
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MERGING LORAS LIKE PLAYING LEGO: PUSH-
ING THE MODULARITY OF LORA TO EXTREMES
THROUGH RANK-WISE CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) has emerged as a popular technique for fine-tuning
large language models (LLMs) to various domains due to its modular design
and widespread availability on platforms like Huggingface. This modularity has
sparked interest in combining multiple LoRAs to enhance LLM capabilities. How-
ever, existing methods for LoRA composition primarily focus on task-specific
adaptations that require additional training, and current model merging techniques
often fail to fully leverage LoRA’s modular nature, leading to parameter interfer-
ence and performance degradation. In this paper, we investigate the feasibility
of disassembling and reassembling multiple LoRAs at a finer granularity, analo-
gous to assembling LEGO blocks. We introduce the concept of Minimal Semantic
Units (MSUs), where the parameters corresponding to each rank in LoRA func-
tion as independent units. These MSUs demonstrate permutation invariance and
concatenation-summation equivalence properties, enabling flexible combinations
to create new LoRAs. Building on these insights, we propose the LoRA-LEGO
framework. This framework conducts rank-wise parameter clustering by grouping
MSUs from different LoRAs into k clusters. The centroid of each cluster serves as
a representative MSU, enabling the assembly of a merged LoRA with an adjusted
rank of k. Additionally, we apply a dual reweighting strategy to optimize the
scale of the merged LoRA. Experiments across various benchmarks demonstrate
that our method outperforms existing approaches in LoRA merging.

1 INTRODUCTION

Large Language Models (LLMs) like ChatGPT Achiam et al. (2023) and LLaMA Touvron et al.
(2023) trained on vast amounts of general data, demonstrate remarkable performance in general
tasks. To explore their potential for specialized tasks, adapting LLMs to specific domains by fine-
tuning model parameters has become a critical area of research. In this context, Low-rank Adapta-
tion (LoRA) Hu et al. (2021), as a parameter-efficient fine-tuning approach, has gained widespread
recognition, also attributed to its modular design Liu et al. (2023); Yang et al. (2023b); Hadi et al.
(2023). The modular nature of LoRA enables it to serve as plug-and-play plugins for LLMs, facil-
itating the storage and deployment of large collections of LoRAs on platforms like Hugging Face.
The extensive availability of LoRAs has sparked considerable interest in combining multiple Lo-
RAs into a unified adapter to significantly extend the capabilities of LLMs Yadav et al. (2024a);
Xiao et al. (2024); Zhao et al. (2024b); Huang et al. (2023).

Previous methods for composing multiple LoRAs have primarily focused on assembling separate
LoRAs tailored to specific downstream tasks, which generally require additional training Wu et al.
(2023); Wang et al. (2024); Chronopoulou et al. (2023); Yadav et al. (2024a); Huang et al. (2023).
Model merging Tang et al. (2024); Yadav et al. (2024b); Ilharco et al. (2022); Yang et al. (2024) of-
fers an alternative approach by aggregating the parameters of multiple LoRAs into a unified adapter
without extra training, producing a unified LoRA with comprehensive capabilities. However, these
methods typically employ element-wise parameter fusion, which can neglect and disrupt the internal
semantic structure within LoRA. This disruption potentially leads to parameter interference (as dis-
cussed in §2.3), thereby hindering the performance of merged LoRA. This paper approaches LoRA
merging from a novel perspective, focusing on the fine-grained modularization of LoRA by decom-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

b) Permutation Invariance c) Concatenation-Summation Equivalence

Permute

a) Minimal Semantic Unit

Concat

LoRA 1 LoRA 2 LoRA Concatenation

Figure 1: Further Modularization of LoRA: a) Each LoRA can be further modularized into mul-
tiple Minimal Semantic Units (MSUs), each corresponding to a row in A matrix and a column in
matrix B, differentiated by distinct colors. b) The MSUs within a LoRA display permutation in-
variance, implying that any rearrangement of the MSUs does not affect the output generated by the
LoRA. c) Multiple LoRAs exhibit Concatenation-Summation Equivalence, indicating that the sum-
mation of outputs from various LoRAs is equivalent to the output of a singular LoRA constructed
by concatenating their MSUs.

posing it into independent units, which enables the flexible reconstruction of a unified LoRA with
comprehensive capabilities.

As illustrated in Fig.1, our motivation for further modularizing LoRA stems from the following
insights: a) Each rank in LoRA corresponds to a row in the down-projection matrix A and a
column in the up-projection matrix B. Since the calculations for each rank are independent, we
consider the parameters associated with each rank as a cohesive entity. We define these entities
as Minimal Semantic Units (MSUs), which serve as the fundamental building blocks of LoRA.
b) Within each LoRA, the MSUs exhibit the property of Permutation Invariance, indicating that
any permutation of MSUs within a LoRA does not affect the adapter’s output. c) LoRA exhibits
the Concatenation-Summation Equivalence property, which states that summing the outputs
from multiple LoRAs is equivalent to the output of a single higher-ranked LoRA constructed by
concatenating all the MSUs of these LoRAs.

In this paper, we introduce a novel method called LoRA-LEGO, which is based on the insight
that MSUs act as building blocks that form a LoRA and can be disassembled and reassembled like
playing with LEGO. LoRA-LEGO consists of three main steps: (1) Grouping MSUs from candidate
LoRAs into a MSU pool; (2) Clustering the MSU pool into k clusters, where k is the target rank
of the merged LoRA; (3) Constructing the merged LoRA from the centroids of these clusters, with
each centroid representing an MSU, thereby setting the merged LoRA’s rank to k. LoRA-LEGO
enables the flexible combination of LoRAs with arbitrary ranks by clustering similar MSUs, at
the same time effectively resolving parameter interference while merging. This approach allows
for targeted rank adjustments in the merged LoRA to preserve task-specific knowledge. We also
observed that variations in parameter norms and the rank size of the merged LoRA affect the output
scale. To address this, we implement a dual reweighting strategy that adjusts both the parameters
and the outputs, ensuring optimal scaling for the merged LoRA.

We empirically validate the effectiveness of the proposed LoRA-LEGO in both multi-task Tang et al.
(2024) and mixed-task Zhao et al. (2024b) scenarios. Experimental results show that LoRA-LEGO
consistently outperforms other methods for LoRA merging, demonstrating notable flexibility and ef-
ficiency. Additionally, LoRA-LEGO can merge heterogeneous LoRAs of varying ranks, surpassing
the capabilities of previous model merging methods. Moreover, it can also be applied to individ-
ual LoRAs for parameter pruning, revealing that retaining just 50% of the parameters can achieve
performance comparable to the original model. Our contribution can be summarized as:

• We investigate the modularization of LoRA, identifying the MSU as its fundamental building
block, which is characterized by permutation invariance and concatenation-summation equiva-
lence properties.

• We introduce LoRA-LEGO that merges multiple LoRAs in a LEGO-like fashion by grouping,
clustering, and reconstructing MSUs to seamlessly combine separate LoRAs.

• Experimental results show that LoRA-LEGO can flexibly disassemble and reassemble LoRAs of
any rank, surpassing other model merging methods in performance. Additionally, LoRA-LEGO
can be effectively applied to individual LoRAs, enabling parameter pruning and a substantial
reduction in LoRA parameters while maintaining comparable performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

2.1 LOW-RANK ADAPTATION

Directly fine-tuning LLMs with full parameters is computationally intensive and is not feasible in
low-resource scenarios. Based on the idea that only a small number of low-rank parameters need to
be fine-tuned for sufficient performance in new domains, Hu et al. (2021) proposed the Low-Rank
Adaptation, where the LoRA module can be combined with the pre-trained parameters in parallel
for efficient inference.

Specifically, given pre-trained weights W0 ∈ Rd×k of a sub-module of LLM, the LoRA adds an
extra trainable weight matrix as W0 + ∆W = W0 + BA, where ∆W can be decomposed into
two smaller matrices B ∈ Rd×r and A ∈ Rr×k, where r stands for the rank of ∆W and the rank
r ≪ min(d, k). The forward pass for a layer y = W0x can be modified as follows:

y = W0x+∆Wx = W0x+BAx, (1)

where x ∈ Rd is the input and the y ∈ Rd denote the output.

