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Abstract

In this article, we study the problem of sampling from distributions whose densities are not
necessarily smooth nor logconcave. We propose a simple Langevin-based algorithm that does
not rely on popular but computationally challenging techniques, such as the Moreau-Yosida
envelope or Gaussian smoothing, and show consequently that the performance of samplers
like ULA does not necessarily degenerate arbitrarily with low regularity. In particular, we
show that the Lipschitz or Hölder continuity assumption can be replaced by a geometric
one-sided Lipschitz condition that allows even for discontinuous log-gradients. We derive
non-asymptotic guarantees for the convergence of the algorithm to the target distribution in
Wasserstein distances. Non-asymptotic bounds are also provided for the performance of the
algorithm as an optimizer, specifically for the solution of associated excess risk optimization
problems.

1 Introduction

Sampling from non-smooth potentials arises in various fields, including Bayesian inference with sparsity-
promoting priors, non-smooth optimization problems, and constrained sampling in physics and computa-
tional statistics. Traditional Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings
algorithm, often encounter difficulties in exploring distributions defined by non-differentiable energy functions
due to their reliance on local gradient information for efficient proposal mechanisms. Langevin dynamics
provides a natural framework for sampling from a target distribution πβ(x) ∝ e−βu(x), where u(x) is a
potential function. The overdamped Langevin equation

dZt = −∇u (Zt) dt +
√

2β−1dBt,

drives a diffusion process whose stationary distribution matches πβ(x). However, in non-smooth settings
where u(x) lacks differentiability, the gradient ∇u(x) may not be well-defined, leading to difficulties in
simulating Langevin dynamics directly. Such challenges arise in problems involving ℓ1 regularization (as in
LASSO), total variation priors, and energy-based models with discontinuous potentials. There has been a
vast literature in sampling from non-smooth potentials through Langevin dynamics where people either use
smoothing techniques such as the Moreau-Yosida envelope (Pereyra, 2016; Brosse et al., 2017; Durmus et al.,
2022) or Gaussian smoothing (Chatterji et al., 2020; Laumont et al., 2022; Nguyen et al., 2023), or other
more direct and computationally efficient methods such as (Lehec, 2023; Johnston & Sabanis, 2023; Habring
et al., 2024; Fruehwirth & Habring, 2024). This topic is relevant for practitioners since it is known that loss
landscapes in application are not necessarily smooth, see (Wang et al., 2023).

Despite extensive efforts in the field, our understanding of the literature remains primarily focused on the
logconcave case, which leads to the following question that this work seeks to address rigorously:

Can we design a simple, computationally efficient and explicit algorithm to sample from non-smooth non-
logconcave distributions?
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This article advances the current state of the art in Langevin-based sampling from non-smooth potentials,
extending the focus beyond logconcavity to encompass semi-logconcavity, by providing a simple, computa-
tionally efficient algorithm for which non-asymptotic convergence guarantees are obtained in Wasserstein
distances.

As we gradually move towards potentials that are non-logconcave, a second challenge of this work is to estab-
lish connections with non-convex optimization in directions that are important for computational statistics,
inverse problems, and machine learning. Intuitively, by the known fact that πβ concentrates around the
(global) minimizers of u for large values of β, see (Hwang, 1980; Raginsky et al., 2017), it seems natu-
ral that our algorithm is well placed to solve (expected) excess risk optimization problems of the form
u(θ̂) − infθ∈Rd(u(θ)), where θ̂ is an estimator of a global minimizer θ∗. This leads us to a second challenge:

Can this sampling algorithm perform as an optimizer in the associated expected excess risk optimization
problem?

To answer this question we produce a result of the form

E[u(θλ
n)] − u(θ∗) ⪅ C

(
W2(L(θλ

n), πβ) + β−1 log(β)
)

,

where (θλ
n)n≥0 denotes the iterates of our proposed algorithm. Moreover, the first term is controlled by the

sampling guarantees of our algorithm while the second term decays for large β. Our approach combines new
findings in non-smooth, non-logconcave sampling with expected excess risk estimates, thereby presenting the
first such contribution in the Langevin-based sampling literature for non-smooth potentials.

1.1 Notation

We introduce some basic notation. For u, v ∈ Rd, define the scalar product ⟨u, v⟩ =
∑d

i=1 uivi and the
Euclidian norm |u| = ⟨u, u⟩1/2. For all continuously differentiable functions f : Rd → R, ∇f denotes the
gradient. The integer part of a real number x is denoted by ⌊x⌋. For an Rd-valued random variable Z,
its law on B(Rd), i.e. the Borel sigma-algebra of Rd, is denoted by L(Z). We denote by P(Rd) the set of
probability measures on B(Rd) and for any p ∈ N, Pp(Rd) = {π ∈ P(Rd) :

∫
Rd |x|pdπ(x) < ∞} denotes the

set of all probability measures over B(Rd) with finite p-th moment. For any two Borel probability measures
µ and ν, we define the Wasserstein distance of order p ≥ 1 as

Wp(µ, ν) =
(

inf
ζ∈
∏

(µ,ν)

∫
Rd×Rd

|x − y|pdζ(x, y)
)1/p

,

where
∏

(µ, ν) is the set of all transference plans of µ and ν. Moreover, for any µ, ν ∈ Pp(Rd), there
exists a transference plan ζ∗ ∈

∏
(µ, ν) such that for any coupling (X, Y ) distributed according to ζ∗,

Wp(µ, ν) = E1/p [|X − Y |p].

2 Theoretical Framework

2.1 Subdifferentiability for non-smooth functions - subgradients

Given that the potentials discussed in this article are non-smooth, it is natural to describe them using the
concept of subdifferential. For any x ∈ Rd and any u : Rd → R, the subdifferential ∂u(x) of u at x is defined
by

∂u(x) :=
{

p ∈ Rd : lim inf
y→x

u(y) − u(x) − ⟨p, y − x⟩
|y − x|

≥ 0
}

.

The subdifferential is a closed convex set, possibly empty. If u is a convex function, the above set coincides
with the well-known subdifferential of convex analysis, which captures all relevant differential properties of
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convex functions. Similar nice properties exist in the case of a larger class of functions, namely the class of
semi-convex functions.
Definition 1. We say that a function is semi-convex if there exists K > 0 such that the function u + K

2 | · |2
is convex.
Lemma 1 ((Alberti et al., 1992), Proposition 2.1, adapted). Let u be a semi-convex function. Then, u is
locally Lipschitz continuous, the sets ∂u(x) are non-empty, compact, and p ∈ ∂u(x), if and only if

u(y) − u(x) − ⟨p, y − x⟩ ≥ −K

2 |y − x|2 ∀x, y ∈ Rd.

Corollary 1. Let x, y ∈ Rd, p ∈ ∂u(x) and q ∈ ∂u(y). Then,

⟨p − q, x − y⟩ ≥ −K|x − y|2.

At the points where u is differentiable it holds that, ∂u(x) = {∇u(x)}. From these results, one can see that
the class of semi-convex functions is an ideal starting point to proceed from convexity to non-convexity, as
all the elements of the subdifferential set satisfy an one-sided Lipschitz continuity property.

2.2 Assumptions

For clarity and brevity reasons, it is assumed that, henceforth, h(x) denotes an element of ∂u(x), for any
x ∈ Rd. We proceed with our main assumptions.

Assumption 1. The gradient of u exists almost everywhere and each subgradient grows at most linearly.
That is, there exist L, m > 0, such that for each subgradient h ∈ ∂u

|h(x)| ≤ m + L|x|, ∀x ∈ Rd. (1)

This assumption allows the use of explicit numerical algorithms based on popular discretization schemes
such as Euler-Maruyama, and is on par with the weakest assumptions (in the presence of discontinuous) in
the related literature.

Assumption 2. The potential is strongly convex at infinity (outside a compact set). That is, there exist
µ > 0 and R > 0, such that, for x, y ∈ Rd,

⟨h(x) − h(y), x − y⟩ ≥ µ|x − y|2, if |x − y| ≥ R. (2)

Assumption A2 combined with Assumption A1 yield the important dissipativity property, see Remark 1,
which guarantees uniform control of (polynomial) moments for both the proposed (explicit) algorithm and
for the associated Langevin stochastic differential equation. Furthermore, Assumption A2 is crucial for
obtaining contraction results in Wasserstein distances of interest.
Assumption 3. The initial condition of the algorithm is an Rd-valued random variable with finite 2nd
moment, i.e.

E|θ0|2 < ∞. (3)

Assumption 4. The potential u is K- semi-convex. That is, there exists K ≥ 0, such that u + K
2 | · |2 is

convex. Due to Corollary 2.1, the following equivalent property for the subgradient holds

⟨h(x) − h(y), x − y⟩ ≥ −K|x − y|2, ∀x, y ∈ Rd. (4)

The last of our main assumptions, Assumption 4, characterizes the lack of smoothness for the subgradients in
our article. Assumption 4 is geometric in nature, and is often referred to as a ‘one-sided Lipschitz assumption’.
This suggests that algorithm performance is not hindered by regularity in the way often suggested in the
literature, and that ‘bad’ regularity in ‘some’ directions does not necessarily hinder performance arbitrarily
(see Section 5.2.2 for more details). It is key to our approach in proving contraction estimates necessary for
solving associated sampling and (possibly non-convex) optimization problems.
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Remark 1. Let Assumptions A1 and A2 hold, then h is dissipative. That is, there exist µ, b > 0, such that

⟨x, h(x)⟩ ≥ µ

2 |x|2 − b, ∀x ∈ Rd. (5)

Proof. The proof is postponed to Appendix F.

