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Abstract

Automated Emotion Recognition in language
is a challenging task that has attracted consid-
erable attention especially in recent years. We
present a summary of our findings and obser-
vations based on a thorough analysis of recent
resources and related practices.

1 Introduction

The task of automated emotion recognition (AER)
in language as an application of NLP has substan-
tial real-world application potential from analyz-
ing large corpora of literary texts to enhancing in-
telligent chatbots. AER deals with recognizing
specific emotions in the text, such as anger, sad-
ness, or joy. This is a challenging task, as opposed
to simpler tasks such as sentiment analysis or po-
larity detection. For example, consider the state-
ment “An old friend called out of the blue”: this
could convey surprise and joy, or nostalgia and
sadness, or even anxiety, depending on the indi-
vidual and their relationship with the friend.

When corpora are collected for AER, they must
be annotated with emotions. There is great vari-
ability, for example, in annotation schemes (e.g.,
single vs. multi-label) or even which emotions are
used. Annotating the data with emotions is inher-
ently not a simple task: in the example we used
above, we could consider the speaker’s versus the
reader’s perspective, and the latter might differ
from one person to another (Mohammad, 2022).

Despite these challenges, there has been a surge
of AER research since 2018 (Plaza-del Arco et al.,
2024). In this work, we summarize our findings
and discuss our observations based on our earlier
systematic study of recent emotion-annotated re-
sources and related practices (2018 to now).1

1The in-depth study and analysis is part of a larger (jour-
nal) article. This extended abstract summarizes our findings
citing example articles: they should be interpreted as repre-
sentative examples and not as a comprehensive review.

2 Resources and related practices

Overview: Many of the datasets we found in our
review came from social media such as Twitter/X
(Mohammad et al., 2018; Barbieri et al., 2020)
or Reddit (Demszky et al., 2020). There were
a few corpora containing self-written statements
or essays (Kleinberg et al., 2020; Troiano et al.,
2019). Other sources include TV scripts (Hsu
et al., 2018), news headlines (Oberländer et al.,
2020), movie subtitles (Öhman et al., 2020) and
literary narratives (Liu et al., 2019). Related to
topics, certain corpora explore reactions to news
(Tafreshi et al., 2021; Huguet Cabot et al., 2021)
or COVID-19 (Yang et al., 2020). Regarding emo-
tions, most datasets feature a few basic emotions,
with distributions varying across datasets.

Lack of Resources/Awareness: Based on our
study, there is currently no comprehensive re-
source (repository) that encompasses all available
emotion-annotated corpora. Existing well-known
ML/NLP data repositories such as Hugging Face
contain only a handful of emotion-annotated text
corpora, most of which are lacking documentation
or even citation/author. Regarding studies and sur-
veys, in 2018, Oberländer and Klinger (2018) con-
ducted a unified framework and analysis of 14 cor-
pora. Their work was shared online to allow com-
parisons of the corpora. Recent surveys we re-
viewed, e.g. (Deng and Ren, 2021; Kusal et al.,
2023), do not cover many of the datasets we dis-
covered in our study. Recently, Plaza-del Arco
et al. (2024) reviewed over 150 ACL papers and of-
fered a detailed overview of trends and gaps, align-
ing with many of our findings.

It should be noted that certain datasets are well-
known in the NLP community: e.g. GoEmotions
(Demszky et al., 2020) and TweetEval (Barbieri
et al., 2020) based on Affect in Tweets (Moham-
mad et al., 2018), each cited more than 700 times
(per Google scholar, Aug. 2024). These are



also examples of the sweeping trend we observed:
most data were collected from social media or on-
line forums, with each record containing a short
post or comment. On the other hand, we identified
very different corpora that are not as well-known,
e.g. Real World Worry Waves Dataset (RW3D)
(van der Vegt and Kleinberg, 2023) with UK sur-
vey responses (essays and emotion self-ratings)
related to COVID-19 over 3 years, and Emo-
tionArcs (Öhman et al., 2024) with emotional arcs
from over 9,000 English novels. Sharing avail-
able resources in a centralized repository would
improve resource awareness and standardization,
with great potential to advance research in this
field, for example benchmarking efforts.

