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ABSTRACT

Large vision transformers (ViT) have tremendously succeeded in various com-
puter vision tasks. These ViT models pre-trained on large datasets such as Ima-
geNet21K and JFT-300M enjoy robustness in both low-level and high-level visual
representations, and they repeatedly yield performance improvements on multiple
downstream tasks. One straightforward way to inherit these robust representa-
tions is full fine-tuning. However, full fine-tuning is prone to overfitting the small
downstream data by adjusting the massive weights of pre-trained large models.
In addition, updating the whole parameters of pre-trained large models requires
high GPU memory and computations, which limits the application of these large
models. To address the above two drawbacks of full fine-tuning, in this paper,
we propose a parameter-efficient tuning (PET) method dubbed Important Channel
Tuning (ICT). Different from previous PET methods that adopt a trainable module
to tune all the channels of a feature map, we hypothesize and corroborate experi-
mentally that not all channels are equal for adaptation. Specifically, we design a
tiny external module that determines the most informative channels in the feature
map for effective adaptation. In particular, with only a simple linear layer ap-
plied to the important channels, our ICT surpasses full fine-tuning on 18 out of 19
datasets in VTAB-1K benchmark by adding only 0.11M parameters of the ViT-B,
which is 0.13% of its full fine-tuning counterpart. Moreover, compared with the
previous PET methods, ICT achieves the state-of-the-art average performance in
the VTAB-1K benchmark with ViT and Swin Transformer backbones.

1 INTRODUCTION
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Figure 1: The comparison of parameters and top-1 accu-
racy on VTAB-1K benchmark with different baselines. The
backbone is ViT-B/16.

Large vision transformers (ViT) have
shown promising performances on
various computer vision tasks such
as image classification (Dosovitskiy
et al., 2020; Liu et al., 2021b; Yuan
et al., 2022; Zhou et al., 2021a),
segmentation (Strudel et al., 2021),
and detection (Carion et al., 2020; Li
et al., 2021). Training large ViT mod-
els demands large-scale training data
such as ImageNet21K (Ridnik et al.,
2021) and JFT-300M (Sun et al.,
2017) to fully meet its capacity for strong representations. The pre-trained large ViT models enjoy
rich, robust visual representations and can be leveraged in various vision tasks to improve perfor-
mances. End-to-end full fine-tuning is one direct and commonly used way to inherit these robust
representations. However, there are two challenges to adapting these models to the downstream
tasks with full fine-tuning. One challenge is that full fine-tuning is prone to overfitting due to the
small amount of downstream training data by tuning the massive weights of pre-trained models. The
other challenge is the large model size of ViT models, which will cost vast storage and computing
resources to save the weights and gradients during fine-tuning. Thus it is unfeasible to tune the large
models for a downstream task in resource-limited situations. To mitigate the above two challenges,
it is proposed to tune a subset of full parameters or adopt an external trainable module to preserve
the plentiful knowledge of pre-trained models and save the tuning cost.
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As for tuning a subset of full parameters, there are two common methods: tuning the classification
head (Mahajan et al., 2018; Jia et al., 2021; Chen et al., 2021b) and bias term (Cai et al., 2020).
Tuning the classification head means freezing the weights of the backbone network and only up-
dating the classification head, which leads to lower performance compared with full fine-tuning. In
contrast, tuning the bias term on VTAB-1K benchmark (Zhai et al., 2019) yields surprising results
compared with the full fine-tuning as the results provided from Jia et al. (2022). Notably, the pro-
portion of the trainable parameter about the tuning bias term is only 0.10% of the ViT-B/16. This
inspires us that the number of parameters of the trainable module could be pretty small.

As for adopting an external trainable module, two lines of parameter-efficient tuning (PET) methods
are proposed to preserve the representations of backbones. On the one hand, VPT (Jia et al., 2022) is
a visual prompt approach that explores the potential of only leveraging the dataset-specific prompts
in the transformer layers, motivated by the success of proposing prompts in natural language pro-
cessing (Liu et al., 2021a). However, one drawback of VPT is that it utilizes dataset-specific infor-
mation by individually searching the prompt length per task. Therefore, it is not flexible in applying
a new task, as it costs too much time and computation to search for the best prompt length. Another
direction (Chen et al., 2022b; Houlsby et al., 2019; Jie & Deng, 2022) is to inject a residual module
alongside the multi-head self-attention (“Attn”) or “MLP” block in ViT (Dosovitskiy et al., 2020)
to adapt the knowledge of the fixed backbone. Regardless the structure of the residual module is
MLP-like (Houlsby et al., 2019; Chen et al., 2022b) or Convolution-like (Jie & Deng, 2022), these
modules grasp the dataset-specific information implicitly during the fully supervised tuning and
consider all the channels equally in an extracted feature map. Therefore, the number of trainable
parameters is not quite small because of the full channels projection.