2.2 FURTHER MODULARIZATION OF LORA

Before delving into the issue of LoRA merging, it is imperative to present several pivotal insights
and definitions that could serve as fundamental components for constructing a LoRA module.
Definition 1. Minimum Semantic Unit of LoRA. Let A and B be matrices in a LoRA module.
For each index i, define the minimum semantic unit of LoRA as the combined vector si = [ai, bi],
where ai is the i-th row of A and bi is the i-th row of BT (i.e., the transpose of the i-th column of
B).

In this context, each row of the down-projection matrix A and its corresponding column in the up-
projection matrix B are treated as a cohesive unit, defined as a Minimum Semantic Unit (MSU).
Each MSU contributes to a rank of the LoRA, encapsulating a distinct semantic fragment of the
LoRA’s capacity. Through this definition, LoRAs exhibit the following properties.
Property 2.1. Permutation Invariance. For a LoRA module parameterized by matrices A and B,
if the rows of A are permuted, then by performing a corresponding permutation of the columns
of B, the product of these matrices remains unchanged. Formally, let P be a permutation matrix
that satisfies P TP = I , where I is the identity matrix. If we permute the rows of A to obtain a
new matrix A′ = PA, and correspondingly permute the columns of B to get B′ = BP T , then,
BA = B′A′.

The property of permutation invariance indicates that the arrangement of MSUs within LoRA cal-
culations can be altered without affecting LoRA’s output.
Property 2.2. Concatenation-Summation Equivalence. Consider two LoRAs, (A1,B1) and
(A2,B2), each of rank r. Specifically, matrices A1 and A2 are of size Rr×d, and B1 and B2

are of size Rd×r. Define the concatenated matrices as:

A′ =

[
A1

A2

]
∈ R2r×d, B′ = [B1 B2] ∈ Rd×2r.

The output vector y from the concatenated model is equivalent to the sum of the outputs from each
individual LoRA model:

y = B′A′x = (B1A1 +B2A2)x.

Based on this property, we can synthesize the knowledge from all LoRAs by constructing a new
LoRA through the concatenation of all MSUs from each LoRA. The computational result is equiv-
alent to ensembling the outputs of all LoRAs. Based on these insights, we can draw the following
conclusions:

Each LoRA can be modularized into multiple MSUs, with each MSU corresponding to a
rank within the LoRA. These MSUs can be flexibly permuted and combined to construct a
unified LoRA.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Parameter Misalignment Knowledge Conflict

Alignment

Preserve
Task-specific
Knowledge

The parameters should be aligned to alleviate parameter interference. The merged LoRA need higher rank to encompass comprehensive knowledge.

Parameter
Interference

Parameter
Interference

Ideal Merging

Task-specific Knowledge

Element-wise Merging Ideal MergingElement-wise Merging

Figure 2: Two sources of parameter interference in LoRA merging. The left part illustrates how
parameter misalignment can lead to interference; the right part demonstrates that knowledge conflict
in merged LoRA layers can also result in parameter interference.

2.3 PROBLEM FORMULATION AND CHALLENGES

Table 1: Performance degra-
dation after merging mis-
aligned LoRAs. “Origi-
nal” refers to the perfor-
mance of the unaltered LoRA,
while “Misaligned” indicates
the performance after merg-
ing the LoRA with a ran-
domly permuted version of it-
self.

Task Original Misaligned
CoLA 61.63 60.96 (1.1% ↓)
MNLI 77.46 69.49 (10.3% ↓)
MRPC 68.00 68.50 (-0.7% ↓)
QNLI 77.25 60.44 (21.8% ↓)
QQP 75.83 66.94 (11.7% ↓)
RTE 52.22 54.44 (-4.2% ↓)
SST2 75.74 75.52 (0.3% ↓)
Overall 69.73 65.18 (5.74% ↓)

Consider a LLM denoted as L and a set of p task-specific LoRAs,
represented by Φ = {ϕ1, ϕ2, . . . , ϕp}. Each LoRA ϕi is specialized
for a particular task Ti and is crafted by incorporating low-rank ma-
trices into different layers of L, thereby tuning the model to better
suit Ti. For simplicity of notation, we denote the parameters of
these low-rank matrices at any given layer for each LoRA ϕi as Ai

and Bi. The goal of merging these LoRAs is to synthesize a com-
prehensive LoRA ϕ′ that not only excels in all tasks encompassed
by Φ but also generalizes well to unseen tasks. We discuss the dif-
ference between the LoRA merging setting and the previous model
merging setting in the Appendix A.

A natural approach to performing LoRA merging involves a sim-
ple element-wise averaging of the parameters from each LoRA:
ϕ′ = 1

p

∑p
i=1 ϕi. However, parameter interference poses a sig-

nificant challenge to effective LoRA merging. We identify two po-
tential sources of parameter interference during LoRA merging and
demonstrate through experiments that such interference can lead to
performance degradation in the merged LoRA.

Table 2: Parameter interference due to
knowledge conflict. “Tuning MSU” indi-
cates the performance after tuning the added
MSU for each task. “Avg MSU” denotes the
performance achieved by directly merging
these task-specific MSUs. “Concat MSU”
represents the performance after concatenat-
ing these task-specific MSUs.

Task Tuning MSU Avg MSU Concat MSU
MNLI 86.17 46.24 (46.35%↓) 81.36 (5.58%↓)
MRPC 87.25 64.75 (25.78%↓) 81.25 (6.88%↓)
Overall 86.71 55.49 (36.06%↓) 81.31 (6.23%↓)

The first cause of parameter interference stems from
parameter misalignment in LoRAs, as depicted in
the left part of Fig.2. According to Property 2.1,
the MSUs of each LoRA can be permuted arbitrar-
ily without affecting the functionality of the LoRA
module. However, misalignment of MSU parame-
ters when merging LoRAs can result in parameter
interference. To investigate the impact of param-
eter misalignment on model performance, we con-
ducted a controlled experiment using the Llama-2-
7b model, training LoRAs on different tasks. For
the parameters A and B of a task, we randomly
generated a permutation matrix P and adjusted the parameters to A′ = (A + PA)/2 and
B′ = (B + BP T)/2. This adjustment simulates the merging of two identical LoRAs with mis-
aligned parameters. The results, presented in Tab.1, indicate that parameter misalignment can lead
to a decline in model performance, with some tasks experiencing significant performance degrada-
tion. Therefore, ideal merging entails aligning MSUs during LoRA merging to mitigate parameter
interference. Additionally, in Tab.1 we observed that certain tasks experienced performance im-
provements after permutation merging. This can be attributed to the relative simplicity of these
tasks, where the connectivity (distance) between MSUs within their LoRA models is quite close. As
a result, permutation merging does not introduce significant interference; instead, it may help miti-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

gate overfitting through a process similar to regularization or parameter smoothing. In Appendix J,
we present plots showing the distances between MSUs across different layers in various LoRAs,
along with a more in-depth discussion.

Another source of parameter interference stems from knowledge conflict during LoRA merging. As
depicted on the right side of Fig.2, knowledge conflict occurs when the merged LoRA lacks sufficient
parameter space to encapsulate the comprehensive knowledge. This deficiency forces the merging
of task-specific MSUs, resulting in parameter interference. To investigate the impact of knowledge
conflict during LoRA merging, we conducted an experiment to demonstrate the performance degra-
dation resulting from merging task-specific MSUs. With a base LoRA trained on the CoLA task, we
adapted this LoRA for two new tasks (MNLI and MRPC) by appending an additional MSU to create
two separate task-specific LoRAs. Throughout the training process for the new tasks, only the newly
introduced MSU for each task was trainable. In this way, the only difference between the LoRAs for
MNLI and MRPC was the unique MSU added for each, which encapsulated distinct semantic infor-
mation tailored to each task. This setup was designed to create two task-specific LoRAs that differed
only in one MSU, allowing us to observe parameter interference when merging these task-specific
MSUs. The results, depicted in Tab.2, demonstrated that averaging the task-specific MSUs from
the two LoRAs significantly reduced performance on each task. In contrast, maintaining these task-
specific MSUs through concatenation preserved the capabilities specific to each original task. This
suggests that ideal merging should maintain task-specific MSUs during LoRA merging to prevent
knowledge conflict and effectively resolve parameter interference.