Issues with existing resources: As we men-
tioned earlier, most data come from social me-
dia or online forums. The language on these
platforms includes misspellings, emojis, abbrevi-
ations, etc., which makes it difficult to parse or
follow. The collected datasets do not represent
linguistic patterns or human communication out-
side of these platforms. Additionally, it is known
that many of the social media platforms are bi-
ased: for example, platforms such as Reddit are
not representative of a diverse population, and are
instead biased towards young male users (Dem-
szky et al., 2020). The vast majority of data
is in English, a common issue in NLP. There
are efforts to present datasets in other languages,
and we also found some datasets in multiple lan-
guages, e.g. Universal Joy (Lamprinidis et al.,
2021) with anonymized Facebook posts in 18 lan-
guages. A recent work explored emotion detection
in low/moderate-resource languages with transfer
learning (Tafreshi et al., 2024). Specifically for
emotion detection, one should consider linguistic
and cultural differences (De Bruyne, 2023).

There is great variability in how data has been
annotated with emotions. The collectors of the
data have followed different emotion taxonomies
borrowed from Psychology (Plaza-del Arco et al.,
2024). Most datasets use basic emotions, usually
relying on Ekman taxonomy from the 1970s (Ek-
man, 1992), and to a lesser extent Plutchik (1984).
The Ekman representation links emotions to fa-
cial expressions or similar: this has been chal-
lenged by Barrett (2017), who also highlighted the
need to consider context in interpreting emotions.
De Bruyne (2023) discussed how these basic emo-
tions are too broad to be realistic and thus useful.
At the same time, using a large number of detailed

emotions might increase the overlap of the emo-
tions, which is harder (more confusing) for anno-
tators (Öhman, 2020). A few works used fine-
grained emotion labeling, e.g. (Demszky et al.,
2020; Imran et al., 2022).

Annotation practices also reveal challenges. For
example, there is a lack of detailed or uniform
reporting on annotator demographics and train-
ing (Plaza-del Arco et al., 2024), and great vari-
ability in number of annotators, metrics for inter-
annotator agreement etc., as also observed by Sta-
jner (2021). Only a couple of works followed
data statements proposed by Bender and Friedman
(2018). Given the subjectivity of the AER task,
it could be beneficial to consider disagreements
in annotations (Basile et al., 2021). Finally, eth-
ical considerations, as presented by Mohammad
(2022), emphasize the importance of having tasks
that are clearly defined and also considering how
emotions are expressed and perceived by different
individuals.

Limited Interdisciplinary Work: Research inte-
grating NLP with Humanities, Psychology and So-
cial Sciences remains limited. McGillivray et al.
(2020) and Öhman et al. (2023) focused on Digi-
tal Humanities, Behnke et al. (2023) on Psychol-
ogy/CS perspectives, and Demszky et al. (2023)
discussed LLMs in Psychology. Interdisciplinary
collaboration is vital for refining emotion models
and developing culturally and contextually rele-
vant applications.

3 Conclusions

Based on our in-depth exploration of recent AER
resources and related practices, we summarized
our findings including issues and challenges. By
exploring strategies for overcoming them, we can
promote a more integrated approach that enhances
the effectiveness and applicability of AER tech-
niques. Towards that goal, we recently presented
a unified framework built from several emotion-
annotated corpora, with which we conducted ini-
tial benchmarking experiments (Koufakou et al.,
2024). We shared our code and data information
online.2 Building on our in-depth analysis of re-
lated datasets, we are currently curating a reposi-
tory that includes details and comparisons, while
also seeking ways to engage with researchers be-
yond the NLP community.

2https://github.com/a-koufakou/
EmoDetect-Unify

https://github.com/a-koufakou/EmoDetect-Unify
https://github.com/a-koufakou/EmoDetect-Unify
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