3 Examples

3.1 Mixture of Gaussians with an L1-Laplacian prior

Consider a target distribution given by a mixture of Gaussians (MoG) likelihood with an isotropic Laplace
prior on the entire data vector x, i.e. a prior density ∝ exp(−α|x|1) where |x|1 =

∑d
i=1 |xi|. The unnormal-

ized density is

π(x) ∝

 N∑
j=1

wj
1

(2πσ2
j )d/2 exp

(
−|x − µj |2

2σ2
j

) exp(−α|x|1), x ∈ Rd, (6)

with σj > 0, µj ∈ Rd, and wj ∈ [0, 1], for j ∈ {1, . . . , N}, such that
∑N

j=1 wj = 1. The gradient of the
corresponding potential (negative log-density) can be written as

∇u(x) =

∑N
j=1

wj(x − µj)
σ2

j (2πσ2
j )d/2 exp

(
−|x − µj |2

2σ2
j

)
π(x) + α

x

|x|1
. (7)

This gradient exhibits at most linear growth, which arises from the linear factors inside the sum of the
numerator in the first term. Additionally, it is non-smooth due to the non-differentiability of the Laplacian
prior. The corresponding subgradient ∂u(x) has linear growth while being semi-convex and strongly convex
at infinity. In particular, the MoG term is semi-convex and strongly convex at infinity, and the inclusion of
the convex L1 prior preserves those properties, due to being convex. Gentiloni-Silveri & Ocello (2025) provide
a rigorous verification of these properties within the context of mixture models (see their Assumption H1 and
Appendix A.1), thereby confirming that the MoG with a Laplacian prior potential satisfies the assumptions
of our framework. This model has indeed been studied in prior works on Langevin based algorithms, for
example, Lau et al. (2024) consider it a representative non-logconcave, non-smooth target (see Sections 2.1
and 6.3), using it to evaluate ULA-type samplers under minimal assumptions.

3.2 One-dimensional example satisfying the assumptions

Let u : R → R be a continuous function such that

u(x) = u1(x) + u2(x) + u3(x), ∀ x ∈ R,

where u1 is a (continuous) strongly convex function (on R) with h1 := ∇u1, u2 is a continuously differentiable
function with a Lipschitz continuous derivative h2 := ∇u2 and u3 is a continuous function with a non-
decreasing, discontinuous derivative h3 := ∂u3. Thus, ∀ x, y ∈ R,

∃ µ1 > 0 such that ⟨h1(x) − h1(y), x − y⟩ ≥ µ1|x − y|2,

∃ K2 > 0 such that |h2(x) − h2(y)| ≤ K2|x − y|,
and ⟨h3(x) − h3(y), x − y⟩ ≥ 0.

Note that in higher dimensions, the properties for h1, h2 and h3 also yield the desired result provided that
convexity at infinity is also achieved. Furthermore, one trivially concludes, ∀ x, y ∈ R

⟨h(x) − h(y), x − y⟩ ≥ (µ1 − K2)|x − y|2 ≥ −K2|x − y|2.
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For a concrete example, we may use, ∀x ∈ R

u1(x) = 2(x + 3)2 − 1/2,

u2(x) = −8x2 I1{0<x<2} − 8x − 32(x − 1) I1{x≥2},

u3(x) = 10(x − 1)8 I1{1<x<2} + x + 90(x − 17/9) I1{x≥2}.

Note that the subgradient of u grows at most linearly and, in view of Remark 2, it is strongly convex at
infinity. Moreover, K2 = 16 and µ1 = 4.

3.3 Multidimensional example satisfying the assumptions

We present an example of a non-convex potential that satisfies our assumptions. Let

u(x) = max{|x|, |x|2} − 1
2 |x|2, x ∈ Rd.

It is easy to see that u is semi-convex (therefore satisfies Assumption A4) as u + 1
2 |x|2 is convex since it is

the maximum of two convex functions. In addition, it is clear to see that each subgradient in this example
is bounded inside the ball of radius 1, while outside the function is differentiable with ∇u(x) = x so it
satisfies Assumption A1. The proof of Assumption A2 is more lengthy and is postponed to the Appendix,
see Remark 2.

3.4 The SCAD Penalty

A notable class of non-convex penalties frequently encountered in sparse recovery problems and high-
dimensional statistics is the family of folded concave penalties. Among the most well-known is the Smoothly
Clipped Absolute Deviation (SCAD) penalty, originally introduced by Fan & Li (2001) as a sparsity-inducing
regularizer with unbiasedness properties. We show here that it satisfies our standing assumptions, thereby
illustrating a semi-convex objective function that is strongly convex at infinity.

Let a > 2 and γ > 0. A key component of the SCAD function is qa,γ : [0, ∞) → R and its derivative is given
by

d

dx
qa,γ(x) = γ

{
I1{x≤γ} + (aγ − x)+

(a − 1)γ I1{x>γ}

}
. (8)

Expanding the expression yields the piecewise formulation

d

dx
qa,γ(x) =


γ, if x ≤ γ,
aγ − x

a − 1 , if γ < x ≤ aγ,

0, if x > aγ.

Integrating and selecting constants to ensure continuity, we obtain the function qa,γ ,

qa,γ(x) =


γx, if x ≤ γ,
−x2 + 2aγx − γ2

2(a − 1) , if γ < x ≤ aγ,

(a + 1)γ2

2 , if x > aγ.

For any x ∈ R, one extends the above function by taking the composition with the absolute value

pa,γ(x) = qa,γ(|x|) =


γ|x|, if |x| ≤ γ,
−x2 + 2aγ|x| − γ2

2(a − 1) , if γ < |x| ≤ aγ,

(a + 1)γ2

2 , if |x| > aγ.
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The resulting function is continuous, symmetric, and non-convex but 1/(2(a−1))-semi-convex. Its derivative
is discontinuous at the origin, reflecting the model’s sparsity bias. Further, we define the regularized function
pr

a,γ(x) := pa,γ(x) + 1
2(a−1) x2, which is convex. Choosing a subdifferential version that accounts for the

discontinuity at zero, one has

∂pr
a,γ(0) ∈ [−γ, γ] and ∂pr

a,γ(x) =


γx

|x|
+ x

a − 1 , if 0 < |x| ≤ γ,

aγx

(a − 1)|x|
, if γ < |x| ≤ aγ,

x

a − 1 , if |x| > aγ.

A careful case-by-case comparison confirms the monotonicity property ⟨∂pr
a,γ(x) − ∂pr

a,γ(y), x − y⟩ ≥ 0 for
all x, y ∈ R. In the multidimensional case, for x ∈ Rd, we consider the separable extension

Pa,γ(x) :=
d∑

i=1
pa,γ(xi). (9)

Then Pa,γ is also 1/(2(a − 1))-semi-convex, since the regularized form

P r
a,γ(x) := Pa,γ(x) + 1

2(a − 1) |x|2

is convex by separability and convexity of each pr
a,γ . Indeed, for all x, y ∈ Rd and s ∈ [0, 1],

P r
a,γ(sx + (1 − s)y) =

d∑
i=1

pr
a,γ(sxi + (1 − s)yi) ≤

d∑
i=1

[
spr

a,γ(xi) + (1 − s)pr
a,γ(yi)

]
= sP r

a,γ(x) + (1 − s)P r
a,γ(y).

Moreover, given (8) and (9), the subgradient of Pa,γ is a bounded function. Therefore, by Remark 2, any
objective function of the form u(x) = v(x) + Pa,γ(x), where v is strongly convex, satisfies Assumptions
A2–A3. This example highlights how non-convex but semi-convex structures, arising in high-dimensional
regularization problems, fall within the scope of our framework. Such penalties are particularly relevant in
sparse estimation, compressed sensing, and machine learning applications where both model simplicity and
robustness are sought.

4 Presentation of the algorithm and main results

Let us recall that the proposed algorithm, i.e. SG-ULA, which is denoted by (θλ
n)n≥0, and is given by

θλ
n+1 = θλ

n − λh(θλ
n) +

√
2λβ−1ξn+1, θλ

0 = θ0, n ∈ N, (10)

where λ > 0 is the stepsize of the algorithm, β > 0 is the inverse temperature parameter, (ξn)n≥1 is a
sequence of i.i.d. standard Gaussians on Rd and h(x) ∈ ∂u(x), ∀x ∈ Rd. One can easily observe that
the algorithm is an Euler-Maruyama discretization of a Langevin SDE with drift coefficient an element of
the subdifferentials. One can further understand that the newly proposed algorithm is significantly easier
to implement than popular algorithms which rely on smoothing techniques, such as MYULA, since these
smoothing procedures increase the computational cost per iteration. Furthermore, our algorithm offers a
generalization of ULA (since u is assumed to be differentiable almost everywhere) and coincides with ULA
when u is continuously differentiable. To address the issue of having differentiability almost everywhere (and
not for every x ∈ Rd), we choose a subgradient for every x ∈ Rd and thus define h for all x ∈ Rd. Note again
that at the points where u is differentiable it holds that ∂u(x) = {∇u(x)}.
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4.1 Main results

Theorem 1. Let Assumptions A1-A4 hold and λ0 = max{µ/(2L2), 1}. Let N ∈ N. Then, for every λ ∈
(0, λ0), the subgradient unadjusted Langevin algorithm (SG-ULA) given in (15) satisfies

W1
(
L(θλ

N ), πβ

)
≤ CW1e−Cr1 λN ∆(1)

0 + CT1λ1/4, (11)

where CT1 = O(d), ∆(1)
0 = W1(L(θ0), πβ) and the constants CW1 and Cr1 do not depend explicitly on the

dimension and are given in Proposition 4, for more details see Table 2.