3 METHODOLOGY

3.1 LORA-LEGO FRAMEWORK

a) MSU Grouping

b) MSU Clustering

Cluster Centroids

c) LoRa Reconstruction

Candidate LoRA
s

Figure 3: The LoRA-LEGO framework merges
candidate LoRAs in a manner akin to playing with
LEGO by: a) first disassembling LoRAs into mul-
tiple MSUs and grouping them into an MSU pool;
b) performing MSU clustering to merge similar
MSUs; c) reconstructing the merged LoRA from
the centroid MSUs to form a cohesive LoRA.

Based on the motivation that MSUs as the
building blocks of LoRA, we can disassem-
ble and reassemble LoRA like playing with
LEGO. Here, we propose a flexible and ef-
fective method called LoRA-LEGO as shown
in Fig.3. This framework is structured around
three main procedures: MSU Grouping, MSU
Clustering, and LoRA Reconstruction. These
steps collectively facilitate the integration of di-
verse MSUs into a cohesive LoRA, alleviating
the parameter interference while LoRA merg-
ing.

MSU Grouping. The initial stage of merg-
ing p LoRAs begins by disassembling each
LoRA into various MSUs and grouping all
the MSUs from each LoRA together. Let
{Ai,Bi}pi=1 represent the LoRA parameters
of a layer with rank ri. Each LoRA mod-
ule Aj ,Bj contains rj MSUs, denoted by
{sj1, sj2, . . . , sjrj}, where sjl = [ajl, bjl]

with ajl = Aj [:, l] and bjl = Bj [l, :]
T . The MSU pool Φ, which includes MSUs from all the

LoRAs to be merged, is constructed as Φ =
⋃k

j=1{sj1, sj2, . . . , sjrj}.

MSU Clustering. After grouping the MSUs from different LoRAs, the next step involves re-
grouping these MSUs into clusters based on their similarities. With the MSU pool Φ, we employed
K-means Kanungo et al. (2002) to partition these MSUs into k clusters {C1,C2, . . . ,Ck} in which
each MSU is assigned to the cluster closest to it. This process is described by the following opti-
mization problem:

minimize
C

k∑
i=1

∑
s∈Ci

∥s− µi∥2, (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where µi is the centroid of cluster Ci.

LoRA Reconstruction. Following the MSU clustering, we rearrange the MSUs into k clusters
based on their similarity. The centroids of these clusters, denoted by µ1,µ2, . . . ,µk, are calculated
as the average of the MSUs within each cluster. These centroids represent aggregated parameters
across the MSUs, encapsulating the generalized semantic information most representative of each
cluster. Aggregating within each cluster minimizes information loss compared to directly merging
different LoRAs, as the MSUs within a cluster are more similar to each other.

Using these k centroids, we can reconstruct a new LoRA module. Each centroid µi contributes to a
single rank in the merged model, thus the new LoRA model has a rank k, where 1 ≤ k ≤

∑p
j=1 rj .

The new merged LoRA model is formed by constructing new projection matrices A′ and B′ from
the centroids:

A′ =

a1

a2

. . .
ak

 , B′ =
[
bT1 bT2 . . . bTk

]
, (3)

where ai and bi are extracted from each centroid µi = [ai, bi] as per the MSU definition. The re-
constructed LoRA module {A′,B′} addresses parameter interference by aligning MSUs based on
their similarity before merging, achieving a flexible rank that encapsulates comprehensive knowl-
edge across various tasks. An interesting point is that our method sits between model merging,
which fuses multiple identical models into a singular model, and model ensemble, which takes the
average of outputs from different modules, achieving a balance between performance and computa-
tional efficiency. We provide a detailed discussion of how our method relates to model merging and
model ensemble in the Appendix B.

3.2 OPTIMAL SCALE OF MERGED LORA

Given that the rank of the merged LoRA from LoRA-LEGO can range from 1 to
∑p

j=1 rj , the scale
of LoRA’s output could vary significantly, thereby impacting the performance. We identified two
key factors that determine the scale of the output.

0 25 50 75 100 125 150 175
Cluster of Different Layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pa
ra

m
et

er
 N

or
m

Average Vector Norms in Clusters
Norms of Cluster Centers

Figure 4: Comparison of
cluster center norm to
average norm within the
cluster.

Norm Decay After LoRA Merging. As shown in Fig.4, we exam-
ine the norms of the parameters after merging (i.e., the centroids of
each cluster) compared to the average norms of the parameters within
each cluster before merging. We observed that after merging, the pa-
rameter norms significantly decrease, potentially affecting the output
scale of the LoRA module, since the parameter norm influences the
magnitude of the output. This phenomenon can be explained by the
triangle inequality Klement et al. (2013), which states that for any
vectors si, ∥

∑p
i=1 si∥ ≤

∑p
i=1 ∥si∥. When computing the centroid

µ = 1
p

∑p
i=1 si, its norm satisfies:

∥µ∥ =

∥∥∥∥∥1p
p∑

i=1

si

∥∥∥∥∥ ≤ 1

p

p∑
i=1

∥si∥.

Therefore, the norm of the centroid is less than or equal to the average of the norms of the original
vectors, explaining the observed norm decay after merging. The more diverse the vectors within a
cluster, the more pronounced this reduction in norm will be. To compensate for the reduced norm
after merging, we perform parameter reweighting by scaling the centroid to match the average

norm of the cluster: µ′ =
1
p

∑p
i=1 ∥si∥
∥µ∥ µ. In our implementation, we use the infinity norm for

reweighting to ensure stability and robustness in the results.

Variance Expansion with Increased LoRA Rank. Another factor influencing the scale of the
LoRA output is the rank of the merged LoRA. We conducted experiments to investigate how the
rank of the LoRA affects the output scale by merging seven LoRAs with rank r = 8 and varying
the rank k of the merged LoRA (which corresponds to the clusters number in LoRA-LEGO). The
frequency histograms of outputs from the first layer of the merged LoRA at various ranks, as shown

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Av
er

ag
e A

cc
ur

ac
y

Pruning Ratio

CoLA MRPC QQP MNLI QNLI RTE SST2

Figure 6: LoRA pruning performance over seven datasets.

in Fig.5, indicate that LoRA outputs approximate a normal distribution centered at zero. We ob-
served that as the rank k increases, the variance of the output also increases. To normalize the output
variance, similar to the normalization in the self-attention mechanisms Vaswani (2017), we perform
output reweighting for the merged LoRA by the factor

√
r√
k

. The following theorem ensures that
this rescaling maintains a consistent variance in the LoRA output.

Theorem 3.1. Let A1 ∈ Rp×r and B1 ∈ Rr×p, and A2 ∈ Rp×k and B2 ∈ Rk×p, where all
elements of these matrices are independently and identically distributed according to the standard
normal distribution N (0, 1). Then, after scaling the product A2B2 by the factor

√
r/
√
k, the

variances of the entries of A1B1 and the scaled A2B2 are equal:

Var (A1B1) = Var

(√
r√
k
A2B2

)
.

0.0075 0.0050 0.0025 0.0000 0.0025 0.0050 0.0075 0.0100
LoRA Output

0

10000

20000

30000

40000

50000

60000

Fr
eq

ue
nc

y

Rank 1r
Rank 2r
Rank 3r
Rank 4r
Rank 5r
Rank 6r
Rank 7r

Figure 5: Expansion of variance
with increasing rank in merged Lo-
RAs.