In this paper, we propose Important Channel Tuning (ICT), which explicitly considers the channel
inequality of the extracted feature map for different datasets. Specifically, we first present an obser-
vation investigating the statistics of the extracted feature maps from the frozen backbone and then
design an importance score to reflect the importance of each channel. We choose the top-K largest
value of importance score vectors, and later we will only update features of these channels with high
important scores. This design enables us to tune only a subset of channels instead of all, inheriting
the strong representations of pre-trained backbones for downstream tasks. For different downstream
datasets, the selected important channels in each layer are different and demonstrate that explicitly
involving dataset-specific information is necessary. For the module implementation, we leverage a
linear layer to project the selected important channels into new transformed features, add the residual
connection and insert back into the original feature map. Note that, unlike previous PET baselines,
which have computational cost in searching for the best prompt length or the best architecture for the
knowledge adaptation, our dataset-specific channel selection is conducted before downstream train-
ing, and no more repeated channel selection computational cost. The experiments demonstrate that
our method surpasses other PET baselines on the VATB-1K benchmark with only 0.11M parameters
of ViT-B/16, as shown in Fig. 1. We also evaluate the strategies for selecting important channels and
the effectiveness of adopting class-aware information in calculating the importance score. Finally,
we also apply ICT to domain generalization task to investigate robustness.

2 RELATED WORK

2.1 VISION TRANSFORMERS

Transformers (Vaswani et al., 2017) have demonstrated outstanding results on natural language pro-
cessing and computer vision tasks. Lots of vision transformers (Chen et al., 2021a; d’Ascoli et al.,
2021; Dong et al., 2022; Ali et al., 2021; Fan et al., 2021; Han et al., 2021; Rao et al., 2021; Yuan
et al., 2021; Touvron et al., 2021; Liu et al., 2021b; Wang et al., 2021; Zhou et al., 2021a) are pro-
posed after the pioneering work ViT (Dosovitskiy et al., 2020). Many of them increase the model
size gradually for the state-of-the-art results and learn the rich representations by various archi-
tectural designs. Noteworthy, most of them are trained on the natural dataset and have the strong
potential to be transferred to other domains/tasks. Adopting these models to the downstream tasks
alleviates the training difficulty obviously and achieves promising results rapidly.
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2.2 PARAMETER-EFFICIENT TUNING METHODS

Parameter-efficient tuning focuses on adopting a trainable module with a small number of parame-
ters for fine-tuning. Two lines of PET have been proposed recently to implicitly involve the dataset-
specific information in the model adaptation. On one hand, applying prompts (Jia et al., 2022; Liu
et al., 2022; Xing et al., 2022; Zheng et al., 2022; Nie et al., 2022; Wang et al., 2022) to the back-
bone networks show the success on several vision tasks. On the other hand, adding a residual module
(Houlsby et al., 2019; Chen et al., 2022b; Jie & Deng, 2022; Chen et al., 2022a) in the backbone
networks also acquires promising results for the balance of performance and effectiveness. Adapter
(Houlsby et al., 2019) proposes an MLP-like module with two fully connected layers inserted into
the backbone networks. The Adapter gives a successful design of first projecting the original dimen-
sional features into a smaller dimension with one nonlinear layer, and projecting back to the original
dimensions. It vastly reduces the number of parameters. Inspired by this design, typically, finding a
small number of informative channels in a feature map might be enough for the adaptation. Unlike
injecting trainable modules into the transformer blocks, LoRA (Hu et al., 2021) optimizes a low-
rank decomposition matrix with a low intrinsic dimension to project the matrices of query, key, and
value used in multiheaded self-attention in ViT. As for adopting prompts, VPT injects the prompts
into each transformer layer’s input space with a small number of extra parameters. However, VPT
needs to search the prompt length for each downstream task which takes a long time to tune. In
our work, to explicitly reduce the computations of incorporating the dataset-specific information
into model adaptation, we design an importance score to determine the important channels before
downtream tuning. As for NOAH (Zhang et al., 2022), a neural architecture search algorithm, in-
corporates Adapter, LoRA, and VPT into its network search space. NOAH brings a strong baseline
for performing consistently well on different datasets.

3 METHOD

3.1 NOT ALL CHANNELS ARE EQUAL

Previous works (Liu et al., 2018; Han et al., 2015; Li et al., 2017) demonstrate that pruning some
channels of deep neural networks has a marginal influence on the model performance but can signifi-
cantly reduce the parameter number and computational cost. Such results reflect that the importance
of different channels is not the same, i.e., “Not all channels are equal”. Intuitively, the channel im-
portance is different in terms of the datasets, which motivates us to investigate the impact of channel
selection in model tuning.

We first illustrate the observation between the pre-trained model and the downstream task. We
choose Caltech101 (Fei-Fei et al., 2004) (one of the downstream tasks from the VTAB-1K bench-
mark) as an example to evaluate the intermediate features of each transformer layer of ViT. More
results of other datasets can be discovered from Fig. 27 to Fig. 45 in the appendix. We choose ViT-B
pre-trained on ImageNet21K as the pre-trained model and pass all the training images to extract the
features between “Attn” and “MLP” blocks in all 12 transformer layers. As Caltech101 contains
101 classes and 1000 train images, we divide the total training images into subgroups via the class
label and get the deep features {f l

Nc
∈ RBNc×L×C | l, Nc ∈ N, 1 ≤ l ≤ 12 and 1 ≤ Nc ≤ 101}

where
∑101

Nc=1 BNc
= 1000, L is the number of tokens, and C is the number of channels. To remove

the effects of image bias, we use L2 norm to calculate the value of f l
Nc

in dimension BNc and L,
then we get features {f̃ l

Nc
∈ R1×C | l, Nc ∈ N, 1 ≤ l ≤ 12 and 1 ≤ Nc ≤ 101}. Fig. 2 (a)

shows that for each layer, the mean value of a few channels is much higher than others, e.g., channel
indices 183, 382, 636, and 759 in Layer-7. It indicates that when using a pre-trained model to extract
the deep features on the target dataset, some channels are more important than others, regardless of
categories.