Proof. The proof is postponed to Appendix E.

Theorem 2. Let Assumptions A1-A4 hold and λ0 = max{µ/(2L2), 1}. Let N ∈ N. Then, for every λ ∈
(0, λ0), the subgradient unadjusted Langevin algorithm (SG-ULA) given in (15) satisfies

W2(L(θλ
N ), πβ) ≤ CW2e−Cr2 λN ∆(2)

0 + CT2λ1/8, (12)

where CT2 = O(d), ∆(2)
0 = max{W2(πβ , L(θ0)), W1(πβ , L(θ0))1/2} and the constants CW2 and Cr2 do not

depend explicitly on the dimension and are given in Proposition 5, for more details see Table 2.

Proof. The proof is postponed to Appendix E.

Corollary 2. Let ϵ > 0. Then, for λ < min{λ0, ϵ4

16C4
T1

}, one needs N ≥ O(ϵ−416C4
T1

C−1
r1

log(2CW1∆(1)
0 /ϵ))

iterations to achieve
W1(L(θλ

N ), πβ) ≤ ϵ.

Corollary 3. Let ϵ > 0. Then, for λ < min{λ0, ϵ8

162C8
T2

}, one needs N ≥ O(ϵ−8162C8
T2

C−1
r2

log(2CW2∆(2)
0 /ϵ))

iterations to achieve
W2(L(θλ

N ), πβ) ≤ ϵ.

The above results exhibit a mild dependence on the dimension. This is due to the fact that (2) and (4) are
employed, allowing us to obtain contraction estimates that do not depend on the dimension. The complexity
on the dimension comes from the moment bounds of the associated processes which have been derived by
using the dissipativity of the potential (Remark 1) and its linear growth (A1). We observe that our bounds
depend on the constants β, µ, K and R. This is to be expected as it is the price to pay for working in a
non-convex setting. Essentially the magnitude of R and K can be viewed as a measure of how large the
domain is, where the potential u exhibits non-convex behavior. By enforcing slightly stronger assumptions,
the convergence rate in W2 with respect to the stepsize can be improved.
Assumption 5. There exist R > 0 and µ > 0, such that for any x ∈ Rd with |x| ≥ R,

⟨h(x) − h(y), x − y⟩ ≥ µ|x − y|2, ∀y ̸= x.

In addition, we pose the following restriction on β:

β ≤ µd

2K + m0

1
(K + m0/4)R2

∗ + 2 sup {−⟨x, h(x)⟩, |x| ⩽ R∗}
, (13)

where R∗ = R(2 + 2K/µ)1/d.
Remark 2. A simple example of a function in this regime is u(x) = |x|2 + f + g where f is a compactly
supported function on B̄(0, 1) with Lipschitz gradient with Lipschitz constant 1

2 , and g a convex (possibly
non-differentiable) function. The convexity at infinity condition satisfied with µ = 1

2 . For d big enough, (13)
is satisfied for many choices of β and especially for β = 1, making the example relevant for sampling.
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Theorem 3. Let Assumptions A1,A3,A4 and A5 hold. Let N ∈ N. Then, for every λ ∈ (0, λ0), the
subgradient unadjusted Langevin algorithm (SG-ULA) given in (15) satisfies

W2(L(θλ
N ), πβ) ≤ C∗

W2
e−Cr3 λN W2(πβ , L(θ0)) + CT3λ1/4,

where CT3 = O(d) and the constants C∗
W2

and Cr3 are given in Proposition 6, for more details see Table 2.

Proof. The proof is postponed to Appendix E.

Corollary 4. Let ϵ > 0. Then, for λ < min{λ0, ϵ4

16C4
T3

}, one needs N ≥ O
(

ϵ−44C4
T3

C−1
r3

log(2C∗
W2

∆(3)
0 /ϵ)

)
iterations to achieve

W2
(
L(θλ

N ), πβ

)
≤ ϵ.

One further notes that the proofs of the contraction theorems employed, along with our proof roadmap
demonstrating convergence to the algorithm, rely on Grönwall-type arguments, which leads to an exponential
dependence on these parameters.

We also show that our algorithm can act as an optimizer to solve associated excess-risk optimization problems.
The result is in the spirit of Raginsky et al. (2017), although the proof differs substantially due to the non-
Lipschitz smooth setting, where one term is bounded by our sampling guarantees and the other terms
converge to zero as β increases, which is in agreement with the fact that invariant measure concentrates
around the (global) minimizers of the potential.
Theorem 4. Let Assumptions A1-A4 hold hold and λ0 = max{µ/(2L2), 1}. Then, for any β ≥ 4/µ,
λ ∈ (0, λ0) and n ∈ N, the following bound holds

E[u(θλ
n)] − u(θ∗) ≤ CT1W2

(
L(θλ

n), πβ

)
+ d

2β
log
(

2e(b + d/β)β2M2

µd

)
− 1

β
log
(
(1 − e−βM )/

√
π
)

,

where CT1 = O(d1/2) and M = m + 3L/2 + L
√

b/(2µ).

Proof. Follows directly by invoking Lemmas 10 and 11.

This theorem makes sense in the following way: The user picks a large β such as the last two terms become
very small, and then picks the stepsize and the number of iterations according to Corollary 3. In the majority
of cases, a free choice of β is desirable, so the W2 distance will be bounded by the result in Theorem 2 instead
of Theorem 3.

5 Literature Review

Throughout the last decade there has been a remarkable progress in the field of sampling with Langevin-
based algorithms. The vast majority of the literature deals with potentials that are differentiable and can
be categorized with respect to gradient smoothness.

5.1 Results for potentials with Lipschitz-smooth gradients

This assumption is ever present in the literature in a great deal of works. Under the assumption of convexity
and gradient Lipschitz continuity important results are obtained in (Dalalyan, 2017; Durmus & Moulines,
2017; 2019; Sabanis & Zhang, 2019; Barkhagen et al., 2021), while in the non-convex case, under convexity
at infinity or dissipativity assumptions, one may consult Cheng et al. (2018); Majka et al. (2020); Erdogdu
et al. (2022) for ULA while for the Stochastic Gradient variant (SGLD) important works are (Raginsky
et al., 2017; Chau et al., 2021; Zhang et al., 2023b). More recently, starting with the work of Vempala &
Wibisono (2019) important estimates have been obtained under the assumption that the target measure πβ

satisfies an isoperimetric inequality see, (Mou et al., 2022; Erdogdu et al., 2022; Chewi et al., 2024).
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5.2 Results for non-Lipschitz smooth gradients

Recently there has been a lot of effort in exploring settings beyond Lipschitz gradient continuity.

5.2.1 Locally Lipschitz gradients

In the case of locally Lipschitz gradients (where the gradient is allowed to grow superlinearly) there has been
important work using Langevin algorithms based on the taming technique starting with (Brosse et al., 2019;
Johnston et al., 2024), for strongly convex potentials, while in the non-convex case key references are (Neufeld
et al., 2025) using a convexity at infinity assumption, (Lytras & Sabanis, 2025; Lytras & Mertikopoulos, 2025)
for results under the assumption of a functional inequality and (Lovas et al., 2023; Lim & Sabanis, 2024) for
results involving stochastic gradients.

5.2.2 Hölder continuous gradients

In order to deal with potentials with thin tails, recently, there has been a lot of effort to relax the gradient
Lipschitz continuity assumption with a Hölder one. The first results were obtained under a dissipativity
assumption in (Erdogdu & Hosseinzadeh, 2021; Nguyen et al., 2023) which was later dropped to provide
results in Rényi divergence under relaxed conditions in (Chewi et al., 2024; Mousavi-Hosseini et al., 2023)
under a Poincaré and weak Poincaré inequality and for the underdamped Langevin algorithm in (Zhang
et al., 2023a). However all these results degenerate with the Hölder regularity of the coefficients, that is the
upper bound on the algorithm is arbitrary large in the low regularity case. We show using Assumption 4
that the Hölder regularity condition can be replaced by a geometric condition, and that one contain obtain
explicit sampling bounds even in the case of discontinuous log-gradients in a non-convex setting.

5.3 Results for non-smooth potentials

Sampling from densities where the potential is not differentiable is a very prominent problem with both
theoretical and practical interest for fields like inverse problems and Bayesian inference. Classical example
in statistics is regression with Lasso priors or L1-loss and non-smooth regularization functionals in Bayesian
imaging. Consequently, since vanilla ULA relies on access to the gradient of the potential, which does not
exist in the non-smooth setting, there is a significant gap in the current theory that remains to be addressed.
To tackle this problem, two main approaches have been used so far: subgradient algorithms and smoothing
techniques.