The proof of Theorem 3.1 is detailed in the Appendix D. Over-
all, to ensure that the LoRA output is correctly scaled, we em-
ploy two scaling strategies. First, we reweight the parame-
ters to match the average norms of the parameters within each
cluster. Second, we rescale the output of the merged LoRA
for maintaining variance consistency with the original LoRA.
These dual scaling strategies enable LoRA-LEGO to deliver
enhanced and more robust performance.

4 EXPERIMENTS

Given that LoRA merging is essential for many scenarios, we
have opted for two settings: Multi-task learning Tang et al.
(2024) and Mixed-task settings Zhao et al. (2024b). In these
settings, we compared various LoRA composition methods
to assess the performance of the proposed LoRA-LEGO ap-
proach. We selected Llama2-{7b,13b} as the base model and
trained LoRA for each task with hyperparameters r = 6 and α = 12. The evaluation frameworks
for multi-task Learning and mixed-task settings are detailed in the subsequent sections, where we
provide a comprehensive analysis.

4.1 MULTI-TASK LEARNING

Experiment Setting. Multi-task learning aims to merge individually trained LoRAs into a uni-
fied model while preserving the performance of each constituent LoRA. Drawing from previous
research Tang et al. (2024); Yadav et al. (2024b); Ilharco et al. (2022), we merged seven LoRA
models, each fine-tuned on Llama2-{7b,13b}, for in-domain tasks including Cola, Mnli, MRPR,
QNLI, GLUE-QQP, RTE, and SST2. We then assessed the performance of the merged LoRA on
these in-domain tasks as well as on two additional out-of-domain tasks, SNLI and WNLI, to evaluate
its adaptability and generalization capabilities.

Baseline Methods. We compared the proposed method with four post-hoc training-free LoRA
composition methods, including (1) Weight Averaging, (2) Ensemble, (3) Task Arithmetic, (4) Ties-
Merging, (5) DARE, and (6) DELLA-Merging. The details of these LoRA composition methods
can be found in the Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Multi-task performance when merging Llama2-{7b,13b} (LoRA fine-tuned) models on
seven seen tasks and two unseen tasks.

IID Tasks OOD Tasks AverageMethod CoLA MNLI MRPC QNLI QQP RTE SST2 SNLI WNLI
w/ Llama2-7b

Task LoRA 61.63 77.46 68.00 77.25 75.83 52.22 75.74
Weight Average 54.42 36.09 68.00 44.41 51.72 48.15 42.99 31.64 47.14 47.17
Ensemble 55.67 45.89 59.25 59.84 67.38 68.89 66.44 36.73 51.43 56.84
Task Arithmetic 55.48 42.15 54.25 58.94 66.43 67.78 59.54 34.08 54.29 54.77
Ties-Mering 48.65 48.81 55.50 61.79 66.75 62.59 70.69 48.45 61.43 58.30
DARE 54.62 36.16 67.75 44.41 51.83 47.78 43.45 31.64 47.14 47.20
DELLA-Merging 55.19 36.88 53.25 56.04 65.69 60.37 57.70 31.02 51.43 51.95
LoRA-LEGO 55.48 55.73 66.00 62.29 71.07 71.85 73.22 51.36 52.86 62.21

w/ Llama2-13b
Task LoRA 69.04 88.23 89.25 82.33 86.29 80.74 76.44
Weight Average 45.48 46.32 67.75 46.68 47.50 62.96 46.78 42.42 42.86 49.86
Ensemble 62.50 64.64 74.75 71.81 81.35 79.26 75.52 54.32 60.00 69.35
Task Arithmetic 63.17 64.41 74.50 71.59 80.84 78.15 75.86 54.16 58.57 69.03
Ties-Mering 58.56 64.71 78.75 74.27 80.71 76.67 75.40 56.02 61.43 69.61
DARE 45.00 46.34 67.75 46.74 47.32 63.33 46.90 42.55 44.29 50.02
DELLA-Merging 62.21 62.45 71.25 69.05 76.20 78.52 75.40 49.86 58.57 67.06
LoRA-LEGO 59.42 65.40 75.50 72.29 82.51 78.52 75.98 58.54 64.29 70.27

Main Results. As shown in Tab. 3, our proposed LoRA-LEGO method significantly outperforms
the baseline methods on both IID and OOD tasks. Specifically, the Weight Averaging method suffers
from significant performance degradation due to parameter interference during LoRA merging. The
Ensemble method encounters issues with parameter redundancy, leading to suboptimal performance
and slower inference speeds. Model merging methods such as Task Arithmetic and Ties-Merging
perform element-wise fusion and fail to adequately address parameter interference in LoRA, result-
ing in suboptimal performance during the merging process. Similarly, DARE and DELLA-Merging
adopt element-wise parameter merging, which ignores the alignment of the parameter semantic
space, leading to parameter interference and resulting in suboptimal model merging performance.
In contrast, our proposed LoRA-LEGO effectively alleviates parameter misalignment and knowl-
edge conflict through flexible MSU clustering, thereby achieving superior performance compared to
other methods. In Appendix E, we demonstrate that the proposed LoRA-LEGO approach can effec-
tively merge heterogeneous LoRAs, exceeding the capabilities of previous model merging methods.

1r 2r 3r 4r 5r 6r 7r
Number of Clusters

35

40

45

50

55

60

Av
er

ag
e

Ac
cu

ra
cy

Original
w Parameter Reweighting
w Output Reweighting
w Parameter & Output Reweighting

Figure 7: Ablation on scaling
strategies.

Performance on LoRA Pruning. Our method also func-
tions as a LoRA parameter pruning approach. For a single
LoRA with rank r, LoRA-LEGO allows for selecting k < r,
effectively reducing the rank to k and pruning the model. As
illustrated in Fig. 6, we evaluate the performance of a single
LoRA model after retaining various proportions of its param-
eters. LoRA-LEGO efficiently compresses model parameters:
retaining just 33% of the parameters preserves 79% of the orig-
inal model’s capabilities while keeping 50% maintains 92% of
the performance. This offers new insights into strategies for
compressing model parameters, especially those of LoRA.

Ablation of Scaling Strategies. We evaluate the effectiveness of two scaling strategies for the
merged LoRA by varying the number of clusters for LoRA-LEGO, noting that the cluster number
corresponds to the rank of the merged LoRA. As illustrated in Fig.7, the original computation of
LoRA experiences significant performance degradation with increasing rank of the merged LoRA,
primarily due to the expansion of variance associated with the increased rank. Additionally, when
the rank of the merged LoRA is relatively low, its performance does not reach its optimum due to
the degradation of parameter norms. We also present the performance of each scaling strategy and
their combination. Applying parameter reweighting can significantly enhance the performance of
the merged LoRA when the rank is relatively low; specifically, the performance of a merged LoRA
at rank 1r improves by 5%. However, as the rank increases, eliminating norm decay more severely
exposes variance expansion because norm decay can alleviate this phenomenon, leading to greater
performance degradation. Stabilizing the variance by output reweighting significantly increases
performance when the rank is high, although it remains suboptimal due to the decrease of parameter
norms. Combining these two scaling strategies yields the best results, demonstrating stable and
improved performance across varying ranks of the merged LoRA. Notably, the only hyperparameter
in our approach is the cluster number k. After applying the dual rescaling strategy, the performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: The average performance of each task cluster. The performance of perfectly selected
corresponding LoRA for each sample is colored in gray. We have bolded the best performance of
each task and underlined the best performance in the “OOD” setting.