It naturally raises a question: Could we find important channels in each layer based on deep
features extracted from the pre-trained model and then only transform these significant fea-
tures on downstream tasks? To answer this question, we propose a criteria to inspect the channel
importance of extracted features based on a specific dataset as the guidance to design the trainable
module to adapt the information from a pre-trained large model to the target task. Our results in Fig.
1 reflect that only adapting 96 channels of 768 channels could obtain competitive results compared
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(a) Illustrate the extracted feature maps on the Caltech101 dataset at each transformer layer. Y-axis represents
the class indices, and X-axis represents Channel indices, i.e., 768 in total.
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(b) The plot curves of the important scores are calculated on the Caltech101 dataset at each transformer layer
i.e., Layer-0, Layer-1. Y-axis is the mean value of all classes as shown in (a), and we use log10 for a better
display.

Figure 2: The illustration of feature maps and the curves of important scores. All the results are
obtained by ViT-B/16 pre-trained on ImageNet21K.

to other baselines. Simultaneously, partially transforming the channels in a feature map reduces the
number of learnable parameters heavily (e.g., 12×96×96 is quite smaller than the 12×768×768).

3.2 CLASS-AWARE IMPORTANCE SCORE

As mentioned in the observation section, we derive a channel calculation method called Class-
Aware Importance Score (CAIS). Our importance score calculation is conducted at the class level
rather than taking the whole dataset as a unity to determine the important channels. We surprisingly
find some channels are commonly significant in all categories, and these channels could be used
to transfer the knowledge from the pre-trained model to downstream tasks efficiently. Following
previous parameter-efficient tuning algorithms (Houlsby et al., 2019; Jia et al., 2022; Hu et al.,
2021; Zhang et al., 2022), we embrace VTAB-1K (Zhai et al., 2019) as our primary test dataset,
which contains 1000 images for training. It is practicable to pass 1000 training images to the pre-
trained model and save the intermediate feature maps for the following calculation. We define the
intermediate feature maps as {f l

Nc
∈ RBNc×L×C | l, Nc ∈ N, 1 ≤ l ≤ L and 1 ≤ Nc ≤ M}, where

the L and C represent the number of tokens and amount of channel dimension, respectively. The
BNc is the volume of each class and M represents the amount of categories of target dataset. The
importance score vector of each layer {Zl ∈ R1×C | l ∈ N, 1 ≤ l ≤ 12} can be formulated as:

Zl =
1

M

M∑
Nc=1

f̃ l
Nc

, f̃ l
Nc

∈ R1×C , (1)
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Figure 3: The overview of proposed important channel tuning module. The colorful features repre-
sent the important features, and the light blue represents the standard features.

where f̃ l
Nc

is the concatenated value of all the samples in Nc, which is described as:

f̃ l
Nc

= Concat([∥f l
Nc,0∥

2
2, ∥f l

Nc,1∥
2
2, ..., ∥f l

Nc,i∥
2
2]), f l

Nc,i ∈ RBNc×L×1, i ∈ N, 1 ≤ i ≤ C,
(2)

where Concat means concatenate the value after L2 normalization operation in each channel. After
getting the importance score vector Zl, we can choose the largest K values of Zl and then we can
derive selected indices as I l = topK(Zl), I l ∈ NK at l-th layer. Later, we will only update features
of these channels with high important scores. This design enables us to tune only a subset of channels
instead of all, inheriting the strong representations of pre-trained backbones for downstream tasks.
For different downstream datasets, the selected important channels in each layer are different, and it
could explicitly involving dataset-specific information into the model adaptation.

3.3 ADAPTING VIT VIA IMPORTANT CHANNEL TUNING LAYER

Given the importance score to select top-K important channels, it is natural to tune only these chan-
nels for efficient model tuning, named as Important Channel Tuning Module (ICTM) in this paper.
The overview of the ICTM is depicted in Fig. 3. Unlike other parameter-efficient tuning methods,
our ICTM only contains a linear layer rather than an MLP-like adapter (Houlsby et al., 2019) or the
prompt (Jia et al., 2022). This design is easy to implement, and we name this layer the Important
Channel Tuning Layer (ICTL). In order to inherit the original robust representations and transform
the knowledge to present task, we use a residual shortcut to add the important and intermediate
transformed features and use the Scale (as shown in Fig. 3) constant as a hyperparameter to deter-
mine the weights between both features. After obtaining the transformed features, we replace the
important features with transformed ones and then get the final output features. Note that our ICTL
is straightforward to be applied in any position at each layer. In Fig. 4, we present two forms of
inserting the ICTL into the ViT. The “Ours-MLP” represents that we insert the ICTL after the MLP
block, and the “Our-Attn” indicates that we put the ICTL after the MHA block while before the
MLP block. In the following experiments, “Ours-Attn” is the default injection position compared
with other baselines.

Discussion. We address two critical problems for adapting the large ViT models to downstream
tasks, namely, avoiding overfitting and reducing the number of trainable parameters. We find that the
state-of-the-art baselines lack the consideration of explicitly using the dataset-specific information.
Moreover, different downstream tasks have their own peculiarities, i.e., “Not all channels are equal”.
Thus, we propose the ICT to explicitly incorporate the dataset-specific information in the model
tuning by using CAIS, which could achieve better results and simultaneously reduce the parameters.
Moreover, calculating the important channels offline could save the computations of searching the
best prompt length as in VPT (Jia et al., 2022) or the best network structure as in NOAH (Zhang
et al., 2022).