5.4 Smoothing techniques

Smoothing techniques have been the go-to methodology for the majority of works. The first works of this kind
were employed using the Moreau-Yosida ULA (MYULA) in (Pereyra, 2016; Brosse et al., 2017; Durmus et al.,
2022). The algorithm is based on the use of the Moreau-Yosida envelope. Essentially, one first samples from
an approximating measure that has a Lipschitz-smooth log-gradient and then connects it with the original
target measure. Important results have been obtained in total variation. Extensions of these works have
been incorporating Metropolis steps resulting in the Proximal Metropolis Langevin Algorithm, see (Cai et al.,
2022; Pereyra, 2016). Although these works have achieved rigorous results, their main drawback is the added
computational burden at each iteration due to the computation of the MY envelope. Efforts to reduce this
computational cost have been made through inexact proximal mapping in (Ehrhardt et al., 2024), where the
results are limited to the class of logconcave distributions.
Another popular smoothing technique involves smoothing the density by applying the Gaussian kernel to
the subgradients and sampling from the smoothed potential, which approximates the original target, see
(Chatterji et al., 2020; Laumont et al., 2022; Nguyen et al., 2023). A drawback of these interesting results
is that they are obtained under additional smoothness assumptions for the gradients and also increase the
computational burden at each iterate.
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Table 1: Comparison of algorithmic complexity across existing literature.
W1 W2 KL TV Convexity Subgradient

Lehec (2023) - Θ
(
ϵ−2) - - convex linear growth

Johnston & Sabanis (2023) - Θ
(
ϵ−4) - - strongly convex linear growth

Habring et al. (2024) - - Θ
(
ϵ−3) Θ

(
ϵ−6) convex bounded

Fruehwirth & Habring (2024) - Θ
(
ϵ−2) - - strongly convex linear growth

Present work (under A2) Θ
(
ϵ−4) Θ

(
ϵ−8) - - semi-convex linear growth

Present work (under A5) Θ
(
ϵ−2) Θ

(
ϵ−4) - - semi-convex linear growth

5.5 Subgradient algorithms

Another important class of algorithms involves the use of subgradients. Initial progress was made by (Dur-
mus & Moulines, 2019) which was subsequently adapted to achieve improved convergence results in (Habring
et al., 2024). To the best of our knowledge, the work in (Fruehwirth & Habring, 2024) relaxes the assumptions
by allowing for linear growth of the subgradient, extending the previous framework where the subgradient
was assumed to be the sum of a Lipschitz function and a globally bounded coefficient. Under similar assump-
tions in the logconcave case, the work in (Lehec, 2023) serves as another key reference, where the authors
first derive results for constrained sampling, yielding results for logconcave measures with full support. In
parallel with these contributions, an interesting result was also produced in (Johnston & Sabanis, 2023)
where the authors establish Wasserstein-type bounds under either piecewise Lipschitz continuity or linear
growth, though this is under the assumption of strong convexity.
While there has been substantial work in the literature on sampling from non-smooth potentials, the under-
standing within the non-convex regime remains limited.

5.6 Euler Scheme Approximations

In addition to the works on stochastic algorithms, there have been a large number of works in the numeri-
cal analysis literature on the subject of SDEs with discontinuous drift coefficient, see (Müller-Gronbach &
Yaroslavtseva, 2024) for a survey. In particular, performance of the Euler scheme with discontinuous coeffi-
cients was investigated in (Müller-Gronbach & Yaroslavtseva, 2020; Dareiotis et al., 2023) and many others,
and lower bounds established in (Hefter et al., 2019; Ellinger, 2024).

6 Summary of contributions and comparison with literature

This article aims to expand the state of the art in Langevin-based sampling from non-smooth potentials
beyond logconcavity, specifically to semi-logconcavity (for the rigorous definition see (Cattiaux & Guillin,
2014)), and to establish connections with non-convex optimization. The contributions of our work can be
summarized as follows:

• We provide rigorous results for the treatment of SDEs with discontinuous drifts beyond logconcavity.

• For stepsize λ, we achieve λ1/4 rates in W1 distance and λ1/8 in W2 distance for our algorithm
to the target measure. To the best of our knowledge, these are the first results under such weak
assumptions.

• We utilize these findings to derive explicit bounds for the associated (expected) excess risk opti-
mization problem, thereby presenting the first such contribution in the Langevin-based sampling
literature for non-smooth potentials.

10



Under review as submission to TMLR

In the following table we compare the performance of our algorithm with other works that don’t use smooth-
ing techniques, therefore avoiding inducing additional complexity. We can see that our results compare
favorably with the state of the art, albeit we lose some rate of convergence which is mainly due to the fact
that we work in a non-convex setting. The element of non-convexity does not enable us to employ techniques
such as the correlation of W1 and TV in (Lehec, 2023) or use formulations connecting KL and W2 as in the
proof of convergence in (Fruehwirth & Habring, 2024). Another important element when comparing with
(Fruehwirth & Habring, 2024) is the fact that our constants are explicit, which, to our knowledge is not the
case in (Fruehwirth & Habring, 2024).

7 Overview of proof techniques

A first challenge of our work is the fact that we are studying SDEs with drift coefficients that are not smooth
and not monotone. Our work is not trivial, as one needs to first show existence and uniqueness of the solution
to the SDEs (Proposition 1) and also establish that the invariant measure exists, is unique (Proposition 2)
and corresponds to πβ (Proposition 3). This is achieved by adapting standard Lyapunov arguments to show
tightness of the process while the uniqueness is established by a major contraction result for W1 and W2
Wasserstein distance. These results are key elements of our work which enable us to show the convergence
of our algorithm to the target measure. In a nutshell our proof roadmap can be summarized as follows:

• By making use of the fact of the convexity outside of a ball property (which yields dissipativity) and
the subgradient linear growth property, we are able to provide uniform, in the number of iterations,
moment bounds for the algorithm (which are independent of the step-size), Lemma 3.

• We introduce an auxiliary process (Definition 2) which is a Langevin SDE with initial condition a
previous iteration of the algorithm for which we able to derive moment bounds, Lemma 5.

• We able to control both the W1 and W2 distance between the auxiliary process and the continuous
time interpolation of the algorithm. To obtain this result, the one-sided Lipschitz property of the
drift coefficient (which follows from the semi-convexity of the potential) is key to establish Grönwall-
like arguments, and along with the uniform control of the moments and the linear growth of the
drift, enable to obtain λ1/4 rates for W1 and W2 distances (Lemma 6).

• The contraction theorems for W1 and W2 enable us to control the Wasserstein distance between the
auxiliary process and a Langevin SDE with initial condition, the initial condition of the algorithm
(Lemmas 7, 8, 9) .

• The final bound is established by the convergence to the Langevin SDE to the invariant measure.

To obtain the result for the (expected) excess risk optimization problem, we split the difference in the
following way

E[u(θλ
n)] − u(θ∗) =

(
E[u(θλ

n)] − E[u(θ∞)]
)

+ (E[u(θ∞)] − u(θ∗)) ,

where L(θ∞) = πβ . For the first term, we use a fundamental theorem of calculus (which can be applied
since u is differentiable a.s) and we are able to derive a term that is proportional to the W2 distance between
the algorithm and the target measure (Lemma 10). For the second term, we make use of the fact that πβ

"concentrates" around the minimizers of u for large β. More specifically, we simplify the difference to an
integral of the exponential distribution and then use standard concentration inequalities to complete the
proof (Lemma 11).

8 Conclusion and discussion

In this work, we have given non-asymptotic guarantees to sample from a target density where the potential
is non-convex and not smooth using an algorithm that is simple, computationally efficient, explicit and does
not rely on smoothing techniques. Even though, our assumptions are quite relaxed compared to the current
literature due to assuming only semi-logconcavity, we establish non-asymptotic guarantees in Wasserstein
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distances that are comparable to the current state of the art results available in the literature. In addition,
we show that our algorithm can also perform well as an optimizer to solve associated (expected) excess-risk
optimization problems.

We believe that our current work represents a step forward in bridging the gap in the literature regarding
sampling from non-smooth and non-logconcave potentials. Interesting directions for future research include
relaxing the assumptions even further and deriving estimates in stronger metrics, such as Rényi divergence,
which are useful for differential privacy.

Impact Statement

This paper presents work aimed at advancing the field of machine learning in the direction of non-convex
optimization and associated sampling problems in the presence of discontinuities. While there are many
potential societal consequences of our work, we do not believe any require specific emphasis here.
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A Setting and Definitions

Consider the Rd-valued overdamped Langevin SDE (Zt)t∈R+ given by

dZt = −h(Zt)dt +
√

2β−1dBt, t ≥ 0, (14)

with Z0 := θ0, where h ∈ ∂U and (Bt)t≥0 is a standard d-dimensional Brownian motion. To avoid the issue
of having set values SDEs, when we use continuous time arguments, we have the convention that at points
where u is not differentiable, h is the subgradient with the minimum norm (we can always find it since the
set of subgradients is compact and convex). The Subgradient unadjusted Langevin Algorithm (θλ

n)n≥0, is
given by the Euler-Maruyama discretisation of (14), in particularly

(SG-ULA): θλ
n+1 = θλ

n − λh(θλ
n) +

√
2λβ−1ξn+1, θλ

0 = θ0, n ∈ N, (15)

where λ > 0 is the stepsize and (ξn)n≥1 is a sequence of i.i.d. standard Gaussian random variables on Rd.
We next introduce the auxiliary processes which are used in our analysis. For each λ > 0, the time-scaled
process (Zλ

t )t∈R+ is defined by Zλ
t := Zλt, t ∈ R+. We note that

dZλ
t = −λh(Zλ

t )dt +
√

2λβ−1dB̃λ
t , Zλ

0 = θ0, (16)

where the Brownian motion (B̃λ
t )t≥0 is defined as B̃λ

t := Bλt/
√

λ, t ≥ 0. The natural filtration of (B̃λ
t )t≥0

is denoted by (Fλ
t )t≥0 with Fλ

t := Fλt, t ∈ R+. Then, we define (θ̄λ
t )t∈R+ , the continuous-time interpolation

of SG-ULA (15), as

dθ̄λ
t = −λh(θ̄λ

⌊t⌋)dt +
√

2λβ−1dB̃λ
t , θ̄λ

0 = θ0. (17)

The law of this process coincides with the law of the algorithm at grid points i.e. L(θ̄λ
n) = L(θλ

n) for every
n ∈ N. Furthermore, consider a continuous-time process (ζs,u,λ

t )t≥s, which denotes the solution of the SDE

dζs,u,λ
t = −λh(ζs,u,λ

t )dt +
√

2λβ−1dB̃λ
t , ζs,u,λ

s = u ∈ Rd. (18)

Definition 2. Fix n ∈ N. For any t ≥ nT , define ζ̄λ,n
t := ζ

nT,θ̄λ
nT ,λ

t , where T := ⌊1/λ⌋.