Task Perfect
Selection

LoRA-LEGO Selection Weight Average Ensemble Tie-Merging
IID OOD IID OOD IID OOD IID OOD IID OOD

w/ Llama2-7b
Struct to Text Rouge-1 59.1 49.6 50.5 56.8 45.2 44.5 41.0 51.2 45.3 45.4 49.4
Struct to Text Rouge-2 36.1 25.7 26.6 33.6 23.2 22.6 20.2 26.3 22.9 23.9 27.4
Struct to Text Rouge-l 48.6 39.5 39.9 46.4 35.3 34.5 31.7 41.0 35.5 36.0 39.3
Translation BLEU 13.1 12.9 12.4 12.8 12.0 12.2 12.3 12.8 12.2 14.0 13.9

COMMONSENSE 62.5 60.0 60.5 55.5 46.0 51.0 48.0 61.5 50.0 55.0 59.5
SENTIMENT 90.0 90.0 91.5 89.5 89.0 79.0 78.5 89.5 90.5 82.0 81.5
READING Comp. 67.3 54.3 55.7 51.7 40.3 47.3 45.0 51.3 47.3 46.3 56.3
CLOSE-BOOK QA 45.0 47.0 48.5 40.0 43.0 41.0 37.5 45.0 48.5 48.0 53.5
COREFERENCE 52.0 62.0 60.0 50.0 46.0 47.0 53.0 63.0 49.0 32.0 47.0
READ. COOMP. W/ COM 69.0 66.0 65.0 69.0 30.0 35.0 19.0 46.0 40.0 37.0 64.0
PARAPHRASE 65.5 58.0 60.0 58.0 45.5 45.5 44.0 56.5 45.5 18.0 38.5
NLI 72.3 71.3 66.4 70.0 60.6 51.4 53.8 67.9 64.3 65.6 49.4
Overall 55.4 51.4 51.0 51.2 43.0 41.6 40.2 49.8 45.6 43.2 45.8

w/ Llama2-13b
Struct to TextRouge−1 61.0 54.2 46.0 58.0 44.6 48.2 45.1 52.9 46.9 50.8 50.9
Struct to TextRouge−2 37.7 29.3 24.0 34.9 22.8 26.0 23.5 29.1 24.6 26.2 26.1
Struct to TextRouge−l 50.5 43.9 36.4 47.6 34.8 38.4 35.9 42.9 36.9 41.0 40.9
TranslationBLEU 12.9 14.7 14.5 12.9 12.7 14.6 14.1 14.6 14.1 11.2 11.3

COMMONSENSE 69.5 69.0 68.5 59.0 47.5 61.0 56.0 64.0 60.5 58.0 57.5
SENTIMENT 90.0 91.0 90.0 90.5 91.0 87.0 83.5 91.5 91.5 91.5 91.5
READING Comp. 76.0 62.7 53.0 60.3 48.0 56.7 49.3 60.3 51.3 54.3 54.3
CLOSE-BOOK QA 64.0 63.0 58.0 60.0 53.0 62.0 58.0 63.0 61.0 41.5 42.0
COREFERENCE 74.0 77.0 62.0 75.0 65.0 55.0 59.0 76.0 64.0 63.0 63.0
READ. COOMP. W/ COM 82.0 76.0 54.0 80.0 33.0 57.0 49.0 78.0 58.0 65.0 66.0
PARAPHRASE 77.5 67.5 58.5 68.0 52.5 55.5 45.5 71.0 55.5 61.0 62.5
NLI 82.4 78.9 76.3 78.9 70.2 69.8 66.4 78.1 75.7 65.7 65.7
Overall 62.4 58.2 52.8 57.8 47.7 51.6 47.8 57.6 52.3 50.1 50.3

of our method becomes highly stable, which also indicates that our method is very robust with
respect to hyperparameter selection; therefore, we use k = 2r as the default setting.

Merging Different Number of Tasks. We investigated the average performance of the model
when merging LoRAs with different numbers of tasks. To better assess the influence of task quantity
on our method, we normalized the performance of each task by dividing it by the performance of
its respective single-task LoRA and then calculated the mean of these normalized scores. From
Fig.8, it is evident that as the number of merging tasks increases, there is a general decline in the
performance of the merged LoRAs. Specifically, direct averaging experiences a steep performance
drop due to parameter interference. The Ensemble method also sees a decrease in performance,
attributed to parameter redundancy and inconsistencies in the output space. Ties-merging, failing to
resolve parameter interference and reliant on hyperparameter selection fully, does not reach optimal
performance. LoRA-LEGO, which flexibly addresses parameter interference, experiences a lesser
decline in performance with an increasing number of tasks, thereby outperforming the baseline
model.

4.2 MIXED-TASK EVALUATION

1 2 3 4 5 6 7
Number of Tasks

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
g.

 N
or

m
al

ize
d

Pe
rf

Weight Average
Ensemble
TIES Merging
LoRA Merging

Figure 8: Average performance
varying the number of merged
tasks.

Evaluation Setting. Recent studies Zhao et al. (2024b) have
proposed the creation of a LoRA pool from which relevant Lo-
RAs are retrieved for each input to facilitate LoRA composi-
tion. We adopt the same setting and construct a LoRA pool
for 48 tasks from flan-v2, grouped into 10 task clusters. The
evaluation set is constructed by randomly choosing 50 samples
from each test set. These samples are then mixed and shuffled
to form a unified dataset comprising 2400 data points.

Adopting the LoraRetriever approach Zhao et al. (2024b), we initially retrieve the top-3 LoRAs
based on the sentence embedding similarities between each input sample and LoRA’s few-shot sam-
ples. Following this, we engage in LoRA composition and evaluate various strategies. This analysis
underscores the versatility and superior performance of LoRA-LEGO in handling more complex
scenarios.

Baseline Methods. For all methods, we employ a consistent evaluation pipeline. For each instance
in the evaluation set, we initially retrieve the top-3 LoRA, followed by the composition of LoRA.
We compared the following LoRA composition methods: (1) Weight Average, (2) Ensemble, (3)
Selection (using the top-1 retrieved LoRA), and (4) Ties-Merging.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Main Results. Previous research Zhao et al. (2024b) has shown that using a retriever to identify
LoRA tasks tailored to various inputs is more efficient and effective in personalized service settings.
Consequently, we concentrate on how multiple LoRAs can be integrated effectively through LoRA
merging after retrieving the top-k LoRAs for each input. We assess the performance of LoRA com-
position methods in both IID and OOD contexts. “IID” performance refers to scenarios where all
LoRAs are accessible to the retriever. “OOD” performance, however, involves masking the LoRA
associated with the specific task of each test sample during retrieval, preventing any sample from
accessing its ideal LoRA. This approach allows us to evaluate the cross-task generalization capa-
bilities of the LoRA composition methods. Tab.4 demonstrates that LoRA-LEGO surpasses other
composition methods in both IID and OOD scenarios by fully eliminating parameter interference.
In contrast, baseline LoRA composition methods experience performance degradation due to their
inability to completely mitigate parameter interference. Specifically, in IID scenarios, the Selection
method excels because the Retriever can choose the most appropriate LoRA from closely related
tasks for inference. Building on this, LoRA-LEGO further enhances performance by leveraging the
transfer capabilities between different tasks, thereby achieving better results. For OOD scenarios,
both Ties-Merging and Ensemble show good performance by harnessing knowledge from a wide
array of relevant tasks to tackle OOD tasks. LoRA-LEGO, however, outperforms these methods
by effectively addressing parameter interference, allowing for a more comprehensive utilization of
diverse LoRA capabilities and achieving superior results in OOD setting.

5 RELATED WORK

Model Merging. Many works have discussed how to obtain a comprehensive model through
model merging from various perspectives. Some works discuss how to find a set of low-loss paths
in the parameter space for model parameter interpolation from the perspective of linear mode con-
nectivity Ainsworth et al. (2022); Entezari et al. (2021). From a similar perspective, we further
utilized properties of MSUs, employing clustering algorithms to provide a flexible solution for en-
hancing the parameter connectivity during LoRA merging. Additionally, many works attempt to
coordinate models trained in a decentralized and separated manner through model merging, utiliz-
ing their knowledge transfer capabilities to obtain a model with comprehensive abilities Tang et al.
(2024); Don-Yehiya et al. (2022); Yadav et al. (2024b); Matena & Raffel (2022); Jin et al. (2022);
Yang et al. (2023a); Deep et al. (2024); Yu et al. (2024). Recently, with the rise of large language
models, more and more works have focused on how to use model aggregation, especially the aggre-
gation of LoRA Chronopoulou et al. (2023); Huang et al. (2023); Zhao et al. (2024b); Wang et al.
(2024), to strategically utilize models adapted to multiple domains. These efforts often overlook
the parameter interference that occurs during LoRA merging, and some of them require extensive
additional training or adaptation. This leads to suboptimal performance in such scenarios or restricts
their applicability.