4 EXPERIMENTS

This section compares our ICT with other state-of-the-art parameter-efficient tuning baselines on
the VTAB-1K benchmark, using ViT and Swin Transformer backbones. In addition, we analyze the
channel selection strategy, class-aware important score, insert location, and the number of selected
channels to further verify the effectiveness of ICT. Last but not least, we investigate ICT’s robustness
and generalization ability in domain generalization.
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Table 1: Comparisons with state-of-the-art methods on the VTAB-1K benchmark with ViT-B/16.
Average results are calculated across all 19 datasets. “# Params” denotes the average number of
trainable parameters in the backbone. The best performance and smallest parameter number are
bolded in each column.
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Figure 5: Group-wise average results on VTAB-1K benchmark.

4.1 EXPERIMENTS ON VTAB-1K BENCHMARK

Dataset. VTAB-1K contains 19 visual classification tasks which cover a broad spectrum of domains
and semantics in three groups, i.e., Natural, Specialized, and Structured. The Natural group con-
tains 7 classic classification datasets of natural images. The Specialized group involves 4 datasets
of two special scenarios: medical and remote-sensing. The Structured group has 8 datasets, mainly
focusing on understanding the structure of a scene, such as object counting, and depth prediction.
Each task of VTAB-1K contains 1000 training images. More details are available in the Appendix
Tab. 7. Following Zhang et al. (2022), we use the 800-200 TRAIN-VAL split to determine the hyper-
parameters and the entire 1000 training data to train the final model. We report the average top-1
accuracy on the TEST set.

layerNorm

MHSA

LayerNorm

MLP

ICTM

(a) Ours-MLP

layerNorm

MHSA

LayerNorm

MLP

(a) Ours-Attn

ICTM

Figure 4: Two types of structures when
inserting ICTM into the backbone.

Baselines. We compare our method with three base-
lines Full fine-tuning, Linear, and Bias without external
parameters and four baselines Adapter (Houlsby et al.,
2019), LoRA (Hu et al., 2021), VPT (Jia et al., 2022),
and NOAH (Zhang et al., 2022) with external param-
eters. Bias method only updates all the bias terms in
the pre-trained backbone. Adapter injects an additional
MLP module into each transformer layer. LoRA adopts
an optimized low-rank matrix to the multi-head attention
module in the transformer layers. VPT is a visual prompt
algorithm to incorporate the prompts with tokens into the
backbone. NOAH is a neural architecture search algo-
rithm that incorporates the Adapter, LoRA, and VPT into
the network search. To provide a fair comparison, we di-
rectly borrow their released results or run their code to
generate the results.

Performance with ViT backbone. We compare our ICT with the above 7 baselines in Tab. 1 and
Fig. 5. We use ViT-B/16 as the backbone and insert ICTM in each transformer layer. The default
number of K is set to 96, 1/8 of the total channels, leading to the trainable parameter number
being only 0.11M. First, our ICT outperforms the full fine-tuning on 18 out of 19 datasets and
gains the improvement of 6.3%, 2.5%, and 12.3% in the three groups, respectively, while only
additional 0.13% of the backbone parameters are learned. Such results reflect that ICT can greatly
reduce the storage space and alleviate the overfitting problem commonly occurred in fine-tuning
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Table 2: Comparisons with state-of-the-art methods on the VTAB-1K benchmark with pre-trained
Swin-B.

Swin-B # Params (M) VTAB-1K
Natural Specialized Structured Average

Full (Jia et al., 2022) 86.7 79.1 86.2 59.7 74.2
Linear (Jia et al., 2022) 0 73.5 80.8 33.5 56.4
Bias (Jia et al., 2022) 0.24 74.2 80.1 42.4 62.1
VPT (Jia et al., 2022) 0.19 76.8 84.5 53.4 68.6

ICT (ours) 0.10 82.7 87.5 60.6 74.4

Table 3: Evaluation of the class-aware calculation for the importance score. Backbone network is
ViT-B/16. “CA” denotes Class-Aware.

ViT-B/16 # Params (M) VTAB-1K
Natural Specialized Structured Average

w/o CA 0.11 82.1 85.2 58.4 72.8
w/ CA 0.11 82.2 85.9 59.9 73.6

large models. Second, when compared with other PET methods, our ICT achieves the average
accuracy of 73.6% on the 19 datasets, surpassing NOAH (Zhang et al., 2022) by 0.3% with only a
quarter of its trainable parameters. As shown in Fig. 5, our ICT outperforms VPT (Jia et al., 2022)
by 3.8%, 3.5% and 4.9% in the three groups, respectively. These results further demonstrate the
effectiveness and efficiency of our ICT.