One notices that the process (ζ̄λ,n
t )t≥nT has the same law as the time-scaled Langevin SDE (16), started at

time nT with initial condition θ̄λ
nT .

B Existence and uniqueness of solution to the SDE and the invariant measure

Consider the infinitesimal generator L associated with (14) defined for all ϕ ∈ C2(Rd) and x ∈ Rd by
Lϕ(x) = −⟨h(x), ∇ϕ(x)⟩ + ∆ϕ(x). Next define the Lyapunov function V (x) = 1 + |x|2 for all x ∈ Rd.
Note that V is twice continuously differentiable, and under Assumption A1, one gets the following growth
condition

LV (x) ≤ C∗V (x), ∀x ∈ Rd, (19)

where C∗ = max{4L, m2/L} + m2/2L + 2d/β. Moreover under both Assumptions A1 and A2, it satisfies
the geometric drift condition

LV (x) ≤ −µV (x) + µ + 2b + 2d/β, ∀x ∈ Rd. (20)

It follows that

lim
|x|→∞

V (x) = +∞, lim
|x|→∞

LV (x) = −∞. (21)

Proposition 1. Let Assumptions A1-A4 hold. The SDE (14) has a unique strong solution.
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Proof. Uniqueness is guaranteed under the monotonicity condition A4 and due to the diffusion coefficient
being constant. Moreover, all conditions of Theorem 2.8 in (Gyöngy & Krylov, 2022) are satisfied under
our assumptions; therefore, the SDE (14) admits a unique strong solution. In particular, since the drift
coefficient is subject to the growth Assumption A1 and the diffusion coefficient is constant, in view of (19),
they trivially satisfy the conditions (i), (ii) and (iv). Condition (iii) is also satisfied trivially as in our case
the domain is D = Rd.

Proposition 2. Let Assumptions A1, A2 and A4 hold, the Langevin SDE (14) admits a unique invariant
measure.

Proof. The existence of an invariant measure is established under Assumptions A1 and A2. In particular, the
Langevin SDE (14) has a constant diffusion coefficient and Assumption A1 ensures that the drift coefficient
is locally integrable. Consequently, in view of (21), all the conditions of Theorem 2.2 in (Bogachev et al.,
2000) are satisfied, the existence of at least one invariant measure follows. Moreover, with the inclusion of
Assumption A4, the contraction results in Appendix C imply the uniqueness of the invariant measure. This
is a direct consequence of either Proposition 4 or Proposition 5, by setting the initial condition Z0 in (14)
to be such that L(Z0) = L(πβ).

Proposition 3. Let Assumptions A1, A2 and A4 hold. The invariant measure πβ of the SDE (14), is
characterized by the density Z−1 exp(−u(x)), with Z being the normalization constant.

Proof. Under Assumption A1 one yields that u ∈ H1
loc and the rest follow from Theorem 3 in Fruehwirth &

Habring (2024).

Remark 3. Since the dissipativity condition is still preserved when one replaces Assumption A2 with A5,
Propositions 1,2, 2 still hold under Assumptions A1, A3, A4, A5.

C Preliminary Estimates

Lemma 2. Let Assumptions A1,A3 and A2 or A5 hold. Then one has

sup
t≥0

E|Zt|2 ≤ C1
(
1 + E|θ0|2

)
, (22)

where C1 = (4/µ)(b + d/β).

Proof. Let τR = inf{t ≥ 0 : |Zt| ≥ R}. Then by applying Itô’s formula to (t, x) → eµt/2|x|2, one obtains

eµ(t∧τR)/2|Zt∧τR
|2 = |θ0|2 +

∫ t∧τR

0

µ

2 eµs/2|Zs|2 − 2eµs/2⟨Zs, h(Zs)⟩ + 2d

β
eµs/2ds

+
∫ t∧τR

0

4
β

eµs/2h(Zs)dBs.

Due to the boundedness of h under Assumption A1, the last term is a martingale, thus vanishing under
expectation. Hence by taking the expectation on both sides and using (5), we bound the LHS as follows

E
[
eµ(t∧τR)/2|Zt∧τR

|2
]

≤ E|θ0|2 + 4
µ

(b + d/β)eµ(t∧τR)/2 − µ

2

∫ t∧τR

0
eµs/2E|Zs|2ds

≤ E|θ0|2 + 4
µ

(b + d/β)eµt/2.

This implies by continuity that sups∈[0,t] |Zs| < ∞ (a.s), so by Fatou’s Lemma

eµt/2E
[
|Zt|2

]
= E

[
lim inf
R→∞

eµ(t∧τR)/2|Zt∧τR
|2
]

≤ lim inf
R→∞

E
[
eµ(t∧τR)/2|Zt∧τR

|2
]

≤ E|θ0|2 + 4
µ

(b + d/β)eµt/2.
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Hence by multiplying both sides by e−µt/2, we yield the desired result

E
[
|Zt|2

]
≤ E|θ0|2 + 4

µ
(b + d/β).

Lemma 3. Let Assumptions A1-A3 hold and λ0 ∈ (0, µ/(2L2)). Then there exists C2 > 0 such that for
every λ ∈ (0, λ0) one has

sup
t≥0

E|θ̄λ
t |2 ≤ C3

(
1 + E|θ0|2

)
, (23)

where C3 =
(
2µ2/L2 + 2

)
C2 + (2µ/L2)

(
µm2/L2 + 2d/β

)
and C2 = (2b + 2d/β + µm2/L2)/(µ − 2λL2).

Proof. We begin by considering the SG-ULA iterates (θλ
n)n≥0 (15) corresponding to interpolation scheme

(17).

|θλ
n+1|2 =

∣∣θλ
n − λh(θλ

n)
∣∣2 + 2λ

β
|ξn+1|2 + 2⟨θλ

n − λh(θλ
n), ξn+1⟩.

Since θλ
n is independent of ξn+1, the last term vanishes under expectation. Thus by taking the conditional

expectation Eθλ
n [·], on both sides and using (1), (5), we obtain

Eθλ
n
[
|θλ

n+1|2
]

= Eθλ
n
[
|θλ

n|2
]

− 2λEθλ
n
[
⟨θn, h(θλ

n)⟩
]

+ λ2Eθλ
n
[
|h(θλ

n)|2
]

+ 2λd/β

≤ |θλ
n|2 − λµ|θλ

n|2 + 2λ2L2|θλ
n|2 + 2λb + 2λ2m2 + 2λd/β

≤
(
1 − λµ + 2λ2L2) |θλ

n|2 + λ
(
2b + 2µm2/(2L2) + 2d/β

)
.

Now by taking the expectation on both sides, we can iterate the above bound, due to the restriction λ <
µ/(2L2), to get

E
[
|θλ

n+1|2
]

≤
(
1 −

(
λµ − 2λ2L2))n E|θ0|2

+
1 −

(
1 − (λµ − 2λ2L2)n

λ (µ − 2λL2) λ
(
2b + 2d/β + µm2/L2)

≤ C2
(
1 + E|θ0|2

)
. (24)

For the interpolated scheme, by Hölder’s inequality and the linear growth condition (1) one writes

|θ̄λ
t |2 = 2|θ̄λ

t − θ̄λ
⌊t⌋|2 + 2|θ̄λ

⌊t⌋|2 ≤ 4
∣∣∣∣∣
∫ t

⌊t⌋
λh(θ̄λ

⌊s⌋)ds

∣∣∣∣∣
2

+ 8λ

β
|dB̃λ

t − dB̃λ
⌊t⌋|2 + 2|θ̄λ

⌊t⌋|2

≤ 4λ2(t − ⌊t⌋)
∫ t

⌊t⌋
|h(θ̄λ

⌊s⌋)|2ds + 8λ

β
|dB̃t − dB̃⌊t⌋|2 + 2|θ̄λ

⌊t⌋|2

≤ 4λ2
∫ t

⌊t⌋
2m2 + 2L2|θ̄λ

⌊s⌋|2ds + 8λ

β
|dB̃t − dB̃⌊t⌋|2 + 2|θ̄λ

⌊t⌋|2.

Notice that for any s ∈ [⌊t⌋, t], we have ⌊s⌋ = ⌊t⌋, thus by taking the expectation we obtain

E|θ̄λ
t |2 ≤ 8λ2m2 + 8λd

β
+
(
8λ2L2 + 2

)
E|θ̄λ

⌊t⌋|2 ≤ 2µ

L2

(
µm2

L2 + 2d

β

)
+
(

2µ2

L2 + 2
)
E|θ̄λ

⌊t⌋|2.

Moreover, by construction the interpolation scheme (17) agrees with the SG-ULA iterates (15) on grid points.
That is θ̄λ

⌊t⌋ = θλ
n for t ∈ [n, n + 1), thus by using the bound established in (24), we yield

E|θ̄λ
t |2 ≤ C3

(
1 + E|θ0|2

)
.
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Lemma 4. Let Assumptions A1-A3 hold and λ0 ∈ (0, µ/(2L2)). Then there exists C4 > 0 such that for
every λ ∈ (0, λ0) one has

E|θ̄λ
⌊t⌋ − θ̄λ

t |2 ≤ C4λ(1 + E|θ0|2), (25)

where C4 = 2µC3 + 2µm2/L2 + 4d/β.