Application of LoRA Merging. LoRA merging can be applied in various scenarios. For instance,
in multi-task learning Tang et al. (2024); Don-Yehiya et al. (2022), models adapt to different domains
in a decentralized manner using LoRA, subsequently acquiring multi-task capabilities through merg-
ing. In mixed-task scenarios Zhao et al. (2024b;a), LoRAs from diverse domain tasks are uploaded
to a centralized service platform, where the service retrieves and composes LoRAs to deliver person-
alized services based on downstream requests. In federated learning Chen et al. (2023); Zhang et al.
(2024), edge devices train LoRAs on private data and upload them to a central server for merging
and distribution, enabling iterative optimization through this process.

6 CONCLUSION

In this paper, we address the challenge of merging multiple task-specific LoRAs into a unified model.
We identify parameter interference, caused by misalignment and knowledge conflict, as the main
obstacle. Our analysis reveals key LoRA properties: (1) Each rank operates as a minimal semantic
unit (MSU); (2) MSUs exhibit permutation invariance; (3) MSUs can be concatenated to form a
comprehensive LoRA. Building on these insights, we propose LoRA-LEGO, which clusters MSUs
from target LoRAs and uses cluster centroids to create a merged LoRA. Extensive experiments
validate our approach’s effectiveness.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Dengsheng Chen, Vince Junkai Tan, Zhilin Lu, Enhua Wu, and Jie Hu. Openfed: A comprehen-
sive and versatile open-source federated learning framework. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5018–5026, 2023.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. arXiv preprint
arXiv:2302.07027, 2023.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
model merging through magnitude-based sampling. arXiv preprint arXiv:2406.11617, 2024.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem
Choshen. Cold fusion: Collaborative descent for distributed multitask finetuning. arXiv preprint
arXiv:2212.01378, 2022.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296,
2021.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language
models: Applications, challenges, limitations, and practical usage. Authorea Preprints, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition, 2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and
Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE
transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular norms, volume 8. Springer Science
& Business Media, 2013.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
Moelora: An moe-based parameter efficient fine-tuning method for multi-task medical applica-
tions. arXiv preprint arXiv:2310.18339, 2023.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Anke Tang, Li Shen, Yong Luo, Han Hu, Bo Do, and Dacheng Tao. Fusionbench: A comprehensive
benchmark of deep model fusion. arXiv preprint arXiv:2406.03280, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun Chen, Zhiyuan Liu, and Maosong Sun.
Lora-flow: Dynamic lora fusion for large language models in generative tasks. arXiv preprint
arXiv:2402.11455, 2024.

Xun Wu, Shaohan Huang, and Furu Wei. Mole: Mixture of lora experts. In The Twelfth International
Conference on Learning Representations, 2023.

Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han, Xiaozhi Wang,
Shuo Wang, Yufei Huang, Guanyu Lin, Yingfa Chen, Weilin Zhao, Yuge Tu, Zexuan Zhong,
Ao Zhang, Chenglei Si, Khai Hao Moo, Chenyang Zhao, Huimin Chen, Yankai Lin, Zhiyuan Liu,
Jingbo Shang, and Maosong Sun. Configurable foundation models: Building llms from a modular
perspective, 2024. URL https://arxiv.org/abs/2409.02877.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen,
Mohit Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging:
Recycling and routing among specialized experts for collaborative learning. arXiv preprint
arXiv:2408.07057, 2024a.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024b.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023a.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031, 2023b.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and
Yiran Chen. Towards building the federatedgpt: Federated instruction tuning. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6915–6919. IEEE, 2024.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He. Composing parameter-efficient modules
with arithmetic operations. arXiv preprint arXiv:2306.14870, 2023.

Ziyu Zhao, Leilei Gan, Guoyin Wang, Yuwei Hu, Tao Shen, Hongxia Yang, Kun Kuang, and Fei
Wu. Retrieval-augmented mixture of lora experts for uploadable machine learning. arXiv preprint
arXiv:2406.16989, 2024a.

Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu Zhou, Hongxia Yang, Kun Kuang, and Fei
Wu. Loraretriever: Input-aware lora retrieval and composition for mixed tasks in the wild. arXiv
preprint arXiv:2402.09997, 2024b.

12

https://arxiv.org/abs/2409.02877

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DIFFERENCE BETWEEN LOAR MERGING SETTING AND MODEL
MERGING SETTING

Previous work on model merging primarily focused on integrating separately trained models to form
a comprehensive system. These methods typically involve reloading LoRA parameters into the orig-
inal model before merging, which introduces additional overhead by necessitating the reconstruction
of a corresponding LLM for each LoRA. In many cases, the goal of LoRA merging is to create a
new LoRA that consolidates the capabilities of all involved LoRAs for simplified task-specific us-
age. In contrast, the LoRA merging setting presented in this paper bypasses the LoRA reload step; it
directly merges the LoRA parameters to construct a unified LoRA with comprehensive capabilities.

B CONNECTION WITH VANILLA LORA COMPOSITION METHODS

The vanilla LoRA composition can be categoried into two types of training-free methods: the model
ensembling and model merging Tang et al. (2024). The ensemble strategy involves aggregating the
outputs of each submodule within the assembled LoRAs. Let us denote A = {A1,A2, . . . ,An} and
B = {B1,B2, . . . ,Bn} as the sets representing submodules within n LoRAs. For an input xi, the
output derived from the ensemble of LoRAs can be expressed as x′

i =
1
n

∑n
j=1 BjAjxi, where x′

i

denotes the output. The performance of the ensemble of LoRAs tends to be more stable, but it incurs
additional computational overhead. In contrast to the ensemble method, model merging presents
an alternative composition strategy. A typical strategy involves employing an element-wise fusion
of these parameters, represented as A′ = 1

n

∑n
j=1 Aj and B′ = 1

n

∑n
j=1 Bj . This formulation

allows the merged parameters to function similarly to a single LoRA. However, directly merging
parameters can lead to performance degradation due to parameter interference.

Our proposed LoRA-LEGO method serves as a bridge between the two strategies, ensuring an opti-
mal balance between computational efficiency and performance. By selectively aligning and fusing
MSUs based on their semantic similarity, LoRA-LEGO effectively condenses the most relevant se-
mantic features into fewer clusters. This process allows for the merging of parameters within each
cluster, reducing the overall parameter count in a manner similar to the model merging method. By
adjusting the number of clusters, LoRA-LEGO can accommodate more parameters for inference,
much like the ensemble method. In this way, our method leverages the strengths of both methodolo-
gies, ultimately enhancing model performance and inference efficiency.

C DETAILS OF BASELINE METHODS

We compare our method with the following baseline:

1. Weight Averaging. This approach averages the parameters across different instances of
LoRA, resulting in a new composite LoRA defined as A′ = 1

n

∑n
i=1 Ai and B′ =

1
n

∑n
i=1 Bi, where Ai and Bi represent the parameters from the i-th instance of the origi-

nal LoRA models, and n is the number of models being averaged.

2. Ensemble. This method averages the outputs from each LoRA, simultaneously activating
multiple LoRAs to compose a combined output. The specific calculation for the mixed
output is defined as x′ = 1

n

∑n
i=1 BjAjxi.

3. Task Arithmetic. This method is akin to weight averaging, but it differentiates by using
weights derived from a hyper-parameter search to merge models. The calculations for this
composite are A′ = p

∑n
i=1 Ai and B′ = p

∑n
i=1 Bi, where p represents the hyper-

parameter that scales the contributions of each model.

4. Ties-Merging. This method aims to resolve element-wise parameter interference by ini-
tially trimming the redundant parameters, retaining only the top-k% of values based on
their magnitude. It then selects the sign vector for the merged model and finally performs
a disjoint mean operation. Ties-Merging posits that the primary source of parameter inter-
ference arises from inconsistencies in the values of merged parameters, while potentially
overlooking issues related to misalignment and knowledge conflict.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

5. DARE. This method randomly drops the parameters and then rescales the remaining values
to maintain the model’s performance on the target tasks.