Performance with Swin Transformer Backbone. To verify the effectiveness of ICT with different
backbones, we apply ICT on hierarchical transformers, i.e., Swin-B. We use the same setting of
inserting ICTM as in the ViT backbone: inserting the ICTM after the “Attn” block in the transformer
layer. Considering deep layers contain more semantic information, instead of applying ICTM on all
the transformer layers, we insert it to the last half of the layers in the stage3 and all layers of the
stage4 of the Swin-B to keep a similar level of trainable parameters. The results of Tab. 2 can be
found that ICT outperforms full fine-tuning in all three groups with only 0.13% parameters while
other methods cannot. In addition, compared with PET method, ICT outperforms VPT (Jia et al.,
2022) by 5.9%, 3.0%, and 7.2% in the three groups, respectively. It demonstrates that our ICT
is superior to using the prompts in the Swin transformer in terms of effectiveness and efficiency.
All the results suggest that our ICT is applicable for other vision transformer architectures and can
achieve significant performance with only a tiny amount of trainable parameters.

4.2 EVALUATION

Effectiveness of Important Channel Tuning. We compare three channel selection strategies to
verify the effectiveness of selecting important channels in Tab. 4. The selection strategies include
Important Channel Selection (IC), Unimportant Channel Selection (UC), and Random Channel Se-
lection (RC). We randomly select three sets of channels (RC-1/2/3) for random channel selection to
alleviate the outliers. As shown in Tab. 4, IC achieves the best results and outperforms UC by 2.4%
in the average accuracy. Random channel selection could obtain modest results compared with full
fine-tuning, but all of them perform worse than IC. Interestingly, UC, RC, and IC can perform better
than full fine-tuning, demonstrating that selecting a small subset of the channels can prevent the
large model from overfitting to the small training set. Full results on 19 datasets are placed in Tab.
9. To reflect the effect of selecting important channels, we calculate the overlaps of indices between
the important channels and randomly selected channels depicted in Tab. 4. As the overlaps between
RC and IC are small, it is valid to explain the performance drop of RC compared to IC. Nevertheless,
some results suggest that higher overlaps of RC-2 exhibit better performance than RC-1 and RC-3
in Natural and Structured groups.

Effectiveness of Class-Aware Calculation for importance score. As mentioned in Sec. 3.2, our
method considers the effect of each class rather than taking the dataset as a whole to estimate the
importance score (IS). This design aims to find the important channels in all categories rather than
the entire training set. When meeting a new downstream task, the user can sample the images in
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Table 4: Comparison of different channel selection strategies.

ViT-B/16 # Params (M) VTAB-1K
Natural Specialized Structured Average

Full 85.8 75.9 83.4 47.6 65.6

RC-1

0.11

81.2 85.3 56.5 71.7
RC-2 81.9 85.0 56.8 72.0
RC-3 81.0 85.1 56.2 71.4
UC 80.7 85.7 55.7 71.2
IC 82.2 85.9 59.9 73.6
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Figure 6: Correlation analysis between the performance and channel selection in Random Channel
selection strategy (RC). RC-1, RC-2, and RC-3 represent three random selection experiments with
different random seeds. We compare the randomly generated channels with the important ones
calculated by importance score and record the sum of the overlaps in each transformer layer per
task. Darker color means a higher value.

each class to calculate CAIS to reduce the storage of using the entire training set. As shown in
Tab. 3, adopting class-aware calculation can yield improvement in all three groups.

Insert Position. As shown in Fig. 4, ICTM can be inserted after MLP block (ICTMLP) or between
MHA block and MLP block (ICTAttn). To investigate the influence of insert location, we com-
pare two forms on the VTAB-1K benchmark in Tab. 5. Both achieve promising performances, and
ICTAttn outperforms ICTMLP on two of the three groups. The main reason is probably that after gath-
ering long-range dependencies with MHA, the features contain more salient and important channels,
which can be better adapted to downstream tasks.

Number of selected channels K. The most important hyperparameter of ICTM is the number
of selected channels K, which influences the model architecture and the number of trainable pa-
rameters. Note that different from previous works (Jia et al., 2022; Zhang et al., 2022) that select
hyperparameters for each dataset, we use the same K for all the datasets. As shown in Tab. 12 in
the appendix, ICTK=32 beats the full fine-tuning and bias tuning with the improvements of 3.5% and
7.0%, respectively. Specifically, compared with tuning bias, ICTK=32 only adopts 0.01M parameters
as tuning bias term adopts 0.10M. As shown in Fig. 7, the performance generally improves along
with the increase of K. However, the improvement of K = 192 over K = 96 is marginal, while the
number of parameters is four times larger. Considering both the effectiveness and efficiency, we set
K to 96 by default.

4.3 EXPERIMENTS ON DOMAIN GENERALIZATION

Dataset. In addition to evaluating the model on test data of the same distribution, modern deep
neural networks commonly suffer from performance degradation when the testing distribution is
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Figure 7: Evaluation of choosing different K values. Zoom in for better view.
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Table 5: Comparison of different insert positions. Backbone network is ViT-B/16.

ViT-B/16 # Params (M) VTAB-1K
Natural Specialized Structured Average

ICTMLP 0.11 81.7 86.0 58.6 72.9
ICTAttn 0.11 82.2 85.9 59.9 73.6

Table 6: Comparison with previous methods on domain generalization. Backbone network is ViT-
B/16. The number of important channels is 192.