Proof. One considers the difference between θ̄λ
⌊t⌋, θ̄λ

t to get the one-step error

|θ̄λ
⌊t⌋ − θ̄λ

t |2 ≤ 2
∣∣∣∣∣
∫ t

⌊t⌋
λh(θ̄λ

⌊s⌋)ds

∣∣∣∣∣
2

+ 4λ

β

∣∣∣B̃λ
⌊t⌋ − B̃λ

t

∣∣∣2 .

Taking the expectation and applying Hölder’s inequality, the linear growth condition (1) and Lemma 3, yield

E|θ̄λ
⌊t⌋ − θ̄λ

t |2 ≤ 2λ2
∫ t

⌊t⌋

(
2m2 + 2L2C3

(
1 + E|θ0|2

))
ds + 4λd/β ≤ λ2 (2m2 + 2L2C3 + 2L2C3E|θ0|2

)
+ 4λd/β.

Lemma 5. Let Assumptions A1-A3 hold and λ0 ∈ (0, µ/(2L2)). Then there exists C5 > 0, such that for
every λ ∈ (0, λ0) and n ∈ N, one has

sup
nT ≤t≤(n+1)T

E|ζ̄λ,n
t |2 ≤ C5(1 + E|θ0|2), (26)

where C5 = C3 + 2(d/β + b).

Proof. Using standard arguments involving stopping times, Grönwall’s lemma and Fatou’s lemma, we obtain
the existence of a constant c, which depends on time, such that supt≥nT E|ζ̄λ,n

t |2 ≤ c < ∞. Furthermore, by
applying Ito’s formula and (5) one has

E|ζ̄λ,n
t |2 ≤ E|θ̄λ

nT |2 +
∫ t

nT

−λµE|ζ̄λ,n
s |2 + 2λ(d/β + b)ds.

Then, differentiating both sides yields

d

dt
E|ζ̄λ,n

t |2 ≤ −λµE|ζ̄λ,n
s |2 + 2λ(d/β + b)

d

dt
eλµ(t−nT )E|ζ̄λ,n

t |2 ≤ 2λ(d/β + b)eλµ(t−nT )

E|ζ̄λ,n
t |2 ≤ e−λµ(t−nT )E|θ̄λ

nT |2 + 2λ(t − nT )(d/β + b).

Due to nT ≤ t ≤ (n + 1)T and in view Lemma 3 one gets

E|ζ̄λ,n
t |2 ≤ C3(1 + E|θ0|2) + 2(d/β + b).

Lemma 6. Let Assumptions A1-A4 hold and λ0 ∈ (0, µ/(2L2)). Then there exists C6 > 0, such that for
every λ ∈ (0, λ0), n ∈ N and t ∈ [nT, (n + 1)T ], one obtains

W2(L(θ̄λ
t ), L(ζ̄λ,n

t )) ≤ C6λ1/4,

where C6 =
√

2e2K
(
C4(1 + E|θ0|2)

)1/4
√√

C4(1 + E|θ0|2) + 2L
(

1 +
√

C5(1 + E|θ0|2) +
√

C2(1 + E|θ0|2)
)

.
The same result holds if one replaces Assumption A2 with A5.
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Proof. In order to bound the W2 distance it suffices to bound E|θ̄λ
t −ζ̄λ,n

t |2 where these processes are solutions
to SDEs with same initial condition and same Brownian motion. Applying Ito’s formula one obtains

E|θ̄λ
t − ζ̄λ,n

t |2 = −2λ

∫ t

nT

E⟨θ̄λ
s − ζ̄λ,n

s , h(θ̄λ
⌊s⌋) − h(ζ̄λ,n

s )⟩ds = −2λ

∫ t

nT

E⟨θ̄λ
⌊s⌋ − ζ̄λ,n

s , h(θ̄λ
⌊s⌋) − h(ζ̄λ,n

s )⟩ds

− 2λ

∫ t

nT

E⟨θ̄λ
s − θ̄λ

⌊s⌋, h(θ̄λ
⌊s⌋) − h(ζ̄λ,n

s )⟩ds ≤ 2λK

∫ t

nT

E|θ̄λ
⌊s⌋ − ζ̄λ,n

s |2ds

+ 2λE
∫ t

nT

|θ̄λ
s − θ̄λ

⌊s⌋||h(θ̄λ
⌊s⌋) − h(ζ̄λ,n

s )|ds ≤ 4λK

∫ t

nT

E|θ̄λ
s − ζ̄λ,n

s |2ds

+ 4λK

∫ t

nT

E|θ̄λ
⌊s⌋ − θ̄λ

s |2ds + 2λE
∫ t

nT

|θ̄λ
s − θ̄λ

⌊s⌋||h(θ̄λ
⌊s⌋) − h(ζ̄λ,n

s )|ds,

where the first inequality was obtained using the one-sided Lipschitz Assumption A4. The second term can
be controlled by Lemma 5 while for the third term,

E
∫ t

nT

|θ̄λ
s − θ̄λ

⌊s⌋||h(θ̄λ
⌊s⌋) − h(ζ̄λ,n

s )|ds ≤
∫ t

nT

√
E|θ̄λ

s − θ̄λ
⌊s⌋|2

√
E|h(θ̄λ

⌊s⌋) − h(ζ̄λ,n
s )|2ds

≤
∫ t

nT

√
E|θ̄λ

s − θ̄λ
⌊s⌋|2

√
2L2E(1 + |ζ̄λ,n

s |2 + |θ̄λ
⌊s⌋|2)ds

≤ 2LT
√

C4(1 + E|θ0|2)

×
(

1 +
√

C5(1 + E|θ0|2) +
√

C2(1 + E|θ0|2)
)

λ1/2,

(27)

where the inequality follows from the C-S inequality, the second uses the linear growth property of the
gradient, (Assumption A1) and the final bound is obtained using estimates in Lemma 4, along with the
moment bounds of the algorithm and the auxiliary process provided in Lemmas 3 and 5 respectively. Putting
all together, leads to

E|θ̄λ
t − ζ̄λ,n

t |2 ≤ 4λK

∫ t

nT

E|θ̄λ
s − ζ̄λ,n

s |2ds + 2Cλ1/2,

where C = 2C4(1 +E|θ0|2) +
√

C4(1 + E|θ0|2)2L
(

1 +
√

C5(1 + E|θ0|2) +
√

C2(1 + E|θ0|2)
)

. Since the right
hand side is finite (as there is a control of the moments of the algorithm and the auxiliary process at finite
time), one can apply Grönwall’s inequality which yields

E|θ̄λ
t − ζ̄λ,n

t |2 ≤ 2e4KCλ1/2.

Since W2(L(θ̄λ
t ), L(ζ̄λ,n

t )) ≤
√

E|θ̄λ
t − ζ̄λ,n

t |2 the result follows immediately.

D Contraction Estimates

Proposition 4. Let Assumptions A1-A4 hold. Consider Z ′
t, t ≥ 0, be the solution of (14) with initial

condition Z ′
0 = θ′

0, which is independent of F∞ and satisfies Assumption A3. Then

W1 (L(Zt), L(Z ′
t)) ≤ CW1e−Cr1 tW1(L(θ0), L(θ′

0)), (28)

where CW1 = 2e−βKR2/8 and Cr1 = 2/(βC
′

0) with

C
′

0 =


2
3e

min(1/R2, µβ/8) if βKR2 ≤ 8,(
8
√

2πR−1(βK)−1/2((βK)−1 + (βµ)−1) exp(βKR2/8) + 32(βµR)−2)−1 if βKR2 ≥ 8.

Proof. It follows directly by invoking Theorem 1, Corollary 2 and Lemma 1 in (Eberle, 2016).
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Proposition 5. Let Assumptions A1-A4 hold. Consider Z ′
t, t ≥ 0, be the solution of (14) with initial

condition Z ′
0 = θ′

0, which is independent of F∞ and satisfies Assumption A3. Then, for any ϵ ∈ (0,
√

β/8µ)

W2 (L(Zt), L(Z ′
t)) ≤ CW2e−Cr2 t max

{
W2(L(θ0), L(θ′

0)),
√

W1(L(θ0), L(θ′
0))
}

, (29)

where CW2 = 2 max{1, R−1/2}C
′′

0 (ϵ)e
(√

β/32(µ+K)+ϵ/2
)

βR2/2
√

(2/β) max{4/ϵ + 2, 8/(eϵ2)}/(
√

β/2R + 1),

Cr2 = 2 min{1, 1/ϵ}e−(1/4)
√

(β/2)3(µ+K)R2
/C

′′

0 (ϵ), and C
′′

0 (ϵ) depends exclusively on βµ and can be found in
Table 2.

Proof. It follows directly by invoking Theorem 1.3 in (Luo & Wang, 2016).

Proposition 6. Let Assumptions A1, A3, A4, A5 hold. Consider Z ′
t, t ≥ 0, be the solution of (14) with

initial condition Z ′
0 = θ′

0, which is independent of F∞ and satisfies Assumption A3. Then

W2 (L(Zt), L(Z ′
t)) ≤ C∗

W2
e−Cr3 tW2(L(Z0), L(Z ′

0)), (30)

where C∗
W2

=
√

1 + (2d)−1β(2K + µ)(2 + 2K/µ)2/d and Cr3 = µ/4.

Proof. It follows directly by invoking Theorem 1 in (Monmarché, 2023).

Lemma 7. Let Assumptions A1-A4 hold and λ0 ∈ (0, µ/(2L2)). Then there exists C7 > 0, such that for
every λ ∈ (0, λ0), n ∈ N and t ∈ [nT, (n + 1)T ], one obtains

W1(L(ζ̄λ,n
t ), L(Zλ

t )) ≤ C7λ1/4,

where C7 = C6CW1/
(
1 − e−Cr1 /2).