6. DELLA-Merging. This method pruning the parameters taking into account their magni-
tude, then elects the parameters for merging to reduce parameter interference.

D OPTIMAL SCALE OF MERGED LORA

Theorem D.1. Let A1 ∈ Rp×r and B1 ∈ Rr×p, and A2 ∈ Rp×k and B2 ∈ Rk×p, where all
elements of these matrices are independently and identically distributed according to the standard
normal distribution N (0, 1). Then, after scaling the product A2B2 by the factor

√
r/
√
k, the

variances of the entries of A1B1 and the scaled A2B2 are equal:

Var (A1B1) = Var

(√
r√
k
A2B2

)
.

Proof. To compute the variance of the entries of the matrices A1B1 and
√
r√
k
A2B2, we examine

each entry individually.

For A1B1, each entry is calculated as:

(A1B1)ij =

r∑
l=1

(A1)il(B1)lj .

Since (A1)il and (B1)lj are independent and follow N (0, 1), their product has mean zero and
variance one:

E [(A1)il(B1)lj] = 0, Var ((A1)il(B1)lj) = 1.
The terms (A1)il(B1)lj are independent for different l, so the variance of (A1B1)ij is:

Var ((A1B1)ij) =

r∑
l=1

Var ((A1)il(B1)lj) = r × 1 = r.

Similarly, for A2B2, each entry is:

(A2B2)ij =

k∑
l=1

(A2)il(B2)lj ,

and each term (A2)il(B2)lj has variance one. Therefore, the variance of (A2B2)ij is:

Var ((A2B2)ij) =

k∑
l=1

Var ((A2)il(B2)lj) = k × 1 = k.

After scaling A2B2 by
√
r/
√
k, the variance becomes:

Var

((√
r√
k
A2B2

)
ij

)
=

(√
r√
k

)2

Var ((A2B2)ij) =
(r
k

)
× k = r.

Thus, the variances of the entries are equal:

Var (A1B1) = Var

(√
r√
k
A2B2

)
.

E PERFORMANCE ON MERGING HETEROGENEOUS LORAS

Another advantage of LoRA-LEGO is its ability to merge heterogeneous LoRAs, that is, LoRAs
with different ranks. To experimentally verify this feature, we retrained LoRAs for the QNLI, RTE,
and SST2 tasks with r = 16 and α = 32, and merged them with LoRAs from other tasks (r = 8,
α = 16) to obtain a new LoRA. Since other model merging methods require the merged LoRAs to
have the same architecture, we only compared our method with the Ensemble method. As shown
in Tab.5, the results demonstrate that our method can effectively merge heterogeneous LoRAs and
achieves better overall performance than the Ensemble method.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Multi-task performance when merging heterogeneous LoRAs on seven seen tasks and two
unseen tasks.

IID Tasks OOD Tasks AverageMethod CoLA MNLI MRPC QNLI QQP RTE SST2 SNLI WNLI
w/ Llama2-7b

Task LoRA 61.63 77.46 68.00 82.69 75.83 77.04 77.47
Weight Average
Task Arithmetic
Ties-Mering
Ensemble 56.06 55.84 69.75 64.91 74.85 74.44 70.92 46.19 52.86 62.87
LoRA-LEGO 55.10 60.67 69.25 67.29 65.61 67.04 74.83 57.82 52.86 63.39

Table 6: Multi-task performance when merging LoRAs from diverse tasks.
Method RTE CoPA IMDB MRPC BoolQ CosmosQA ARC(Easy) Average
Weight Average 47.41 51.00 5.90 56.50 60.70 20.80 12.70 36.43
Ensemble 52.59 3.00 33.20 35.00 73.50 0.50 19.10 30.98
Ties-Merging 38.89 23.00 0.00 0.00 10.20 8.90 1.70 11.81
DARE 47.41 53.00 6.40 57.25 60.70 21.20 12.90 36.98
DELLA-Merging 55.56 63.00 58.99 68.25 72.63 18.02 38.90 53.62
LoRA-LEGO 56.30 69.00 65.10 60.00 80.40 35.50 50.40 59.53

F PERFORMANCE ON MERGING LORAS FROM DIVERSE TASKS

To comprehensively evaluate different merging methods’ performance on diverse tasks, we con-
ducted experiments with LoRA models trained across a broad spectrum of NLP tasks. These tasks
include RTE (natural language inference), CoPA (commonsense reasoning), IMDB reviews (senti-
ment analysis), MRPC (paraphrase detection), BoolQ (reading comprehension), CosmosQA (read-
ing comprehension with commonsense), and ARC (closed-book question answering). The deliber-
ate selection of these highly diverse tasks enables a thorough assessment of merging methods across
different linguistic capabilities and reasoning requirements.

The performance comparison of different LoRA merging methods on these diverse tasks is presented
in Tab.6. As expected, the significant semantic disparities between tasks lead to increased parameter
interference, causing substantial performance degradation in baseline methods such as ties-merging
and DARE. In contrast, LoRA-LEGO’s approach of parameter alignment before MSU-based merg-
ing proves highly effective, achieving an 11% performance improvement over the strongest baseline,
DELLA-Merging. These results demonstrate that our MSU-level alignment and merging strategy
successfully mitigates parameter interference, particularly in challenging scenarios where task diver-
sity amplifies interference effects. The superior performance validates our approach’s effectiveness
in handling heterogeneous task combinations while maintaining model capabilities.

G EXPLORING THE SCALABILITY OF LORA MERGING

H EXPLORING THE SCALABILITY OF LORA MERGING

To rigorously evaluate the scalability of different LoRA merging methods and their capacity to han-
dle increasingly diverse tasks, we designed a comprehensive experiment spanning a broad spectrum
of tasks and domains. Our evaluation encompasses the following task categories:

• Natural Language Inference: RTE, CB, SNLI, MNLI (matched and mismatched), WNLI, QNLI
• Commonsense Reasoning: CoPA, PiQA, StoryCloze
• Sentiment Analysis: IMDB, SST-2
• Paraphrase Detection and Similarity: MRPC, QQP, STS-B
• Reading Comprehension with Commonsense: CosmosQA
• Reading Comprehension: BoolQ, RTE
• Closed-Book Question Answering: ARC (easy and challenge sets)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Multi-task performance when merging LoRAs on 20 tasks.
Task Weight Average Ensemble Ties-Merging DARE DELLA-Merging LoRA-LEGO
ARC (Easy) 1.00 0.00 3.40 1.30 37.00 50.20
ARC (Challenge) 1.30 0.00 2.50 1.30 27.90 35.20
CoLA 0.00 0.00 0.20 0.00 54.30 54.60
QQP 0.00 0.00 0.20 0.00 60.20 57.30
PiQA 1.60 0.00 7.10 1.20 45.10 45.60
SST2 1.38 0.00 7.24 2.07 55.40 74.02
CoPA 18.00 0.00 3.00 21.00 59.00 70.00
IMDB 0.00 0.00 1.80 0.00 51.20 64.50
QNLI 14.70 0.00 0.90 15.30 50.30 52.50
StoryCloze 40.00 0.00 5.50 40.10 63.90 64.00
BoolQ 12.80 0.00 5.80 13.00 69.20 81.80
CosmosQA 9.30 0.00 3.90 9.70 16.40 16.50
MNLI (m) 5.90 0.00 0.60 5.90 39.70 59.10
MNLI (mm) 3.60 0.00 0.30 3.10 40.10 56.20
RTE 39.63 0.00 3.70 39.63 57.78 62.22
STSB 0.20 0.00 0.40 0.20 15.70 17.80
CB 12.00 0.00 4.00 8.00 74.00 74.00
MRPC 0.25 0.00 0.75 0.25 59.00 66.75
SNLI 0.50 0.00 0.70 0.80 35.80 55.10
WNLI 5.71 0.00 0.00 8.57 48.57 57.14
Average 8.39 0.00 2.60 8.57 48.03 55.73

We conducted extensive experiments merging 20 LoRAs from these diverse tasks, with results
presented in Tab.7. The findings reveal several critical insights about large-scale, multi-domain
LoRA merging: Traditional element-wise merging methods exhibit severe performance degrada-
tion, with some merged models failing completely due to intensified parameter interference. The
ensemble method, in particular, failed entirely due to irreconcilable conflicts arising from disparate
output spaces across multiple LoRA models. While DELLA-Merging achieved the best perfor-
mance among baselines through its parameter pruning strategy, it still struggled to fully address the
fundamental challenges of parameter misalignment and knowledge conflicts inherent in large-scale
merging. In contrast, LoRA-LEGO demonstrated robust and superior performance in this chal-
lenging scenario. By leveraging MSU-based structuring and integration of LoRA knowledge and
parameters, our method effectively resolves parameter interference issues, achieving a substantial
16% improvement over the best baseline. These results convincingly demonstrate LoRA-LEGO’s
effectiveness in large-scale LoRA merging and its ability to maintain performance even under sig-
nificant task diversity and scale.