Source Target
ImageNet -V2 -Sketch -A -R

Adapter (Houlsby et al., 2019) 70.5 59.1 16.4 5.5 22.1
VPT (Jia et al., 2022) 70.5 58.0 18.3 4.6 23.2
LoRA (Hu et al., 2021) 70.8 59.3 20.0 6.9 23.3
NOAH (Zhang et al., 2022) 71.5 66.1 24.8 11.9 28.5

ICT-B (ours) 77.1 65.8 28.5 12.1 31.0

different from that of the training set, i.e., domain shift, which is inevitable in a real-world appli-
cation. To alleviate this problem, domain generalization (Zhou et al., 2021b; Zhao et al., 2022)
is investigated in the community, which aims at training a model with one or multiple source do-
mains but can perform well on other unseen target domains. To verify the generalization ability
of our ICT, we follow Zhang et al. (2022) to conduct experiments on ImageNet and its variants.
Specifically, we use the ImageNet-1K (Deng et al., 2009) as the source domain with 16-shot per
category and evaluate our model on ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang
et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al., 2021a).
ImageNetV2 (Recht et al., 2019) is collected from different sources from ImageNet-1K with the
same protocol, and ImageNet-Sketch (Wang et al., 2019) contains the sketch images of ImageNet
classes. Both of them use the same classes as ImageNet-1K. ImageNet-A (Hendrycks et al., 2021b)
and ImageNet-R (Hendrycks et al., 2021a) contains the adversarially-filtered images and renditions
of ImageNet data of a 200-class subset, respectively. We use a large version of ICT, i.e., ICT-B,
containing a comparable number of parameters with NOAH (0.44M vs.0.43M).

Results. In Tab. 6, we compare our ICT-B with Adapter (Houlsby et al., 2019), VPT (Jia et al.,
2022), LoRA (Hu et al., 2021), and NOAH (Zhang et al., 2022) on the above datasets to verify
the generalization ability. We can make two observations. First, ICT-B outperforms the previous
best method (NOAH) on three of the four target datasets and achieves comparable performance
on ImageNetV2. Specifically, ICT-B yields an improvement of 2.5% on ImageNet-R over NOAH.
Second, our ICT-B achieves an accuracy of 77.1% on the source domain, greatly outperforming
previous methods by 6%. Since the backbone model is pre-trained on ImageNet-21K, the results
on ImageNet-1K show that ICT can better enhance the knowledge transfer from superset to subset.
The two observations demonstrate the superiority of our ICT over previous fine-tuning techniques
on strong generalization ability.

5 CONCLUSION

In this paper, we propose a novel parameter-efficient tuning algorithm, dubbed Important Channel
Tuning (ICT), to effectively adapt the knowledge from large pre-trained ViT models to the down-
stream tasks. Considering the variety of channels in the extracted features from a backbone model,
we design a criteria of importance score to determine the most informative channels for effective
adaptation, which significantly alleviates the overfitting problem and saves storage space. Equipped
with ICT, the subset parameter fine-tuned model surpasses full fine-tuning on most datasets of
VTAB-1K benchmark by adding tiny number of parameters. Moreover, compared with previous
PET methods, ICT achieves the state-of-the-art average performance on the VTAB-1K benchmark
with both ViT and Swin Transformer backbones.
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A APPENDIX

We use PyTorch (Paszke et al., 2017) to implement all experiments on NVIDIA V100-32GB GPUs.

A.1 DATASETS DETAIL

Tab. 7 summarize the details of the evaluated classification datasets.
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Table 7: Specifications of used datasets.

Dataset # Classes Train Val Test

VTAB-1K (Zhai et al., 2019)

Natural

CIFAR100 (Krizhevsky et al., 2009) 100

800/1000 200

10,000
Caltech101 (Fei-Fei et al., 2004) 102 6,048
DTD (Cimpoi et al., 2014) 47 1,880
Oxford-Flowers102 (Nilsback & Zisserman, 2006) 192 6,149
Oxford-PetS (Parkhi et al., 2012) 37 3,669
SVHN (Netzer et al., 2011) 10 26,032
Sun397 (Xiao et al., 2010) 397 21,750

Specialized

Patch Camelyon (Veeling et al., 2018) 2

800/1000 200

32,768
EuroSAT (Helber et al., 2019) 10 5,400
Resisc45 (Cheng et al., 2017) 45 1,880
Retinopathy (Kaggle & EyePacs, 2015) 5 42,670

Structured

Clevr/count (Johnson et al., 2017) 8

800/1000 200

15,000
Clevr/distance (Johnson et al., 2017) 6 15,000
DMLab (Beattie et al., 2016) 6 22,735
KITTI-Dist (Geiger et al., 2013) 4 711
dSprites/location (Matthey et al., 2017) 16 73,728
dSprites/orientation (Matthey et al., 2017) 16 73,728
SmallNORB/azimuth (LeCun et al., 2004) 18 12,150
SmallNORB/elevation (LeCun et al., 2004) 18 12,150

Domain generalization (Zhai et al., 2019)

ImageNet-1K (Deng et al., 2009) 1,000 16 per class 50,000 N/A
ImageNet-V2 (Recht et al., 2019) 1,000 N/A N/A 10,000
ImageNet-Sketch (Wang et al., 2019) 1,000 N/A N/A 50,889
ImageNet-A (Hendrycks et al., 2021b) 200 N/A N/A 7,500
ImageNet-R (Hendrycks et al., 2021a) 200 N/A N/A 30,000

A.2 SUPPLEMENTARY RESULTS

Tab. 8 shows the per-task results on VTAB-1K benchmark evaluated in Tab. 2. We noticed that only
the average results of three groups in VTAB-1K are presented in VPT (Jia et al., 2022); hence, we
present our full results for other researchers to compare.

