle_gan_facades, 1-cycle_gan_facades, 2-cycle_gan_facades,
3-cycle_gan_facades, 4-cycle_gan_facades, 5-cycle_gan_facades, 6-cycle_gan_facades, 7-
cycle_gan_facades, 8-cycle_gan_facades, 9-cycle_gan_facades, 10-cycle_gan_facades, 11-
cycle_gan_facades, 12-cycle_gan_facades, 13-cycle_gan_facades, 14-cycle_gan_facades,
0-emnist_balanced, 1-emnist_balanced, 2-emnist_balanced, 3-emnist_balanced, 4-emnist_balanced,
5-emnist_balanced, 6-emnist_balanced, 7-emnist_balanced, 8-emnist_balanced, 9-emnist_balanced,
10-emnist_balanced, 11-emnist_balanced, 12-emnist_balanced, 13-emnist_balanced, 14-
emnist_balanced, 0-imagenette, 1-imagenette, 2-imagenette, 3-imagenette, 4-imagenette,
5-imagenette, 6-imagenette, 7-imagenette, 8-imagenette, 9-imagenette, 10-imagenette, 11-
imagenette, 12-imagenette, 13-imagenette, 14-imagenette, 0-mnist, 1-mnist, 2-mnist, 3-mnist,
4-mnist, 5-mnist, 6-mnist, 7-mnist, 8-mnist, 9-mnist, 10-mnist, 11-mnist, 12-mnist, 13-mnist,
14-mnist, 0-cycle_gan_horse2zebra, 1-cycle_gan_horse2zebra, 2-cycle_gan_horse2zebra,
3-cycle_gan_horse2zebra, 4-cycle_gan_horse2zebra, 5-cycle_gan_horse2zebra, 6-
cycle_gan_horse2zebra, 7-cycle_gan_horse2zebra, 8-cycle_gan_horse2zebra, 9-
cycle_gan_horse2zebra, 10-cycle_gan_horse2zebra, 11-cycle_gan_horse2zebra, 12-
cycle_gan_horse2zebra, 13-cycle_gan_horse2zebra, 14-cycle_gan_horse2zebra

Meta-Validation 0-emnist_byclass, 1-emnist_byclass, 2-emnist_byclass, 3-emnist_byclass,
4-emnist_byclass, 5-emnist_byclass, 6-emnist_byclass, 7-emnist_byclass, 8-emnist_byclass,
9-emnist_byclass, 10-emnist_byclass, 11-emnist_byclass, 12-emnist_byclass, 13-emnist_byclass, 14-
emnist_byclass, 0-imagenet_resized_32x32, 1-imagenet_resized_32x32, 2-imagenet_resized_32x32,
3-imagenet_resized_32x32, 4-imagenet_resized_32x32, 5-imagenet_resized_32x32, 6-
imagenet_resized_32x32, 7-imagenet_resized_32x32, 8-imagenet_resized_32x32, 9-
imagenet_resized_32x32, 10-imagenet_resized_32x32, 11-imagenet_resized_32x32, 12-
imagenet_resized_32x32, 13-imagenet_resized_32x32, 14-imagenet_resized_32x32, 0-
fashion_mnist, 1-fashion_mnist, 2-fashion_mnist, 3-fashion_mnist, 4-fashion_mnist, 5-fashion_mnist,
6-fashion_mnist, 7-fashion_mnist, 8-fashion_mnist, 9-fashion_mnist, 10-fashion_mnist, 11-
fashion_mnist, 12-fashion_mnist, 13-fashion_mnist, 14-fashion_mnist

(iv) OpenML Datasets

10101, 12, 146195, 146212, 146606, 146818, 146821, 146822, 146825, 14965, 167119, 167120,
168329, 168330, 168331, 168332, 168335, 168337, 168338, 168868, 168908, 168909, 168910,
168911, 168912, 189354, 189355, 189356, 3, 31, 34539, 3917, 3945, 53, 7592, 7593, 9952, 9977,
9981

We checked that there is not overlap between the tasks used for meta-training from the TensorOBOE
and the tasks used on OpenML Datasets.
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