I DETAILED RELATED WORK ON MODEL MERGING

Model Merging has garnered significant attention, as it aims to combine multiple task-specific mod-
els into a unified model capable of handling diverse tasks Tang et al. (2024); Yang et al. (2024). Pre-
vious work, such as Weight Averaging Tang et al. (2024), approached model merging by directly
averaging all the parameters. Task Arithmetic Zhang et al. (2023); Ilharco et al. (2022) introduced
additional scaling factors to determine each model’s contribution to the final output. Subsequently,
methods like Fisher Merging Matena & Raffel (2022) and RegMean Jin et al. (2022) incorporated
additional labeled data to merge models based on their relative importance. TIES-Merging Yadav
et al. (2024b) tackled element-wise parameter interference by trimming low-magnitude parameters,
resolving sign disagreements, and selectively merging parameters with consistent signs. More re-
cent approaches, such as DARE Yu et al. (2024) and DELLA-Merging Deep et al. (2024), further
optimized TIES-Merging by introducing parameter pruning and rescaling techniques. However,
these methods mostly rely on element-wise parameter merging and fail to address the alignment of
parameters, which leads to significant parameter interference in more complex scenarios.

J EXPLORATION OF AVERAGE MSU DISTANCES WITHIN LORAS

Our experiments in Tab.1 revealed an interesting phenomenon: while merging a LoRA with its per-
muted version typically leads to performance degradation due to MSU misalignment and parameter
interference, certain tasks like RTE and MRPC showed slight performance improvements. We hy-
pothesize that this unexpected benefit stems from these tasks’ relative simplicity, where internal
MSUs within their LoRA models maintain closer alignment. In such cases, permutation merging
may actually serve as a beneficial regularization mechanism, potentially reducing overfitting.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35 40 45 50 55 60
Layer Number

0.72

0.74

0.76

0.78

0.80

Av
er

ag
e

Di
st

an
ce

CoLA
MRPC
QQP
MNLI
QNLI
RTE
SST2

Figure 9: Average Euclidean distance among MSUs of different layers within each LoRA.

To validate this hypothesis, we analyzed the average Euclidean distances between MSUs in each
layer across all LoRAs, as illustrated in Fig.J. The analysis reveals that MRPC and RTE consistently
exhibit smaller inter-MSU distances, indicating stronger internal parameter connectivity and poten-
tial parameter redundancy. This structural characteristic explains why permutation merging (A+PA)
acts as an effective regularization mechanism for these tasks: when MSUs are closely connected, the
smoothing effect of permutation merging helps reduce overfitting, leading to performance improve-
ments. Conversely, for tasks with larger MSU distances indicating weaker connectivity, permutation
merging disrupts the parameter structure, resulting in significant performance deterioration.

These findings underscore a crucial insight for LoRA merging: the effectiveness of merging strate-
gies strongly depends on MSU connectivity patterns. Our clustering-based approach capitalizes on
this insight by specifically targeting and merging closely aligned MSUs, thereby minimizing param-
eter interference and optimizing merger outcomes.

K EXPLORATION OF SEMANTIC RELATIONSHIPS IN MSUS ACROSS TASKS

To investigate whether MSUs capture meaningful structural semantic information, we conducted a
comprehensive analysis using 48 LoRA models, each trained independently on different datasets
from Flan-v2 and categorized into 10 distinct task clusters. Our analysis focuses on visualizing the
semantic relationships between MSUs by examining their distributions in the first layer parameters
of these LoRAs.

To uncover potential patterns in MSU organization, we employed t-SNE to project MSUs from the
initial layers of these models into a unified visualization space. This approach allows us to exam-
ine how MSUs are distributed across different tasks and domains, potentially revealing underlying
semantic relationships and organizational principles.

The visualization results, presented in Fig.10, reveal two significant patterns: First, MSUs within
individual LoRA tend to form distinct clusters, reflecting their shared training on specific data dis-
tributions. Second, and more notably, MSUs from LoRAs within the same domain exhibit spatial
proximity in the t-SNE space, suggesting the capture of domain-specific semantic features. These
findings have important implications for LoRA merging: they demonstrate that MSU similarity is a
crucial consideration in the merging process, as clustering and merging similar MSUs can minimize
parameter interference while preserving semantic integrity. This observation supports our approach
of MSU-based alignment in LoRA merging, showing how it helps maintain semantic coherence
while reducing conflicts during merging.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

20 10 0 10 20
Dimension 1

20

10

0

10

20

Di
m

en
sio

n
2

TSNE of LoRA MSUs for Layer 3

sst2 (sentiment)
yelp_polarity_reviews (sentiment)
imdb_reviews (sentiment)
sentiment140 (sentiment)
cb (nli)
wnli (nli)
mnli_matched (nli)
anli_r3 (nli)
anli_r2 (nli)
anli_r1 (nli)
mnli_mismatched (nli)
snli (nli)
qnli (nli)
rte (nli)
multirc (reading comp)
squad_v2 (reading comp)
squad_v1 (reading comp)
openbookqa (reading comp)
bool_q (reading comp)
drop (reading comp)
web_nlg_en (struct to text)
dart (struct to text)
e2e_nlg (struct to text)
common_gen (struct to text)
definite_pronoun_resolution (coreference)
wsc (coreference)
wmt16_translate_tren (translation)
wmt16_translate_deen (translation)
wmt16_translate_ruen (translation)
wmt16_translate_fien (translation)
wmt16_translate_roen (translation)
wmt14_enfr (translation)
wmt16_translate_csen (translation)
para_crawl_enes (translation)
cosmos_qa (read.comp.w:commonsense)
record (read.comp.w:commonsense)
natural_questions (closed_book QA)
arc_easy (closed_book QA)
arc_challenge (closed_book QA)
trivia_qa (closed_book QA)
paws_wiki (paraphrase)
glue_qqp (paraphrase)
glue_mrpc (paraphrase)
stsb (paraphrase)
story_cloze (commonsense)
piqa (commonsense)
copa (commonsense)
hellaswag (commonsense)

Figure 10: Average Euclidean distance among MSUs of different layers within each LoRA.

18

	Introduction
	Preliminaries
	Low-Rank Adaptation
	Further modularization of LoRA
	Problem Formulation and Challenges

	Methodology
	LoRA-LEGO framework
	Optimal scale of Merged LoRA

	Experiments
	Multi-task Learning
	Mixed-task Evaluation

	Related Work
	Conclusion
	Difference between LoAR Merging Setting and Model Merging Setting
	Connection with Vanilla LoRA Composition Methods
	Details of Baseline Methods
	Optimal Scale of Merged LoRA
	Performance on Merging Heterogeneous LoRAs
	Performance on Merging LoRAs from Diverse Tasks
	Exploring the Scalability of LoRA Merging
	Exploring the Scalability of LoRA Merging
	Detailed Related Work on Model Merging
	Exploration of Average MSU Distances within LoRAs
	Exploration of Semantic Relationships in MSUs across Tasks