Tab. 9 presents the per-task results on VTAB-1K benchmark for the detail comparison. As shown in
the table, the results of RC-1, RC-2, and RC-3 are unstable, so selecting the channels in a feature map
affects the final accuracy. Therefore, choosing channels properly is important to achieve promising
performance.

Tab. 10 shows the per-task results on the VTAB-1K benchmark of evaluating the effectiveness by
adopting the class-aware importance score in the calculation of channel selection. In most tasks, w/
CA acquires higher results than w/o CA.

Tab. 11 and Tab. 12 present the per-task results on VTAB-1K for the ablation study.

More plot curves of importance score on each task of VTAB-1K can be found from Fig. 27 to Fig.
45.

A.3 EVALUATING THE CHANGES OF SELECTING IMPORTANT CHANNELS.

As we select the important channels before downstream training to avoid the computations to search
the prompts or best architecture as in VPT (Jia et al., 2022) and NOAH (Zhang et al., 2022), we use
the extracted features from the fixed backbone to guide the selection of important channels. One
possible question is: Will the important channels be changed adaptively during the training? To
answer this question, we load the trained models to calculate the important channels again per task.
The comparison between the before and after training is shown from Fig. 8 to Fig. 26. In most tasks,
the curves of before and after training are overlapped in all 12 transformer layers, but some tasks i.e.,
Diabetic Retinopathy, KITTI, dSprites-orientation, SmallNORB-azimuth and SmallNORB-elevation
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show the small difference at deep layers. These tasks are not medical image classification, depth
prediction, and orientation prediction problems that deviate from the pre-trained task heavily.

Table 8: Per-task results on VTAB-1K benchmark of Tab. 2 with a pre-trained Swin-B. Average
result is calculated on all 19 datasets in VTAB-1K benchmark.
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Table 9: Per-task results on VTAB-1K benchmark of Tab. 4 with a pre-trained ViT-B/16. Average
result is calculated on all 19 datasets in VTAB-1K benchmark.
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Full 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.6
Linear 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 53.0

UC 0.11 68.8 91.5 71.5 99.0 91.1 89.0 54.3 85.3 95.8 86.6 75.2 78.1 61.2 50.3 79.0 73.1 40.0 27.4 36.7 71.1
RC-1 0.11 72.1 90.4 71.7 99.1 91.2 90.2 54.0 84.2 95.5 85.7 75.9 78.8 62.5 49.5 77.6 72.2 43.3 27.3 40.9 71.7
RC-2 0.11 74.1 91.4 72.1 99.2 90.9 90.2 55.1 83.0 95.7 86.3 75.0 79.3 62.5 50.4 78.2 72.5 43.2 28.1 39.8 72.0
RC-3 0.11 71.3 91.1 70.9 99.0 90.9 89.6 54.4 83.9 95.7 85.9 74.8 78.6 62.2 48.9 80.2 71.2 42.1 27.8 38.5 71.4
ICT 0.11 75.3 91.6 72.2 99.2 91.1 91.2 55.0 85.0 96.1 86.3 76.2 81.5 65.1 51.7 80.2 75.4 46.2 33.2 45.7 73.6

Table 10: Per-task results of evaluating the effectiveness of adopting the Class-Aware Importance
Score as in Tab. 3. Average result is calculated on all 19 datasets in VTAB-1K benchmark.
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Full 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.6
Linear 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 53.0

w/o CA 0.11 75.1 91.8 71.6 99.1 90.9 91.2 55.1 84.4 95.6 85.6 75.1 81.1 64.7 51.2 78.3 75.0 44.8 31.3 40.4 72.8
w/ CA 0.11 75.3 91.6 72.2 99.2 91.1 91.2 55.0 85.0 96.1 86.3 76.2 81.5 65.1 51.7 80.2 75.4 46.2 33.2 45.7 73.6
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Table 11: Per-task results of evaluating the effectiveness of the insert positions as in Tab. 5. Average
result is calculated on all 19 datasets in VTAB-1K benchmark.
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Linear 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 53.0

ICTMLP 0.11 72.9 92.0 71.6 99.1 90.6 90.5 54.9 86.2 95.9 85.9 76.0 81.3 64.7 50.7 78.9 77.2 43.3 29.3 43.6 72.9
ICTAttn 0.11 75.3 91.6 72.2 99.2 91.1 91.2 55.0 85.0 96.1 86.3 76.2 81.5 65.1 51.7 80.2 75.4 46.2 33.2 45.7 73.6

Table 12: Per-task results of evaluating different K values on VTAB-1K benchmark.
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Linear 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 53.0
Bias 0.10 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 62.1