Proof. Recall that L(Zλ
t ) = L(ζλ,0

t ) so using the triangle inequality for the Wasserstein distance one deduces
that

W1(L(ζ̄λ,n
t ), L(Zλ

t )) ≤
n∑

k=1
W1

(
L
(

ζ̄λ,k
t

)
, L
(

ζ̄λ,k−1
t

))
=

n∑
k=1

W1

(
L
(

ζ
kT,θ̄λ

kT ,λ
t

)
, L
(

ζ
(k−1)T,θ̄λ

(k−1)T ,λ

t

))

=
n∑

k=1
W1

(
L
(

ζ
kT,θ̄λ

kT ,λ
t

)
, L
(

ζ
kT,ζ̄λ,k−1

kT
,λ

t

))

≤ CW1

n∑
k=1

exp(−Cr1(n − k)λT )W1

(
L
(
θ̄λ

kT

)
, L
(

ζ̄λ,k−1
kT

))
≤ CW1

n∑
k=1

exp(−Cr1(n − k)λT )W2

(
L
(
θ̄λ

kT

)
, L
(

ζ̄λ,k−1
kT

))
,

where in the first two equalities we used the definition 2 of auxiliary process and the in the last inequalities
we applied the contraction property in Proposition 4 and the fact that W1 ≤ W2. This further implies, due
to λT = λ⌊1/λ⌋ ∈ (1/2, 1] and the discretization error estimates from Lemma 6

W1(L(ζ̄λ,n
t ), L(Zλ

t )) ≤ CW1

1
1 − e−Cr1 /2 C6λ1/4.

Lemma 8. Let Assumptions A1-A4 hold hold and λ0 ∈ (0, µ/(2L2)). Then there exists C8 > 0, such that
for every λ ∈ (0, λ0), n ∈ N and t ∈ [nT, (n + 1)T ], one obtains

W2(L(ζ̄λ,n
t ), L(Zλ

t )) ≤ C8λ1/8,

where C8 = max{C6,
√

C6}CW2/
(
1 − e−Cr2 /2).
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Proof. Recall that L(Zλ
t ) = L(ζλ,0

t ) so using the triangle inequality for the Wasserstein distance one deduces
that

W2(L(ζ̄λ,n
t ), L(Zλ

t )) ≤
n∑

k=1
W2

(
L
(

ζ̄λ,k
t

)
, L
(

ζ̄λ,k−1
t

))
=

n∑
k=1

W2

(
L
(

ζ
kT,θ̄λ

kT ,λ
t

)
, L
(

ζ
(k−1)T,θ̄λ

(k−1)T ,λ

t

))

=
n∑

k=1
W2

(
L
(

ζ
kT,θ̄λ

kT ,λ
t

)
, L
(

ζ
kT,ζ̄λ,k−1

kT
,λ

t

))

≤ CW2

n∑
k=1

exp(−Cr2(n − k)λT )

× max
{

W2

(
L
(
θ̄λ

kT

)
, L
(

ζ̄λ,k−1
kT

))
,

√
W1

(
L
(
θ̄λ

kT

)
, L
(

ζ̄λ,k−1
kT

))}
,

where the first two equalities are deduced by the definition of the auxiliary process and the last inequality
by the contraction property in Proposition 5. This further implies, due to λT = λ⌊1/λ⌋ ∈ (1/2, 1] and the
discretization error estimates from Lemma 6

W2(L(ζ̄λ,n
t ), L(Zλ

t )) ≤ CW2

n∑
k=1

exp(Cr2

2 (n − k)) max{C6,
√

C6}λ1/8

≤ CW2

1
1 − e−Cr2 /2 max{C6,

√
C6}λ1/8.

Lemma 9. Let Assumptions A1, A3, A4, A5 and λ0 ∈ (0, µ/(2L2)). Then, there exists C9 > 0, such that
for every λ < λ0, n ∈ N and t ∈ (nT, (n + 1)T ], one obtains

W2(L(ζ̄λ,n
t ), L(Zλ

t )) ≤ C9λ1/4,

where C9 = C6C∗
W2

/(1 − e−Cr3 /2).

Proof. The proof is similar to the previous ones, the difference being that we use an improved contraction
result of Proposition 6

W2(L(ζ̄λ,n
t ), L(Zλ

t )) ≤
n∑

k=1
W2

(
L
(

ζ̄λ,k
t

)
, L
(

ζ̄λ,k−1
t

))
=

n∑
k=1

W2

(
L
(

ζ
kT,θ̄λ

kT ,λ
t

)
, L
(

ζ
(k−1)T,θ̄λ

(k−1)T ,λ

t

))

=
n∑

k=1
W2

(
L
(

ζ
kT,θ̄λ

kT ,λ
t

)
, L
(

ζ
kT,ζ̄λ,k−1

kT
,λ

t

))

≤ C∗
W2

n∑
k=1

exp(−Cr3(n − k)λT )W2

(
L(θ̄λ

kT ), L
(

ζ̄λ,k−1
kT

))
≤ C∗

W2

n∑
k=1

exp(−Cr3

2 (n − k))C6λ1/4

= C∗
W2

1
1 − e−Cr3 /2 C6λ1/4.
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E Estimates for the excess risk optimization problem

Lemma 10. Let Assumptions A1-A4 hold and λ0 ∈ (0, µ/(2L2)). Then, for every λ ∈ (0, λ0) and n ∈ N,
the following bound for T1 = E[u(θλ

n)] − E[u(θ∞)] holds

T1 ≤ CT1W2(L(θλ
n), πβ), (31)

where CT1 = m + (L/2)
√
E|θ0|2 + (L/2)

√
Cσ and Cσ = (µ + 2b + 2d/β)/µ.

Proof. We notice that the function g(t) = u(tx + (1 − t)y) is locally Lipschitz continuous (since u is semi-
convex) so it has a bounded variation in [0, 1]. Then, one can enforce the fundamental theorem of calculus
since g′(t) = ⟨h(tx + (1 − t)y), x − y⟩ a.e. Thus, one writes

u(x) − u(y) =
∫ 1

0
⟨x − y, h((1 − t)y + tx)⟩dt ≤

∫ 1

0
|x − y||h((1 − t)y + tx)|dt

≤
∫ 1

0
|x − y|(m + L|(1 − t)y + tx|)dt ≤ (m + (L/2)|x| + (L/2)|y|)|x − y|, (32)

where we have used Cauchy-Schwarz and the growth Assumption A1. Now let P be the coupling of µ, ν
that achieves W2(µ, ν). That is, P = L((X, Y )) with µ = L(X), ν = L(Y ) and W 2

2 = EP |X − Y |2. Taking
expectations in (32) and using Minkowski’s inequality, yields∫

Rd

gdµ −
∫
Rd

gdν = EP [g(X) − g(Y )] ≤
√

EP [(m + (L/2)|x| + (L/2)|y|)2]
√

EP |X − Y |2

≤
(

m + (L/2)
√
EP |X|2 + (L/2)

√
EP |Y |2

)
W2(µ, ν). (33)

One concludes by applying inequality (33) for X = u(θλ
n) and Y = u(θ∞)

E[u(θλ
n)] − E[u(θ∞)] ≤

(
m + (L/2)

√
E|θ0|2 + (L/2)

√
Cσ

)
W2(L(θλ

n), πβ), (34)

where Cσ is the second-moment of πβ . Since πβ is the invariant measure of SDE (14), there holds∫
Rd LV (x)πβ(dx) = 0. Due to (20), one estimates the constant by

Cσ ≤
∫
Rd

V (x)πβ(dx) ≤ −µ

∫
Rd

LV (x)πβ(dx) + (µ + 2b + 2d/β)/µ ≤ (µ + 2b + 2d/β)/µ. (35)

Lemma 11. Let Assumptions A1-A4 hold. For any β ≥ 4/µ, the following bound for T2 = E[u(θ∞)] − u(θ∗)
holds

T2 ≤ E[u(θ∞)] − u(θ∗) ≤ d

2β
log
(

2e(b + d/β)β2M2

µd

)
− 1

β
log
(
(1 − e−βM )/

√
π
)

, (36)

where the associated constants are given explicitly in the proof.

Proof. We follow a similar approach as in Section 3.5 of Raginsky et al. (2017), making necessary adjustments
due to the lack of a smoothness condition for the gradient ∇u(x) := h(x). According to Raginsky et al.
(2017), one obtains the following bound

E[u(θ∞)] ≤ d

2β
log
(

4πe(b + d/β)
µd

)
− 1

β
log Z, (37)

where Z :=
∫
Rd e−βu(x)dx is the normalization constant. One writes

log Z = log
∫
Rd

e−βu(x)dx = −βu(θ∗) + log
∫
Rd

eβ(u(θ∗)−u(x))dx. (38)
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Now we provide an upper bound for the second term of (38). For the remainder of this analysis, one chooses
the version of the subgradient h(x) such that h(θ∗) = 0. Therefore, property (5) immediately implies
|θ∗| ≤

√
b/(2µ) = R2. Consequently, one calculates that

−(u(θ∗) − u(x)) ≤ |u(θ∗) − u(x)| ≤
∫ 1

0
|⟨h(x + t(θ∗ − x)), θ∗ − x⟩| dt ≤

∫ 1

0
|h(x + t(θ∗ − x))||θ∗ − x|dt

≤
∫ 1

0
(m + L|x| + tL|θ∗ − x|) |θ∗ − x|dt ≤

∫ 1

0
(m + L|θ∗ − x| + L|θ∗| + tL|θ∗ − x|) |θ∗ − x|dt

≤ (3L/2)|θ∗ − x|2 + (m + LR2)|θ∗ − x|.