ICTK=32 0.01 71.7 90.3 70.2 99.0 90.1 85.8 53.1 82.2 95.6 84.8 75.7 71.6 62.1 48.3 74.0 59.1 42.0 24.5 33.6 69.1
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Figure 8: The difference of the calculated important channels between before and after training on
CIFAR100 with a pre-trained ViT-B/16.
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Figure 9: The difference of the calculated important channels between before and after training on
Caltech101 with a pre-trained ViT-B/16.
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Figure 10: The difference of the calculated important channels between before and after training on
DTD with a pre-trained ViT-B/16.
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Figure 11: The difference of the calculated important channels between before and after training on
Oxford-Flowers102 with a pre-trained ViT-B/16.
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Figure 12: The difference of the calculated important channels between before and after training on
Oxford-Pets with a pre-trained ViT-B/16.
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Figure 13: The difference of the calculated important channels between before and after training on
SVHN with a pre-trained ViT-B/16.
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Figure 14: The difference of the calculated important channels between before and after training on
Sun397 with a pre-trained ViT-B/16.
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Figure 15: The difference of the calculated important channels between before and after training on
Patch Camelyon with a pre-trained ViT-B/16.
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Figure 16: The difference of the calculated important channels between before and after training on
EuroSAT with a pre-trained ViT-B/16.
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Figure 17: The difference of the calculated important channels between before and after training on
Resisc45 with a pre-trained ViT-B/16.
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Figure 18: The difference of the calculated important channels between before and after training on
Diabetic Retinopathy with a pre-trained ViT-B/16.
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Figure 19: The difference of the calculated important channels between before and after training on
Clevr-count with a pre-trained ViT-B/16.
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Figure 20: The difference of the calculated important channels between before and after training on
Clevr-distance with a pre-trained ViT-B/16.
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Figure 21: The difference of the calculated important channels between before and after training on
DMLab with a pre-trained ViT-B/16.
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Figure 22: The difference of the calculated important channels between before and after training on
KITTI with a pre-trained ViT-B/16.
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Figure 23: The difference of the calculated important channels between before and after training on
dSprites-location with a pre-trained ViT-B/16.
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Figure 24: The difference of the calculated important channels between before and after training on
dSprites-orientation with a pre-trained ViT-B/16.
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Figure 25: The difference of the calculated important channels between before and after training on
SmallNORB-azimuth with a pre-trained ViT-B/16.
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Figure 26: The difference of the calculated important channels between before and after training on
SmallNORB-elevation with a pre-trained ViT-B/16.
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Figure 27: The plot curves of the important scores calculated on CIFAR100 at each transformer
layer.
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Figure 28: The plot curves of the important scores calculated on Caltech101 at each transformer
layer.
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Figure 29: The plot curves of the important scores calculated on DTD at each transformer layer.
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Figure 30: The plot curves of the important scores calculated on Oxford-Flowers102 at each trans-
former layer.
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Figure 31: The plot curves of the important scores calculated on Oxford-Pets at each transformer
layer.
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Figure 32: The plot curves of the important scores calculated on SVHN at each transformer layer.
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Figure 33: The plot curves of the important scores calculated on Sun397 at each transformer layer.
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Figure 34: The plot curves of the important scores calculated on Patch Camelyon at each transformer
layer.
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Figure 35: The plot curves of the important scores calculated on EuroSAT at each transformer layer.
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Figure 36: The plot curves of the important scores calculated on Resisc45 at each transformer layer.
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Figure 37: The plot curves of the important scores calculated on Diabetic Retinopathy at each trans-
former layer.

0 200 400 600 800
Channel Indices

1.6

1.8

2.0

2.2

2.4

M
ea

n 
Va

lu
e

Layer-0

0 200 400 600 800
Channel Indices

2.0

2.2

2.4

2.6

2.8

M
ea

n 
Va

lu
e

Layer-1

0 200 400 600 800
Channel Indices

2.0

2.2

2.4

2.6

2.8

3.0

M
ea

n 
Va

lu
e

Layer-2

0 200 400 600 800
Channel Indices

2.2

2.4

2.6

2.8

3.0

M
ea

n 
Va

lu
e

Layer-3

0 200 400 600 800
Channel Indices

2.25

2.50

2.75

3.00

3.25

M
ea

n 
Va

lu
e

Layer-4

0 200 400 600 800
Channel Indices

2.5

3.0

3.5

M
ea

n 
Va

lu
e

Layer-5

0 200 400 600 800
Channel Indices

2.5

3.0

3.5

4.0

4.5

M
ea

n 
Va

lu
e

Layer-6

0 200 400 600 800
Channel Indices

2.5

3.0

3.5

4.0

4.5

M
ea

n 
Va

lu
e

Layer-7

0 200 400 600 800
Channel Indices

2.5

3.0

3.5

4.0

4.5

M
ea

n 
Va

lu
e

Layer-8

0 200 400 600 800
Channel Indices

2.5

3.0

3.5

4.0

4.5

M
ea

n 
Va

lu
e

Layer-9

0 200 400 600 800
Channel Indices

2.5

3.0

3.5

4.0

4.5

M
ea

n 
Va

lu
e

Layer-10

0 200 400 600 800
Channel Indices

3.0

3.5

4.0

4.5

M
ea

n 
Va

lu
e

Layer-11

Figure 38: The plot curves of the important scores calculated on Clevr-count at each transformer
layer.
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Figure 39: The plot curves of the important scores calculated on Clevr-distance at each transformer
layer.
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Figure 40: The plot curves of the important scores calculated on DMLab at each transformer layer.
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Figure 41: The plot curves of the important scores calculated on KITTI at each transformer layer.
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Figure 42: The plot curves of the important scores calculated on dSprites-location at each trans-
former layer.
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Figure 43: The plot curves of the important scores calculated on dSprites-orientation at each trans-
former layer.
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Figure 44: The plot curves of the important scores calculated on SmallNORB-azimuth at each trans-
former layer.
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Figure 45: The plot curves of the important scores calculated on SmallNORB-elevation at each
transformer layer.
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