Hence we obtain

I =
∫
Rd

eβ(u(θ∗)−u(x))dx ≥
∫
Rd

e−β(3L/2)|θ∗−x|2−β(m+LR2)|θ∗−x|dx ≥
∫

B(θ∗,1)
e−βM |x−θ∗|dx, (39)

where M = 3L/2 + m + LR2. Since I0 :=
∫
Rd e−βM |x−θ∗|dx = 2πd/2

Γ(d/2)
Γ(d)

(βM)d one writes∫
B(θ∗,1)

e−βM |x−θ∗|dx = P (|X − θ∗| < 1)I−1
0 ,

where X follows the probability distribution e−βM |x−θ∗|I−1
0 . Since by Chernoff bound P (|X − θ∗| > 1) ≤

e−βM one deduces ∫
B(θ∗,1)

e−βM |x−θ∗|dx = P (|X − θ∗| < 1)I−1
0 ≥ (1 − e−βM )I−1

0 . (40)

Combining the aforementioned bounds with equation (38) leads to

log Z ≥ −βu(θ∗) − log(I0) + log
(
1 − e−βM

)
≥ −βu(θ∗) − d log

(
βM√

2π

)
− log

(
Γ(d/2)
Γ(d)

)
+ log

(
1 − e−βM

)
≥ −βu(θ∗) − d log

(
βM√

2π

)
− 1

2 log (π) + log
(
1 − e−βM

)
.

In view of (37), one concludes with

E[u(θ∞)] − u(θ∗) ≤ d

2β
log
(

2e(b + d/β)β2M2

µd

)
− 1

β
log
(
(1 − e−βM )/

√
π
)

.

F Proofs of Section 4

Proof of Theorem 1

Proof. Let N ∈ N and set n = ⌊N/T ⌋, then N ∈ [nT, (n + 1)T ]. Therefore, taking into account the results
of Lemmas 6, 7, and Proposition 4, it follows that for every λ ∈ (0, λ0), n ∈ N, and t ∈ [nT, (n + 1)T ], one
has

W1
(
L(θλ

N ), πβ

)
≤ W1

(
L(θ̄λ

N ), L(ζ̄λ,n
N )

)
+ W1

(
L(ζ̄λ,n

N ), L(Zλ
N )
)

+ W1
(
L(Zλ

N ), πβ

)
≤ CW1e−Cr1 λN W1 (L(θ0), πβ) + (C7 + C6)λ1/4.

Proof of Theorem 2
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Proof. Let N ∈ N and set n = ⌊N/T ⌋, then N ∈ [nT, (n + 1)T ]. Therefore, taking into account the results
of Lemmas 6, 8, and Proposition 5, it follows that for every λ ∈ (0, λ0), n ∈ N, and t ∈ [nT, (n + 1)T ], one
has

W2
(
L(θλ

N ), πβ

)
≤ W2

(
L(θ̄λ

N ), L(ζ̄λ,n
N )

)
+ W2

(
L(ζ̄λ,n

N ), L(Zλ
N )
)

+ W2
(
L(Zλ

N ), πβ

)
≤ CW2e−Cr2 λN max

{
W2 (L(θ0), πβ) ,

√
W1 (L(θ0), πβ)

}
+ (C6 + C8)λ1/8.

Proof of Theorem 3

Proof. Let N ∈ N and set n = ⌊N/T ⌋, then N ∈ [nT, (n + 1)T ]. Therefore, taking into account the results
of Lemmas 6, 9 and Proposition 6, it follows that for every λ ∈ (0, λ0), n ∈ N, and t ∈ [nT, (n + 1)T ], one
has

W2
(
L(θλ

N ), πβ

)
≤ W2

(
L(θ̄λ

N ), L(ζ̄λ,n
N )

)
+ W2

(
L(ζ̄λ,n

N ), L(Zλ
N )
)

+ W2
(
L(Zλ

N ), πβ

)
≤ C∗

W2
e−Cr3 λN W2(L(θ0), πβ) + (C6 + C9)λ1/4.

G Remarks

Proof of Remark 1

Proof. Let |x| ≥ R, then through A2 one obtains

⟨x, h(x)⟩ = ⟨x − 0, h(x) − h(0)⟩ + ⟨x, h(0)⟩ ≥ µ|x|2 − |x||h(0)| ≥ µ

2 |x|2 − |h(0)|
2µ

. (41)

Now let |x| < R, due to the linear growth in A1 one writes

⟨x, h(x)⟩ ≥ −|x||h(x)| ≥ −m|x| − L|x|2 ≥ −mR − LR2 + µ

2 R2 − µ

2 R2

≥ µ

2 |x|2 −
(
mR + (L + µ/2) R2) . (42)

Combining (41) and (42) yield (5), where b = max
(
|h(0)|/(2µ), mR + (L + µ/2) R2).

The following Remark is a useful tool to verify A2 when a function is known to be strongly convex outside
a compact set but not necessarily inside of it.

Remark 4. Let R > 0 and suppose u(x) ∈ C(Rd) and is given by u(x) =
{

u1(x), |x| ≤ R

u2(x), |x| > R
, where

u1, u2 : Rd → R admit the gradients h1 = ∇u1, h2 = ∇u2 such that

h1,2,R = max
{

sup
|x|≤R

|h1(x)|, sup
|x|≤R

|h2(x)|
}

< ∞.

Moreover, u2 is µ-strongly convex. Then u is µ/2-strongly convex at infinity, outside the ball
B
(
0, (2

√
2/µ)h1,2,R

)
.

Proof. Let x ∈ B(0, R) and y /∈ B(0, R), one writes

⟨x − y, h(x) − h(y)⟩ = ⟨x − y, h1(x) − h2(y) = ⟨x − y, h2(x) − h2(y)⟩ + ⟨x − y, h1(x) − h2(x)⟩
≥ µ|x − y|2 − |x − y||h1(x) − h2(x)|
≥ µ|x − y|2 − (µ/4)|x − y|2 − (1/µ)|h1(x) − h2(x)|2

≥ (3µ/4)|x − y|2 − (2/µ)h2
1,2,R = (3µ/4)|x − y|2 − (µ/4)R̄2.
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Hence for any x, y such that |x − y| > R̄ = (2
√

2/µ)h1,2,R, one obtains

⟨x − y, h(x) − h(y)⟩ ≥ (µ/2)|x − y|2.
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Table 2: Analytic expressions of constants.

No. Constants dim
1 b = max

(
|h(0)|/(2µ), mR + (L + (µ/2)) R2) O(1)

2 C1 = (4/µ)(b + d/β) O(d)
3 C2 = (2b + 2d/β + µm2/L2)/(µ − 2λL2) O(d)
4 C3 =

(
2µ2/L2 + 2

)
C2 + (2µ/L2)

(
µm2/L2 + 2d/β

)
O(d)

5 C4 = 2µC3 + 2µm2/L2 + 4d/β O(d)
6 C5 = C3 + 2(d/β + b) O(d)
7 C6 = e2K

√
C4(1 + E|θ0|2)

(√
C4(1 + E|θ0|2) + 2L

(
1 +

√
C5(1 + E|θ0|2) +

√
C2(1 + E|θ0|2)

))
O(d)

8 CW1 = 2e−βKR2/8 O(1)
9 Cr1 = 2/(βC

′

0) O(1)

10 C
′

0 =


2
3e

min(1/R2, µβ/8) if βKR2 ≤ 8,(
8
√

2πR−1(βK)−1/2((βK)−1 + (βµ)−1) exp(βKR2/8) + 32(βµR)−2)−1 if βKR2 ≥ 8.
O(1)

11 CW2 = 2 max{1, R−1/2}C
′′

0 (ϵ)e
(√

β/32(µ+K)+ϵ/2
)

βR2/2
√

(2/β) max{4/ϵ + 2, 8/(eϵ2)}/(
√

β/2R + 1) O(1)
12 Cr2 = 2 min{1, 1/ϵ}e−(1/4)

√
(β/2)3(µ+K)R2

/C
′′

0 (ϵ) O(1)

13 C
′′

0 (ϵ) = max

2e2

ϵ

(
1 + 2√

ϵ

)√
2√

β/8µ − ϵ
,

2 +
√

ϵ

ϵ(1 − e−2)

 2
√

2e2√
ϵ(
√

β/8µ − ϵ)
+ 1√

β/8µ − ϵ

 O(1)

14 C∗
W2

=
√

1 + (2d)−1β(2K + µ)(2 + 2K/µ)2/d O(d−1)
15 Cr3 = µ/4 O(1)
16 C7 = C6CW1/

(
1 − e−Cr1 /2

)
O(d)

17 C8 = max{C6,
√

C6}CW2/
(

1 − e−Cr2 /2
)

O(d)

18 C9 = C6C∗
W2

/
(

1 − e−Cr3 /2
)

O(d)
19 CT1 = C6(1 + CW1/(1 − e−Cr1 /2)) O(d)
20 CT2 = C6 + max{C6,

√
C6}CW2/

(
1 − e−Cr2 /2

)
O(d)

21 CT3 = C6(1 + C∗
W2

/(1 − e−Cr3 /2)) O(d)
22 CT1 = m + (L/2)

√
E|θ0|2 + (L/2)

√
(µ + 2b + 2d/β)/µ O(d1/2)

23 CT2 = d

2β
log
(

2e(b + d/β)β2M2

µd

)
− 1

β
log
(
(1 − e−βM )/

√
π
)

O(d)

24 M = m + 3L/2 + L
√

b/(2µ) O(1)
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